| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * int.c |
| 4 | * Functions for the built-in integer types (except int8). |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/int.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * OLD COMMENTS |
| 17 | * I/O routines: |
| 18 | * int2in, int2out, int2recv, int2send |
| 19 | * int4in, int4out, int4recv, int4send |
| 20 | * int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend |
| 21 | * Boolean operators: |
| 22 | * inteq, intne, intlt, intle, intgt, intge |
| 23 | * Arithmetic operators: |
| 24 | * intpl, intmi, int4mul, intdiv |
| 25 | * |
| 26 | * Arithmetic operators: |
| 27 | * intmod |
| 28 | */ |
| 29 | #include "postgres.h" |
| 30 | |
| 31 | #include <ctype.h> |
| 32 | #include <limits.h> |
| 33 | #include <math.h> |
| 34 | |
| 35 | #include "catalog/pg_type.h" |
| 36 | #include "common/int.h" |
| 37 | #include "funcapi.h" |
| 38 | #include "libpq/pqformat.h" |
| 39 | #include "nodes/nodeFuncs.h" |
| 40 | #include "nodes/supportnodes.h" |
| 41 | #include "optimizer/optimizer.h" |
| 42 | #include "utils/array.h" |
| 43 | #include "utils/builtins.h" |
| 44 | |
| 45 | #define Int2VectorSize(n) (offsetof(int2vector, values) + (n) * sizeof(int16)) |
| 46 | |
| 47 | typedef struct |
| 48 | { |
| 49 | int32 current; |
| 50 | int32 finish; |
| 51 | int32 step; |
| 52 | } generate_series_fctx; |
| 53 | |
| 54 | |
| 55 | /***************************************************************************** |
| 56 | * USER I/O ROUTINES * |
| 57 | *****************************************************************************/ |
| 58 | |
| 59 | /* |
| 60 | * int2in - converts "num" to short |
| 61 | */ |
| 62 | Datum |
| 63 | int2in(PG_FUNCTION_ARGS) |
| 64 | { |
| 65 | char *num = PG_GETARG_CSTRING(0); |
| 66 | |
| 67 | PG_RETURN_INT16(pg_strtoint16(num)); |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * int2out - converts short to "num" |
| 72 | */ |
| 73 | Datum |
| 74 | int2out(PG_FUNCTION_ARGS) |
| 75 | { |
| 76 | int16 arg1 = PG_GETARG_INT16(0); |
| 77 | char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */ |
| 78 | |
| 79 | pg_itoa(arg1, result); |
| 80 | PG_RETURN_CSTRING(result); |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * int2recv - converts external binary format to int2 |
| 85 | */ |
| 86 | Datum |
| 87 | int2recv(PG_FUNCTION_ARGS) |
| 88 | { |
| 89 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 90 | |
| 91 | PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16))); |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * int2send - converts int2 to binary format |
| 96 | */ |
| 97 | Datum |
| 98 | int2send(PG_FUNCTION_ARGS) |
| 99 | { |
| 100 | int16 arg1 = PG_GETARG_INT16(0); |
| 101 | StringInfoData buf; |
| 102 | |
| 103 | pq_begintypsend(&buf); |
| 104 | pq_sendint16(&buf, arg1); |
| 105 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * construct int2vector given a raw array of int2s |
| 110 | * |
| 111 | * If int2s is NULL then caller must fill values[] afterward |
| 112 | */ |
| 113 | int2vector * |
| 114 | buildint2vector(const int16 *int2s, int n) |
| 115 | { |
| 116 | int2vector *result; |
| 117 | |
| 118 | result = (int2vector *) palloc0(Int2VectorSize(n)); |
| 119 | |
| 120 | if (n > 0 && int2s) |
| 121 | memcpy(result->values, int2s, n * sizeof(int16)); |
| 122 | |
| 123 | /* |
| 124 | * Attach standard array header. For historical reasons, we set the index |
| 125 | * lower bound to 0 not 1. |
| 126 | */ |
| 127 | SET_VARSIZE(result, Int2VectorSize(n)); |
| 128 | result->ndim = 1; |
| 129 | result->dataoffset = 0; /* never any nulls */ |
| 130 | result->elemtype = INT2OID; |
| 131 | result->dim1 = n; |
| 132 | result->lbound1 = 0; |
| 133 | |
| 134 | return result; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * int2vectorin - converts "num num ..." to internal form |
| 139 | */ |
| 140 | Datum |
| 141 | int2vectorin(PG_FUNCTION_ARGS) |
| 142 | { |
| 143 | char *intString = PG_GETARG_CSTRING(0); |
| 144 | int2vector *result; |
| 145 | int n; |
| 146 | |
| 147 | result = (int2vector *) palloc0(Int2VectorSize(FUNC_MAX_ARGS)); |
| 148 | |
| 149 | for (n = 0; *intString && n < FUNC_MAX_ARGS; n++) |
| 150 | { |
| 151 | while (*intString && isspace((unsigned char) *intString)) |
| 152 | intString++; |
| 153 | if (*intString == '\0') |
| 154 | break; |
| 155 | result->values[n] = pg_atoi(intString, sizeof(int16), ' '); |
| 156 | while (*intString && !isspace((unsigned char) *intString)) |
| 157 | intString++; |
| 158 | } |
| 159 | while (*intString && isspace((unsigned char) *intString)) |
| 160 | intString++; |
| 161 | if (*intString) |
| 162 | ereport(ERROR, |
| 163 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 164 | errmsg("int2vector has too many elements" ))); |
| 165 | |
| 166 | SET_VARSIZE(result, Int2VectorSize(n)); |
| 167 | result->ndim = 1; |
| 168 | result->dataoffset = 0; /* never any nulls */ |
| 169 | result->elemtype = INT2OID; |
| 170 | result->dim1 = n; |
| 171 | result->lbound1 = 0; |
| 172 | |
| 173 | PG_RETURN_POINTER(result); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * int2vectorout - converts internal form to "num num ..." |
| 178 | */ |
| 179 | Datum |
| 180 | int2vectorout(PG_FUNCTION_ARGS) |
| 181 | { |
| 182 | int2vector *int2Array = (int2vector *) PG_GETARG_POINTER(0); |
| 183 | int num, |
| 184 | nnums = int2Array->dim1; |
| 185 | char *rp; |
| 186 | char *result; |
| 187 | |
| 188 | /* assumes sign, 5 digits, ' ' */ |
| 189 | rp = result = (char *) palloc(nnums * 7 + 1); |
| 190 | for (num = 0; num < nnums; num++) |
| 191 | { |
| 192 | if (num != 0) |
| 193 | *rp++ = ' '; |
