1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * lockfuncs.c |
4 | * Functions for SQL access to various lock-manager capabilities. |
5 | * |
6 | * Copyright (c) 2002-2019, PostgreSQL Global Development Group |
7 | * |
8 | * IDENTIFICATION |
9 | * src/backend/utils/adt/lockfuncs.c |
10 | * |
11 | *------------------------------------------------------------------------- |
12 | */ |
13 | #include "postgres.h" |
14 | |
15 | #include "access/htup_details.h" |
16 | #include "access/xact.h" |
17 | #include "catalog/pg_type.h" |
18 | #include "funcapi.h" |
19 | #include "miscadmin.h" |
20 | #include "storage/predicate_internals.h" |
21 | #include "utils/array.h" |
22 | #include "utils/builtins.h" |
23 | |
24 | |
25 | /* This must match enum LockTagType! */ |
26 | const char *const LockTagTypeNames[] = { |
27 | "relation" , |
28 | "extend" , |
29 | "page" , |
30 | "tuple" , |
31 | "transactionid" , |
32 | "virtualxid" , |
33 | "speculative token" , |
34 | "object" , |
35 | "userlock" , |
36 | "advisory" |
37 | }; |
38 | |
39 | /* This must match enum PredicateLockTargetType (predicate_internals.h) */ |
40 | static const char *const PredicateLockTagTypeNames[] = { |
41 | "relation" , |
42 | "page" , |
43 | "tuple" |
44 | }; |
45 | |
46 | /* Working status for pg_lock_status */ |
47 | typedef struct |
48 | { |
49 | LockData *lockData; /* state data from lmgr */ |
50 | int currIdx; /* current PROCLOCK index */ |
51 | PredicateLockData *predLockData; /* state data for pred locks */ |
52 | int predLockIdx; /* current index for pred lock */ |
53 | } PG_Lock_Status; |
54 | |
55 | /* Number of columns in pg_locks output */ |
56 | #define NUM_LOCK_STATUS_COLUMNS 15 |
57 | |
58 | /* |
59 | * VXIDGetDatum - Construct a text representation of a VXID |
60 | * |
61 | * This is currently only used in pg_lock_status, so we put it here. |
62 | */ |
63 | static Datum |
64 | VXIDGetDatum(BackendId bid, LocalTransactionId lxid) |
65 | { |
66 | /* |
67 | * The representation is "<bid>/<lxid>", decimal and unsigned decimal |
68 | * respectively. Note that elog.c also knows how to format a vxid. |
69 | */ |
70 | char vxidstr[32]; |
71 | |
72 | snprintf(vxidstr, sizeof(vxidstr), "%d/%u" , bid, lxid); |
73 | |
74 | return CStringGetTextDatum(vxidstr); |
75 | } |
76 | |
77 | |
78 | /* |
79 | * pg_lock_status - produce a view with one row per held or awaited lock mode |
80 | */ |
81 | Datum |
82 | pg_lock_status(PG_FUNCTION_ARGS) |
83 | { |
84 | FuncCallContext *funcctx; |
85 | PG_Lock_Status *mystatus; |
86 | LockData *lockData; |
87 | PredicateLockData *predLockData; |
88 | |
89 | if (SRF_IS_FIRSTCALL()) |
90 | { |
91 | TupleDesc tupdesc; |
92 | MemoryContext oldcontext; |
93 | |
94 | /* create a function context for cross-call persistence */ |
95 | funcctx = SRF_FIRSTCALL_INIT(); |
96 | |
97 | /* |
98 | * switch to memory context appropriate for multiple function calls |
99 | */ |
100 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
101 | |
102 | /* build tupdesc for result tuples */ |
103 | /* this had better match function's declaration in pg_proc.h */ |
104 | tupdesc = CreateTemplateTupleDesc(NUM_LOCK_STATUS_COLUMNS); |
105 | TupleDescInitEntry(tupdesc, (AttrNumber) 1, "locktype" , |
106 | TEXTOID, -1, 0); |
107 | TupleDescInitEntry(tupdesc, (AttrNumber) 2, "database" , |
108 | OIDOID, -1, 0); |
109 | TupleDescInitEntry(tupdesc, (AttrNumber) 3, "relation" , |
110 | OIDOID, -1, 0); |
111 | TupleDescInitEntry(tupdesc, (AttrNumber) 4, "page" , |
112 | INT4OID, -1, 0); |
113 | TupleDescInitEntry(tupdesc, (AttrNumber) 5, "tuple" , |
114 | INT2OID, -1, 0); |
115 | TupleDescInitEntry(tupdesc, (AttrNumber) 6, "virtualxid" , |
116 | TEXTOID, -1, 0); |
117 | TupleDescInitEntry(tupdesc, (AttrNumber) 7, "transactionid" , |
118 | XIDOID, -1, 0); |
119 | TupleDescInitEntry(tupdesc, (AttrNumber) 8, "classid" , |
120 | OIDOID, -1, 0); |
121 | TupleDescInitEntry(tupdesc, (AttrNumber) 9, "objid" , |
122 | OIDOID, -1, 0); |
123 | TupleDescInitEntry(tupdesc, (AttrNumber) 10, "objsubid" , |
124 | INT2OID, -1, 0); |
125 | TupleDescInitEntry(tupdesc, (AttrNumber) 11, "virtualtransaction" , |
126 | TEXTOID, -1, 0); |
127 | TupleDescInitEntry(tupdesc, (AttrNumber) 12, "pid" , |
128 | INT4OID, -1, 0); |
129 | TupleDescInitEntry(tupdesc, (AttrNumber) 13, "mode" , |
130 | TEXTOID, -1, 0); |
131 | TupleDescInitEntry(tupdesc, (AttrNumber) 14, "granted" , |
