| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * int8.c |
| 4 | * Internal 64-bit integer operations |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * IDENTIFICATION |
| 10 | * src/backend/utils/adt/int8.c |
| 11 | * |
| 12 | *------------------------------------------------------------------------- |
| 13 | */ |
| 14 | #include "postgres.h" |
| 15 | |
| 16 | #include <ctype.h> |
| 17 | #include <limits.h> |
| 18 | #include <math.h> |
| 19 | |
| 20 | #include "common/int.h" |
| 21 | #include "funcapi.h" |
| 22 | #include "libpq/pqformat.h" |
| 23 | #include "nodes/nodeFuncs.h" |
| 24 | #include "nodes/supportnodes.h" |
| 25 | #include "optimizer/optimizer.h" |
| 26 | #include "utils/int8.h" |
| 27 | #include "utils/builtins.h" |
| 28 | |
| 29 | |
| 30 | #define MAXINT8LEN 25 |
| 31 | |
| 32 | typedef struct |
| 33 | { |
| 34 | int64 current; |
| 35 | int64 finish; |
| 36 | int64 step; |
| 37 | } generate_series_fctx; |
| 38 | |
| 39 | |
| 40 | /*********************************************************************** |
| 41 | ** |
| 42 | ** Routines for 64-bit integers. |
| 43 | ** |
| 44 | ***********************************************************************/ |
| 45 | |
| 46 | /*---------------------------------------------------------- |
| 47 | * Formatting and conversion routines. |
| 48 | *---------------------------------------------------------*/ |
| 49 | |
| 50 | /* |
| 51 | * scanint8 --- try to parse a string into an int8. |
| 52 | * |
| 53 | * If errorOK is false, ereport a useful error message if the string is bad. |
| 54 | * If errorOK is true, just return "false" for bad input. |
| 55 | */ |
| 56 | bool |
| 57 | scanint8(const char *str, bool errorOK, int64 *result) |
| 58 | { |
| 59 | const char *ptr = str; |
| 60 | int64 tmp = 0; |
| 61 | bool neg = false; |
| 62 | |
| 63 | /* |
| 64 | * Do our own scan, rather than relying on sscanf which might be broken |
| 65 | * for long long. |
| 66 | * |
| 67 | * As INT64_MIN can't be stored as a positive 64 bit integer, accumulate |
| 68 | * value as a negative number. |
| 69 | */ |
| 70 | |
| 71 | /* skip leading spaces */ |
| 72 | while (*ptr && isspace((unsigned char) *ptr)) |
| 73 | ptr++; |
| 74 | |
| 75 | /* handle sign */ |
| 76 | if (*ptr == '-') |
| 77 | { |
| 78 | ptr++; |
| 79 | neg = true; |
| 80 | } |
| 81 | else if (*ptr == '+') |
| 82 | ptr++; |
| 83 | |
| 84 | /* require at least one digit */ |
| 85 | if (unlikely(!isdigit((unsigned char) *ptr))) |
| 86 | goto invalid_syntax; |
| 87 | |
| 88 | /* process digits */ |
| 89 | while (*ptr && isdigit((unsigned char) *ptr)) |
| 90 | { |
| 91 | int8 digit = (*ptr++ - '0'); |
| 92 | |
| 93 | if (unlikely(pg_mul_s64_overflow(tmp, 10, &tmp)) || |
| 94 | unlikely(pg_sub_s64_overflow(tmp, digit, &tmp))) |
| 95 | goto out_of_range; |
| 96 | } |
| 97 | |
| 98 | /* allow trailing whitespace, but not other trailing chars */ |
| 99 | while (*ptr != '\0' && isspace((unsigned char) *ptr)) |
| 100 | ptr++; |
| 101 | |
| 102 | if (unlikely(*ptr != '\0')) |
| 103 | goto invalid_syntax; |
| 104 | |
| 105 | if (!neg) |
| 106 | { |
| 107 | /* could fail if input is most negative number */ |
| 108 | if (unlikely(tmp == PG_INT64_MIN)) |
| 109 | goto out_of_range; |
| 110 | tmp = -tmp; |
| 111 | } |
| 112 | |
| 113 | *result = tmp; |
| 114 | return true; |
| 115 | |
| 116 | out_of_range: |
| 117 | if (!errorOK) |
| 118 | ereport(ERROR, |
| 119 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 120 | errmsg("value \"%s\" is out of range for type %s" , |
| 121 | str, "bigint" ))); |
| 122 | return false; |
| 123 | |
| 124 | invalid_syntax: |
| 125 | if (!errorOK) |
| 126 | ereport(ERROR, |
| 127 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 128 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 129 | "bigint" , str))); |
| 130 | return false; |
| 131 | } |
| 132 | |
| 133 | /* int8in() |
| 134 | */ |
| 135 | Datum |
| 136 | int8in(PG_FUNCTION_ARGS) |
| 137 | { |
| 138 | char *str = PG_GETARG_CSTRING(0); |
| 139 | int64 result; |
| 140 | |
| 141 | (void) scanint8(str, false, &result); |
| 142 | PG_RETURN_INT64(result); |
| 143 | } |
| 144 | |
| 145 | |
| 146 | /* int8out() |
| 147 | */ |
| 148 | Datum |
| 149 | int8out(PG_FUNCTION_ARGS) |
| 150 | { |
| 151 | int64 val = PG_GETARG_INT64(0); |
| 152 | char buf[MAXINT8LEN + 1]; |
| 153 | char *result; |
| 154 | |
| 155 | pg_lltoa(val, buf); |
| 156 | result = pstrdup(buf); |
| 157 | PG_RETURN_CSTRING(result); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * int8recv - converts external binary format to int8 |
| 162 | */ |
| 163 | Datum |
| 164 | int8recv(PG_FUNCTION_ARGS) |
| 165 | { |
| 166 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 167 | |
| 168 | PG_RETURN_INT64(pq_getmsgint64(buf)); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * int8send - converts int8 to binary format |
| 173 | */ |
| 174 | Datum |
| 175 | int8send(PG_FUNCTION_ARGS) |
| 176 | { |
| 177 | int64 arg1 = PG_GETARG_INT64(0); |
| 178 | StringInfoData buf; |
| 179 | |
| 180 | pq_begintypsend(&buf); |
| 181 | pq_sendint64(&buf, arg1); |
| 182 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 183 | } |
| 184 | |
| 185 | |
| 186 | /*---------------------------------------------------------- |
| 187 | * Relational operators for int8s, including cross-data-type comparisons. |
| 188 | *---------------------------------------------------------*/ |
| 189 | |
| 190 | /* int8relop() |