| 194 | pg_itoa(int2Array->values[num], rp); |
| 195 | while (*++rp != '\0') |
| 196 | ; |
| 197 | } |
| 198 | *rp = '\0'; |
| 199 | PG_RETURN_CSTRING(result); |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * int2vectorrecv - converts external binary format to int2vector |
| 204 | */ |
| 205 | Datum |
| 206 | int2vectorrecv(PG_FUNCTION_ARGS) |
| 207 | { |
| 208 | LOCAL_FCINFO(locfcinfo, 3); |
| 209 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 210 | int2vector *result; |
| 211 | |
| 212 | /* |
| 213 | * Normally one would call array_recv() using DirectFunctionCall3, but |
| 214 | * that does not work since array_recv wants to cache some data using |
| 215 | * fcinfo->flinfo->fn_extra. So we need to pass it our own flinfo |
| 216 | * parameter. |
| 217 | */ |
| 218 | InitFunctionCallInfoData(*locfcinfo, fcinfo->flinfo, 3, |
| 219 | InvalidOid, NULL, NULL); |
| 220 | |
| 221 | locfcinfo->args[0].value = PointerGetDatum(buf); |
| 222 | locfcinfo->args[0].isnull = false; |
| 223 | locfcinfo->args[1].value = ObjectIdGetDatum(INT2OID); |
| 224 | locfcinfo->args[1].isnull = false; |
| 225 | locfcinfo->args[2].value = Int32GetDatum(-1); |
| 226 | locfcinfo->args[2].isnull = false; |
| 227 | |
| 228 | result = (int2vector *) DatumGetPointer(array_recv(locfcinfo)); |
| 229 | |
| 230 | Assert(!locfcinfo->isnull); |
| 231 | |
| 232 | /* sanity checks: int2vector must be 1-D, 0-based, no nulls */ |
| 233 | if (ARR_NDIM(result) != 1 || |
| 234 | ARR_HASNULL(result) || |
| 235 | ARR_ELEMTYPE(result) != INT2OID || |
| 236 | ARR_LBOUND(result)[0] != 0) |
| 237 | ereport(ERROR, |
| 238 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 239 | errmsg("invalid int2vector data" ))); |
| 240 | |
| 241 | /* check length for consistency with int2vectorin() */ |
| 242 | if (ARR_DIMS(result)[0] > FUNC_MAX_ARGS) |
| 243 | ereport(ERROR, |
| 244 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 245 | errmsg("oidvector has too many elements" ))); |
| 246 | |
| 247 | PG_RETURN_POINTER(result); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * int2vectorsend - converts int2vector to binary format |
| 252 | */ |
| 253 | Datum |
| 254 | int2vectorsend(PG_FUNCTION_ARGS) |
| 255 | { |
| 256 | return array_send(fcinfo); |
| 257 | } |
| 258 | |
| 259 | |
| 260 | /***************************************************************************** |
| 261 | * PUBLIC ROUTINES * |
| 262 | *****************************************************************************/ |
| 263 | |
| 264 | /* |
| 265 | * int4in - converts "num" to int4 |
| 266 | */ |
| 267 | Datum |
| 268 | int4in(PG_FUNCTION_ARGS) |
| 269 | { |
| 270 | char *num = PG_GETARG_CSTRING(0); |
| 271 | |
| 272 | PG_RETURN_INT32(pg_strtoint32(num)); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * int4out - converts int4 to "num" |
| 277 | */ |
| 278 | Datum |
| 279 | int4out(PG_FUNCTION_ARGS) |
| 280 | { |
| 281 | int32 arg1 = PG_GETARG_INT32(0); |
| 282 | char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */ |
| 283 | |
| 284 | pg_ltoa(arg1, result); |
| 285 | PG_RETURN_CSTRING(result); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * int4recv - converts external binary format to int4 |
| 290 | */ |
| 291 | Datum |
| 292 | int4recv(PG_FUNCTION_ARGS) |
| 293 | { |
| 294 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 295 | |
| 296 | PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32))); |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * int4send - converts int4 to binary format |
| 301 | */ |
| 302 | Datum |
| 303 | int4send(PG_FUNCTION_ARGS) |
| 304 | { |
| 305 | int32 arg1 = PG_GETARG_INT32(0); |
| 306 | StringInfoData buf; |
| 307 | |
| 308 | pq_begintypsend(&buf); |
| 309 | pq_sendint32(&buf, arg1); |
| 310 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 311 | } |
| 312 | |
| 313 | |
| 314 | /* |
| 315 | * =================== |
| 316 | * CONVERSION ROUTINES |
| 317 | * =================== |
| 318 | */ |
| 319 | |
| 320 | Datum |
| 321 | i2toi4(PG_FUNCTION_ARGS) |
| 322 | { |
| 323 | int16 arg1 = PG_GETARG_INT16(0); |
| 324 | |
| 325 | PG_RETURN_INT32((int32) arg1); |
| 326 | } |
| 327 | |
| 328 | Datum |
| 329 | i4toi2(PG_FUNCTION_ARGS) |
| 330 | { |
| 331 | int32 arg1 = PG_GETARG_INT32(0); |
| 332 | |
| 333 | if (unlikely(arg1 < SHRT_MIN) || unlikely(arg1 > SHRT_MAX)) |
| 334 | ereport(ERROR, |
| 335 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 336 | errmsg("smallint out of range" ))); |
| 337 | |
| 338 | PG_RETURN_INT16((int16) arg1); |
| 339 | } |
| 340 | |
| 341 | /* Cast int4 -> bool */ |
| 342 | Datum |
| 343 | int4_bool(PG_FUNCTION_ARGS) |
| 344 | { |
| 345 | if (PG_GETARG_INT32(0) == 0) |
| 346 | PG_RETURN_BOOL(false); |
| 347 | else |
| 348 | PG_RETURN_BOOL(true); |
| 349 | } |
| 350 | |
| 351 | /* Cast bool -> int4 */ |
| 352 | Datum |
| 353 | bool_int4(PG_FUNCTION_ARGS) |
| 354 | { |
| 355 | if (PG_GETARG_BOOL(0) == false) |
| 356 | PG_RETURN_INT32(0); |
| 357 | else |
| 358 | PG_RETURN_INT32(1); |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * ============================ |
| 363 | * COMPARISON OPERATOR ROUTINES |
| 364 | * ============================ |
| 365 | */ |
| 366 | |
| 367 | /* |
| 368 | * inteq - returns 1 iff arg1 == arg2 |
| 369 | * intne - returns 1 iff arg1 != arg2 |
| 370 | * intlt - returns 1 iff arg1 < arg2 |
| 371 | * intle - returns 1 iff arg1 <= arg2 |
| 372 | * intgt - returns 1 iff arg1 > arg2 |
| 373 | * intge - returns 1 iff arg1 >= arg2 |
| 374 | */ |
| 375 | |
| 376 | Datum |
| 377 | int4eq(PG_FUNCTION_ARGS) |
| 378 | { |
| 379 | int32 arg1 = PG_GETARG_INT32(0); |
| 380 | int32 arg2 = PG_GETARG_INT32(1); |