132 | BOOLOID, -1, 0); |
133 | TupleDescInitEntry(tupdesc, (AttrNumber) 15, "fastpath" , |
134 | BOOLOID, -1, 0); |
135 | |
136 | funcctx->tuple_desc = BlessTupleDesc(tupdesc); |
137 | |
138 | /* |
139 | * Collect all the locking information that we will format and send |
140 | * out as a result set. |
141 | */ |
142 | mystatus = (PG_Lock_Status *) palloc(sizeof(PG_Lock_Status)); |
143 | funcctx->user_fctx = (void *) mystatus; |
144 | |
145 | mystatus->lockData = GetLockStatusData(); |
146 | mystatus->currIdx = 0; |
147 | mystatus->predLockData = GetPredicateLockStatusData(); |
148 | mystatus->predLockIdx = 0; |
149 | |
150 | MemoryContextSwitchTo(oldcontext); |
151 | } |
152 | |
153 | funcctx = SRF_PERCALL_SETUP(); |
154 | mystatus = (PG_Lock_Status *) funcctx->user_fctx; |
155 | lockData = mystatus->lockData; |
156 | |
157 | while (mystatus->currIdx < lockData->nelements) |
158 | { |
159 | bool granted; |
160 | LOCKMODE mode = 0; |
161 | const char *locktypename; |
162 | char tnbuf[32]; |
163 | Datum values[NUM_LOCK_STATUS_COLUMNS]; |
164 | bool nulls[NUM_LOCK_STATUS_COLUMNS]; |
165 | HeapTuple tuple; |
166 | Datum result; |
167 | LockInstanceData *instance; |
168 | |
169 | instance = &(lockData->locks[mystatus->currIdx]); |
170 | |
171 | /* |
172 | * Look to see if there are any held lock modes in this PROCLOCK. If |
173 | * so, report, and destructively modify lockData so we don't report |
174 | * again. |
175 | */ |
176 | granted = false; |
177 | if (instance->holdMask) |
178 | { |
179 | for (mode = 0; mode < MAX_LOCKMODES; mode++) |
180 | { |
181 | if (instance->holdMask & LOCKBIT_ON(mode)) |
182 | { |
183 | granted = true; |
184 | instance->holdMask &= LOCKBIT_OFF(mode); |
185 | break; |
186 | } |
187 | } |
188 | } |
189 | |
190 | /* |
191 | * If no (more) held modes to report, see if PROC is waiting for a |
192 | * lock on this lock. |
193 | */ |
194 | if (!granted) |
195 | { |
196 | if (instance->waitLockMode != NoLock) |
197 | { |
198 | /* Yes, so report it with proper mode */ |
199 | mode = instance->waitLockMode; |
200 | |
201 | /* |
202 | * We are now done with this PROCLOCK, so advance pointer to |
203 | * continue with next one on next call. |
204 | */ |
205 | mystatus->currIdx++; |
206 | } |
207 | else |
208 | { |
209 | /* |
210 | * Okay, we've displayed all the locks associated with this |
211 | * PROCLOCK, proceed to the next one. |
212 | */ |
213 | mystatus->currIdx++; |
214 | continue; |
215 | } |
216 | } |
217 | |
218 | /* |
219 | * Form tuple with appropriate data. |
220 | */ |
221 | MemSet(values, 0, sizeof(values)); |
222 | MemSet(nulls, false, sizeof(nulls)); |
223 | |
224 | if (instance->locktag.locktag_type <= LOCKTAG_LAST_TYPE) |
225 | locktypename = LockTagTypeNames[instance->locktag.locktag_type]; |
226 | else |
227 | { |
228 | snprintf(tnbuf, sizeof(tnbuf), "unknown %d" , |
229 | (int) instance->locktag.locktag_type); |
230 | locktypename = tnbuf; |
231 | } |
232 | values[0] = CStringGetTextDatum(locktypename); |
233 | |
234 | switch ((LockTagType) instance->locktag.locktag_type) |
235 | { |
236 | case LOCKTAG_RELATION: |
237 | case LOCKTAG_RELATION_EXTEND: |
238 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
239 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
240 | nulls[3] = true; |
241 | nulls[4] = true; |
242 | nulls[5] = true; |
243 | nulls[6] = true; |
244 | nulls[7] = true; |
245 | nulls[8] = true; |
246 | nulls[9] = true; |
247 | break; |
248 | case LOCKTAG_PAGE: |
249 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
250 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
251 | values[3] = UInt32GetDatum(instance->locktag.locktag_field3); |
252 | nulls[4] = true; |
253 | nulls[5] = true; |
254 | nulls[6] = true; |
255 | nulls[7] = true; |
256 | nulls[8] = true; |
257 | nulls[9] = true; |
258 | break; |
259 | case LOCKTAG_TUPLE: |
260 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
261 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
262 | values[3] = UInt32GetDatum(instance->locktag.locktag_field3); |
263 | values[4] = UInt16GetDatum(instance->locktag.locktag_field4); |
264 | nulls[5] = true; |
265 | nulls[6] = true; |
266 | nulls[7] = true; |
267 | nulls[8] = true; |
268 | nulls[9] = true; |
269 | break; |
270 | case LOCKTAG_TRANSACTION: |
271 | values[6] = |
272 | TransactionIdGetDatum(instance->locktag.locktag_field1); |