| 191 | * Is val1 relop val2? |
| 192 | */ |
| 193 | Datum |
| 194 | int8eq(PG_FUNCTION_ARGS) |
| 195 | { |
| 196 | int64 val1 = PG_GETARG_INT64(0); |
| 197 | int64 val2 = PG_GETARG_INT64(1); |
| 198 | |
| 199 | PG_RETURN_BOOL(val1 == val2); |
| 200 | } |
| 201 | |
| 202 | Datum |
| 203 | int8ne(PG_FUNCTION_ARGS) |
| 204 | { |
| 205 | int64 val1 = PG_GETARG_INT64(0); |
| 206 | int64 val2 = PG_GETARG_INT64(1); |
| 207 | |
| 208 | PG_RETURN_BOOL(val1 != val2); |
| 209 | } |
| 210 | |
| 211 | Datum |
| 212 | int8lt(PG_FUNCTION_ARGS) |
| 213 | { |
| 214 | int64 val1 = PG_GETARG_INT64(0); |
| 215 | int64 val2 = PG_GETARG_INT64(1); |
| 216 | |
| 217 | PG_RETURN_BOOL(val1 < val2); |
| 218 | } |
| 219 | |
| 220 | Datum |
| 221 | int8gt(PG_FUNCTION_ARGS) |
| 222 | { |
| 223 | int64 val1 = PG_GETARG_INT64(0); |
| 224 | int64 val2 = PG_GETARG_INT64(1); |
| 225 | |
| 226 | PG_RETURN_BOOL(val1 > val2); |
| 227 | } |
| 228 | |
| 229 | Datum |
| 230 | int8le(PG_FUNCTION_ARGS) |
| 231 | { |
| 232 | int64 val1 = PG_GETARG_INT64(0); |
| 233 | int64 val2 = PG_GETARG_INT64(1); |
| 234 | |
| 235 | PG_RETURN_BOOL(val1 <= val2); |
| 236 | } |
| 237 | |
| 238 | Datum |
| 239 | int8ge(PG_FUNCTION_ARGS) |
| 240 | { |
| 241 | int64 val1 = PG_GETARG_INT64(0); |
| 242 | int64 val2 = PG_GETARG_INT64(1); |
| 243 | |
| 244 | PG_RETURN_BOOL(val1 >= val2); |
| 245 | } |
| 246 | |
| 247 | /* int84relop() |
| 248 | * Is 64-bit val1 relop 32-bit val2? |
| 249 | */ |
| 250 | Datum |
| 251 | int84eq(PG_FUNCTION_ARGS) |
| 252 | { |
| 253 | int64 val1 = PG_GETARG_INT64(0); |
| 254 | int32 val2 = PG_GETARG_INT32(1); |
| 255 | |
| 256 | PG_RETURN_BOOL(val1 == val2); |
| 257 | } |
| 258 | |
| 259 | Datum |
| 260 | int84ne(PG_FUNCTION_ARGS) |
| 261 | { |
| 262 | int64 val1 = PG_GETARG_INT64(0); |
| 263 | int32 val2 = PG_GETARG_INT32(1); |
| 264 | |
| 265 | PG_RETURN_BOOL(val1 != val2); |
| 266 | } |
| 267 | |
| 268 | Datum |
| 269 | int84lt(PG_FUNCTION_ARGS) |
| 270 | { |
| 271 | int64 val1 = PG_GETARG_INT64(0); |
| 272 | int32 val2 = PG_GETARG_INT32(1); |
| 273 | |
| 274 | PG_RETURN_BOOL(val1 < val2); |
| 275 | } |
| 276 | |
| 277 | Datum |
| 278 | int84gt(PG_FUNCTION_ARGS) |
| 279 | { |
| 280 | int64 val1 = PG_GETARG_INT64(0); |
| 281 | int32 val2 = PG_GETARG_INT32(1); |
| 282 | |
| 283 | PG_RETURN_BOOL(val1 > val2); |
| 284 | } |
| 285 | |
| 286 | Datum |
| 287 | int84le(PG_FUNCTION_ARGS) |
| 288 | { |
| 289 | int64 val1 = PG_GETARG_INT64(0); |
| 290 | int32 val2 = PG_GETARG_INT32(1); |
| 291 | |
| 292 | PG_RETURN_BOOL(val1 <= val2); |
| 293 | } |
| 294 | |
| 295 | Datum |
| 296 | int84ge(PG_FUNCTION_ARGS) |
| 297 | { |
| 298 | int64 val1 = PG_GETARG_INT64(0); |
| 299 | int32 val2 = PG_GETARG_INT32(1); |
| 300 | |
| 301 | PG_RETURN_BOOL(val1 >= val2); |
| 302 | } |
| 303 | |
| 304 | /* int48relop() |
| 305 | * Is 32-bit val1 relop 64-bit val2? |
| 306 | */ |
| 307 | Datum |
| 308 | int48eq(PG_FUNCTION_ARGS) |
| 309 | { |
| 310 | int32 val1 = PG_GETARG_INT32(0); |
| 311 | int64 val2 = PG_GETARG_INT64(1); |
| 312 | |
| 313 | PG_RETURN_BOOL(val1 == val2); |
| 314 | } |
| 315 | |
| 316 | Datum |
| 317 | int48ne(PG_FUNCTION_ARGS) |
| 318 | { |
| 319 | int32 val1 = PG_GETARG_INT32(0); |
| 320 | int64 val2 = PG_GETARG_INT64(1); |
| 321 | |
| 322 | PG_RETURN_BOOL(val1 != val2); |
| 323 | } |
| 324 | |
| 325 | Datum |
| 326 | int48lt(PG_FUNCTION_ARGS) |
| 327 | { |
| 328 | int32 val1 = PG_GETARG_INT32(0); |
| 329 | int64 val2 = PG_GETARG_INT64(1); |
| 330 | |
| 331 | PG_RETURN_BOOL(val1 < val2); |
| 332 | } |
| 333 | |
| 334 | Datum |
| 335 | int48gt(PG_FUNCTION_ARGS) |
| 336 | { |
| 337 | int32 val1 = PG_GETARG_INT32(0); |
| 338 | int64 val2 = PG_GETARG_INT64(1); |
| 339 | |
| 340 | PG_RETURN_BOOL(val1 > val2); |
| 341 | } |
| 342 | |
| 343 | Datum |
| 344 | int48le(PG_FUNCTION_ARGS) |
| 345 | { |
| 346 | int32 val1 = PG_GETARG_INT32(0); |
| 347 | int64 val2 = PG_GETARG_INT64(1); |
| 348 | |
| 349 | PG_RETURN_BOOL(val1 <= val2); |
| 350 | } |
| 351 | |
| 352 | Datum |
| 353 | int48ge(PG_FUNCTION_ARGS) |
| 354 | { |
| 355 | int32 val1 = PG_GETARG_INT32(0); |
| 356 | int64 val2 = PG_GETARG_INT64(1); |
| 357 | |
| 358 | PG_RETURN_BOOL(val1 >= val2); |
| 359 | } |
| 360 | |
| 361 | /* int82relop() |
| 362 | * Is 64-bit val1 relop 16-bit val2? |
| 363 | */ |
| 364 | Datum |
| 365 | int82eq(PG_FUNCTION_ARGS) |
| 366 | { |
| 367 | int64 val1 = PG_GETARG_INT64(0); |
| 368 | int16 val2 = PG_GETARG_INT16(1); |
| 369 | |
| 370 | PG_RETURN_BOOL(val1 == val2); |
| 371 | } |
| 372 | |
| 373 | Datum |
| 374 | int82ne(PG_FUNCTION_ARGS) |
| 375 | { |
| 376 | int64 val1 = PG_GETARG_INT64(0); |
| 377 | int16 val2 = PG_GETARG_INT16(1); |
| 378 | |
| 379 | PG_RETURN_BOOL(val1 != val2); |
| 380 | } |
| 381 | |
| 382 | Datum |
| 383 | int82lt(PG_FUNCTION_ARGS) |
| 384 | { |
| 385 | int64 val1 = PG_GETARG_INT64(0); |
| 386 | int16 val2 = PG_GETARG_INT16(1); |
| 387 | |
| 388 | PG_RETURN_BOOL(val1 < val2); |
| 389 | } |
| 390 | |
| 391 | Datum |
| 392 | int82gt(PG_FUNCTION_ARGS) |
| 393 | { |
| 394 | int64 val1 = PG_GETARG_INT64(0); |
| 395 | int16 val2 = PG_GETARG_INT16(1); |
| 396 | |
| 397 | PG_RETURN_BOOL(val1 > val2); |
| 398 | } |
| 399 | |
| 400 | Datum |
| 401 | int82le(PG_FUNCTION_ARGS) |
| 402 | { |
| 403 | int64 val1 = PG_GETARG_INT64(0); |
| 404 | int16 val2 = PG_GETARG_INT16(1); |
| 405 | |
| 406 | PG_RETURN_BOOL(val1 <= val2); |
| 407 | } |
| 408 | |
| 409 | Datum |