| 381 | |
| 382 | PG_RETURN_BOOL(arg1 == arg2); |
| 383 | } |
| 384 | |
| 385 | Datum |
| 386 | int4ne(PG_FUNCTION_ARGS) |
| 387 | { |
| 388 | int32 arg1 = PG_GETARG_INT32(0); |
| 389 | int32 arg2 = PG_GETARG_INT32(1); |
| 390 | |
| 391 | PG_RETURN_BOOL(arg1 != arg2); |
| 392 | } |
| 393 | |
| 394 | Datum |
| 395 | int4lt(PG_FUNCTION_ARGS) |
| 396 | { |
| 397 | int32 arg1 = PG_GETARG_INT32(0); |
| 398 | int32 arg2 = PG_GETARG_INT32(1); |
| 399 | |
| 400 | PG_RETURN_BOOL(arg1 < arg2); |
| 401 | } |
| 402 | |
| 403 | Datum |
| 404 | int4le(PG_FUNCTION_ARGS) |
| 405 | { |
| 406 | int32 arg1 = PG_GETARG_INT32(0); |
| 407 | int32 arg2 = PG_GETARG_INT32(1); |
| 408 | |
| 409 | PG_RETURN_BOOL(arg1 <= arg2); |
| 410 | } |
| 411 | |
| 412 | Datum |
| 413 | int4gt(PG_FUNCTION_ARGS) |
| 414 | { |
| 415 | int32 arg1 = PG_GETARG_INT32(0); |
| 416 | int32 arg2 = PG_GETARG_INT32(1); |
| 417 | |
| 418 | PG_RETURN_BOOL(arg1 > arg2); |
| 419 | } |
| 420 | |
| 421 | Datum |
| 422 | int4ge(PG_FUNCTION_ARGS) |
| 423 | { |
| 424 | int32 arg1 = PG_GETARG_INT32(0); |
| 425 | int32 arg2 = PG_GETARG_INT32(1); |
| 426 | |
| 427 | PG_RETURN_BOOL(arg1 >= arg2); |
| 428 | } |
| 429 | |
| 430 | Datum |
| 431 | int2eq(PG_FUNCTION_ARGS) |
| 432 | { |
| 433 | int16 arg1 = PG_GETARG_INT16(0); |
| 434 | int16 arg2 = PG_GETARG_INT16(1); |
| 435 | |
| 436 | PG_RETURN_BOOL(arg1 == arg2); |
| 437 | } |
| 438 | |
| 439 | Datum |
| 440 | int2ne(PG_FUNCTION_ARGS) |
| 441 | { |
| 442 | int16 arg1 = PG_GETARG_INT16(0); |
| 443 | int16 arg2 = PG_GETARG_INT16(1); |
| 444 | |
| 445 | PG_RETURN_BOOL(arg1 != arg2); |
| 446 | } |
| 447 | |
| 448 | Datum |
| 449 | int2lt(PG_FUNCTION_ARGS) |
| 450 | { |
| 451 | int16 arg1 = PG_GETARG_INT16(0); |
| 452 | int16 arg2 = PG_GETARG_INT16(1); |
| 453 | |
| 454 | PG_RETURN_BOOL(arg1 < arg2); |
| 455 | } |
| 456 | |
| 457 | Datum |
| 458 | int2le(PG_FUNCTION_ARGS) |
| 459 | { |
| 460 | int16 arg1 = PG_GETARG_INT16(0); |
| 461 | int16 arg2 = PG_GETARG_INT16(1); |
| 462 | |
| 463 | PG_RETURN_BOOL(arg1 <= arg2); |
| 464 | } |
| 465 | |
| 466 | Datum |
| 467 | int2gt(PG_FUNCTION_ARGS) |
| 468 | { |
| 469 | int16 arg1 = PG_GETARG_INT16(0); |
| 470 | int16 arg2 = PG_GETARG_INT16(1); |
| 471 | |
| 472 | PG_RETURN_BOOL(arg1 > arg2); |
| 473 | } |
| 474 | |
| 475 | Datum |
| 476 | int2ge(PG_FUNCTION_ARGS) |
| 477 | { |
| 478 | int16 arg1 = PG_GETARG_INT16(0); |
| 479 | int16 arg2 = PG_GETARG_INT16(1); |
| 480 | |
| 481 | PG_RETURN_BOOL(arg1 >= arg2); |
| 482 | } |
| 483 | |
| 484 | Datum |
| 485 | int24eq(PG_FUNCTION_ARGS) |
| 486 | { |
| 487 | int16 arg1 = PG_GETARG_INT16(0); |
| 488 | int32 arg2 = PG_GETARG_INT32(1); |
| 489 | |
| 490 | PG_RETURN_BOOL(arg1 == arg2); |
| 491 | } |
| 492 | |
| 493 | Datum |
| 494 | int24ne(PG_FUNCTION_ARGS) |
| 495 | { |
| 496 | int16 arg1 = PG_GETARG_INT16(0); |
| 497 | int32 arg2 = PG_GETARG_INT32(1); |
| 498 | |
| 499 | PG_RETURN_BOOL(arg1 != arg2); |
| 500 | } |
| 501 | |
| 502 | Datum |
| 503 | int24lt(PG_FUNCTION_ARGS) |
| 504 | { |
| 505 | int16 arg1 = PG_GETARG_INT16(0); |
| 506 | int32 arg2 = PG_GETARG_INT32(1); |
| 507 | |
| 508 | PG_RETURN_BOOL(arg1 < arg2); |
| 509 | } |
| 510 | |
| 511 | Datum |
| 512 | int24le(PG_FUNCTION_ARGS) |
| 513 | { |
| 514 | int16 arg1 = PG_GETARG_INT16(0); |
| 515 | int32 arg2 = PG_GETARG_INT32(1); |
| 516 | |
| 517 | PG_RETURN_BOOL(arg1 <= arg2); |
| 518 | } |
| 519 | |
| 520 | Datum |
| 521 | int24gt(PG_FUNCTION_ARGS) |
| 522 | { |
| 523 | int16 arg1 = PG_GETARG_INT16(0); |
| 524 | int32 arg2 = PG_GETARG_INT32(1); |
| 525 | |
| 526 | PG_RETURN_BOOL(arg1 > arg2); |
| 527 | } |
| 528 | |
| 529 | Datum |
| 530 | int24ge(PG_FUNCTION_ARGS) |
| 531 | { |
| 532 | int16 arg1 = PG_GETARG_INT16(0); |
| 533 | int32 arg2 = PG_GETARG_INT32(1); |
| 534 | |
| 535 | PG_RETURN_BOOL(arg1 >= arg2); |
| 536 | } |
| 537 | |
| 538 | Datum |
| 539 | int42eq(PG_FUNCTION_ARGS) |
| 540 | { |
| 541 | int32 arg1 = PG_GETARG_INT32(0); |
| 542 | int16 arg2 = PG_GETARG_INT16(1); |
| 543 | |
| 544 | PG_RETURN_BOOL(arg1 == arg2); |
| 545 | } |
| 546 | |
| 547 | Datum |
| 548 | int42ne(PG_FUNCTION_ARGS) |
| 549 | { |
| 550 | int32 arg1 = PG_GETARG_INT32(0); |
| 551 | int16 arg2 = PG_GETARG_INT16(1); |
| 552 | |
| 553 | PG_RETURN_BOOL(arg1 != arg2); |
| 554 | } |
| 555 | |
| 556 | Datum |
| 557 | int42lt(PG_FUNCTION_ARGS) |
| 558 | { |
| 559 | int32 arg1 = PG_GETARG_INT32(0); |
| 560 | int16 arg2 = PG_GETARG_INT16(1); |
| 561 | |
| 562 | PG_RETURN_BOOL(arg1 < arg2); |
| 563 | } |
| 564 | |
| 565 | Datum |
| 566 | int42le(PG_FUNCTION_ARGS) |
| 567 | { |
| 568 | int32 arg1 = PG_GETARG_INT32(0); |
| 569 | int16 arg2 = PG_GETARG_INT16(1); |
| 570 | |
| 571 | PG_RETURN_BOOL(arg1 <= arg2); |
| 572 | } |
| 573 | |
| 574 | Datum |
| 575 | int42gt(PG_FUNCTION_ARGS) |
| 576 | { |
| 577 | int32 arg1 = PG_GETARG_INT32(0); |
| 578 | int16 arg2 = PG_GETARG_INT16(1); |
| 579 | |
| 580 | PG_RETURN_BOOL(arg1 > arg2); |
| 581 | } |
| 582 | |
| 583 | Datum |
| 584 | int42ge(PG_FUNCTION_ARGS) |
| 585 | { |
| 586 | int32 arg1 = PG_GETARG_INT32(0); |
| 587 | int16 arg2 = PG_GETARG_INT16(1); |
| 588 | |
| 589 | PG_RETURN_BOOL(arg1 >= arg2); |
| 590 | } |
| 591 | |
| 592 | |
| 593 | /*---------------------------------------------------------- |
| 594 | * in_range functions for int4 and int2, |
| 595 | * including cross-data-type comparisons. |
| 596 | * |
| 597 | * Note: we provide separate intN_int8 functions for performance |
| 598 | * reasons. This forces also providing intN_int2, else cases with a |
| 599 | * smallint offset value would fail to resolve which function to use. |
| 600 | * But that's an unlikely situation, so don't duplicate code for it. |