273 | nulls[1] = true; |
274 | nulls[2] = true; |
275 | nulls[3] = true; |
276 | nulls[4] = true; |
277 | nulls[5] = true; |
278 | nulls[7] = true; |
279 | nulls[8] = true; |
280 | nulls[9] = true; |
281 | break; |
282 | case LOCKTAG_VIRTUALTRANSACTION: |
283 | values[5] = VXIDGetDatum(instance->locktag.locktag_field1, |
284 | instance->locktag.locktag_field2); |
285 | nulls[1] = true; |
286 | nulls[2] = true; |
287 | nulls[3] = true; |
288 | nulls[4] = true; |
289 | nulls[6] = true; |
290 | nulls[7] = true; |
291 | nulls[8] = true; |
292 | nulls[9] = true; |
293 | break; |
294 | case LOCKTAG_OBJECT: |
295 | case LOCKTAG_USERLOCK: |
296 | case LOCKTAG_ADVISORY: |
297 | default: /* treat unknown locktags like OBJECT */ |
298 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
299 | values[7] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
300 | values[8] = ObjectIdGetDatum(instance->locktag.locktag_field3); |
301 | values[9] = Int16GetDatum(instance->locktag.locktag_field4); |
302 | nulls[2] = true; |
303 | nulls[3] = true; |
304 | nulls[4] = true; |
305 | nulls[5] = true; |
306 | nulls[6] = true; |
307 | break; |
308 | } |
309 | |
310 | values[10] = VXIDGetDatum(instance->backend, instance->lxid); |
311 | if (instance->pid != 0) |
312 | values[11] = Int32GetDatum(instance->pid); |
313 | else |
314 | nulls[11] = true; |
315 | values[12] = CStringGetTextDatum(GetLockmodeName(instance->locktag.locktag_lockmethodid, mode)); |
316 | values[13] = BoolGetDatum(granted); |
317 | values[14] = BoolGetDatum(instance->fastpath); |
318 | |
319 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
320 | result = HeapTupleGetDatum(tuple); |
321 | SRF_RETURN_NEXT(funcctx, result); |
322 | } |
323 | |
324 | /* |
325 | * Have returned all regular locks. Now start on the SIREAD predicate |
326 | * locks. |
327 | */ |
328 | predLockData = mystatus->predLockData; |
329 | if (mystatus->predLockIdx < predLockData->nelements) |
330 | { |
331 | PredicateLockTargetType lockType; |
332 | |
333 | PREDICATELOCKTARGETTAG *predTag = &(predLockData->locktags[mystatus->predLockIdx]); |
334 | SERIALIZABLEXACT *xact = &(predLockData->xacts[mystatus->predLockIdx]); |
335 | Datum values[NUM_LOCK_STATUS_COLUMNS]; |
336 | bool nulls[NUM_LOCK_STATUS_COLUMNS]; |
337 | HeapTuple tuple; |
338 | Datum result; |
339 | |
340 | mystatus->predLockIdx++; |
341 | |
342 | /* |
343 | * Form tuple with appropriate data. |
344 | */ |
345 | MemSet(values, 0, sizeof(values)); |
346 | MemSet(nulls, false, sizeof(nulls)); |
347 | |
348 | /* lock type */ |
349 | lockType = GET_PREDICATELOCKTARGETTAG_TYPE(*predTag); |
350 | |
351 | values[0] = CStringGetTextDatum(PredicateLockTagTypeNames[lockType]); |
352 | |
353 | /* lock target */ |
354 | values[1] = GET_PREDICATELOCKTARGETTAG_DB(*predTag); |
355 | values[2] = GET_PREDICATELOCKTARGETTAG_RELATION(*predTag); |
356 | if (lockType == PREDLOCKTAG_TUPLE) |
357 | values[4] = GET_PREDICATELOCKTARGETTAG_OFFSET(*predTag); |
358 | else |
359 | nulls[4] = true; |
360 | if ((lockType == PREDLOCKTAG_TUPLE) || |
361 | (lockType == PREDLOCKTAG_PAGE)) |
362 | values[3] = GET_PREDICATELOCKTARGETTAG_PAGE(*predTag); |
363 | else |
364 | nulls[3] = true; |
365 | |
366 | /* these fields are targets for other types of locks */ |
367 | nulls[5] = true; /* virtualxid */ |
368 | nulls[6] = true; /* transactionid */ |
369 | nulls[7] = true; /* classid */ |
370 | nulls[8] = true; /* objid */ |
371 | nulls[9] = true; /* objsubid */ |
372 | |
373 | /* lock holder */ |
374 | values[10] = VXIDGetDatum(xact->vxid.backendId, |
375 | xact->vxid.localTransactionId); |
376 | if (xact->pid != 0) |
377 | values[11] = Int32GetDatum(xact->pid); |
378 | else |
379 | nulls[11] = true; |
380 | |
381 | /* |
382 | * Lock mode. Currently all predicate locks are SIReadLocks, which are |
383 | * always held (never waiting) and have no fast path |
384 | */ |
385 | values[12] = CStringGetTextDatum("SIReadLock" ); |
386 | values[13] = BoolGetDatum(true); |
387 | values[14] = BoolGetDatum(false); |
388 | |
389 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
390 | result = HeapTupleGetDatum(tuple); |
391 | SRF_RETURN_NEXT(funcctx, result); |
392 | } |
393 | |
394 | SRF_RETURN_DONE(funcctx); |
395 | } |
396 | |
397 | |
398 | /* |
399 | * pg_blocking_pids - produce an array of the PIDs blocking given PID |
400 | * |
