| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * lockfuncs.c |
| 4 | * Functions for SQL access to various lock-manager capabilities. |
| 5 | * |
| 6 | * Copyright (c) 2002-2019, PostgreSQL Global Development Group |
| 7 | * |
| 8 | * IDENTIFICATION |
| 9 | * src/backend/utils/adt/lockfuncs.c |
| 10 | * |
| 11 | *------------------------------------------------------------------------- |
| 12 | */ |
| 13 | #include "postgres.h" |
| 14 | |
| 15 | #include "access/htup_details.h" |
| 16 | #include "access/xact.h" |
| 17 | #include "catalog/pg_type.h" |
| 18 | #include "funcapi.h" |
| 19 | #include "miscadmin.h" |
| 20 | #include "storage/predicate_internals.h" |
| 21 | #include "utils/array.h" |
| 22 | #include "utils/builtins.h" |
| 23 | |
| 24 | |
| 25 | /* This must match enum LockTagType! */ |
| 26 | const char *const LockTagTypeNames[] = { |
| 27 | "relation" , |
| 28 | "extend" , |
| 29 | "page" , |
| 30 | "tuple" , |
| 31 | "transactionid" , |
| 32 | "virtualxid" , |
| 33 | "speculative token" , |
| 34 | "object" , |
| 35 | "userlock" , |
| 36 | "advisory" |
| 37 | }; |
| 38 | |
| 39 | /* This must match enum PredicateLockTargetType (predicate_internals.h) */ |
| 40 | static const char *const PredicateLockTagTypeNames[] = { |
| 41 | "relation" , |
| 42 | "page" , |
| 43 | "tuple" |
| 44 | }; |
| 45 | |
| 46 | /* Working status for pg_lock_status */ |
| 47 | typedef struct |
| 48 | { |
| 49 | LockData *lockData; /* state data from lmgr */ |
| 50 | int currIdx; /* current PROCLOCK index */ |
| 51 | PredicateLockData *predLockData; /* state data for pred locks */ |
| 52 | int predLockIdx; /* current index for pred lock */ |
| 53 | } PG_Lock_Status; |
| 54 | |
| 55 | /* Number of columns in pg_locks output */ |
| 56 | #define NUM_LOCK_STATUS_COLUMNS 15 |
| 57 | |
| 58 | /* |
| 59 | * VXIDGetDatum - Construct a text representation of a VXID |
| 60 | * |
| 61 | * This is currently only used in pg_lock_status, so we put it here. |
| 62 | */ |
| 63 | static Datum |
| 64 | VXIDGetDatum(BackendId bid, LocalTransactionId lxid) |
| 65 | { |
| 66 | /* |
| 67 | * The representation is "<bid>/<lxid>", decimal and unsigned decimal |
| 68 | * respectively. Note that elog.c also knows how to format a vxid. |
| 69 | */ |
| 70 | char vxidstr[32]; |
| 71 | |
| 72 | snprintf(vxidstr, sizeof(vxidstr), "%d/%u" , bid, lxid); |
| 73 | |
| 74 | return CStringGetTextDatum(vxidstr); |
| 75 | } |
| 76 | |
| 77 | |
| 78 | /* |
| 79 | * pg_lock_status - produce a view with one row per held or awaited lock mode |
| 80 | */ |
| 81 | Datum |
| 82 | pg_lock_status(PG_FUNCTION_ARGS) |
| 83 | { |
| 84 | FuncCallContext *funcctx; |
| 85 | PG_Lock_Status *mystatus; |
| 86 | LockData *lockData; |
| 87 | PredicateLockData *predLockData; |
| 88 | |
| 89 | if (SRF_IS_FIRSTCALL()) |
| 90 | { |
| 91 | TupleDesc tupdesc; |
| 92 | MemoryContext oldcontext; |
| 93 | |
| 94 | /* create a function context for cross-call persistence */ |
| 95 | funcctx = SRF_FIRSTCALL_INIT(); |
| 96 | |
| 97 | /* |
| 98 | * switch to memory context appropriate for multiple function calls |
| 99 | */ |
| 100 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 101 | |
| 102 | /* build tupdesc for result tuples */ |
| 103 | /* this had better match function's declaration in pg_proc.h */ |
| 104 | tupdesc = CreateTemplateTupleDesc(NUM_LOCK_STATUS_COLUMNS); |
| 105 | TupleDescInitEntry(tupdesc, (AttrNumber) 1, "locktype" , |
| 106 | TEXTOID, -1, 0); |
| 107 | TupleDescInitEntry(tupdesc, (AttrNumber) 2, "database" , |
| 108 | OIDOID, -1, 0); |
| 109 | TupleDescInitEntry(tupdesc, (AttrNumber) 3, "relation" , |
| 110 | OIDOID, -1, 0); |
| 111 | TupleDescInitEntry(tupdesc, (AttrNumber) 4, "page" , |
| 112 | INT4OID, -1, 0); |
| 113 | TupleDescInitEntry(tupdesc, (AttrNumber) 5, "tuple" , |
| 114 | INT2OID, -1, 0); |
| 115 | TupleDescInitEntry(tupdesc, (AttrNumber) 6, "virtualxid" , |
| 116 | TEXTOID, -1, 0); |
| 117 | TupleDescInitEntry(tupdesc, (AttrNumber) 7, "transactionid" , |
| 118 | XIDOID, -1, 0); |
| 119 | TupleDescInitEntry(tupdesc, (AttrNumber) 8, "classid" , |
| 120 | OIDOID, -1, 0); |
| 121 | TupleDescInitEntry(tupdesc, (AttrNumber) 9, "objid" , |
| 122 | OIDOID, -1, 0); |
| 123 | TupleDescInitEntry(tupdesc, (AttrNumber) 10, "objsubid" , |
| 124 | INT2OID, -1, 0); |
| 125 | TupleDescInitEntry(tupdesc, (AttrNumber) 11, "virtualtransaction" , |
| 126 | TEXTOID, -1, 0); |
| 127 | TupleDescInitEntry(tupdesc, (AttrNumber) 12, "pid" , |
| 128 | INT4OID, -1, 0); |
| 129 | TupleDescInitEntry(tupdesc, (AttrNumber) 13, "mode" , |
| 130 | TEXTOID, -1, 0); |
| 131 | TupleDescInitEntry(tupdesc, (AttrNumber) 14, "granted" , |