| 601 | *---------------------------------------------------------*/ |
| 602 | |
| 603 | Datum |
| 604 | in_range_int4_int4(PG_FUNCTION_ARGS) |
| 605 | { |
| 606 | int32 val = PG_GETARG_INT32(0); |
| 607 | int32 base = PG_GETARG_INT32(1); |
| 608 | int32 offset = PG_GETARG_INT32(2); |
| 609 | bool sub = PG_GETARG_BOOL(3); |
| 610 | bool less = PG_GETARG_BOOL(4); |
| 611 | int32 sum; |
| 612 | |
| 613 | if (offset < 0) |
| 614 | ereport(ERROR, |
| 615 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 616 | errmsg("invalid preceding or following size in window function" ))); |
| 617 | |
| 618 | if (sub) |
| 619 | offset = -offset; /* cannot overflow */ |
| 620 | |
| 621 | if (unlikely(pg_add_s32_overflow(base, offset, &sum))) |
| 622 | { |
| 623 | /* |
| 624 | * If sub is false, the true sum is surely more than val, so correct |
| 625 | * answer is the same as "less". If sub is true, the true sum is |
| 626 | * surely less than val, so the answer is "!less". |
| 627 | */ |
| 628 | PG_RETURN_BOOL(sub ? !less : less); |
| 629 | } |
| 630 | |
| 631 | if (less) |
| 632 | PG_RETURN_BOOL(val <= sum); |
| 633 | else |
| 634 | PG_RETURN_BOOL(val >= sum); |
| 635 | } |
| 636 | |
| 637 | Datum |
| 638 | in_range_int4_int2(PG_FUNCTION_ARGS) |
| 639 | { |
| 640 | /* Doesn't seem worth duplicating code for, so just invoke int4_int4 */ |
| 641 | return DirectFunctionCall5(in_range_int4_int4, |
| 642 | PG_GETARG_DATUM(0), |
| 643 | PG_GETARG_DATUM(1), |
| 644 | Int32GetDatum((int32) PG_GETARG_INT16(2)), |
| 645 | PG_GETARG_DATUM(3), |
| 646 | PG_GETARG_DATUM(4)); |
| 647 | } |
| 648 | |
| 649 | Datum |
| 650 | in_range_int4_int8(PG_FUNCTION_ARGS) |
| 651 | { |
| 652 | /* We must do all the math in int64 */ |
| 653 | int64 val = (int64) PG_GETARG_INT32(0); |
| 654 | int64 base = (int64) PG_GETARG_INT32(1); |
| 655 | int64 offset = PG_GETARG_INT64(2); |
| 656 | bool sub = PG_GETARG_BOOL(3); |
| 657 | bool less = PG_GETARG_BOOL(4); |
| 658 | int64 sum; |
| 659 | |
| 660 | if (offset < 0) |
| 661 | ereport(ERROR, |
| 662 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 663 | errmsg("invalid preceding or following size in window function" ))); |
| 664 | |
| 665 | if (sub) |
| 666 | offset = -offset; /* cannot overflow */ |
| 667 | |
| 668 | if (unlikely(pg_add_s64_overflow(base, offset, &sum))) |
| 669 | { |
| 670 | /* |
| 671 | * If sub is false, the true sum is surely more than val, so correct |
| 672 | * answer is the same as "less". If sub is true, the true sum is |
| 673 | * surely less than val, so the answer is "!less". |
| 674 | */ |
| 675 | PG_RETURN_BOOL(sub ? !less : less); |
| 676 | } |
| 677 | |
| 678 | if (less) |
| 679 | PG_RETURN_BOOL(val <= sum); |
| 680 | else |
| 681 | PG_RETURN_BOOL(val >= sum); |
| 682 | } |
| 683 | |
| 684 | Datum |
| 685 | in_range_int2_int4(PG_FUNCTION_ARGS) |
| 686 | { |
| 687 | /* We must do all the math in int32 */ |
| 688 | int32 val = (int32) PG_GETARG_INT16(0); |
| 689 | int32 base = (int32) PG_GETARG_INT16(1); |
| 690 | int32 offset = PG_GETARG_INT32(2); |
| 691 | bool sub = PG_GETARG_BOOL(3); |
| 692 | bool less = PG_GETARG_BOOL(4); |
| 693 | int32 sum; |
| 694 | |
| 695 | if (offset < 0) |
| 696 | ereport(ERROR, |
| 697 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 698 | errmsg("invalid preceding or following size in window function" ))); |
| 699 | |
| 700 | if (sub) |
| 701 | offset = -offset; /* cannot overflow */ |
| 702 | |
| 703 | if (unlikely(pg_add_s32_overflow(base, offset, &sum))) |
| 704 | { |
| 705 | /* |
| 706 | * If sub is false, the true sum is surely more than val, so correct |
| 707 | * answer is the same as "less". If sub is true, the true sum is |
| 708 | * surely less than val, so the answer is "!less". |
| 709 | */ |
| 710 | PG_RETURN_BOOL(sub ? !less : less); |
| 711 | } |
| 712 | |
| 713 | if (less) |
| 714 | PG_RETURN_BOOL(val <= sum); |
| 715 | else |
| 716 | PG_RETURN_BOOL(val >= sum); |
| 717 | } |
| 718 | |
| 719 | Datum |
| 720 | in_range_int2_int2(PG_FUNCTION_ARGS) |
| 721 | { |
| 722 | /* Doesn't seem worth duplicating code for, so just invoke int2_int4 */ |
| 723 | return DirectFunctionCall5(in_range_int2_int4, |
| 724 | PG_GETARG_DATUM(0), |
| 725 | PG_GETARG_DATUM(1), |
| 726 | Int32GetDatum((int32) PG_GETARG_INT16(2)), |
| 727 | PG_GETARG_DATUM(3), |
| 728 | PG_GETARG_DATUM(4)); |
| 729 | } |
| 730 | |
| 731 | Datum |
| 732 | in_range_int2_int8(PG_FUNCTION_ARGS) |
| 733 | { |
| 734 | /* Doesn't seem worth duplicating code for, so just invoke int4_int8 */ |
| 735 | return DirectFunctionCall5(in_range_int4_int8, |
| 736 | Int32GetDatum((int32) PG_GETARG_INT16(0)), |
| 737 | Int32GetDatum((int32) PG_GETARG_INT16(1)), |
| 738 | PG_GETARG_DATUM(2), |
| 739 | PG_GETARG_DATUM(3), |
| 740 | PG_GETARG_DATUM(4)); |
| 741 | } |
| 742 | |
| 743 | |
| 744 | /* |
| 745 | * int[24]pl - returns arg1 + arg2 |
| 746 | * int[24]mi - returns arg1 - arg2 |
| 747 | * int[24]mul - returns arg1 * arg2 |
| 748 | * int[24]div - returns arg1 / arg2 |
| 749 | */ |
| 750 | |
| 751 | Datum |
| 752 | int4um(PG_FUNCTION_ARGS) |
| 753 | { |
| 754 | int32 arg = PG_GETARG_INT32(0); |
| 755 | |
| 756 | if (unlikely(arg == PG_INT32_MIN)) |
| 757 | ereport(ERROR, |
| 758 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 759 | errmsg("integer out of range" ))); |
| 760 | PG_RETURN_INT32(-arg); |
| 761 | } |
| 762 | |
| 763 | Datum |
| 764 | int4up(PG_FUNCTION_ARGS) |
| 765 | { |
| 766 | int32 arg = PG_GETARG_INT32(0); |
| 767 | |
| 768 | PG_RETURN_INT32(arg); |
| 769 | } |
| 770 | |
| 771 | Datum |
| 772 | int4pl(PG_FUNCTION_ARGS) |
| 773 | { |
| 774 | int32 arg1 = PG_GETARG_INT32(0); |