401 | * The reported PIDs are those that hold a lock conflicting with blocked_pid's |
402 | * current request (hard block), or are requesting such a lock and are ahead |
403 | * of blocked_pid in the lock's wait queue (soft block). |
404 | * |
405 | * In parallel-query cases, we report all PIDs blocking any member of the |
406 | * given PID's lock group, and the reported PIDs are those of the blocking |
407 | * PIDs' lock group leaders. This allows callers to compare the result to |
408 | * lists of clients' pg_backend_pid() results even during a parallel query. |
409 | * |
410 | * Parallel query makes it possible for there to be duplicate PIDs in the |
411 | * result (either because multiple waiters are blocked by same PID, or |
412 | * because multiple blockers have same group leader PID). We do not bother |
413 | * to eliminate such duplicates from the result. |
414 | * |
415 | * We need not consider predicate locks here, since those don't block anything. |
416 | */ |
417 | Datum |
418 | pg_blocking_pids(PG_FUNCTION_ARGS) |
419 | { |
420 | int blocked_pid = PG_GETARG_INT32(0); |
421 | Datum *arrayelems; |
422 | int narrayelems; |
423 | BlockedProcsData *lockData; /* state data from lmgr */ |
424 | int i, |
425 | j; |
426 | |
427 | /* Collect a snapshot of lock manager state */ |
428 | lockData = GetBlockerStatusData(blocked_pid); |
429 | |
430 | /* We can't need more output entries than there are reported PROCLOCKs */ |
431 | arrayelems = (Datum *) palloc(lockData->nlocks * sizeof(Datum)); |
432 | narrayelems = 0; |
433 | |
434 | /* For each blocked proc in the lock group ... */ |
435 | for (i = 0; i < lockData->nprocs; i++) |
436 | { |
437 | BlockedProcData *bproc = &lockData->procs[i]; |
438 | LockInstanceData *instances = &lockData->locks[bproc->first_lock]; |
439 | int *preceding_waiters = &lockData->waiter_pids[bproc->first_waiter]; |
440 | LockInstanceData *blocked_instance; |
441 | LockMethod lockMethodTable; |
442 | int conflictMask; |
443 | |
444 | /* |
445 | * Locate the blocked proc's own entry in the LockInstanceData array. |
446 | * There should be exactly one matching entry. |
447 | */ |
448 | blocked_instance = NULL; |
449 | for (j = 0; j < bproc->num_locks; j++) |
450 | { |
451 | LockInstanceData *instance = &(instances[j]); |
452 | |
453 | if (instance->pid == bproc->pid) |
454 | { |
455 | Assert(blocked_instance == NULL); |
456 | blocked_instance = instance; |
457 | } |
458 | } |
459 | Assert(blocked_instance != NULL); |
460 | |
461 | lockMethodTable = GetLockTagsMethodTable(&(blocked_instance->locktag)); |
462 | conflictMask = lockMethodTable->conflictTab[blocked_instance->waitLockMode]; |
463 | |
464 | /* Now scan the PROCLOCK data for conflicting procs */ |
465 | for (j = 0; j < bproc->num_locks; j++) |
466 | { |
467 | LockInstanceData *instance = &(instances[j]); |
468 | |
469 | /* A proc never blocks itself, so ignore that entry */ |
470 | if (instance == blocked_instance) |
471 | continue; |
472 | /* Members of same lock group never block each other, either */ |
473 | if (instance->leaderPid == blocked_instance->leaderPid) |
474 | continue; |
475 | |
476 | if (conflictMask & instance->holdMask) |
477 | { |
478 | /* hard block: blocked by lock already held by this entry */ |
479 | } |
480 | else if (instance->waitLockMode != NoLock && |
481 | (conflictMask & LOCKBIT_ON(instance->waitLockMode))) |
482 | { |
483 | /* conflict in lock requests; who's in front in wait queue? */ |
484 | bool ahead = false; |
485 | int k; |
486 | |
487 | for (k = 0; k < bproc->num_waiters; k++) |
488 | { |
489 | if (preceding_waiters[k] == instance->pid) |
490 | { |
491 | /* soft block: this entry is ahead of blocked proc */ |
492 | ahead = true; |
493 | break; |
494 | } |
495 | } |
496 | if (!ahead) |
497 | continue; /* not blocked by this entry */ |
498 | } |
499 | else |
500 | { |
501 | /* not blocked by this entry */ |
502 | continue; |
503 | } |
504 | |
505 | /* blocked by this entry, so emit a record */ |
506 | arrayelems[narrayelems++] = Int32GetDatum(instance->leaderPid); |
507 | } |
508 | } |
509 | |
510 | /* Assert we didn't overrun arrayelems[] */ |
511 | Assert(narrayelems <= lockData->nlocks); |
512 | |
513 | /* Construct array, using hardwired knowledge about int4 type */ |
514 | PG_RETURN_ARRAYTYPE_P(construct_array(arrayelems, narrayelems, |
515 | INT4OID, |
516 | sizeof(int32), true, 'i')); |