| 410 | int82ge(PG_FUNCTION_ARGS) |
| 411 | { |
| 412 | int64 val1 = PG_GETARG_INT64(0); |
| 413 | int16 val2 = PG_GETARG_INT16(1); |
| 414 | |
| 415 | PG_RETURN_BOOL(val1 >= val2); |
| 416 | } |
| 417 | |
| 418 | /* int28relop() |
| 419 | * Is 16-bit val1 relop 64-bit val2? |
| 420 | */ |
| 421 | Datum |
| 422 | int28eq(PG_FUNCTION_ARGS) |
| 423 | { |
| 424 | int16 val1 = PG_GETARG_INT16(0); |
| 425 | int64 val2 = PG_GETARG_INT64(1); |
| 426 | |
| 427 | PG_RETURN_BOOL(val1 == val2); |
| 428 | } |
| 429 | |
| 430 | Datum |
| 431 | int28ne(PG_FUNCTION_ARGS) |
| 432 | { |
| 433 | int16 val1 = PG_GETARG_INT16(0); |
| 434 | int64 val2 = PG_GETARG_INT64(1); |
| 435 | |
| 436 | PG_RETURN_BOOL(val1 != val2); |
| 437 | } |
| 438 | |
| 439 | Datum |
| 440 | int28lt(PG_FUNCTION_ARGS) |
| 441 | { |
| 442 | int16 val1 = PG_GETARG_INT16(0); |
| 443 | int64 val2 = PG_GETARG_INT64(1); |
| 444 | |
| 445 | PG_RETURN_BOOL(val1 < val2); |
| 446 | } |
| 447 | |
| 448 | Datum |
| 449 | int28gt(PG_FUNCTION_ARGS) |
| 450 | { |
| 451 | int16 val1 = PG_GETARG_INT16(0); |
| 452 | int64 val2 = PG_GETARG_INT64(1); |
| 453 | |
| 454 | PG_RETURN_BOOL(val1 > val2); |
| 455 | } |
| 456 | |
| 457 | Datum |
| 458 | int28le(PG_FUNCTION_ARGS) |
| 459 | { |
| 460 | int16 val1 = PG_GETARG_INT16(0); |
| 461 | int64 val2 = PG_GETARG_INT64(1); |
| 462 | |
| 463 | PG_RETURN_BOOL(val1 <= val2); |
| 464 | } |
| 465 | |
| 466 | Datum |
| 467 | int28ge(PG_FUNCTION_ARGS) |
| 468 | { |
| 469 | int16 val1 = PG_GETARG_INT16(0); |
| 470 | int64 val2 = PG_GETARG_INT64(1); |
| 471 | |
| 472 | PG_RETURN_BOOL(val1 >= val2); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * in_range support function for int8. |
| 477 | * |
| 478 | * Note: we needn't supply int8_int4 or int8_int2 variants, as implicit |
| 479 | * coercion of the offset value takes care of those scenarios just as well. |
| 480 | */ |
| 481 | Datum |
| 482 | in_range_int8_int8(PG_FUNCTION_ARGS) |
| 483 | { |
| 484 | int64 val = PG_GETARG_INT64(0); |
| 485 | int64 base = PG_GETARG_INT64(1); |
| 486 | int64 offset = PG_GETARG_INT64(2); |
| 487 | bool sub = PG_GETARG_BOOL(3); |
| 488 | bool less = PG_GETARG_BOOL(4); |
| 489 | int64 sum; |
| 490 | |
| 491 | if (offset < 0) |
| 492 | ereport(ERROR, |
| 493 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 494 | errmsg("invalid preceding or following size in window function" ))); |
| 495 | |
| 496 | if (sub) |
| 497 | offset = -offset; /* cannot overflow */ |
| 498 | |
| 499 | if (unlikely(pg_add_s64_overflow(base, offset, &sum))) |
| 500 | { |
| 501 | /* |
| 502 | * If sub is false, the true sum is surely more than val, so correct |
| 503 | * answer is the same as "less". If sub is true, the true sum is |
| 504 | * surely less than val, so the answer is "!less". |
| 505 | */ |
| 506 | PG_RETURN_BOOL(sub ? !less : less); |
| 507 | } |
| 508 | |
| 509 | if (less) |
| 510 | PG_RETURN_BOOL(val <= sum); |
| 511 | else |
| 512 | PG_RETURN_BOOL(val >= sum); |
| 513 | } |
| 514 | |
| 515 | |
| 516 | /*---------------------------------------------------------- |
| 517 | * Arithmetic operators on 64-bit integers. |
| 518 | *---------------------------------------------------------*/ |
| 519 | |
| 520 | Datum |
| 521 | int8um(PG_FUNCTION_ARGS) |
| 522 | { |
| 523 | int64 arg = PG_GETARG_INT64(0); |
| 524 | int64 result; |
| 525 | |
| 526 | if (unlikely(arg == PG_INT64_MIN)) |
| 527 | ereport(ERROR, |
| 528 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 529 | errmsg("bigint out of range" ))); |
| 530 | result = -arg; |
| 531 | PG_RETURN_INT64(result); |
| 532 | } |
| 533 | |
| 534 | Datum |
| 535 | int8up(PG_FUNCTION_ARGS) |
| 536 | { |
| 537 | int64 arg = PG_GETARG_INT64(0); |
| 538 | |
| 539 | PG_RETURN_INT64(arg); |
| 540 | } |
| 541 | |
| 542 | Datum |
| 543 | int8pl(PG_FUNCTION_ARGS) |
| 544 | { |
| 545 | int64 arg1 = PG_GETARG_INT64(0); |
| 546 | int64 arg2 = PG_GETARG_INT64(1); |
| 547 | int64 result; |
| 548 | |
| 549 | if (unlikely(pg_add_s64_overflow(arg1, arg2, &result))) |
| 550 | ereport(ERROR, |
| 551 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 552 | errmsg("bigint out of range" ))); |
| 553 | PG_RETURN_INT64(result); |
| 554 | } |
| 555 | |
| 556 | Datum |
| 557 | int8mi(PG_FUNCTION_ARGS) |
| 558 | { |
| 559 | int64 arg1 = PG_GETARG_INT64(0); |
| 560 | int64 arg2 = PG_GETARG_INT64(1); |
| 561 | int64 result; |
| 562 | |
| 563 | if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result))) |
| 564 | ereport(ERROR, |
| 565 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 566 | errmsg("bigint out of range" ))); |
| 567 | PG_RETURN_INT64(result); |
| 568 | } |
| 569 | |
| 570 | Datum |
| 571 | int8mul(PG_FUNCTION_ARGS) |
| 572 | { |
| 573 | int64 arg1 = PG_GETARG_INT64(0); |
| 574 | int64 arg2 = PG_GETARG_INT64(1); |
| 575 | int64 result; |
| 576 | |
| 577 | if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result))) |
| 578 | ereport(ERROR, |
| 579 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 580 | errmsg("bigint out of range" ))); |
| 581 | PG_RETURN_INT64(result); |
| 582 | } |
| 583 | |
| 584 | Datum |
| 585 | int8div(PG_FUNCTION_ARGS) |
| 586 | { |
| 587 | int64 arg1 = PG_GETARG_INT64(0); |
| 588 | int64 arg2 = PG_GETARG_INT64(1); |
| 589 | int64 result; |
| 590 | |
| 591 | if (arg2 == 0) |
| 592 | { |
| 593 | ereport(ERROR, |
| 594 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 595 | errmsg("division by zero" ))); |