| 775 | int32 arg2 = PG_GETARG_INT32(1); |
| 776 | int32 result; |
| 777 | |
| 778 | if (unlikely(pg_add_s32_overflow(arg1, arg2, &result))) |
| 779 | ereport(ERROR, |
| 780 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 781 | errmsg("integer out of range" ))); |
| 782 | PG_RETURN_INT32(result); |
| 783 | } |
| 784 | |
| 785 | Datum |
| 786 | int4mi(PG_FUNCTION_ARGS) |
| 787 | { |
| 788 | int32 arg1 = PG_GETARG_INT32(0); |
| 789 | int32 arg2 = PG_GETARG_INT32(1); |
| 790 | int32 result; |
| 791 | |
| 792 | if (unlikely(pg_sub_s32_overflow(arg1, arg2, &result))) |
| 793 | ereport(ERROR, |
| 794 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 795 | errmsg("integer out of range" ))); |
| 796 | PG_RETURN_INT32(result); |
| 797 | } |
| 798 | |
| 799 | Datum |
| 800 | int4mul(PG_FUNCTION_ARGS) |
| 801 | { |
| 802 | int32 arg1 = PG_GETARG_INT32(0); |
| 803 | int32 arg2 = PG_GETARG_INT32(1); |
| 804 | int32 result; |
| 805 | |
| 806 | if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result))) |
| 807 | ereport(ERROR, |
| 808 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 809 | errmsg("integer out of range" ))); |
| 810 | PG_RETURN_INT32(result); |
| 811 | } |
| 812 | |
| 813 | Datum |
| 814 | int4div(PG_FUNCTION_ARGS) |
| 815 | { |
| 816 | int32 arg1 = PG_GETARG_INT32(0); |
| 817 | int32 arg2 = PG_GETARG_INT32(1); |
| 818 | int32 result; |
| 819 | |
| 820 | if (arg2 == 0) |
| 821 | { |
| 822 | ereport(ERROR, |
| 823 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 824 | errmsg("division by zero" ))); |
| 825 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 826 | PG_RETURN_NULL(); |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * INT_MIN / -1 is problematic, since the result can't be represented on a |
| 831 | * two's-complement machine. Some machines produce INT_MIN, some produce |
| 832 | * zero, some throw an exception. We can dodge the problem by recognizing |
| 833 | * that division by -1 is the same as negation. |
| 834 | */ |
| 835 | if (arg2 == -1) |
| 836 | { |
| 837 | if (unlikely(arg1 == PG_INT32_MIN)) |
| 838 | ereport(ERROR, |
| 839 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 840 | errmsg("integer out of range" ))); |
| 841 | result = -arg1; |
| 842 | PG_RETURN_INT32(result); |
| 843 | } |
| 844 | |
| 845 | /* No overflow is possible */ |
| 846 | |
| 847 | result = arg1 / arg2; |
| 848 | |
| 849 | PG_RETURN_INT32(result); |
| 850 | } |
| 851 | |
| 852 | Datum |
| 853 | int4inc(PG_FUNCTION_ARGS) |
| 854 | { |
| 855 | int32 arg = PG_GETARG_INT32(0); |
| 856 | int32 result; |
| 857 | |
| 858 | if (unlikely(pg_add_s32_overflow(arg, 1, &result))) |
| 859 | ereport(ERROR, |
| 860 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 861 | errmsg("integer out of range" ))); |
| 862 | |
| 863 | PG_RETURN_INT32(result); |
| 864 | } |
| 865 | |
| 866 | Datum |
| 867 | int2um(PG_FUNCTION_ARGS) |
| 868 | { |
| 869 | int16 arg = PG_GETARG_INT16(0); |
| 870 | |
| 871 | if (unlikely(arg == PG_INT16_MIN)) |
| 872 | ereport(ERROR, |
| 873 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 874 | errmsg("smallint out of range" ))); |
| 875 | PG_RETURN_INT16(-arg); |
| 876 | } |
| 877 | |
| 878 | Datum |
| 879 | int2up(PG_FUNCTION_ARGS) |
| 880 | { |
| 881 | int16 arg = PG_GETARG_INT16(0); |
| 882 | |
| 883 | PG_RETURN_INT16(arg); |
| 884 | } |
| 885 | |
| 886 | Datum |
| 887 | int2pl(PG_FUNCTION_ARGS) |
| 888 | { |
| 889 | int16 arg1 = PG_GETARG_INT16(0); |
| 890 | int16 arg2 = PG_GETARG_INT16(1); |
| 891 | int16 result; |
| 892 | |
| 893 | if (unlikely(pg_add_s16_overflow(arg1, arg2, &result))) |
| 894 | ereport(ERROR, |
| 895 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 896 | errmsg("smallint out of range" ))); |
| 897 | PG_RETURN_INT16(result); |
| 898 | } |
| 899 | |
| 900 | Datum |
| 901 | int2mi(PG_FUNCTION_ARGS) |
| 902 | { |
| 903 | int16 arg1 = PG_GETARG_INT16(0); |
| 904 | int16 arg2 = PG_GETARG_INT16(1); |
| 905 | int16 result; |
| 906 | |
| 907 | if (unlikely(pg_sub_s16_overflow(arg1, arg2, &result))) |
| 908 | ereport(ERROR, |
| 909 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 910 | errmsg("smallint out of range" ))); |
| 911 | PG_RETURN_INT16(result); |
| 912 | } |
| 913 | |
| 914 | Datum |
| 915 | int2mul(PG_FUNCTION_ARGS) |
| 916 | { |
| 917 | int16 arg1 = PG_GETARG_INT16(0); |
| 918 | int16 arg2 = PG_GETARG_INT16(1); |
| 919 | int16 result; |
| 920 | |
| 921 | if (unlikely(pg_mul_s16_overflow(arg1, arg2, &result))) |
| 922 | ereport(ERROR, |
| 923 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 924 | errmsg("smallint out of range" ))); |
| 925 | |
| 926 | PG_RETURN_INT16(result); |
| 927 | } |
| 928 | |
| 929 | Datum |
| 930 | int2div(PG_FUNCTION_ARGS) |
| 931 | { |
| 932 | int16 arg1 = PG_GETARG_INT16(0); |
| 933 | int16 arg2 = PG_GETARG_INT16(1); |
| 934 | int16 result; |
| 935 | |
| 936 | if (arg2 == 0) |
| 937 | { |
| 938 | ereport(ERROR, |
| 939 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 940 | errmsg("division by zero" ))); |
| 941 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 942 | PG_RETURN_NULL(); |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | * SHRT_MIN / -1 is problematic, since the result can't be represented on |
| 947 | * a two's-complement machine. Some machines produce SHRT_MIN, some |
| 948 | * produce zero, some throw an exception. We can dodge the problem by |
| 949 | * recognizing that division by -1 is the same as negation. |
| 950 | */ |
| 951 | if (arg2 == -1) |
| 952 | { |
| 953 | if (unlikely(arg1 == PG_INT16_MIN)) |
| 954 | ereport(ERROR, |