517 | } |
518 | |
519 | |
520 | /* |
521 | * pg_safe_snapshot_blocking_pids - produce an array of the PIDs blocking |
522 | * given PID from getting a safe snapshot |
523 | * |
524 | * XXX this does not consider parallel-query cases; not clear how big a |
525 | * problem that is in practice |
526 | */ |
527 | Datum |
528 | pg_safe_snapshot_blocking_pids(PG_FUNCTION_ARGS) |
529 | { |
530 | int blocked_pid = PG_GETARG_INT32(0); |
531 | int *blockers; |
532 | int num_blockers; |
533 | Datum *blocker_datums; |
534 | |
535 | /* A buffer big enough for any possible blocker list without truncation */ |
536 | blockers = (int *) palloc(MaxBackends * sizeof(int)); |
537 | |
538 | /* Collect a snapshot of processes waited for by GetSafeSnapshot */ |
539 | num_blockers = |
540 | GetSafeSnapshotBlockingPids(blocked_pid, blockers, MaxBackends); |
541 | |
542 | /* Convert int array to Datum array */ |
543 | if (num_blockers > 0) |
544 | { |
545 | int i; |
546 | |
547 | blocker_datums = (Datum *) palloc(num_blockers * sizeof(Datum)); |
548 | for (i = 0; i < num_blockers; ++i) |
549 | blocker_datums[i] = Int32GetDatum(blockers[i]); |
550 | } |
551 | else |
552 | blocker_datums = NULL; |
553 | |
554 | /* Construct array, using hardwired knowledge about int4 type */ |
555 | PG_RETURN_ARRAYTYPE_P(construct_array(blocker_datums, num_blockers, |
556 | INT4OID, |
557 | sizeof(int32), true, 'i')); |
558 | } |
559 | |
560 | |
561 | /* |
562 | * pg_isolation_test_session_is_blocked - support function for isolationtester |
563 | * |
564 | * Check if specified PID is blocked by any of the PIDs listed in the second |
565 | * argument. Currently, this looks for blocking caused by waiting for |
566 | * heavyweight locks or safe snapshots. We ignore blockage caused by PIDs |
567 | * not directly under the isolationtester's control, eg autovacuum. |
568 | * |
569 | * This is an undocumented function intended for use by the isolation tester, |
570 | * and may change in future releases as required for testing purposes. |
571 | */ |
572 | Datum |
573 | pg_isolation_test_session_is_blocked(PG_FUNCTION_ARGS) |
574 | { |
575 | int blocked_pid = PG_GETARG_INT32(0); |
576 | ArrayType *interesting_pids_a = PG_GETARG_ARRAYTYPE_P(1); |
577 | ArrayType *blocking_pids_a; |
578 | int32 *interesting_pids; |
579 | int32 *blocking_pids; |
580 | int num_interesting_pids; |
581 | int num_blocking_pids; |
582 | int dummy; |
583 | int i, |
584 | j; |
585 | |
586 | /* Validate the passed-in array */ |
587 | Assert(ARR_ELEMTYPE(interesting_pids_a) == INT4OID); |
588 | if (array_contains_nulls(interesting_pids_a)) |
589 | elog(ERROR, "array must not contain nulls" ); |
590 | interesting_pids = (int32 *) ARR_DATA_PTR(interesting_pids_a); |
591 | num_interesting_pids = ArrayGetNItems(ARR_NDIM(interesting_pids_a), |
592 | ARR_DIMS(interesting_pids_a)); |
593 | |
594 | /* |
595 | * Get the PIDs of all sessions blocking the given session's attempt to |
596 | * acquire heavyweight locks. |
597 | */ |
598 | blocking_pids_a = |
599 | DatumGetArrayTypeP(DirectFunctionCall1(pg_blocking_pids, blocked_pid)); |
600 | |
601 | Assert(ARR_ELEMTYPE(blocking_pids_a) == INT4OID); |
602 | Assert(!array_contains_nulls(blocking_pids_a)); |
603 | blocking_pids = (int32 *) ARR_DATA_PTR(blocking_pids_a); |
604 | num_blocking_pids = ArrayGetNItems(ARR_NDIM(blocking_pids_a), |
605 | ARR_DIMS(blocking_pids_a)); |
606 | |
607 | /* |
608 | * Check if any of these are in the list of interesting PIDs, that being |
609 | * the sessions that the isolation tester is running. We don't use |
610 | * "arrayoverlaps" here, because it would lead to cache lookups and one of |
611 | * our goals is to run quickly under CLOBBER_CACHE_ALWAYS. We expect |
612 | * blocking_pids to be usually empty and otherwise a very small number in |
613 | * isolation tester cases, so make that the outer loop of a naive search |
614 | * for a match. |
615 | */ |
616 | for (i = 0; i < num_blocking_pids; i++) |
617 | for (j = 0; j < num_interesting_pids; j++) |
618 | { |
619 | if (blocking_pids[i] == interesting_pids[j]) |
620 | PG_RETURN_BOOL(true); |
621 | } |
622 | |
623 | /* |
624 | * Check if blocked_pid is waiting for a safe snapshot. We could in |
625 | * theory check the resulting array of blocker PIDs against the |
626 | * interesting PIDs whitelist, but since there is no danger of autovacuum |