| 132 | BOOLOID, -1, 0); |
| 133 | TupleDescInitEntry(tupdesc, (AttrNumber) 15, "fastpath" , |
| 134 | BOOLOID, -1, 0); |
| 135 | |
| 136 | funcctx->tuple_desc = BlessTupleDesc(tupdesc); |
| 137 | |
| 138 | /* |
| 139 | * Collect all the locking information that we will format and send |
| 140 | * out as a result set. |
| 141 | */ |
| 142 | mystatus = (PG_Lock_Status *) palloc(sizeof(PG_Lock_Status)); |
| 143 | funcctx->user_fctx = (void *) mystatus; |
| 144 | |
| 145 | mystatus->lockData = GetLockStatusData(); |
| 146 | mystatus->currIdx = 0; |
| 147 | mystatus->predLockData = GetPredicateLockStatusData(); |
| 148 | mystatus->predLockIdx = 0; |
| 149 | |
| 150 | MemoryContextSwitchTo(oldcontext); |
| 151 | } |
| 152 | |
| 153 | funcctx = SRF_PERCALL_SETUP(); |
| 154 | mystatus = (PG_Lock_Status *) funcctx->user_fctx; |
| 155 | lockData = mystatus->lockData; |
| 156 | |
| 157 | while (mystatus->currIdx < lockData->nelements) |
| 158 | { |
| 159 | bool granted; |
| 160 | LOCKMODE mode = 0; |
| 161 | const char *locktypename; |
| 162 | char tnbuf[32]; |
| 163 | Datum values[NUM_LOCK_STATUS_COLUMNS]; |
| 164 | bool nulls[NUM_LOCK_STATUS_COLUMNS]; |
| 165 | HeapTuple tuple; |
| 166 | Datum result; |
| 167 | LockInstanceData *instance; |
| 168 | |
| 169 | instance = &(lockData->locks[mystatus->currIdx]); |
| 170 | |
| 171 | /* |
| 172 | * Look to see if there are any held lock modes in this PROCLOCK. If |
| 173 | * so, report, and destructively modify lockData so we don't report |
| 174 | * again. |
| 175 | */ |
| 176 | granted = false; |
| 177 | if (instance->holdMask) |
| 178 | { |
| 179 | for (mode = 0; mode < MAX_LOCKMODES; mode++) |
| 180 | { |
| 181 | if (instance->holdMask & LOCKBIT_ON(mode)) |
| 182 | { |
| 183 | granted = true; |
| 184 | instance->holdMask &= LOCKBIT_OFF(mode); |
| 185 | break; |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * If no (more) held modes to report, see if PROC is waiting for a |
| 192 | * lock on this lock. |
| 193 | */ |
| 194 | if (!granted) |
| 195 | { |
| 196 | if (instance->waitLockMode != NoLock) |
| 197 | { |
| 198 | /* Yes, so report it with proper mode */ |
| 199 | mode = instance->waitLockMode; |
| 200 | |
| 201 | /* |
| 202 | * We are now done with this PROCLOCK, so advance pointer to |
| 203 | * continue with next one on next call. |
| 204 | */ |
| 205 | mystatus->currIdx++; |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | /* |
| 210 | * Okay, we've displayed all the locks associated with this |
| 211 | * PROCLOCK, proceed to the next one. |
| 212 | */ |
| 213 | mystatus->currIdx++; |
| 214 | continue; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Form tuple with appropriate data. |
| 220 | */ |
| 221 | MemSet(values, 0, sizeof(values)); |
| 222 | MemSet(nulls, false, sizeof(nulls)); |
| 223 | |
| 224 | if (instance->locktag.locktag_type <= LOCKTAG_LAST_TYPE) |
| 225 | locktypename = LockTagTypeNames[instance->locktag.locktag_type]; |
| 226 | else |
| 227 | { |
| 228 | snprintf(tnbuf, sizeof(tnbuf), "unknown %d" , |
| 229 | (int) instance->locktag.locktag_type); |
| 230 | locktypename = tnbuf; |
| 231 | } |
| 232 | values[0] = CStringGetTextDatum(locktypename); |
| 233 | |
| 234 | switch ((LockTagType) instance->locktag.locktag_type) |
| 235 | { |
| 236 | case LOCKTAG_RELATION: |
| 237 | case LOCKTAG_RELATION_EXTEND: |
| 238 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
| 239 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
| 240 | nulls[3] = true; |
| 241 | nulls[4] = true; |
| 242 | nulls[5] = true; |
| 243 | nulls[6] = true; |
| 244 | nulls[7] = true; |
| 245 | nulls[8] = true; |
| 246 | nulls[9] = true; |
| 247 | break; |
| 248 | case LOCKTAG_PAGE: |
| 249 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
| 250 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
| 251 | values[3] = UInt32GetDatum(instance->locktag.locktag_field3); |
| 252 | nulls[4] = true; |
| 253 | nulls[5] = true; |
| 254 | nulls[6] = true; |
| 255 | nulls[7] = true; |
| 256 | nulls[8] = true; |
| 257 | nulls[9] = true; |
| 258 | break; |
| 259 | case LOCKTAG_TUPLE: |
| 260 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
| 261 | values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
| 262 | values[3] = UInt32GetDatum(instance->locktag.locktag_field3); |
| 263 | values[4] = UInt16GetDatum(instance->locktag.locktag_field4); |
| 264 | nulls[5] = true; |
| 265 | nulls[6] = true; |
| 266 | nulls[7] = true; |
| 267 | nulls[8] = true; |
| 268 | nulls[9] = true; |
| 269 | break; |
| 270 | case LOCKTAG_TRANSACTION: |
| 271 | values[6] = |
| 272 | TransactionIdGetDatum(instance->locktag.locktag_field1); |