| 596 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 597 | PG_RETURN_NULL(); |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * INT64_MIN / -1 is problematic, since the result can't be represented on |
| 602 | * a two's-complement machine. Some machines produce INT64_MIN, some |
| 603 | * produce zero, some throw an exception. We can dodge the problem by |
| 604 | * recognizing that division by -1 is the same as negation. |
| 605 | */ |
| 606 | if (arg2 == -1) |
| 607 | { |
| 608 | if (unlikely(arg1 == PG_INT64_MIN)) |
| 609 | ereport(ERROR, |
| 610 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 611 | errmsg("bigint out of range" ))); |
| 612 | result = -arg1; |
| 613 | PG_RETURN_INT64(result); |
| 614 | } |
| 615 | |
| 616 | /* No overflow is possible */ |
| 617 | |
| 618 | result = arg1 / arg2; |
| 619 | |
| 620 | PG_RETURN_INT64(result); |
| 621 | } |
| 622 | |
| 623 | /* int8abs() |
| 624 | * Absolute value |
| 625 | */ |
| 626 | Datum |
| 627 | int8abs(PG_FUNCTION_ARGS) |
| 628 | { |
| 629 | int64 arg1 = PG_GETARG_INT64(0); |
| 630 | int64 result; |
| 631 | |
| 632 | if (unlikely(arg1 == PG_INT64_MIN)) |
| 633 | ereport(ERROR, |
| 634 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 635 | errmsg("bigint out of range" ))); |
| 636 | result = (arg1 < 0) ? -arg1 : arg1; |
| 637 | PG_RETURN_INT64(result); |
| 638 | } |
| 639 | |
| 640 | /* int8mod() |
| 641 | * Modulo operation. |
| 642 | */ |
| 643 | Datum |
| 644 | int8mod(PG_FUNCTION_ARGS) |
| 645 | { |
| 646 | int64 arg1 = PG_GETARG_INT64(0); |
| 647 | int64 arg2 = PG_GETARG_INT64(1); |
| 648 | |
| 649 | if (unlikely(arg2 == 0)) |
| 650 | { |
| 651 | ereport(ERROR, |
| 652 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 653 | errmsg("division by zero" ))); |
| 654 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 655 | PG_RETURN_NULL(); |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Some machines throw a floating-point exception for INT64_MIN % -1, |
| 660 | * which is a bit silly since the correct answer is perfectly |
| 661 | * well-defined, namely zero. |
| 662 | */ |
| 663 | if (arg2 == -1) |
| 664 | PG_RETURN_INT64(0); |
| 665 | |
| 666 | /* No overflow is possible */ |
| 667 | |
| 668 | PG_RETURN_INT64(arg1 % arg2); |
| 669 | } |
| 670 | |
| 671 | |
| 672 | Datum |
| 673 | int8inc(PG_FUNCTION_ARGS) |
| 674 | { |
| 675 | /* |
| 676 | * When int8 is pass-by-reference, we provide this special case to avoid |
| 677 | * palloc overhead for COUNT(): when called as an aggregate, we know that |
| 678 | * the argument is modifiable local storage, so just update it in-place. |
| 679 | * (If int8 is pass-by-value, then of course this is useless as well as |
| 680 | * incorrect, so just ifdef it out.) |
| 681 | */ |
| 682 | #ifndef USE_FLOAT8_BYVAL /* controls int8 too */ |
| 683 | if (AggCheckCallContext(fcinfo, NULL)) |
| 684 | { |
| 685 | int64 *arg = (int64 *) PG_GETARG_POINTER(0); |
| 686 | |
| 687 | if (unlikely(pg_add_s64_overflow(*arg, 1, arg))) |
| 688 | ereport(ERROR, |
| 689 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 690 | errmsg("bigint out of range" ))); |
| 691 | |
| 692 | PG_RETURN_POINTER(arg); |
| 693 | } |
| 694 | else |
| 695 | #endif |
| 696 | { |
| 697 | /* Not called as an aggregate, so just do it the dumb way */ |
| 698 | int64 arg = PG_GETARG_INT64(0); |
| 699 | int64 result; |
| 700 | |
| 701 | if (unlikely(pg_add_s64_overflow(arg, 1, &result))) |
| 702 | ereport(ERROR, |
| 703 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 704 | errmsg("bigint out of range" ))); |
| 705 | |
| 706 | PG_RETURN_INT64(result); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | Datum |
| 711 | int8dec(PG_FUNCTION_ARGS) |
| 712 | { |
| 713 | /* |
| 714 | * When int8 is pass-by-reference, we provide this special case to avoid |
| 715 | * palloc overhead for COUNT(): when called as an aggregate, we know that |
| 716 | * the argument is modifiable local storage, so just update it in-place. |
| 717 | * (If int8 is pass-by-value, then of course this is useless as well as |
| 718 | * incorrect, so just ifdef it out.) |
| 719 | */ |
| 720 | #ifndef USE_FLOAT8_BYVAL /* controls int8 too */ |
| 721 | if (AggCheckCallContext(fcinfo, NULL)) |
| 722 | { |
| 723 | int64 *arg = (int64 *) PG_GETARG_POINTER(0); |
| 724 | |
| 725 | if (unlikely(pg_sub_s64_overflow(*arg, 1, arg))) |
| 726 | ereport(ERROR, |
| 727 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 728 | errmsg("bigint out of range" ))); |
| 729 | PG_RETURN_POINTER(arg); |
| 730 | } |
| 731 | else |
| 732 | #endif |
| 733 | { |
| 734 | /* Not called as an aggregate, so just do it the dumb way */ |
| 735 | int64 arg = PG_GETARG_INT64(0); |
| 736 | int64 result; |
| 737 | |
| 738 | if (unlikely(pg_sub_s64_overflow(arg, 1, &result))) |
| 739 | ereport(ERROR, |
| 740 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 741 | errmsg("bigint out of range" ))); |
| 742 | |
| 743 | PG_RETURN_INT64(result); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | |
| 748 | /* |
| 749 | * These functions are exactly like int8inc/int8dec but are used for |
| 750 | * aggregates that count only non-null values. Since the functions are |
| 751 | * declared strict, the null checks happen before we ever get here, and all we |
| 752 | * need do is increment the state value. We could actually make these pg_proc |
| 753 | * entries point right at int8inc/int8dec, but then the opr_sanity regression |