| 955 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 956 | errmsg("smallint out of range" ))); |
| 957 | result = -arg1; |
| 958 | PG_RETURN_INT16(result); |
| 959 | } |
| 960 | |
| 961 | /* No overflow is possible */ |
| 962 | |
| 963 | result = arg1 / arg2; |
| 964 | |
| 965 | PG_RETURN_INT16(result); |
| 966 | } |
| 967 | |
| 968 | Datum |
| 969 | int24pl(PG_FUNCTION_ARGS) |
| 970 | { |
| 971 | int16 arg1 = PG_GETARG_INT16(0); |
| 972 | int32 arg2 = PG_GETARG_INT32(1); |
| 973 | int32 result; |
| 974 | |
| 975 | if (unlikely(pg_add_s32_overflow((int32) arg1, arg2, &result))) |
| 976 | ereport(ERROR, |
| 977 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 978 | errmsg("integer out of range" ))); |
| 979 | PG_RETURN_INT32(result); |
| 980 | } |
| 981 | |
| 982 | Datum |
| 983 | int24mi(PG_FUNCTION_ARGS) |
| 984 | { |
| 985 | int16 arg1 = PG_GETARG_INT16(0); |
| 986 | int32 arg2 = PG_GETARG_INT32(1); |
| 987 | int32 result; |
| 988 | |
| 989 | if (unlikely(pg_sub_s32_overflow((int32) arg1, arg2, &result))) |
| 990 | ereport(ERROR, |
| 991 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 992 | errmsg("integer out of range" ))); |
| 993 | PG_RETURN_INT32(result); |
| 994 | } |
| 995 | |
| 996 | Datum |
| 997 | int24mul(PG_FUNCTION_ARGS) |
| 998 | { |
| 999 | int16 arg1 = PG_GETARG_INT16(0); |
| 1000 | int32 arg2 = PG_GETARG_INT32(1); |
| 1001 | int32 result; |
| 1002 | |
| 1003 | if (unlikely(pg_mul_s32_overflow((int32) arg1, arg2, &result))) |
| 1004 | ereport(ERROR, |
| 1005 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1006 | errmsg("integer out of range" ))); |
| 1007 | PG_RETURN_INT32(result); |
| 1008 | } |
| 1009 | |
| 1010 | Datum |
| 1011 | int24div(PG_FUNCTION_ARGS) |
| 1012 | { |
| 1013 | int16 arg1 = PG_GETARG_INT16(0); |
| 1014 | int32 arg2 = PG_GETARG_INT32(1); |
| 1015 | |
| 1016 | if (unlikely(arg2 == 0)) |
| 1017 | { |
| 1018 | ereport(ERROR, |
| 1019 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 1020 | errmsg("division by zero" ))); |
| 1021 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 1022 | PG_RETURN_NULL(); |
| 1023 | } |
| 1024 | |
| 1025 | /* No overflow is possible */ |
| 1026 | PG_RETURN_INT32((int32) arg1 / arg2); |
| 1027 | } |
| 1028 | |
| 1029 | Datum |
| 1030 | int42pl(PG_FUNCTION_ARGS) |
| 1031 | { |
| 1032 | int32 arg1 = PG_GETARG_INT32(0); |
| 1033 | int16 arg2 = PG_GETARG_INT16(1); |
| 1034 | int32 result; |
| 1035 | |
| 1036 | if (unlikely(pg_add_s32_overflow(arg1, (int32) arg2, &result))) |
| 1037 | ereport(ERROR, |
| 1038 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1039 | errmsg("integer out of range" ))); |
| 1040 | PG_RETURN_INT32(result); |
| 1041 | } |
| 1042 | |
| 1043 | Datum |
| 1044 | int42mi(PG_FUNCTION_ARGS) |
| 1045 | { |
| 1046 | int32 arg1 = PG_GETARG_INT32(0); |
| 1047 | int16 arg2 = PG_GETARG_INT16(1); |
| 1048 | int32 result; |
| 1049 | |
| 1050 | if (unlikely(pg_sub_s32_overflow(arg1, (int32) arg2, &result))) |
| 1051 | ereport(ERROR, |
| 1052 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1053 | errmsg("integer out of range" ))); |
| 1054 | PG_RETURN_INT32(result); |
| 1055 | } |
| 1056 | |
| 1057 | Datum |
| 1058 | int42mul(PG_FUNCTION_ARGS) |
| 1059 | { |
| 1060 | int32 arg1 = PG_GETARG_INT32(0); |
| 1061 | int16 arg2 = PG_GETARG_INT16(1); |
| 1062 | int32 result; |
| 1063 | |
| 1064 | if (unlikely(pg_mul_s32_overflow(arg1, (int32) arg2, &result))) |
| 1065 | ereport(ERROR, |
| 1066 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1067 | errmsg("integer out of range" ))); |
| 1068 | PG_RETURN_INT32(result); |
| 1069 | } |
| 1070 | |
| 1071 | Datum |
| 1072 | int42div(PG_FUNCTION_ARGS) |
| 1073 | { |
| 1074 | int32 arg1 = PG_GETARG_INT32(0); |
| 1075 | int16 arg2 = PG_GETARG_INT16(1); |
| 1076 | int32 result; |
| 1077 | |
| 1078 | if (unlikely(arg2 == 0)) |
| 1079 | { |
| 1080 | ereport(ERROR, |
| 1081 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 1082 | errmsg("division by zero" ))); |
| 1083 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 1084 | PG_RETURN_NULL(); |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * INT_MIN / -1 is problematic, since the result can't be represented on a |
| 1089 | * two's-complement machine. Some machines produce INT_MIN, some produce |
| 1090 | * zero, some throw an exception. We can dodge the problem by recognizing |
| 1091 | * that division by -1 is the same as negation. |
| 1092 | */ |
| 1093 | if (arg2 == -1) |
| 1094 | { |
| 1095 | if (unlikely(arg1 == PG_INT32_MIN)) |
| 1096 | ereport(ERROR, |
| 1097 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1098 | errmsg("integer out of range" ))); |
| 1099 | result = -arg1; |
| 1100 | PG_RETURN_INT32(result); |
| 1101 | } |
| 1102 | |
| 1103 | /* No overflow is possible */ |
| 1104 | |
| 1105 | result = arg1 / arg2; |
| 1106 | |
| 1107 | PG_RETURN_INT32(result); |
| 1108 | } |
| 1109 | |
| 1110 | Datum |
| 1111 | int4mod(PG_FUNCTION_ARGS) |
| 1112 | { |
| 1113 | int32 arg1 = PG_GETARG_INT32(0); |
| 1114 | int32 arg2 = PG_GETARG_INT32(1); |
| 1115 | |
| 1116 | if (unlikely(arg2 == 0)) |
| 1117 | { |
| 1118 | ereport(ERROR, |
| 1119 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 1120 | errmsg("division by zero" ))); |
| 1121 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 1122 | PG_RETURN_NULL(); |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Some machines throw a floating-point exception for INT_MIN % -1, which |
| 1127 | * is a bit silly since the correct answer is perfectly well-defined, |
| 1128 | * namely zero. |
| 1129 | */ |
| 1130 | if (arg2 == -1) |
| 1131 | PG_RETURN_INT32(0); |
| 1132 | |
| 1133 | /* No overflow is possible */ |
| 1134 | |