| 273 | nulls[1] = true; |
| 274 | nulls[2] = true; |
| 275 | nulls[3] = true; |
| 276 | nulls[4] = true; |
| 277 | nulls[5] = true; |
| 278 | nulls[7] = true; |
| 279 | nulls[8] = true; |
| 280 | nulls[9] = true; |
| 281 | break; |
| 282 | case LOCKTAG_VIRTUALTRANSACTION: |
| 283 | values[5] = VXIDGetDatum(instance->locktag.locktag_field1, |
| 284 | instance->locktag.locktag_field2); |
| 285 | nulls[1] = true; |
| 286 | nulls[2] = true; |
| 287 | nulls[3] = true; |
| 288 | nulls[4] = true; |
| 289 | nulls[6] = true; |
| 290 | nulls[7] = true; |
| 291 | nulls[8] = true; |
| 292 | nulls[9] = true; |
| 293 | break; |
| 294 | case LOCKTAG_OBJECT: |
| 295 | case LOCKTAG_USERLOCK: |
| 296 | case LOCKTAG_ADVISORY: |
| 297 | default: /* treat unknown locktags like OBJECT */ |
| 298 | values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1); |
| 299 | values[7] = ObjectIdGetDatum(instance->locktag.locktag_field2); |
| 300 | values[8] = ObjectIdGetDatum(instance->locktag.locktag_field3); |
| 301 | values[9] = Int16GetDatum(instance->locktag.locktag_field4); |
| 302 | nulls[2] = true; |
| 303 | nulls[3] = true; |
| 304 | nulls[4] = true; |
| 305 | nulls[5] = true; |
| 306 | nulls[6] = true; |
| 307 | break; |
| 308 | } |
| 309 | |
| 310 | values[10] = VXIDGetDatum(instance->backend, instance->lxid); |
| 311 | if (instance->pid != 0) |
| 312 | values[11] = Int32GetDatum(instance->pid); |
| 313 | else |
| 314 | nulls[11] = true; |
| 315 | values[12] = CStringGetTextDatum(GetLockmodeName(instance->locktag.locktag_lockmethodid, mode)); |
| 316 | values[13] = BoolGetDatum(granted); |
| 317 | values[14] = BoolGetDatum(instance->fastpath); |
| 318 | |
| 319 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
| 320 | result = HeapTupleGetDatum(tuple); |
| 321 | SRF_RETURN_NEXT(funcctx, result); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Have returned all regular locks. Now start on the SIREAD predicate |
| 326 | * locks. |
| 327 | */ |
| 328 | predLockData = mystatus->predLockData; |
| 329 | if (mystatus->predLockIdx < predLockData->nelements) |
| 330 | { |
| 331 | PredicateLockTargetType lockType; |
| 332 | |
| 333 | PREDICATELOCKTARGETTAG *predTag = &(predLockData->locktags[mystatus->predLockIdx]); |
| 334 | SERIALIZABLEXACT *xact = &(predLockData->xacts[mystatus->predLockIdx]); |
| 335 | Datum values[NUM_LOCK_STATUS_COLUMNS]; |
| 336 | bool nulls[NUM_LOCK_STATUS_COLUMNS]; |
| 337 | HeapTuple tuple; |
| 338 | Datum result; |
| 339 | |
| 340 | mystatus->predLockIdx++; |
| 341 | |
| 342 | /* |
| 343 | * Form tuple with appropriate data. |
| 344 | */ |
| 345 | MemSet(values, 0, sizeof(values)); |
| 346 | MemSet(nulls, false, sizeof(nulls)); |
| 347 | |
| 348 | /* lock type */ |
| 349 | lockType = GET_PREDICATELOCKTARGETTAG_TYPE(*predTag); |
| 350 | |
| 351 | values[0] = CStringGetTextDatum(PredicateLockTagTypeNames[lockType]); |
| 352 | |
| 353 | /* lock target */ |
| 354 | values[1] = GET_PREDICATELOCKTARGETTAG_DB(*predTag); |
| 355 | values[2] = GET_PREDICATELOCKTARGETTAG_RELATION(*predTag); |
| 356 | if (lockType == PREDLOCKTAG_TUPLE) |
| 357 | values[4] = GET_PREDICATELOCKTARGETTAG_OFFSET(*predTag); |
| 358 | else |
| 359 | nulls[4] = true; |
| 360 | if ((lockType == PREDLOCKTAG_TUPLE) || |
| 361 | (lockType == PREDLOCKTAG_PAGE)) |
| 362 | values[3] = GET_PREDICATELOCKTARGETTAG_PAGE(*predTag); |
| 363 | else |
| 364 | nulls[3] = true; |
| 365 | |
| 366 | /* these fields are targets for other types of locks */ |
| 367 | nulls[5] = true; /* virtualxid */ |
| 368 | nulls[6] = true; /* transactionid */ |
| 369 | nulls[7] = true; /* classid */ |
| 370 | nulls[8] = true; /* objid */ |
| 371 | nulls[9] = true; /* objsubid */ |
| 372 | |
| 373 | /* lock holder */ |
| 374 | values[10] = VXIDGetDatum(xact->vxid.backendId, |
| 375 | xact->vxid.localTransactionId); |
| 376 | if (xact->pid != 0) |
| 377 | values[11] = Int32GetDatum(xact->pid); |
| 378 | else |
| 379 | nulls[11] = true; |
| 380 | |
| 381 | /* |
| 382 | * Lock mode. Currently all predicate locks are SIReadLocks, which are |
| 383 | * always held (never waiting) and have no fast path |
| 384 | */ |
| 385 | values[12] = CStringGetTextDatum("SIReadLock" ); |
| 386 | values[13] = BoolGetDatum(true); |
| 387 | values[14] = BoolGetDatum(false); |
| 388 | |
| 389 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
| 390 | result = HeapTupleGetDatum(tuple); |
| 391 | SRF_RETURN_NEXT(funcctx, result); |
| 392 | } |
| 393 | |
| 394 | SRF_RETURN_DONE(funcctx); |
| 395 | } |
| 396 | |
| 397 | |
| 398 | /* |
| 399 | * pg_blocking_pids - produce an array of the PIDs blocking given PID |