| 754 | * test would complain about mismatched entries for a built-in function. |
| 755 | */ |
| 756 | |
| 757 | Datum |
| 758 | int8inc_any(PG_FUNCTION_ARGS) |
| 759 | { |
| 760 | return int8inc(fcinfo); |
| 761 | } |
| 762 | |
| 763 | Datum |
| 764 | int8inc_float8_float8(PG_FUNCTION_ARGS) |
| 765 | { |
| 766 | return int8inc(fcinfo); |
| 767 | } |
| 768 | |
| 769 | Datum |
| 770 | int8dec_any(PG_FUNCTION_ARGS) |
| 771 | { |
| 772 | return int8dec(fcinfo); |
| 773 | } |
| 774 | |
| 775 | |
| 776 | Datum |
| 777 | int8larger(PG_FUNCTION_ARGS) |
| 778 | { |
| 779 | int64 arg1 = PG_GETARG_INT64(0); |
| 780 | int64 arg2 = PG_GETARG_INT64(1); |
| 781 | int64 result; |
| 782 | |
| 783 | result = ((arg1 > arg2) ? arg1 : arg2); |
| 784 | |
| 785 | PG_RETURN_INT64(result); |
| 786 | } |
| 787 | |
| 788 | Datum |
| 789 | int8smaller(PG_FUNCTION_ARGS) |
| 790 | { |
| 791 | int64 arg1 = PG_GETARG_INT64(0); |
| 792 | int64 arg2 = PG_GETARG_INT64(1); |
| 793 | int64 result; |
| 794 | |
| 795 | result = ((arg1 < arg2) ? arg1 : arg2); |
| 796 | |
| 797 | PG_RETURN_INT64(result); |
| 798 | } |
| 799 | |
| 800 | Datum |
| 801 | int84pl(PG_FUNCTION_ARGS) |
| 802 | { |
| 803 | int64 arg1 = PG_GETARG_INT64(0); |
| 804 | int32 arg2 = PG_GETARG_INT32(1); |
| 805 | int64 result; |
| 806 | |
| 807 | if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result))) |
| 808 | ereport(ERROR, |
| 809 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 810 | errmsg("bigint out of range" ))); |
| 811 | PG_RETURN_INT64(result); |
| 812 | } |
| 813 | |
| 814 | Datum |
| 815 | int84mi(PG_FUNCTION_ARGS) |
| 816 | { |
| 817 | int64 arg1 = PG_GETARG_INT64(0); |
| 818 | int32 arg2 = PG_GETARG_INT32(1); |
| 819 | int64 result; |
| 820 | |
| 821 | if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result))) |
| 822 | ereport(ERROR, |
| 823 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 824 | errmsg("bigint out of range" ))); |
| 825 | PG_RETURN_INT64(result); |
| 826 | } |
| 827 | |
| 828 | Datum |
| 829 | int84mul(PG_FUNCTION_ARGS) |
| 830 | { |
| 831 | int64 arg1 = PG_GETARG_INT64(0); |
| 832 | int32 arg2 = PG_GETARG_INT32(1); |
| 833 | int64 result; |
| 834 | |
| 835 | if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result))) |
| 836 | ereport(ERROR, |
| 837 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 838 | errmsg("bigint out of range" ))); |
| 839 | PG_RETURN_INT64(result); |
| 840 | } |
| 841 | |
| 842 | Datum |
| 843 | int84div(PG_FUNCTION_ARGS) |
| 844 | { |
| 845 | int64 arg1 = PG_GETARG_INT64(0); |
| 846 | int32 arg2 = PG_GETARG_INT32(1); |
| 847 | int64 result; |
| 848 | |
| 849 | if (arg2 == 0) |
| 850 | { |
| 851 | ereport(ERROR, |
| 852 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 853 | errmsg("division by zero" ))); |
| 854 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 855 | PG_RETURN_NULL(); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * INT64_MIN / -1 is problematic, since the result can't be represented on |
| 860 | * a two's-complement machine. Some machines produce INT64_MIN, some |
| 861 | * produce zero, some throw an exception. We can dodge the problem by |
| 862 | * recognizing that division by -1 is the same as negation. |
| 863 | */ |
| 864 | if (arg2 == -1) |
| 865 | { |
| 866 | if (unlikely(arg1 == PG_INT64_MIN)) |
| 867 | ereport(ERROR, |
| 868 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 869 | errmsg("bigint out of range" ))); |
| 870 | result = -arg1; |
| 871 | PG_RETURN_INT64(result); |
| 872 | } |
| 873 | |
| 874 | /* No overflow is possible */ |
| 875 | |
| 876 | result = arg1 / arg2; |
| 877 | |
| 878 | PG_RETURN_INT64(result); |
| 879 | } |
| 880 | |
| 881 | Datum |
| 882 | int48pl(PG_FUNCTION_ARGS) |
| 883 | { |
| 884 | int32 arg1 = PG_GETARG_INT32(0); |
| 885 | int64 arg2 = PG_GETARG_INT64(1); |
| 886 | int64 result; |
| 887 | |
| 888 | if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result))) |
| 889 | ereport(ERROR, |
| 890 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 891 | errmsg("bigint out of range" ))); |
| 892 | PG_RETURN_INT64(result); |
| 893 | } |
| 894 | |
| 895 | Datum |
| 896 | int48mi(PG_FUNCTION_ARGS) |
| 897 | { |
| 898 | int32 arg1 = PG_GETARG_INT32(0); |
| 899 | int64 arg2 = PG_GETARG_INT64(1); |
| 900 | int64 result; |
| 901 | |
| 902 | if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result))) |
| 903 | ereport(ERROR, |
| 904 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 905 | errmsg("bigint out of range" ))); |
| 906 | PG_RETURN_INT64(result); |
| 907 | } |
| 908 | |
| 909 | Datum |
| 910 | int48mul(PG_FUNCTION_ARGS) |
| 911 | { |
| 912 | int32 arg1 = PG_GETARG_INT32(0); |
| 913 | int64 arg2 = PG_GETARG_INT64(1); |
| 914 | int64 result; |
| 915 | |
| 916 | if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result))) |
| 917 | ereport(ERROR, |
| 918 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 919 | errmsg("bigint out of range" ))); |
| 920 | PG_RETURN_INT64(result); |
| 921 | } |
| 922 | |
| 923 | Datum |
| 924 | int48div(PG_FUNCTION_ARGS) |
| 925 | { |
| 926 | int32 arg1 = PG_GETARG_INT32(0); |
| 927 | int64 arg2 = PG_GETARG_INT64(1); |
| 928 | |
| 929 | if (unlikely(arg2 == 0)) |
| 930 | { |
| 931 | ereport(ERROR, |
| 932 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 933 | errmsg("division by zero" ))); |
| 934 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 935 | PG_RETURN_NULL(); |