| 1135 | PG_RETURN_INT32(arg1 % arg2); |
| 1136 | } |
| 1137 | |
| 1138 | Datum |
| 1139 | int2mod(PG_FUNCTION_ARGS) |
| 1140 | { |
| 1141 | int16 arg1 = PG_GETARG_INT16(0); |
| 1142 | int16 arg2 = PG_GETARG_INT16(1); |
| 1143 | |
| 1144 | if (unlikely(arg2 == 0)) |
| 1145 | { |
| 1146 | ereport(ERROR, |
| 1147 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 1148 | errmsg("division by zero" ))); |
| 1149 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 1150 | PG_RETURN_NULL(); |
| 1151 | } |
| 1152 | |
| 1153 | /* |
| 1154 | * Some machines throw a floating-point exception for INT_MIN % -1, which |
| 1155 | * is a bit silly since the correct answer is perfectly well-defined, |
| 1156 | * namely zero. (It's not clear this ever happens when dealing with |
| 1157 | * int16, but we might as well have the test for safety.) |
| 1158 | */ |
| 1159 | if (arg2 == -1) |
| 1160 | PG_RETURN_INT16(0); |
| 1161 | |
| 1162 | /* No overflow is possible */ |
| 1163 | |
| 1164 | PG_RETURN_INT16(arg1 % arg2); |
| 1165 | } |
| 1166 | |
| 1167 | |
| 1168 | /* int[24]abs() |
| 1169 | * Absolute value |
| 1170 | */ |
| 1171 | Datum |
| 1172 | int4abs(PG_FUNCTION_ARGS) |
| 1173 | { |
| 1174 | int32 arg1 = PG_GETARG_INT32(0); |
| 1175 | int32 result; |
| 1176 | |
| 1177 | if (unlikely(arg1 == PG_INT32_MIN)) |
| 1178 | ereport(ERROR, |
| 1179 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1180 | errmsg("integer out of range" ))); |
| 1181 | result = (arg1 < 0) ? -arg1 : arg1; |
| 1182 | PG_RETURN_INT32(result); |
| 1183 | } |
| 1184 | |
| 1185 | Datum |
| 1186 | int2abs(PG_FUNCTION_ARGS) |
| 1187 | { |
| 1188 | int16 arg1 = PG_GETARG_INT16(0); |
| 1189 | int16 result; |
| 1190 | |
| 1191 | if (unlikely(arg1 == PG_INT16_MIN)) |
| 1192 | ereport(ERROR, |
| 1193 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1194 | errmsg("smallint out of range" ))); |
| 1195 | result = (arg1 < 0) ? -arg1 : arg1; |
| 1196 | PG_RETURN_INT16(result); |
| 1197 | } |
| 1198 | |
| 1199 | Datum |
| 1200 | int2larger(PG_FUNCTION_ARGS) |
| 1201 | { |
| 1202 | int16 arg1 = PG_GETARG_INT16(0); |
| 1203 | int16 arg2 = PG_GETARG_INT16(1); |
| 1204 | |
| 1205 | PG_RETURN_INT16((arg1 > arg2) ? arg1 : arg2); |
| 1206 | } |
| 1207 | |
| 1208 | Datum |
| 1209 | int2smaller(PG_FUNCTION_ARGS) |
| 1210 | { |
| 1211 | int16 arg1 = PG_GETARG_INT16(0); |
| 1212 | int16 arg2 = PG_GETARG_INT16(1); |
| 1213 | |
| 1214 | PG_RETURN_INT16((arg1 < arg2) ? arg1 : arg2); |
| 1215 | } |
| 1216 | |
| 1217 | Datum |
| 1218 | int4larger(PG_FUNCTION_ARGS) |
| 1219 | { |
| 1220 | int32 arg1 = PG_GETARG_INT32(0); |
| 1221 | int32 arg2 = PG_GETARG_INT32(1); |
| 1222 | |
| 1223 | PG_RETURN_INT32((arg1 > arg2) ? arg1 : arg2); |
| 1224 | } |
| 1225 | |
| 1226 | Datum |
| 1227 | int4smaller(PG_FUNCTION_ARGS) |
| 1228 | { |
| 1229 | int32 arg1 = PG_GETARG_INT32(0); |
| 1230 | int32 arg2 = PG_GETARG_INT32(1); |
| 1231 | |
| 1232 | PG_RETURN_INT32((arg1 < arg2) ? arg1 : arg2); |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Bit-pushing operators |
| 1237 | * |
| 1238 | * int[24]and - returns arg1 & arg2 |
| 1239 | * int[24]or - returns arg1 | arg2 |
| 1240 | * int[24]xor - returns arg1 # arg2 |
| 1241 | * int[24]not - returns ~arg1 |
| 1242 | * int[24]shl - returns arg1 << arg2 |
| 1243 | * int[24]shr - returns arg1 >> arg2 |
| 1244 | */ |
| 1245 | |
| 1246 | Datum |
| 1247 | int4and(PG_FUNCTION_ARGS) |
| 1248 | { |
| 1249 | int32 arg1 = PG_GETARG_INT32(0); |
| 1250 | int32 arg2 = PG_GETARG_INT32(1); |
| 1251 | |
| 1252 | PG_RETURN_INT32(arg1 & arg2); |
| 1253 | } |
| 1254 | |
| 1255 | Datum |
| 1256 | int4or(PG_FUNCTION_ARGS) |
| 1257 | { |
| 1258 | int32 arg1 = PG_GETARG_INT32(0); |
| 1259 | int32 arg2 = PG_GETARG_INT32(1); |
| 1260 | |
| 1261 | PG_RETURN_INT32(arg1 | arg2); |
| 1262 | } |
| 1263 | |
| 1264 | Datum |
| 1265 | int4xor(PG_FUNCTION_ARGS) |
| 1266 | { |
| 1267 | int32 arg1 = PG_GETARG_INT32(0); |
| 1268 | int32 arg2 = PG_GETARG_INT32(1); |
| 1269 | |
| 1270 | PG_RETURN_INT32(arg1 ^ arg2); |
| 1271 | } |
| 1272 | |
| 1273 | Datum |
| 1274 | int4shl(PG_FUNCTION_ARGS) |
| 1275 | { |
| 1276 | int32 arg1 = PG_GETARG_INT32(0); |
| 1277 | int32 arg2 = PG_GETARG_INT32(1); |
| 1278 | |
| 1279 | PG_RETURN_INT32(arg1 << arg2); |
| 1280 | } |
| 1281 | |
| 1282 | Datum |
| 1283 | int4shr(PG_FUNCTION_ARGS) |
| 1284 | { |
| 1285 | int32 arg1 = PG_GETARG_INT32(0); |
| 1286 | int32 arg2 = PG_GETARG_INT32(1); |
| 1287 | |
| 1288 | PG_RETURN_INT32(arg1 >> arg2); |
| 1289 | } |
| 1290 | |
| 1291 | Datum |
| 1292 | int4not(PG_FUNCTION_ARGS) |
| 1293 | { |
| 1294 | int32 arg1 = PG_GETARG_INT32(0); |
| 1295 | |
| 1296 | PG_RETURN_INT32(~arg1); |
| 1297 | } |
| 1298 | |
| 1299 | Datum |
| 1300 | int2and(PG_FUNCTION_ARGS) |
| 1301 | { |
| 1302 | int16 arg1 = PG_GETARG_INT16(0); |
| 1303 | int16 arg2 = PG_GETARG_INT16(1); |
| 1304 | |
| 1305 | PG_RETURN_INT16(arg1 & arg2); |
| 1306 | } |
| 1307 | |
| 1308 | Datum |
| 1309 | int2or(PG_FUNCTION_ARGS) |
| 1310 | { |
| 1311 | int16 arg1 = PG_GETARG_INT16(0); |
| 1312 | int16 arg2 = PG_GETARG_INT16(1); |
| 1313 | |
| 1314 | PG_RETURN_INT16(arg1 | arg2); |
| 1315 | } |
| 1316 | |
| 1317 | Datum |
| 1318 | int2xor(PG_FUNCTION_ARGS) |
| 1319 | { |
| 1320 | int16 arg1 = PG_GETARG_INT16(0); |
| 1321 | int16 arg2 = PG_GETARG_INT16(1); |
| 1322 | |
| 1323 | PG_RETURN_INT16(arg1 ^ arg2); |
| 1324 | } |
| 1325 | |
| 1326 | Datum |
| 1327 | int2not(PG_FUNCTION_ARGS) |
| 1328 | { |
| 1329 | int16 arg1 = PG_GETARG_INT16(0); |
| 1330 | |
| 1331 | PG_RETURN_INT16(~arg1); |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | Datum |
| 1336 | int2shl(PG_FUNCTION_ARGS) |