| 400 | * |
| 401 | * The reported PIDs are those that hold a lock conflicting with blocked_pid's |
| 402 | * current request (hard block), or are requesting such a lock and are ahead |
| 403 | * of blocked_pid in the lock's wait queue (soft block). |
| 404 | * |
| 405 | * In parallel-query cases, we report all PIDs blocking any member of the |
| 406 | * given PID's lock group, and the reported PIDs are those of the blocking |
| 407 | * PIDs' lock group leaders. This allows callers to compare the result to |
| 408 | * lists of clients' pg_backend_pid() results even during a parallel query. |
| 409 | * |
| 410 | * Parallel query makes it possible for there to be duplicate PIDs in the |
| 411 | * result (either because multiple waiters are blocked by same PID, or |
| 412 | * because multiple blockers have same group leader PID). We do not bother |
| 413 | * to eliminate such duplicates from the result. |
| 414 | * |
| 415 | * We need not consider predicate locks here, since those don't block anything. |
| 416 | */ |
| 417 | Datum |
| 418 | pg_blocking_pids(PG_FUNCTION_ARGS) |
| 419 | { |
| 420 | int blocked_pid = PG_GETARG_INT32(0); |
| 421 | Datum *arrayelems; |
| 422 | int narrayelems; |
| 423 | BlockedProcsData *lockData; /* state data from lmgr */ |
| 424 | int i, |
| 425 | j; |
| 426 | |
| 427 | /* Collect a snapshot of lock manager state */ |
| 428 | lockData = GetBlockerStatusData(blocked_pid); |
| 429 | |
| 430 | /* We can't need more output entries than there are reported PROCLOCKs */ |
| 431 | arrayelems = (Datum *) palloc(lockData->nlocks * sizeof(Datum)); |
| 432 | narrayelems = 0; |
| 433 | |
| 434 | /* For each blocked proc in the lock group ... */ |
| 435 | for (i = 0; i < lockData->nprocs; i++) |
| 436 | { |
| 437 | BlockedProcData *bproc = &lockData->procs[i]; |
| 438 | LockInstanceData *instances = &lockData->locks[bproc->first_lock]; |
| 439 | int *preceding_waiters = &lockData->waiter_pids[bproc->first_waiter]; |
| 440 | LockInstanceData *blocked_instance; |
| 441 | LockMethod lockMethodTable; |
| 442 | int conflictMask; |
| 443 | |
| 444 | /* |
| 445 | * Locate the blocked proc's own entry in the LockInstanceData array. |
| 446 | * There should be exactly one matching entry. |
| 447 | */ |
| 448 | blocked_instance = NULL; |
| 449 | for (j = 0; j < bproc->num_locks; j++) |
| 450 | { |
| 451 | LockInstanceData *instance = &(instances[j]); |
| 452 | |
| 453 | if (instance->pid == bproc->pid) |
| 454 | { |
| 455 | Assert(blocked_instance == NULL); |
| 456 | blocked_instance = instance; |
| 457 | } |
| 458 | } |
| 459 | Assert(blocked_instance != NULL); |
| 460 | |
| 461 | lockMethodTable = GetLockTagsMethodTable(&(blocked_instance->locktag)); |
| 462 | conflictMask = lockMethodTable->conflictTab[blocked_instance->waitLockMode]; |
| 463 | |
| 464 | /* Now scan the PROCLOCK data for conflicting procs */ |
| 465 | for (j = 0; j < bproc->num_locks; j++) |
| 466 | { |
| 467 | LockInstanceData *instance = &(instances[j]); |
| 468 | |
| 469 | /* A proc never blocks itself, so ignore that entry */ |
| 470 | if (instance == blocked_instance) |
| 471 | continue; |
| 472 | /* Members of same lock group never block each other, either */ |
| 473 | if (instance->leaderPid == blocked_instance->leaderPid) |
| 474 | continue; |
| 475 | |
| 476 | if (conflictMask & instance->holdMask) |
| 477 | { |
| 478 | /* hard block: blocked by lock already held by this entry */ |
| 479 | } |
| 480 | else if (instance->waitLockMode != NoLock && |
| 481 | (conflictMask & LOCKBIT_ON(instance->waitLockMode))) |
| 482 | { |
| 483 | /* conflict in lock requests; who's in front in wait queue? */ |
| 484 | bool ahead = false; |
| 485 | int k; |
| 486 | |
| 487 | for (k = 0; k < bproc->num_waiters; k++) |
| 488 | { |
| 489 | if (preceding_waiters[k] == instance->pid) |
| 490 | { |
| 491 | /* soft block: this entry is ahead of blocked proc */ |
| 492 | ahead = true; |
| 493 | break; |
| 494 | } |
| 495 | } |
| 496 | if (!ahead) |
| 497 | continue; /* not blocked by this entry */ |
| 498 | } |
| 499 | else |
| 500 | { |
| 501 | /* not blocked by this entry */ |
| 502 | continue; |
| 503 | } |
| 504 | |
| 505 | /* blocked by this entry, so emit a record */ |
| 506 | arrayelems[narrayelems++] = Int32GetDatum(instance->leaderPid); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | /* Assert we didn't overrun arrayelems[] */ |
| 511 | Assert(narrayelems <= lockData->nlocks); |
| 512 | |
| 513 | /* Construct array, using hardwired knowledge about int4 type */ |
| 514 | PG_RETURN_ARRAYTYPE_P(construct_array(arrayelems, narrayelems, |
| 515 | INT4OID, |