| 936 | } |
| 937 | |
| 938 | /* No overflow is possible */ |
| 939 | PG_RETURN_INT64((int64) arg1 / arg2); |
| 940 | } |
| 941 | |
| 942 | Datum |
| 943 | int82pl(PG_FUNCTION_ARGS) |
| 944 | { |
| 945 | int64 arg1 = PG_GETARG_INT64(0); |
| 946 | int16 arg2 = PG_GETARG_INT16(1); |
| 947 | int64 result; |
| 948 | |
| 949 | if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result))) |
| 950 | ereport(ERROR, |
| 951 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 952 | errmsg("bigint out of range" ))); |
| 953 | PG_RETURN_INT64(result); |
| 954 | } |
| 955 | |
| 956 | Datum |
| 957 | int82mi(PG_FUNCTION_ARGS) |
| 958 | { |
| 959 | int64 arg1 = PG_GETARG_INT64(0); |
| 960 | int16 arg2 = PG_GETARG_INT16(1); |
| 961 | int64 result; |
| 962 | |
| 963 | if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result))) |
| 964 | ereport(ERROR, |
| 965 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 966 | errmsg("bigint out of range" ))); |
| 967 | PG_RETURN_INT64(result); |
| 968 | } |
| 969 | |
| 970 | Datum |
| 971 | int82mul(PG_FUNCTION_ARGS) |
| 972 | { |
| 973 | int64 arg1 = PG_GETARG_INT64(0); |
| 974 | int16 arg2 = PG_GETARG_INT16(1); |
| 975 | int64 result; |
| 976 | |
| 977 | if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result))) |
| 978 | ereport(ERROR, |
| 979 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 980 | errmsg("bigint out of range" ))); |
| 981 | PG_RETURN_INT64(result); |
| 982 | } |
| 983 | |
| 984 | Datum |
| 985 | int82div(PG_FUNCTION_ARGS) |
| 986 | { |
| 987 | int64 arg1 = PG_GETARG_INT64(0); |
| 988 | int16 arg2 = PG_GETARG_INT16(1); |
| 989 | int64 result; |
| 990 | |
| 991 | if (unlikely(arg2 == 0)) |
| 992 | { |
| 993 | ereport(ERROR, |
| 994 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 995 | errmsg("division by zero" ))); |
| 996 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 997 | PG_RETURN_NULL(); |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * INT64_MIN / -1 is problematic, since the result can't be represented on |
| 1002 | * a two's-complement machine. Some machines produce INT64_MIN, some |
| 1003 | * produce zero, some throw an exception. We can dodge the problem by |
| 1004 | * recognizing that division by -1 is the same as negation. |
| 1005 | */ |
| 1006 | if (arg2 == -1) |
| 1007 | { |
| 1008 | if (unlikely(arg1 == PG_INT64_MIN)) |
| 1009 | ereport(ERROR, |
| 1010 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1011 | errmsg("bigint out of range" ))); |
| 1012 | result = -arg1; |
| 1013 | PG_RETURN_INT64(result); |
| 1014 | } |
| 1015 | |
| 1016 | /* No overflow is possible */ |
| 1017 | |
| 1018 | result = arg1 / arg2; |
| 1019 | |
| 1020 | PG_RETURN_INT64(result); |
| 1021 | } |
| 1022 | |
| 1023 | Datum |
| 1024 | int28pl(PG_FUNCTION_ARGS) |
| 1025 | { |
| 1026 | int16 arg1 = PG_GETARG_INT16(0); |
| 1027 | int64 arg2 = PG_GETARG_INT64(1); |
| 1028 | int64 result; |
| 1029 | |
| 1030 | if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result))) |
| 1031 | ereport(ERROR, |
| 1032 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1033 | errmsg("bigint out of range" ))); |
| 1034 | PG_RETURN_INT64(result); |
| 1035 | } |
| 1036 | |
| 1037 | Datum |
| 1038 | int28mi(PG_FUNCTION_ARGS) |
| 1039 | { |
| 1040 | int16 arg1 = PG_GETARG_INT16(0); |
| 1041 | int64 arg2 = PG_GETARG_INT64(1); |
| 1042 | int64 result; |
| 1043 | |
| 1044 | if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result))) |
| 1045 | ereport(ERROR, |
| 1046 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1047 | errmsg("bigint out of range" ))); |
| 1048 | PG_RETURN_INT64(result); |
| 1049 | } |
| 1050 | |
| 1051 | Datum |
| 1052 | int28mul(PG_FUNCTION_ARGS) |
| 1053 | { |
| 1054 | int16 arg1 = PG_GETARG_INT16(0); |
| 1055 | int64 arg2 = PG_GETARG_INT64(1); |
| 1056 | int64 result; |
| 1057 | |
| 1058 | if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result))) |
| 1059 | ereport(ERROR, |
| 1060 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1061 | errmsg("bigint out of range" ))); |
| 1062 | PG_RETURN_INT64(result); |
| 1063 | } |
| 1064 | |
| 1065 | Datum |
| 1066 | int28div(PG_FUNCTION_ARGS) |
| 1067 | { |
| 1068 | int16 arg1 = PG_GETARG_INT16(0); |
| 1069 | int64 arg2 = PG_GETARG_INT64(1); |
| 1070 | |
| 1071 | if (unlikely(arg2 == 0)) |
| 1072 | { |
| 1073 | ereport(ERROR, |
| 1074 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 1075 | errmsg("division by zero" ))); |
| 1076 | /* ensure compiler realizes we mustn't reach the division (gcc bug) */ |
| 1077 | PG_RETURN_NULL(); |
| 1078 | } |
| 1079 | |
| 1080 | /* No overflow is possible */ |
| 1081 | PG_RETURN_INT64((int64) arg1 / arg2); |
| 1082 | } |
| 1083 | |
| 1084 | /* Binary arithmetics |
| 1085 | * |
| 1086 | * int8and - returns arg1 & arg2 |
| 1087 | * int8or - returns arg1 | arg2 |
| 1088 | * int8xor - returns arg1 # arg2 |
| 1089 | * int8not - returns ~arg1 |
| 1090 | * int8shl - returns arg1 << arg2 |
| 1091 | * int8shr - returns arg1 >> arg2 |
| 1092 | */ |
| 1093 | |
| 1094 | Datum |
| 1095 | int8and(PG_FUNCTION_ARGS) |
| 1096 | { |
| 1097 | int64 arg1 = PG_GETARG_INT64(0); |
| 1098 | int64 arg2 = PG_GETARG_INT64(1); |
| 1099 | |
| 1100 | PG_RETURN_INT64(arg1 & arg2); |
| 1101 | } |
| 1102 | |
| 1103 | Datum |
| 1104 | int8or(PG_FUNCTION_ARGS) |
| 1105 | { |
| 1106 | int64 arg1 = PG_GETARG_INT64(0); |
| 1107 | int64 arg2 = PG_GETARG_INT64(1); |