627 | * blocking GetSafeSnapshot there seems to be no point in expending cycles |
628 | * on allocating a buffer and searching for overlap; so it's presently |
629 | * sufficient for the isolation tester's purposes to use a single element |
630 | * buffer and check if the number of safe snapshot blockers is non-zero. |
631 | */ |
632 | if (GetSafeSnapshotBlockingPids(blocked_pid, &dummy, 1) > 0) |
633 | PG_RETURN_BOOL(true); |
634 | |
635 | PG_RETURN_BOOL(false); |
636 | } |
637 | |
638 | |
639 | /* |
640 | * Functions for manipulating advisory locks |
641 | * |
642 | * We make use of the locktag fields as follows: |
643 | * |
644 | * field1: MyDatabaseId ... ensures locks are local to each database |
645 | * field2: first of 2 int4 keys, or high-order half of an int8 key |
646 | * field3: second of 2 int4 keys, or low-order half of an int8 key |
647 | * field4: 1 if using an int8 key, 2 if using 2 int4 keys |
648 | */ |
649 | #define SET_LOCKTAG_INT64(tag, key64) \ |
650 | SET_LOCKTAG_ADVISORY(tag, \ |
651 | MyDatabaseId, \ |
652 | (uint32) ((key64) >> 32), \ |
653 | (uint32) (key64), \ |
654 | 1) |
655 | #define SET_LOCKTAG_INT32(tag, key1, key2) \ |
656 | SET_LOCKTAG_ADVISORY(tag, MyDatabaseId, key1, key2, 2) |
657 | |
658 | static void |
659 | PreventAdvisoryLocksInParallelMode(void) |
660 | { |
661 | if (IsInParallelMode()) |
662 | ereport(ERROR, |
663 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
664 | errmsg("cannot use advisory locks during a parallel operation" ))); |
665 | } |
666 | |
667 | /* |
668 | * pg_advisory_lock(int8) - acquire exclusive lock on an int8 key |
669 | */ |
670 | Datum |
671 | pg_advisory_lock_int8(PG_FUNCTION_ARGS) |
672 | { |
673 | int64 key = PG_GETARG_INT64(0); |
674 | LOCKTAG tag; |
675 | |
676 | PreventAdvisoryLocksInParallelMode(); |
677 | SET_LOCKTAG_INT64(tag, key); |
678 | |
679 | (void) LockAcquire(&tag, ExclusiveLock, true, false); |
680 | |
681 | PG_RETURN_VOID(); |
682 | } |
683 | |
684 | /* |
685 | * pg_advisory_xact_lock(int8) - acquire xact scoped |
686 | * exclusive lock on an int8 key |
687 | */ |
688 | Datum |
689 | pg_advisory_xact_lock_int8(PG_FUNCTION_ARGS) |
690 | { |
691 | int64 key = PG_GETARG_INT64(0); |
692 | LOCKTAG tag; |
693 | |
694 | PreventAdvisoryLocksInParallelMode(); |
695 | SET_LOCKTAG_INT64(tag, key); |
696 | |
697 | (void) LockAcquire(&tag, ExclusiveLock, false, false); |
698 | |
699 | PG_RETURN_VOID(); |
700 | } |
701 | |
702 | /* |
703 | * pg_advisory_lock_shared(int8) - acquire share lock on an int8 key |
704 | */ |
705 | Datum |
706 | pg_advisory_lock_shared_int8(PG_FUNCTION_ARGS) |
707 | { |
708 | int64 key = PG_GETARG_INT64(0); |
709 | LOCKTAG tag; |
710 | |
711 | PreventAdvisoryLocksInParallelMode(); |
712 | SET_LOCKTAG_INT64(tag, key); |
713 | |
714 | (void) LockAcquire(&tag, ShareLock, true, false); |
715 | |
716 | PG_RETURN_VOID(); |
717 | } |
718 | |
719 | /* |
720 | * pg_advisory_xact_lock_shared(int8) - acquire xact scoped |
721 | * share lock on an int8 key |
722 | */ |
723 | Datum |
724 | pg_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS) |
725 | { |
726 | int64 key = PG_GETARG_INT64(0); |
727 | LOCKTAG tag; |
728 | |
729 | PreventAdvisoryLocksInParallelMode(); |
730 | SET_LOCKTAG_INT64(tag, key); |
731 | |
732 | (void) LockAcquire(&tag, ShareLock, false, false); |
733 | |
734 | PG_RETURN_VOID(); |
735 | } |
736 | |
737 | /* |
738 | * pg_try_advisory_lock(int8) - acquire exclusive lock on an int8 key, no wait |
739 | * |
740 | * Returns true if successful, false if lock not available |
741 | */ |
742 | Datum |
743 | pg_try_advisory_lock_int8(PG_FUNCTION_ARGS) |
744 | { |
745 | int64 key = PG_GETARG_INT64(0); |
746 | LOCKTAG tag; |
747 | LockAcquireResult res; |
748 | |
749 | PreventAdvisoryLocksInParallelMode(); |
750 | SET_LOCKTAG_INT64(tag, key); |
751 | |
752 | res = LockAcquire(&tag, ExclusiveLock, true, true); |
753 | |
754 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
755 | } |
756 | |
757 | /* |
758 | * pg_try_advisory_xact_lock(int8) - acquire xact scoped |
759 | * exclusive lock on an int8 key, no wait |
760 | * |
761 | * Returns true if successful, false if lock not available |
762 | */ |
763 | Datum |
764 | pg_try_advisory_xact_lock_int8(PG_FUNCTION_ARGS) |
765 | { |
766 | int64 key = PG_GETARG_INT64(0); |
767 | LOCKTAG tag; |
768 | LockAcquireResult res; |
769 | |