| 516 | sizeof(int32), true, 'i')); |
| 517 | } |
| 518 | |
| 519 | |
| 520 | /* |
| 521 | * pg_safe_snapshot_blocking_pids - produce an array of the PIDs blocking |
| 522 | * given PID from getting a safe snapshot |
| 523 | * |
| 524 | * XXX this does not consider parallel-query cases; not clear how big a |
| 525 | * problem that is in practice |
| 526 | */ |
| 527 | Datum |
| 528 | pg_safe_snapshot_blocking_pids(PG_FUNCTION_ARGS) |
| 529 | { |
| 530 | int blocked_pid = PG_GETARG_INT32(0); |
| 531 | int *blockers; |
| 532 | int num_blockers; |
| 533 | Datum *blocker_datums; |
| 534 | |
| 535 | /* A buffer big enough for any possible blocker list without truncation */ |
| 536 | blockers = (int *) palloc(MaxBackends * sizeof(int)); |
| 537 | |
| 538 | /* Collect a snapshot of processes waited for by GetSafeSnapshot */ |
| 539 | num_blockers = |
| 540 | GetSafeSnapshotBlockingPids(blocked_pid, blockers, MaxBackends); |
| 541 | |
| 542 | /* Convert int array to Datum array */ |
| 543 | if (num_blockers > 0) |
| 544 | { |
| 545 | int i; |
| 546 | |
| 547 | blocker_datums = (Datum *) palloc(num_blockers * sizeof(Datum)); |
| 548 | for (i = 0; i < num_blockers; ++i) |
| 549 | blocker_datums[i] = Int32GetDatum(blockers[i]); |
| 550 | } |
| 551 | else |
| 552 | blocker_datums = NULL; |
| 553 | |
| 554 | /* Construct array, using hardwired knowledge about int4 type */ |
| 555 | PG_RETURN_ARRAYTYPE_P(construct_array(blocker_datums, num_blockers, |
| 556 | INT4OID, |
| 557 | sizeof(int32), true, 'i')); |
| 558 | } |
| 559 | |
| 560 | |
| 561 | /* |
| 562 | * pg_isolation_test_session_is_blocked - support function for isolationtester |
| 563 | * |
| 564 | * Check if specified PID is blocked by any of the PIDs listed in the second |
| 565 | * argument. Currently, this looks for blocking caused by waiting for |
| 566 | * heavyweight locks or safe snapshots. We ignore blockage caused by PIDs |
| 567 | * not directly under the isolationtester's control, eg autovacuum. |
| 568 | * |
| 569 | * This is an undocumented function intended for use by the isolation tester, |
| 570 | * and may change in future releases as required for testing purposes. |
| 571 | */ |
| 572 | Datum |
| 573 | pg_isolation_test_session_is_blocked(PG_FUNCTION_ARGS) |
| 574 | { |
| 575 | int blocked_pid = PG_GETARG_INT32(0); |
| 576 | ArrayType *interesting_pids_a = PG_GETARG_ARRAYTYPE_P(1); |
| 577 | ArrayType *blocking_pids_a; |
| 578 | int32 *interesting_pids; |
| 579 | int32 *blocking_pids; |
| 580 | int num_interesting_pids; |
| 581 | int num_blocking_pids; |
| 582 | int dummy; |
| 583 | int i, |
| 584 | j; |
| 585 | |
| 586 | /* Validate the passed-in array */ |
| 587 | Assert(ARR_ELEMTYPE(interesting_pids_a) == INT4OID); |
| 588 | if (array_contains_nulls(interesting_pids_a)) |
| 589 | elog(ERROR, "array must not contain nulls" ); |
| 590 | interesting_pids = (int32 *) ARR_DATA_PTR(interesting_pids_a); |
| 591 | num_interesting_pids = ArrayGetNItems(ARR_NDIM(interesting_pids_a), |
| 592 | ARR_DIMS(interesting_pids_a)); |
| 593 | |
| 594 | /* |
| 595 | * Get the PIDs of all sessions blocking the given session's attempt to |
| 596 | * acquire heavyweight locks. |
| 597 | */ |
| 598 | blocking_pids_a = |
| 599 | DatumGetArrayTypeP(DirectFunctionCall1(pg_blocking_pids, blocked_pid)); |
| 600 | |
| 601 | Assert(ARR_ELEMTYPE(blocking_pids_a) == INT4OID); |
| 602 | Assert(!array_contains_nulls(blocking_pids_a)); |
| 603 | blocking_pids = (int32 *) ARR_DATA_PTR(blocking_pids_a); |
| 604 | num_blocking_pids = ArrayGetNItems(ARR_NDIM(blocking_pids_a), |
| 605 | ARR_DIMS(blocking_pids_a)); |
| 606 | |
| 607 | /* |
| 608 | * Check if any of these are in the list of interesting PIDs, that being |
| 609 | * the sessions that the isolation tester is running. We don't use |
| 610 | * "arrayoverlaps" here, because it would lead to cache lookups and one of |
| 611 | * our goals is to run quickly under CLOBBER_CACHE_ALWAYS. We expect |
| 612 | * blocking_pids to be usually empty and otherwise a very small number in |
| 613 | * isolation tester cases, so make that the outer loop of a naive search |
| 614 | * for a match. |
| 615 | */ |
| 616 | for (i = 0; i < num_blocking_pids; i++) |
| 617 | for (j = 0; j < num_interesting_pids; j++) |
| 618 | { |
| 619 | if (blocking_pids[i] == interesting_pids[j]) |
| 620 | PG_RETURN_BOOL(true); |
| 621 | } |
| 622 | |
| 623 | /* |
| 624 | * Check if blocked_pid is waiting for a safe snapshot. We could in |
| 625 | * theory check the resulting array of blocker PIDs against the |
| 626 | * interesting PIDs whitelist, but since there is no danger of autovacuum |
