| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * ragetypes_typanalyze.c |
| 4 | * Functions for gathering statistics from range columns |
| 5 | * |
| 6 | * For a range type column, histograms of lower and upper bounds, and |
| 7 | * the fraction of NULL and empty ranges are collected. |
| 8 | * |
| 9 | * Both histograms have the same length, and they are combined into a |
| 10 | * single array of ranges. This has the same shape as the histogram that |
| 11 | * std_typanalyze would collect, but the values are different. Each range |
| 12 | * in the array is a valid range, even though the lower and upper bounds |
| 13 | * come from different tuples. In theory, the standard scalar selectivity |
| 14 | * functions could be used with the combined histogram. |
| 15 | * |
| 16 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 17 | * Portions Copyright (c) 1994, Regents of the University of California |
| 18 | * |
| 19 | * |
| 20 | * IDENTIFICATION |
| 21 | * src/backend/utils/adt/rangetypes_typanalyze.c |
| 22 | * |
| 23 | *------------------------------------------------------------------------- |
| 24 | */ |
| 25 | #include "postgres.h" |
| 26 | |
| 27 | #include "catalog/pg_operator.h" |
| 28 | #include "commands/vacuum.h" |
| 29 | #include "utils/float.h" |
| 30 | #include "utils/fmgrprotos.h" |
| 31 | #include "utils/lsyscache.h" |
| 32 | #include "utils/rangetypes.h" |
| 33 | |
| 34 | static int float8_qsort_cmp(const void *a1, const void *a2); |
| 35 | static int range_bound_qsort_cmp(const void *a1, const void *a2, void *arg); |
| 36 | static void compute_range_stats(VacAttrStats *stats, |
| 37 | AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows); |
| 38 | |
| 39 | /* |
| 40 | * range_typanalyze -- typanalyze function for range columns |
| 41 | */ |
| 42 | Datum |
| 43 | range_typanalyze(PG_FUNCTION_ARGS) |
| 44 | { |
| 45 | VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); |
| 46 | TypeCacheEntry *typcache; |
| 47 | Form_pg_attribute attr = stats->attr; |
| 48 | |
| 49 | /* Get information about range type; note column might be a domain */ |
| 50 | typcache = range_get_typcache(fcinfo, getBaseType(stats->attrtypid)); |
| 51 | |
| 52 | if (attr->attstattarget < 0) |
| 53 | attr->attstattarget = default_statistics_target; |
| 54 | |
| 55 | stats->compute_stats = compute_range_stats; |
| 56 | stats->extra_data = typcache; |
| 57 | /* same as in std_typanalyze */ |
| 58 | stats->minrows = 300 * attr->attstattarget; |
| 59 | |
| 60 | PG_RETURN_BOOL(true); |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * Comparison function for sorting float8s, used for range lengths. |
| 65 | */ |
| 66 | static int |
| 67 | float8_qsort_cmp(const void *a1, const void *a2) |
| 68 | { |
| 69 | const float8 *f1 = (const float8 *) a1; |
| 70 | const float8 *f2 = (const float8 *) a2; |
| 71 | |
| 72 | if (*f1 < *f2) |
| 73 | return -1; |
| 74 | else if (*f1 == *f2) |
| 75 | return 0; |
| 76 | else |
| 77 | return 1; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Comparison function for sorting RangeBounds. |
| 82 | */ |
| 83 | static int |
| 84 | range_bound_qsort_cmp(const void *a1, const void *a2, void *arg) |
| 85 | { |
| 86 | RangeBound *b1 = (RangeBound *) a1; |
| 87 | RangeBound *b2 = (RangeBound *) a2; |