| 1108 | |
| 1109 | PG_RETURN_INT64(arg1 | arg2); |
| 1110 | } |
| 1111 | |
| 1112 | Datum |
| 1113 | int8xor(PG_FUNCTION_ARGS) |
| 1114 | { |
| 1115 | int64 arg1 = PG_GETARG_INT64(0); |
| 1116 | int64 arg2 = PG_GETARG_INT64(1); |
| 1117 | |
| 1118 | PG_RETURN_INT64(arg1 ^ arg2); |
| 1119 | } |
| 1120 | |
| 1121 | Datum |
| 1122 | int8not(PG_FUNCTION_ARGS) |
| 1123 | { |
| 1124 | int64 arg1 = PG_GETARG_INT64(0); |
| 1125 | |
| 1126 | PG_RETURN_INT64(~arg1); |
| 1127 | } |
| 1128 | |
| 1129 | Datum |
| 1130 | int8shl(PG_FUNCTION_ARGS) |
| 1131 | { |
| 1132 | int64 arg1 = PG_GETARG_INT64(0); |
| 1133 | int32 arg2 = PG_GETARG_INT32(1); |
| 1134 | |
| 1135 | PG_RETURN_INT64(arg1 << arg2); |
| 1136 | } |
| 1137 | |
| 1138 | Datum |
| 1139 | int8shr(PG_FUNCTION_ARGS) |
| 1140 | { |
| 1141 | int64 arg1 = PG_GETARG_INT64(0); |
| 1142 | int32 arg2 = PG_GETARG_INT32(1); |
| 1143 | |
| 1144 | PG_RETURN_INT64(arg1 >> arg2); |
| 1145 | } |
| 1146 | |
| 1147 | /*---------------------------------------------------------- |
| 1148 | * Conversion operators. |
| 1149 | *---------------------------------------------------------*/ |
| 1150 | |
| 1151 | Datum |
| 1152 | int48(PG_FUNCTION_ARGS) |
| 1153 | { |
| 1154 | int32 arg = PG_GETARG_INT32(0); |
| 1155 | |
| 1156 | PG_RETURN_INT64((int64) arg); |
| 1157 | } |
| 1158 | |
| 1159 | Datum |
| 1160 | int84(PG_FUNCTION_ARGS) |
| 1161 | { |
| 1162 | int64 arg = PG_GETARG_INT64(0); |
| 1163 | |
| 1164 | if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX)) |
| 1165 | ereport(ERROR, |
| 1166 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1167 | errmsg("integer out of range" ))); |
| 1168 | |
| 1169 | PG_RETURN_INT32((int32) arg); |
| 1170 | } |
| 1171 | |
| 1172 | Datum |
| 1173 | int28(PG_FUNCTION_ARGS) |
| 1174 | { |
| 1175 | int16 arg = PG_GETARG_INT16(0); |
| 1176 | |
| 1177 | PG_RETURN_INT64((int64) arg); |
| 1178 | } |
| 1179 | |
| 1180 | Datum |
| 1181 | int82(PG_FUNCTION_ARGS) |
| 1182 | { |
| 1183 | int64 arg = PG_GETARG_INT64(0); |
| 1184 | |
| 1185 | if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX)) |
| 1186 | ereport(ERROR, |
| 1187 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1188 | errmsg("smallint out of range" ))); |
| 1189 | |
| 1190 | PG_RETURN_INT16((int16) arg); |
| 1191 | } |
| 1192 | |
| 1193 | Datum |
| 1194 | i8tod(PG_FUNCTION_ARGS) |
| 1195 | { |
| 1196 | int64 arg = PG_GETARG_INT64(0); |
| 1197 | float8 result; |
| 1198 | |
| 1199 | result = arg; |
| 1200 | |
| 1201 | PG_RETURN_FLOAT8(result); |
| 1202 | } |
| 1203 | |
| 1204 | /* dtoi8() |
| 1205 | * Convert float8 to 8-byte integer. |
| 1206 | */ |
| 1207 | Datum |
| 1208 | dtoi8(PG_FUNCTION_ARGS) |
| 1209 | { |
| 1210 | float8 num = PG_GETARG_FLOAT8(0); |
| 1211 | |
| 1212 | /* |
| 1213 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1214 | * on just-out-of-range values that would round into range. Note |
| 1215 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1216 | */ |
| 1217 | num = rint(num); |
| 1218 | |
| 1219 | /* |
| 1220 | * Range check. We must be careful here that the boundary values are |
| 1221 | * expressed exactly in the float domain. We expect PG_INT64_MIN to be an |
| 1222 | * exact power of 2, so it will be represented exactly; but PG_INT64_MAX |
| 1223 | * isn't, and might get rounded off, so avoid using it. |
| 1224 | */ |
| 1225 | if (unlikely(num < (float8) PG_INT64_MIN || |
| 1226 | num >= -((float8) PG_INT64_MIN) || |
| 1227 | isnan(num))) |
| 1228 | ereport(ERROR, |
| 1229 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1230 | errmsg("bigint out of range" ))); |
| 1231 | |
| 1232 | PG_RETURN_INT64((int64) num); |
| 1233 | } |
| 1234 | |
| 1235 | Datum |
| 1236 | i8tof(PG_FUNCTION_ARGS) |
| 1237 | { |
| 1238 | int64 arg = PG_GETARG_INT64(0); |
| 1239 | float4 result; |
| 1240 | |
| 1241 | result = arg; |
| 1242 | |
| 1243 | PG_RETURN_FLOAT4(result); |
| 1244 | } |
| 1245 | |
| 1246 | /* ftoi8() |
| 1247 | * Convert float4 to 8-byte integer. |
| 1248 | */ |
| 1249 | Datum |
| 1250 | ftoi8(PG_FUNCTION_ARGS) |
| 1251 | { |
| 1252 | float4 num = PG_GETARG_FLOAT4(0); |
| 1253 | |
| 1254 | /* |
| 1255 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1256 | * on just-out-of-range values that would round into range. Note |
| 1257 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1258 | */ |
| 1259 | num = rint(num); |
| 1260 | |
| 1261 | /* |
| 1262 | * Range check. We must be careful here that the boundary values are |
| 1263 | * expressed exactly in the float domain. We expect PG_INT64_MIN to be an |
| 1264 | * exact power of 2, so it will be represented exactly; but PG_INT64_MAX |
| 1265 | * isn't, and might get rounded off, so avoid using it. |
| 1266 | */ |
| 1267 | if (unlikely(num < (float4) PG_INT64_MIN || |
| 1268 | num >= -((float4) PG_INT64_MIN) || |
| 1269 | isnan(num))) |
| 1270 | ereport(ERROR, |
| 1271 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1272 | errmsg("bigint out of range" ))); |
| 1273 | |
| 1274 | PG_RETURN_INT64((int64) num); |
| 1275 | } |
| 1276 | |
| 1277 | Datum |
| 1278 | i8tooid(PG_FUNCTION_ARGS) |
| 1279 | { |
| 1280 | int64 arg = PG_GETARG_INT64(0); |
| 1281 | |
| 1282 | if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX)) |
| 1283 | ereport(ERROR, |
| 1284 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1285 | errmsg("OID out of range" ))); |
| 1286 | |
| 1287 | PG_RETURN_OID((Oid) arg); |