| 627 | * blocking GetSafeSnapshot there seems to be no point in expending cycles |
| 628 | * on allocating a buffer and searching for overlap; so it's presently |
| 629 | * sufficient for the isolation tester's purposes to use a single element |
| 630 | * buffer and check if the number of safe snapshot blockers is non-zero. |
| 631 | */ |
| 632 | if (GetSafeSnapshotBlockingPids(blocked_pid, &dummy, 1) > 0) |
| 633 | PG_RETURN_BOOL(true); |
| 634 | |
| 635 | PG_RETURN_BOOL(false); |
| 636 | } |
| 637 | |
| 638 | |
| 639 | /* |
| 640 | * Functions for manipulating advisory locks |
| 641 | * |
| 642 | * We make use of the locktag fields as follows: |
| 643 | * |
| 644 | * field1: MyDatabaseId ... ensures locks are local to each database |
| 645 | * field2: first of 2 int4 keys, or high-order half of an int8 key |
| 646 | * field3: second of 2 int4 keys, or low-order half of an int8 key |
| 647 | * field4: 1 if using an int8 key, 2 if using 2 int4 keys |
| 648 | */ |
| 649 | #define SET_LOCKTAG_INT64(tag, key64) \ |
| 650 | SET_LOCKTAG_ADVISORY(tag, \ |
| 651 | MyDatabaseId, \ |
| 652 | (uint32) ((key64) >> 32), \ |
| 653 | (uint32) (key64), \ |
| 654 | 1) |
| 655 | #define SET_LOCKTAG_INT32(tag, key1, key2) \ |
| 656 | SET_LOCKTAG_ADVISORY(tag, MyDatabaseId, key1, key2, 2) |
| 657 | |
| 658 | static void |
| 659 | PreventAdvisoryLocksInParallelMode(void) |
| 660 | { |
| 661 | if (IsInParallelMode()) |
| 662 | ereport(ERROR, |
| 663 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
| 664 | errmsg("cannot use advisory locks during a parallel operation" ))); |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * pg_advisory_lock(int8) - acquire exclusive lock on an int8 key |
| 669 | */ |
| 670 | Datum |
| 671 | pg_advisory_lock_int8(PG_FUNCTION_ARGS) |
| 672 | { |
| 673 | int64 key = PG_GETARG_INT64(0); |
| 674 | LOCKTAG tag; |
| 675 | |
| 676 | PreventAdvisoryLocksInParallelMode(); |
| 677 | SET_LOCKTAG_INT64(tag, key); |
| 678 | |
| 679 | (void) LockAcquire(&tag, ExclusiveLock, true, false); |
| 680 | |
| 681 | PG_RETURN_VOID(); |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * pg_advisory_xact_lock(int8) - acquire xact scoped |
| 686 | * exclusive lock on an int8 key |
| 687 | */ |
| 688 | Datum |
| 689 | pg_advisory_xact_lock_int8(PG_FUNCTION_ARGS) |
| 690 | { |
| 691 | int64 key = PG_GETARG_INT64(0); |
| 692 | LOCKTAG tag; |
| 693 | |
| 694 | PreventAdvisoryLocksInParallelMode(); |
| 695 | SET_LOCKTAG_INT64(tag, key); |
| 696 | |
| 697 | (void) LockAcquire(&tag, ExclusiveLock, false, false); |
| 698 | |
| 699 | PG_RETURN_VOID(); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * pg_advisory_lock_shared(int8) - acquire share lock on an int8 key |
| 704 | */ |
| 705 | Datum |
| 706 | pg_advisory_lock_shared_int8(PG_FUNCTION_ARGS) |
| 707 | { |
| 708 | int64 key = PG_GETARG_INT64(0); |
| 709 | LOCKTAG tag; |
| 710 | |
| 711 | PreventAdvisoryLocksInParallelMode(); |
| 712 | SET_LOCKTAG_INT64(tag, key); |
| 713 | |
| 714 | (void) LockAcquire(&tag, ShareLock, true, false); |
| 715 | |
| 716 | PG_RETURN_VOID(); |
| 717 | } |
| 718 | |
| 719 | /* |
| 720 | * pg_advisory_xact_lock_shared(int8) - acquire xact scoped |
| 721 | * share lock on an int8 key |
| 722 | */ |
| 723 | Datum |
| 724 | pg_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS) |
| 725 | { |
| 726 | int64 key = PG_GETARG_INT64(0); |
| 727 | LOCKTAG tag; |
| 728 | |
| 729 | PreventAdvisoryLocksInParallelMode(); |
| 730 | SET_LOCKTAG_INT64(tag, key); |
| 731 | |
| 732 | (void) LockAcquire(&tag, ShareLock, false, false); |
| 733 | |
| 734 | PG_RETURN_VOID(); |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * pg_try_advisory_lock(int8) - acquire exclusive lock on an int8 key, no wait |
| 739 | * |
| 740 | * Returns true if successful, false if lock not available |
| 741 | */ |
| 742 | Datum |
| 743 | pg_try_advisory_lock_int8(PG_FUNCTION_ARGS) |
| 744 | { |
| 745 | int64 key = PG_GETARG_INT64(0); |
| 746 | LOCKTAG tag; |
| 747 | LockAcquireResult res; |
| 748 | |
| 749 | PreventAdvisoryLocksInParallelMode(); |
| 750 | SET_LOCKTAG_INT64(tag, key); |
| 751 | |
| 752 | res = LockAcquire(&tag, ExclusiveLock, true, true); |
| 753 | |
| 754 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * pg_try_advisory_xact_lock(int8) - acquire xact scoped |
| 759 | * exclusive lock on an int8 key, no wait |
| 760 | * |
| 761 | * Returns true if successful, false if lock not available |
| 762 | */ |
| 763 | Datum |
| 764 | pg_try_advisory_xact_lock_int8(PG_FUNCTION_ARGS) |
| 765 | { |
| 766 | int64 key = PG_GETARG_INT64(0); |
| 767 | LOCKTAG tag; |
| 768 | LockAcquireResult res; |
| 769 | |