| 88 | TypeCacheEntry *typcache = (TypeCacheEntry *) arg; |
| 89 | |
| 90 | return range_cmp_bounds(typcache, b1, b2); |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * compute_range_stats() -- compute statistics for a range column |
| 95 | */ |
| 96 | static void |
| 97 | compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, |
| 98 | int samplerows, double totalrows) |
| 99 | { |
| 100 | TypeCacheEntry *typcache = (TypeCacheEntry *) stats->extra_data; |
| 101 | bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid); |
| 102 | int null_cnt = 0; |
| 103 | int non_null_cnt = 0; |
| 104 | int non_empty_cnt = 0; |
| 105 | int empty_cnt = 0; |
| 106 | int range_no; |
| 107 | int slot_idx; |
| 108 | int num_bins = stats->attr->attstattarget; |
| 109 | int num_hist; |
| 110 | float8 *lengths; |
| 111 | RangeBound *lowers, |
| 112 | *uppers; |
| 113 | double total_width = 0; |
| 114 | |
| 115 | /* Allocate memory to hold range bounds and lengths of the sample ranges. */ |
| 116 | lowers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows); |
| 117 | uppers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows); |
| 118 | lengths = (float8 *) palloc(sizeof(float8) * samplerows); |
| 119 | |
| 120 | /* Loop over the sample ranges. */ |
| 121 | for (range_no = 0; range_no < samplerows; range_no++) |
| 122 | { |
| 123 | Datum value; |
| 124 | bool isnull, |
| 125 | empty; |
| 126 | RangeType *range; |
| 127 | RangeBound lower, |
| 128 | upper; |
| 129 | float8 length; |
| 130 | |
| 131 | vacuum_delay_point(); |
| 132 | |
| 133 | value = fetchfunc(stats, range_no, &isnull); |
| 134 | if (isnull) |
| 135 | { |
| 136 | /* range is null, just count that */ |
| 137 | null_cnt++; |
| 138 | continue; |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * XXX: should we ignore wide values, like std_typanalyze does, to |
| 143 | * avoid bloating the statistics table? |
| 144 | */ |
| 145 | total_width += VARSIZE_ANY(DatumGetPointer(value)); |
| 146 | |
| 147 | /* Get range and deserialize it for further analysis. */ |
| 148 | range = DatumGetRangeTypeP(value); |
| 149 | range_deserialize(typcache, range, &lower, &upper, &empty); |
| 150 | |
| 151 | if (!empty) |
| 152 | { |
| 153 | /* Remember bounds and length for further usage in histograms */ |
| 154 | lowers[non_empty_cnt] = lower; |
| 155 | uppers[non_empty_cnt] = upper; |
| 156 | |
| 157 | if (lower.infinite || upper.infinite) |
| 158 | { |
| 159 | /* Length of any kind of an infinite range is infinite */ |
| 160 | length = get_float8_infinity(); |
| 161 | } |
| 162 | else if (has_subdiff) |
| 163 | { |
| 164 | /* |
| 165 | * For an ordinary range, use subdiff function between upper |
| 166 | * and lower bound values. |
| 167 | */ |
| 168 | length = DatumGetFloat8(FunctionCall2Coll( |
| 169 | &typcache->rng_subdiff_finfo, |
| 170 | typcache->rng_collation, |
| 171 | upper.val, lower.val)); |
| 172 | } |
| 173 | else |
| 174 | { |
| 175 | /* Use default value of 1.0 if no subdiff is available. */ |
| 176 | length = 1.0; |
| 177 | } |
| 178 | lengths[non_empty_cnt] = length; |
| 179 | |
| 180 | non_empty_cnt++; |
| 181 | } |
| 182 | else |
| 183 | empty_cnt++; |
| 184 | |
| 185 | non_null_cnt++; |
| 186 | } |
| 187 | |
| 188 | slot_idx = 0; |
| 189 | |