770 | PreventAdvisoryLocksInParallelMode(); |
771 | SET_LOCKTAG_INT64(tag, key); |
772 | |
773 | res = LockAcquire(&tag, ExclusiveLock, false, true); |
774 | |
775 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
776 | } |
777 | |
778 | /* |
779 | * pg_try_advisory_lock_shared(int8) - acquire share lock on an int8 key, no wait |
780 | * |
781 | * Returns true if successful, false if lock not available |
782 | */ |
783 | Datum |
784 | pg_try_advisory_lock_shared_int8(PG_FUNCTION_ARGS) |
785 | { |
786 | int64 key = PG_GETARG_INT64(0); |
787 | LOCKTAG tag; |
788 | LockAcquireResult res; |
789 | |
790 | PreventAdvisoryLocksInParallelMode(); |
791 | SET_LOCKTAG_INT64(tag, key); |
792 | |
793 | res = LockAcquire(&tag, ShareLock, true, true); |
794 | |
795 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
796 | } |
797 | |
798 | /* |
799 | * pg_try_advisory_xact_lock_shared(int8) - acquire xact scoped |
800 | * share lock on an int8 key, no wait |
801 | * |
802 | * Returns true if successful, false if lock not available |
803 | */ |
804 | Datum |
805 | pg_try_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS) |
806 | { |
807 | int64 key = PG_GETARG_INT64(0); |
808 | LOCKTAG tag; |
809 | LockAcquireResult res; |
810 | |
811 | PreventAdvisoryLocksInParallelMode(); |
812 | SET_LOCKTAG_INT64(tag, key); |
813 | |
814 | res = LockAcquire(&tag, ShareLock, false, true); |
815 | |
816 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
817 | } |
818 | |
819 | /* |
820 | * pg_advisory_unlock(int8) - release exclusive lock on an int8 key |
821 | * |
822 | * Returns true if successful, false if lock was not held |
823 | */ |
824 | Datum |
825 | pg_advisory_unlock_int8(PG_FUNCTION_ARGS) |
826 | { |
827 | int64 key = PG_GETARG_INT64(0); |
828 | LOCKTAG tag; |
829 | bool res; |
830 | |
831 | PreventAdvisoryLocksInParallelMode(); |
832 | SET_LOCKTAG_INT64(tag, key); |
833 | |
834 | res = LockRelease(&tag, ExclusiveLock, true); |
835 | |
836 | PG_RETURN_BOOL(res); |
837 | } |
838 | |
839 | /* |
840 | * pg_advisory_unlock_shared(int8) - release share lock on an int8 key |
841 | * |
842 | * Returns true if successful, false if lock was not held |
843 | */ |
844 | Datum |
845 | pg_advisory_unlock_shared_int8(PG_FUNCTION_ARGS) |
846 | { |
847 | int64 key = PG_GETARG_INT64(0); |
848 | LOCKTAG tag; |
849 | bool res; |
850 | |
851 | PreventAdvisoryLocksInParallelMode(); |
852 | SET_LOCKTAG_INT64(tag, key); |
853 | |
854 | res = LockRelease(&tag, ShareLock, true); |
855 | |
856 | PG_RETURN_BOOL(res); |
857 | } |
858 | |
859 | /* |
860 | * pg_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys |
861 | */ |
862 | Datum |
863 | pg_advisory_lock_int4(PG_FUNCTION_ARGS) |
864 | { |
865 | int32 key1 = PG_GETARG_INT32(0); |
866 | int32 key2 = PG_GETARG_INT32(1); |
867 | LOCKTAG tag; |
868 | |
869 | PreventAdvisoryLocksInParallelMode(); |
870 | SET_LOCKTAG_INT32(tag, key1, key2); |
871 | |
872 | (void) LockAcquire(&tag, ExclusiveLock, true, false); |
873 | |
874 | PG_RETURN_VOID(); |
875 | } |
876 | |
877 | /* |
878 | * pg_advisory_xact_lock(int4, int4) - acquire xact scoped |
879 | * exclusive lock on 2 int4 keys |
880 | */ |
881 | Datum |
882 | pg_advisory_xact_lock_int4(PG_FUNCTION_ARGS) |
883 | { |
884 | int32 key1 = PG_GETARG_INT32(0); |
885 | int32 key2 = PG_GETARG_INT32(1); |
886 | LOCKTAG tag; |
887 | |
888 | PreventAdvisoryLocksInParallelMode(); |
889 | SET_LOCKTAG_INT32(tag, key1, key2); |
890 | |
891 | (void) LockAcquire(&tag, ExclusiveLock, false, false); |
892 | |
893 | PG_RETURN_VOID(); |
894 | } |
895 | |
896 | /* |
897 | * pg_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys |
898 | */ |
899 | Datum |
900 | pg_advisory_lock_shared_int4(PG_FUNCTION_ARGS) |
901 | { |
902 | int32 key1 = PG_GETARG_INT32(0); |
903 | int32 key2 = PG_GETARG_INT32(1); |
904 | LOCKTAG tag; |
905 | |
906 | PreventAdvisoryLocksInParallelMode(); |
907 | SET_LOCKTAG_INT32(tag, key1, key2); |
908 | |
909 | (void) LockAcquire(&tag, ShareLock, true, false); |
910 | |
911 | PG_RETURN_VOID(); |
912 | } |
913 | |
914 | /* |
915 | * pg_advisory_xact_lock_shared(int4, int4) - acquire xact scoped |
916 | * share lock on 2 int4 keys |
917 | */ |
918 | Datum |
919 | pg_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS) |
920 | { |
921 | int32 key1 = PG_GETARG_INT32(0); |
922 | int32 key2 = PG_GETARG_INT32(1); |
923 | LOCKTAG tag; |
924 | |