| 770 | PreventAdvisoryLocksInParallelMode(); |
| 771 | SET_LOCKTAG_INT64(tag, key); |
| 772 | |
| 773 | res = LockAcquire(&tag, ExclusiveLock, false, true); |
| 774 | |
| 775 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * pg_try_advisory_lock_shared(int8) - acquire share lock on an int8 key, no wait |
| 780 | * |
| 781 | * Returns true if successful, false if lock not available |
| 782 | */ |
| 783 | Datum |
| 784 | pg_try_advisory_lock_shared_int8(PG_FUNCTION_ARGS) |
| 785 | { |
| 786 | int64 key = PG_GETARG_INT64(0); |
| 787 | LOCKTAG tag; |
| 788 | LockAcquireResult res; |
| 789 | |
| 790 | PreventAdvisoryLocksInParallelMode(); |
| 791 | SET_LOCKTAG_INT64(tag, key); |
| 792 | |
| 793 | res = LockAcquire(&tag, ShareLock, true, true); |
| 794 | |
| 795 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * pg_try_advisory_xact_lock_shared(int8) - acquire xact scoped |
| 800 | * share lock on an int8 key, no wait |
| 801 | * |
| 802 | * Returns true if successful, false if lock not available |
| 803 | */ |
| 804 | Datum |
| 805 | pg_try_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS) |
| 806 | { |
| 807 | int64 key = PG_GETARG_INT64(0); |
| 808 | LOCKTAG tag; |
| 809 | LockAcquireResult res; |
| 810 | |
| 811 | PreventAdvisoryLocksInParallelMode(); |
| 812 | SET_LOCKTAG_INT64(tag, key); |
| 813 | |
| 814 | res = LockAcquire(&tag, ShareLock, false, true); |
| 815 | |
| 816 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * pg_advisory_unlock(int8) - release exclusive lock on an int8 key |
| 821 | * |
| 822 | * Returns true if successful, false if lock was not held |
| 823 | */ |
| 824 | Datum |
| 825 | pg_advisory_unlock_int8(PG_FUNCTION_ARGS) |
| 826 | { |
| 827 | int64 key = PG_GETARG_INT64(0); |
| 828 | LOCKTAG tag; |
| 829 | bool res; |
| 830 | |
| 831 | PreventAdvisoryLocksInParallelMode(); |
| 832 | SET_LOCKTAG_INT64(tag, key); |
| 833 | |
| 834 | res = LockRelease(&tag, ExclusiveLock, true); |
| 835 | |
| 836 | PG_RETURN_BOOL(res); |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * pg_advisory_unlock_shared(int8) - release share lock on an int8 key |
| 841 | * |
| 842 | * Returns true if successful, false if lock was not held |
| 843 | */ |
| 844 | Datum |
| 845 | pg_advisory_unlock_shared_int8(PG_FUNCTION_ARGS) |
| 846 | { |
| 847 | int64 key = PG_GETARG_INT64(0); |
| 848 | LOCKTAG tag; |
| 849 | bool res; |
| 850 | |
| 851 | PreventAdvisoryLocksInParallelMode(); |
| 852 | SET_LOCKTAG_INT64(tag, key); |
| 853 | |
| 854 | res = LockRelease(&tag, ShareLock, true); |
| 855 | |
| 856 | PG_RETURN_BOOL(res); |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * pg_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys |
| 861 | */ |
| 862 | Datum |
| 863 | pg_advisory_lock_int4(PG_FUNCTION_ARGS) |
| 864 | { |
| 865 | int32 key1 = PG_GETARG_INT32(0); |
| 866 | int32 key2 = PG_GETARG_INT32(1); |
| 867 | LOCKTAG tag; |
| 868 | |
| 869 | PreventAdvisoryLocksInParallelMode(); |
| 870 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 871 | |
| 872 | (void) LockAcquire(&tag, ExclusiveLock, true, false); |
| 873 | |
| 874 | PG_RETURN_VOID(); |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * pg_advisory_xact_lock(int4, int4) - acquire xact scoped |
| 879 | * exclusive lock on 2 int4 keys |
| 880 | */ |
| 881 | Datum |
| 882 | pg_advisory_xact_lock_int4(PG_FUNCTION_ARGS) |
| 883 | { |
| 884 | int32 key1 = PG_GETARG_INT32(0); |
| 885 | int32 key2 = PG_GETARG_INT32(1); |
| 886 | LOCKTAG tag; |
| 887 | |
| 888 | PreventAdvisoryLocksInParallelMode(); |
| 889 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 890 | |
| 891 | (void) LockAcquire(&tag, ExclusiveLock, false, false); |
| 892 | |
| 893 | PG_RETURN_VOID(); |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * pg_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys |
| 898 | */ |
| 899 | Datum |
| 900 | pg_advisory_lock_shared_int4(PG_FUNCTION_ARGS) |
| 901 | { |
| 902 | int32 key1 = PG_GETARG_INT32(0); |
| 903 | int32 key2 = PG_GETARG_INT32(1); |
| 904 | LOCKTAG tag; |
| 905 | |
| 906 | PreventAdvisoryLocksInParallelMode(); |
| 907 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 908 | |
| 909 | (void) LockAcquire(&tag, ShareLock, true, false); |
| 910 | |
| 911 | PG_RETURN_VOID(); |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * pg_advisory_xact_lock_shared(int4, int4) - acquire xact scoped |
| 916 | * share lock on 2 int4 keys |
| 917 | */ |
| 918 | Datum |
| 919 | pg_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS) |
| 920 | { |
| 921 | int32 key1 = PG_GETARG_INT32(0); |
| 922 | int32 key2 = PG_GETARG_INT32(1); |
| 923 | LOCKTAG tag; |
| 924 | |