| 190 | /* We can only compute real stats if we found some non-null values. */ |
| 191 | if (non_null_cnt > 0) |
| 192 | { |
| 193 | Datum *bound_hist_values; |
| 194 | Datum *length_hist_values; |
| 195 | int pos, |
| 196 | posfrac, |
| 197 | delta, |
| 198 | deltafrac, |
| 199 | i; |
| 200 | MemoryContext old_cxt; |
| 201 | float4 *emptyfrac; |
| 202 | |
| 203 | stats->stats_valid = true; |
| 204 | /* Do the simple null-frac and width stats */ |
| 205 | stats->stanullfrac = (double) null_cnt / (double) samplerows; |
| 206 | stats->stawidth = total_width / (double) non_null_cnt; |
| 207 | |
| 208 | /* Estimate that non-null values are unique */ |
| 209 | stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac); |
| 210 | |
| 211 | /* Must copy the target values into anl_context */ |
| 212 | old_cxt = MemoryContextSwitchTo(stats->anl_context); |
| 213 | |
| 214 | /* |
| 215 | * Generate a bounds histogram slot entry if there are at least two |
| 216 | * values. |
| 217 | */ |
| 218 | if (non_empty_cnt >= 2) |
| 219 | { |
| 220 | /* Sort bound values */ |
| 221 | qsort_arg(lowers, non_empty_cnt, sizeof(RangeBound), |
| 222 | range_bound_qsort_cmp, typcache); |
| 223 | qsort_arg(uppers, non_empty_cnt, sizeof(RangeBound), |
| 224 | range_bound_qsort_cmp, typcache); |
| 225 | |
| 226 | num_hist = non_empty_cnt; |
| 227 | if (num_hist > num_bins) |
| 228 | num_hist = num_bins + 1; |
| 229 | |
| 230 | bound_hist_values = (Datum *) palloc(num_hist * sizeof(Datum)); |
| 231 | |
| 232 | /* |
| 233 | * The object of this loop is to construct ranges from first and |
| 234 | * last entries in lowers[] and uppers[] along with evenly-spaced |
| 235 | * values in between. So the i'th value is a range of lowers[(i * |
| 236 | * (nvals - 1)) / (num_hist - 1)] and uppers[(i * (nvals - 1)) / |
| 237 | * (num_hist - 1)]. But computing that subscript directly risks |
| 238 | * integer overflow when the stats target is more than a couple |
| 239 | * thousand. Instead we add (nvals - 1) / (num_hist - 1) to pos |
| 240 | * at each step, tracking the integral and fractional parts of the |
| 241 | * sum separately. |
| 242 | */ |
| 243 | delta = (non_empty_cnt - 1) / (num_hist - 1); |
| 244 | deltafrac = (non_empty_cnt - 1) % (num_hist - 1); |
| 245 | pos = posfrac = 0; |
| 246 | |
| 247 | for (i = 0; i < num_hist; i++) |
| 248 | { |
| 249 | bound_hist_values[i] = PointerGetDatum(range_serialize( |
| 250 | typcache, &lowers[pos], &uppers[pos], false)); |
| 251 | pos += delta; |
| 252 | posfrac += deltafrac; |
| 253 | if (posfrac >= (num_hist - 1)) |
| 254 | { |
| 255 | /* fractional part exceeds 1, carry to integer part */ |
| 256 | pos++; |
| 257 | posfrac -= (num_hist - 1); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | stats->stakind[slot_idx] = STATISTIC_KIND_BOUNDS_HISTOGRAM; |
| 262 | stats->stavalues[slot_idx] = bound_hist_values; |
| 263 | stats->numvalues[slot_idx] = num_hist; |
| 264 | slot_idx++; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Generate a length histogram slot entry if there are at least two |
| 269 | * values. |
| 270 | */ |
| 271 | if (non_empty_cnt >= 2) |
| 272 | { |
| 273 | /* |
| 274 | * Ascending sort of range lengths for further filling of |
| 275 | * histogram |
| 276 | */ |