925 | PreventAdvisoryLocksInParallelMode(); |
926 | SET_LOCKTAG_INT32(tag, key1, key2); |
927 | |
928 | (void) LockAcquire(&tag, ShareLock, false, false); |
929 | |
930 | PG_RETURN_VOID(); |
931 | } |
932 | |
933 | /* |
934 | * pg_try_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys, no wait |
935 | * |
936 | * Returns true if successful, false if lock not available |
937 | */ |
938 | Datum |
939 | pg_try_advisory_lock_int4(PG_FUNCTION_ARGS) |
940 | { |
941 | int32 key1 = PG_GETARG_INT32(0); |
942 | int32 key2 = PG_GETARG_INT32(1); |
943 | LOCKTAG tag; |
944 | LockAcquireResult res; |
945 | |
946 | PreventAdvisoryLocksInParallelMode(); |
947 | SET_LOCKTAG_INT32(tag, key1, key2); |
948 | |
949 | res = LockAcquire(&tag, ExclusiveLock, true, true); |
950 | |
951 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
952 | } |
953 | |
954 | /* |
955 | * pg_try_advisory_xact_lock(int4, int4) - acquire xact scoped |
956 | * exclusive lock on 2 int4 keys, no wait |
957 | * |
958 | * Returns true if successful, false if lock not available |
959 | */ |
960 | Datum |
961 | pg_try_advisory_xact_lock_int4(PG_FUNCTION_ARGS) |
962 | { |
963 | int32 key1 = PG_GETARG_INT32(0); |
964 | int32 key2 = PG_GETARG_INT32(1); |
965 | LOCKTAG tag; |
966 | LockAcquireResult res; |
967 | |
968 | PreventAdvisoryLocksInParallelMode(); |
969 | SET_LOCKTAG_INT32(tag, key1, key2); |
970 | |
971 | res = LockAcquire(&tag, ExclusiveLock, false, true); |
972 | |
973 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
974 | } |
975 | |
976 | /* |
977 | * pg_try_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys, no wait |
978 | * |
979 | * Returns true if successful, false if lock not available |
980 | */ |
981 | Datum |
982 | pg_try_advisory_lock_shared_int4(PG_FUNCTION_ARGS) |
983 | { |
984 | int32 key1 = PG_GETARG_INT32(0); |
985 | int32 key2 = PG_GETARG_INT32(1); |
986 | LOCKTAG tag; |
987 | LockAcquireResult res; |
988 | |
989 | PreventAdvisoryLocksInParallelMode(); |
990 | SET_LOCKTAG_INT32(tag, key1, key2); |
991 | |
992 | res = LockAcquire(&tag, ShareLock, true, true); |
993 | |
994 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
995 | } |
996 | |
997 | /* |
998 | * pg_try_advisory_xact_lock_shared(int4, int4) - acquire xact scoped |
999 | * share lock on 2 int4 keys, no wait |
1000 | * |
1001 | * Returns true if successful, false if lock not available |
1002 | */ |
1003 | Datum |
1004 | pg_try_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS) |
1005 | { |
1006 | int32 key1 = PG_GETARG_INT32(0); |
1007 | int32 key2 = PG_GETARG_INT32(1); |
1008 | LOCKTAG tag; |
1009 | LockAcquireResult res; |
1010 | |
1011 | PreventAdvisoryLocksInParallelMode(); |
1012 | SET_LOCKTAG_INT32(tag, key1, key2); |
1013 | |
1014 | res = LockAcquire(&tag, ShareLock, false, true); |
1015 | |
1016 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
1017 | } |
1018 | |
1019 | /* |
1020 | * pg_advisory_unlock(int4, int4) - release exclusive lock on 2 int4 keys |
1021 | * |
1022 | * Returns true if successful, false if lock was not held |
1023 | */ |
1024 | Datum |
1025 | pg_advisory_unlock_int4(PG_FUNCTION_ARGS) |
1026 | { |
1027 | int32 key1 = PG_GETARG_INT32(0); |
1028 | int32 key2 = PG_GETARG_INT32(1); |
1029 | LOCKTAG tag; |
1030 | bool res; |
1031 | |
1032 | PreventAdvisoryLocksInParallelMode(); |
1033 | SET_LOCKTAG_INT32(tag, key1, key2); |
1034 | |
1035 | res = LockRelease(&tag, ExclusiveLock, true); |
1036 | |
1037 | PG_RETURN_BOOL(res); |
1038 | } |
1039 | |
1040 | /* |
1041 | * pg_advisory_unlock_shared(int4, int4) - release share lock on 2 int4 keys |
1042 | * |
1043 | * Returns true if successful, false if lock was not held |
1044 | */ |
1045 | Datum |
1046 | pg_advisory_unlock_shared_int4(PG_FUNCTION_ARGS) |
1047 | { |
1048 | int32 key1 = PG_GETARG_INT32(0); |
1049 | int32 key2 = PG_GETARG_INT32(1); |
1050 | LOCKTAG tag; |
1051 | bool res; |
1052 | |
1053 | PreventAdvisoryLocksInParallelMode(); |
1054 | SET_LOCKTAG_INT32(tag, key1, key2); |
1055 | |
1056 | res = LockRelease(&tag, ShareLock, true); |
1057 | |
1058 | PG_RETURN_BOOL(res); |
1059 | } |
1060 | |
1061 | /* |
1062 | * pg_advisory_unlock_all() - release all advisory locks |
1063 | */ |
1064 | Datum |
1065 | pg_advisory_unlock_all(PG_FUNCTION_ARGS) |
1066 | { |
1067 | LockReleaseSession(USER_LOCKMETHOD); |
1068 | |
1069 | PG_RETURN_VOID(); |
1070 | } |
1071 | |