| 925 | PreventAdvisoryLocksInParallelMode(); |
| 926 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 927 | |
| 928 | (void) LockAcquire(&tag, ShareLock, false, false); |
| 929 | |
| 930 | PG_RETURN_VOID(); |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * pg_try_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys, no wait |
| 935 | * |
| 936 | * Returns true if successful, false if lock not available |
| 937 | */ |
| 938 | Datum |
| 939 | pg_try_advisory_lock_int4(PG_FUNCTION_ARGS) |
| 940 | { |
| 941 | int32 key1 = PG_GETARG_INT32(0); |
| 942 | int32 key2 = PG_GETARG_INT32(1); |
| 943 | LOCKTAG tag; |
| 944 | LockAcquireResult res; |
| 945 | |
| 946 | PreventAdvisoryLocksInParallelMode(); |
| 947 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 948 | |
| 949 | res = LockAcquire(&tag, ExclusiveLock, true, true); |
| 950 | |
| 951 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * pg_try_advisory_xact_lock(int4, int4) - acquire xact scoped |
| 956 | * exclusive lock on 2 int4 keys, no wait |
| 957 | * |
| 958 | * Returns true if successful, false if lock not available |
| 959 | */ |
| 960 | Datum |
| 961 | pg_try_advisory_xact_lock_int4(PG_FUNCTION_ARGS) |
| 962 | { |
| 963 | int32 key1 = PG_GETARG_INT32(0); |
| 964 | int32 key2 = PG_GETARG_INT32(1); |
| 965 | LOCKTAG tag; |
| 966 | LockAcquireResult res; |
| 967 | |
| 968 | PreventAdvisoryLocksInParallelMode(); |
| 969 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 970 | |
| 971 | res = LockAcquire(&tag, ExclusiveLock, false, true); |
| 972 | |
| 973 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * pg_try_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys, no wait |
| 978 | * |
| 979 | * Returns true if successful, false if lock not available |
| 980 | */ |
| 981 | Datum |
| 982 | pg_try_advisory_lock_shared_int4(PG_FUNCTION_ARGS) |
| 983 | { |
| 984 | int32 key1 = PG_GETARG_INT32(0); |
| 985 | int32 key2 = PG_GETARG_INT32(1); |
| 986 | LOCKTAG tag; |
| 987 | LockAcquireResult res; |
| 988 | |
| 989 | PreventAdvisoryLocksInParallelMode(); |
| 990 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 991 | |
| 992 | res = LockAcquire(&tag, ShareLock, true, true); |
| 993 | |
| 994 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * pg_try_advisory_xact_lock_shared(int4, int4) - acquire xact scoped |
| 999 | * share lock on 2 int4 keys, no wait |
| 1000 | * |
| 1001 | * Returns true if successful, false if lock not available |
| 1002 | */ |
| 1003 | Datum |
| 1004 | pg_try_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS) |
| 1005 | { |
| 1006 | int32 key1 = PG_GETARG_INT32(0); |
| 1007 | int32 key2 = PG_GETARG_INT32(1); |
| 1008 | LOCKTAG tag; |
| 1009 | LockAcquireResult res; |
| 1010 | |
| 1011 | PreventAdvisoryLocksInParallelMode(); |
| 1012 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 1013 | |
| 1014 | res = LockAcquire(&tag, ShareLock, false, true); |
| 1015 | |
| 1016 | PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL); |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * pg_advisory_unlock(int4, int4) - release exclusive lock on 2 int4 keys |
| 1021 | * |
| 1022 | * Returns true if successful, false if lock was not held |
| 1023 | */ |
| 1024 | Datum |
| 1025 | pg_advisory_unlock_int4(PG_FUNCTION_ARGS) |
| 1026 | { |
| 1027 | int32 key1 = PG_GETARG_INT32(0); |
| 1028 | int32 key2 = PG_GETARG_INT32(1); |
| 1029 | LOCKTAG tag; |
| 1030 | bool res; |
| 1031 | |
| 1032 | PreventAdvisoryLocksInParallelMode(); |
| 1033 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 1034 | |
| 1035 | res = LockRelease(&tag, ExclusiveLock, true); |
| 1036 | |
| 1037 | PG_RETURN_BOOL(res); |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * pg_advisory_unlock_shared(int4, int4) - release share lock on 2 int4 keys |
| 1042 | * |
| 1043 | * Returns true if successful, false if lock was not held |
| 1044 | */ |
| 1045 | Datum |
| 1046 | pg_advisory_unlock_shared_int4(PG_FUNCTION_ARGS) |
| 1047 | { |
| 1048 | int32 key1 = PG_GETARG_INT32(0); |
| 1049 | int32 key2 = PG_GETARG_INT32(1); |
| 1050 | LOCKTAG tag; |
| 1051 | bool res; |
| 1052 | |
| 1053 | PreventAdvisoryLocksInParallelMode(); |
| 1054 | SET_LOCKTAG_INT32(tag, key1, key2); |
| 1055 | |
| 1056 | res = LockRelease(&tag, ShareLock, true); |
| 1057 | |
| 1058 | PG_RETURN_BOOL(res); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * pg_advisory_unlock_all() - release all advisory locks |
| 1063 | */ |
| 1064 | Datum |
| 1065 | pg_advisory_unlock_all(PG_FUNCTION_ARGS) |
| 1066 | { |
| 1067 | LockReleaseSession(USER_LOCKMETHOD); |
| 1068 | |
| 1069 | PG_RETURN_VOID(); |
| 1070 | } |
| 1071 | |