| 277 | qsort(lengths, non_empty_cnt, sizeof(float8), float8_qsort_cmp); |
| 278 | |
| 279 | num_hist = non_empty_cnt; |
| 280 | if (num_hist > num_bins) |
| 281 | num_hist = num_bins + 1; |
| 282 | |
| 283 | length_hist_values = (Datum *) palloc(num_hist * sizeof(Datum)); |
| 284 | |
| 285 | /* |
| 286 | * The object of this loop is to copy the first and last lengths[] |
| 287 | * entries along with evenly-spaced values in between. So the i'th |
| 288 | * value is lengths[(i * (nvals - 1)) / (num_hist - 1)]. But |
| 289 | * computing that subscript directly risks integer overflow when |
| 290 | * the stats target is more than a couple thousand. Instead we |
| 291 | * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking |
| 292 | * the integral and fractional parts of the sum separately. |
| 293 | */ |
| 294 | delta = (non_empty_cnt - 1) / (num_hist - 1); |
| 295 | deltafrac = (non_empty_cnt - 1) % (num_hist - 1); |
| 296 | pos = posfrac = 0; |
| 297 | |
| 298 | for (i = 0; i < num_hist; i++) |
| 299 | { |
| 300 | length_hist_values[i] = Float8GetDatum(lengths[pos]); |
| 301 | pos += delta; |
| 302 | posfrac += deltafrac; |
| 303 | if (posfrac >= (num_hist - 1)) |
| 304 | { |
| 305 | /* fractional part exceeds 1, carry to integer part */ |
| 306 | pos++; |
| 307 | posfrac -= (num_hist - 1); |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | else |
| 312 | { |
| 313 | /* |
| 314 | * Even when we don't create the histogram, store an empty array |
| 315 | * to mean "no histogram". We can't just leave stavalues NULL, |
| 316 | * because get_attstatsslot() errors if you ask for stavalues, and |
| 317 | * it's NULL. We'll still store the empty fraction in stanumbers. |
| 318 | */ |
| 319 | length_hist_values = palloc(0); |
| 320 | num_hist = 0; |
| 321 | } |
| 322 | stats->staop[slot_idx] = Float8LessOperator; |
| 323 | stats->stacoll[slot_idx] = InvalidOid; |
| 324 | stats->stavalues[slot_idx] = length_hist_values; |
| 325 | stats->numvalues[slot_idx] = num_hist; |
| 326 | stats->statypid[slot_idx] = FLOAT8OID; |
| 327 | stats->statyplen[slot_idx] = sizeof(float8); |
| 328 | #ifdef USE_FLOAT8_BYVAL |
| 329 | stats->statypbyval[slot_idx] = true; |
| 330 | #else |
| 331 | stats->statypbyval[slot_idx] = false; |
| 332 | #endif |
| 333 | stats->statypalign[slot_idx] = 'd'; |
| 334 | |
| 335 | /* Store the fraction of empty ranges */ |
| 336 | emptyfrac = (float4 *) palloc(sizeof(float4)); |
| 337 | *emptyfrac = ((double) empty_cnt) / ((double) non_null_cnt); |
| 338 | stats->stanumbers[slot_idx] = emptyfrac; |
| 339 | stats->numnumbers[slot_idx] = 1; |
| 340 | |
| 341 | stats->stakind[slot_idx] = STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM; |
| 342 | slot_idx++; |
| 343 | |
| 344 | MemoryContextSwitchTo(old_cxt); |
| 345 | } |
| 346 | else if (null_cnt > 0) |
| 347 | { |
| 348 | /* We found only nulls; assume the column is entirely null */ |
| 349 | stats->stats_valid = true; |
| 350 | stats->stanullfrac = 1.0; |
| 351 | stats->stawidth = 0; /* "unknown" */ |
| 352 | stats->stadistinct = 0.0; /* "unknown" */ |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * We don't need to bother cleaning up any of our temporary palloc's. The |
| 357 | * hashtable should also go away, as it used a child memory context. |
| 358 | */ |
| 359 | } |
| 360 | |