| 1288 | } |
| 1289 | |
| 1290 | Datum |
| 1291 | oidtoi8(PG_FUNCTION_ARGS) |
| 1292 | { |
| 1293 | Oid arg = PG_GETARG_OID(0); |
| 1294 | |
| 1295 | PG_RETURN_INT64((int64) arg); |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * non-persistent numeric series generator |
| 1300 | */ |
| 1301 | Datum |
| 1302 | generate_series_int8(PG_FUNCTION_ARGS) |
| 1303 | { |
| 1304 | return generate_series_step_int8(fcinfo); |
| 1305 | } |
| 1306 | |
| 1307 | Datum |
| 1308 | generate_series_step_int8(PG_FUNCTION_ARGS) |
| 1309 | { |
| 1310 | FuncCallContext *funcctx; |
| 1311 | generate_series_fctx *fctx; |
| 1312 | int64 result; |
| 1313 | MemoryContext oldcontext; |
| 1314 | |
| 1315 | /* stuff done only on the first call of the function */ |
| 1316 | if (SRF_IS_FIRSTCALL()) |
| 1317 | { |
| 1318 | int64 start = PG_GETARG_INT64(0); |
| 1319 | int64 finish = PG_GETARG_INT64(1); |
| 1320 | int64 step = 1; |
| 1321 | |
| 1322 | /* see if we were given an explicit step size */ |
| 1323 | if (PG_NARGS() == 3) |
| 1324 | step = PG_GETARG_INT64(2); |
| 1325 | if (step == 0) |
| 1326 | ereport(ERROR, |
| 1327 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1328 | errmsg("step size cannot equal zero" ))); |
| 1329 | |
| 1330 | /* create a function context for cross-call persistence */ |
| 1331 | funcctx = SRF_FIRSTCALL_INIT(); |
| 1332 | |
| 1333 | /* |
| 1334 | * switch to memory context appropriate for multiple function calls |
| 1335 | */ |
| 1336 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1337 | |
| 1338 | /* allocate memory for user context */ |
| 1339 | fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx)); |
| 1340 | |
| 1341 | /* |
| 1342 | * Use fctx to keep state from call to call. Seed current with the |
| 1343 | * original start value |
| 1344 | */ |
| 1345 | fctx->current = start; |
| 1346 | fctx->finish = finish; |
| 1347 | fctx->step = step; |
| 1348 | |
| 1349 | funcctx->user_fctx = fctx; |
| 1350 | MemoryContextSwitchTo(oldcontext); |
| 1351 | } |
| 1352 | |
| 1353 | /* stuff done on every call of the function */ |
| 1354 | funcctx = SRF_PERCALL_SETUP(); |
| 1355 | |
| 1356 | /* |
| 1357 | * get the saved state and use current as the result for this iteration |
| 1358 | */ |
| 1359 | fctx = funcctx->user_fctx; |
| 1360 | result = fctx->current; |
| 1361 | |
| 1362 | if ((fctx->step > 0 && fctx->current <= fctx->finish) || |
| 1363 | (fctx->step < 0 && fctx->current >= fctx->finish)) |
| 1364 | { |
| 1365 | /* |
| 1366 | * Increment current in preparation for next iteration. If next-value |
| 1367 | * computation overflows, this is the final result. |
| 1368 | */ |
| 1369 | if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current)) |
| 1370 | fctx->step = 0; |
| 1371 | |
| 1372 | /* do when there is more left to send */ |
| 1373 | SRF_RETURN_NEXT(funcctx, Int64GetDatum(result)); |
| 1374 | } |
| 1375 | else |
| 1376 | /* do when there is no more left */ |
| 1377 | SRF_RETURN_DONE(funcctx); |
| 1378 | } |
| 1379 | |
| 1380 | /* |
| 1381 | * Planner support function for generate_series(int8, int8 [, int8]) |
| 1382 | */ |
| 1383 | Datum |
| 1384 | generate_series_int8_support(PG_FUNCTION_ARGS) |
| 1385 | { |
| 1386 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| 1387 | Node *ret = NULL; |
| 1388 | |
| 1389 | if (IsA(rawreq, SupportRequestRows)) |
| 1390 | { |
| 1391 | /* Try to estimate the number of rows returned */ |
| 1392 | SupportRequestRows *req = (SupportRequestRows *) rawreq; |
| 1393 | |
| 1394 | if (is_funcclause(req->node)) /* be paranoid */ |
| 1395 | { |
| 1396 | List *args = ((FuncExpr *) req->node)->args; |
| 1397 | Node *arg1, |
| 1398 | *arg2, |
| 1399 | *arg3; |
| 1400 | |
| 1401 | /* We can use estimated argument values here */ |
| 1402 | arg1 = estimate_expression_value(req->root, linitial(args)); |
| 1403 | arg2 = estimate_expression_value(req->root, lsecond(args)); |
| 1404 | if (list_length(args) >= 3) |
| 1405 | arg3 = estimate_expression_value(req->root, lthird(args)); |
| 1406 | else |
| 1407 | arg3 = NULL; |
| 1408 | |
| 1409 | /* |
| 1410 | * If any argument is constant NULL, we can safely assume that |
| 1411 | * zero rows are returned. Otherwise, if they're all non-NULL |
| 1412 | * constants, we can calculate the number of rows that will be |
| 1413 | * returned. Use double arithmetic to avoid overflow hazards. |
| 1414 | */ |
| 1415 | if ((IsA(arg1, Const) && |
| 1416 | ((Const *) arg1)->constisnull) || |
| 1417 | (IsA(arg2, Const) && |
| 1418 | ((Const *) arg2)->constisnull) || |
| 1419 | (arg3 != NULL && IsA(arg3, Const) && |
| 1420 | ((Const *) arg3)->constisnull)) |
| 1421 | { |
| 1422 | req->rows = 0; |
| 1423 | ret = (Node *) req; |
| 1424 | } |
| 1425 | else if (IsA(arg1, Const) && |
| 1426 | IsA(arg2, Const) && |
| 1427 | (arg3 == NULL || IsA(arg3, Const))) |
| 1428 | { |
| 1429 | double start, |
| 1430 | finish, |
| 1431 | step; |
| 1432 | |
| 1433 | start = DatumGetInt64(((Const *) arg1)->constvalue); |
| 1434 | finish = DatumGetInt64(((Const *) arg2)->constvalue); |
| 1435 | step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1; |
| 1436 | |
| 1437 | /* This equation works for either sign of step */ |
| 1438 | if (step != 0) |
| 1439 | { |
| 1440 | req->rows = floor((finish - start + step) / step); |
| 1441 | ret = (Node *) req; |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | PG_RETURN_POINTER(ret); |
| 1448 | } |
| 1449 | |