| 1337 | { |
| 1338 | int16 arg1 = PG_GETARG_INT16(0); |
| 1339 | int32 arg2 = PG_GETARG_INT32(1); |
| 1340 | |
| 1341 | PG_RETURN_INT16(arg1 << arg2); |
| 1342 | } |
| 1343 | |
| 1344 | Datum |
| 1345 | int2shr(PG_FUNCTION_ARGS) |
| 1346 | { |
| 1347 | int16 arg1 = PG_GETARG_INT16(0); |
| 1348 | int32 arg2 = PG_GETARG_INT32(1); |
| 1349 | |
| 1350 | PG_RETURN_INT16(arg1 >> arg2); |
| 1351 | } |
| 1352 | |
| 1353 | /* |
| 1354 | * non-persistent numeric series generator |
| 1355 | */ |
| 1356 | Datum |
| 1357 | generate_series_int4(PG_FUNCTION_ARGS) |
| 1358 | { |
| 1359 | return generate_series_step_int4(fcinfo); |
| 1360 | } |
| 1361 | |
| 1362 | Datum |
| 1363 | generate_series_step_int4(PG_FUNCTION_ARGS) |
| 1364 | { |
| 1365 | FuncCallContext *funcctx; |
| 1366 | generate_series_fctx *fctx; |
| 1367 | int32 result; |
| 1368 | MemoryContext oldcontext; |
| 1369 | |
| 1370 | /* stuff done only on the first call of the function */ |
| 1371 | if (SRF_IS_FIRSTCALL()) |
| 1372 | { |
| 1373 | int32 start = PG_GETARG_INT32(0); |
| 1374 | int32 finish = PG_GETARG_INT32(1); |
| 1375 | int32 step = 1; |
| 1376 | |
| 1377 | /* see if we were given an explicit step size */ |
| 1378 | if (PG_NARGS() == 3) |
| 1379 | step = PG_GETARG_INT32(2); |
| 1380 | if (step == 0) |
| 1381 | ereport(ERROR, |
| 1382 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1383 | errmsg("step size cannot equal zero" ))); |
| 1384 | |
| 1385 | /* create a function context for cross-call persistence */ |
| 1386 | funcctx = SRF_FIRSTCALL_INIT(); |
| 1387 | |
| 1388 | /* |
| 1389 | * switch to memory context appropriate for multiple function calls |
| 1390 | */ |
| 1391 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1392 | |
| 1393 | /* allocate memory for user context */ |
| 1394 | fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx)); |
| 1395 | |
| 1396 | /* |
| 1397 | * Use fctx to keep state from call to call. Seed current with the |
| 1398 | * original start value |
| 1399 | */ |
| 1400 | fctx->current = start; |
| 1401 | fctx->finish = finish; |
| 1402 | fctx->step = step; |
| 1403 | |
| 1404 | funcctx->user_fctx = fctx; |
| 1405 | MemoryContextSwitchTo(oldcontext); |
| 1406 | } |
| 1407 | |
| 1408 | /* stuff done on every call of the function */ |
| 1409 | funcctx = SRF_PERCALL_SETUP(); |
| 1410 | |
| 1411 | /* |
| 1412 | * get the saved state and use current as the result for this iteration |
| 1413 | */ |
| 1414 | fctx = funcctx->user_fctx; |
| 1415 | result = fctx->current; |
| 1416 | |
| 1417 | if ((fctx->step > 0 && fctx->current <= fctx->finish) || |
| 1418 | (fctx->step < 0 && fctx->current >= fctx->finish)) |
| 1419 | { |
| 1420 | /* |
| 1421 | * Increment current in preparation for next iteration. If next-value |
| 1422 | * computation overflows, this is the final result. |
| 1423 | */ |
| 1424 | if (pg_add_s32_overflow(fctx->current, fctx->step, &fctx->current)) |
| 1425 | fctx->step = 0; |
| 1426 | |
| 1427 | /* do when there is more left to send */ |
| 1428 | SRF_RETURN_NEXT(funcctx, Int32GetDatum(result)); |
| 1429 | } |
| 1430 | else |
| 1431 | /* do when there is no more left */ |
| 1432 | SRF_RETURN_DONE(funcctx); |
| 1433 | } |
| 1434 | |
| 1435 | /* |
| 1436 | * Planner support function for generate_series(int4, int4 [, int4]) |
| 1437 | */ |
| 1438 | Datum |
| 1439 | generate_series_int4_support(PG_FUNCTION_ARGS) |
| 1440 | { |
| 1441 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| 1442 | Node *ret = NULL; |
| 1443 | |
| 1444 | if (IsA(rawreq, SupportRequestRows)) |
| 1445 | { |
| 1446 | /* Try to estimate the number of rows returned */ |
| 1447 | SupportRequestRows *req = (SupportRequestRows *) rawreq; |
| 1448 | |
| 1449 | if (is_funcclause(req->node)) /* be paranoid */ |
| 1450 | { |
| 1451 | List *args = ((FuncExpr *) req->node)->args; |
| 1452 | Node *arg1, |
| 1453 | *arg2, |
| 1454 | *arg3; |
| 1455 | |
| 1456 | /* We can use estimated argument values here */ |
| 1457 | arg1 = estimate_expression_value(req->root, linitial(args)); |
| 1458 | arg2 = estimate_expression_value(req->root, lsecond(args)); |
| 1459 | if (list_length(args) >= 3) |
| 1460 | arg3 = estimate_expression_value(req->root, lthird(args)); |
| 1461 | else |
| 1462 | arg3 = NULL; |
| 1463 | |
| 1464 | /* |
| 1465 | * If any argument is constant NULL, we can safely assume that |
| 1466 | * zero rows are returned. Otherwise, if they're all non-NULL |
| 1467 | * constants, we can calculate the number of rows that will be |
| 1468 | * returned. Use double arithmetic to avoid overflow hazards. |
| 1469 | */ |
| 1470 | if ((IsA(arg1, Const) && |
| 1471 | ((Const *) arg1)->constisnull) || |
| 1472 | (IsA(arg2, Const) && |
| 1473 | ((Const *) arg2)->constisnull) || |
| 1474 | (arg3 != NULL && IsA(arg3, Const) && |
| 1475 | ((Const *) arg3)->constisnull)) |
| 1476 | { |
| 1477 | req->rows = 0; |
| 1478 | ret = (Node *) req; |
| 1479 | } |
| 1480 | else if (IsA(arg1, Const) && |
| 1481 | IsA(arg2, Const) && |
| 1482 | (arg3 == NULL || IsA(arg3, Const))) |
| 1483 | { |
| 1484 | double start, |
| 1485 | finish, |
| 1486 | step; |
| 1487 | |
| 1488 | start = DatumGetInt32(((Const *) arg1)->constvalue); |
| 1489 | finish = DatumGetInt32(((Const *) arg2)->constvalue); |
| 1490 | step = arg3 ? DatumGetInt32(((Const *) arg3)->constvalue) : 1; |
| 1491 | |
| 1492 | /* This equation works for either sign of step */ |
| 1493 | if (step != 0) |
| 1494 | { |
| 1495 | req->rows = floor((finish - start + step) / step); |
| 1496 | ret = (Node *) req; |
| 1497 | } |
| 1498 | } |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | PG_RETURN_POINTER(ret); |
| 1503 | } |
| 1504 | |