1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * ruleutils.c |
4 | * Functions to convert stored expressions/querytrees back to |
5 | * source text |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * |
11 | * IDENTIFICATION |
12 | * src/backend/utils/adt/ruleutils.c |
13 | * |
14 | *------------------------------------------------------------------------- |
15 | */ |
16 | #include "postgres.h" |
17 | |
18 | #include <ctype.h> |
19 | #include <unistd.h> |
20 | #include <fcntl.h> |
21 | |
22 | #include "access/amapi.h" |
23 | #include "access/htup_details.h" |
24 | #include "access/relation.h" |
25 | #include "access/sysattr.h" |
26 | #include "access/table.h" |
27 | #include "catalog/dependency.h" |
28 | #include "catalog/indexing.h" |
29 | #include "catalog/pg_aggregate.h" |
30 | #include "catalog/pg_am.h" |
31 | #include "catalog/pg_authid.h" |
32 | #include "catalog/pg_collation.h" |
33 | #include "catalog/pg_constraint.h" |
34 | #include "catalog/pg_depend.h" |
35 | #include "catalog/pg_language.h" |
36 | #include "catalog/pg_opclass.h" |
37 | #include "catalog/pg_operator.h" |
38 | #include "catalog/pg_partitioned_table.h" |
39 | #include "catalog/pg_proc.h" |
40 | #include "catalog/pg_statistic_ext.h" |
41 | #include "catalog/pg_trigger.h" |
42 | #include "catalog/pg_type.h" |
43 | #include "commands/defrem.h" |
44 | #include "commands/tablespace.h" |
45 | #include "common/keywords.h" |
46 | #include "executor/spi.h" |
47 | #include "funcapi.h" |
48 | #include "mb/pg_wchar.h" |
49 | #include "miscadmin.h" |
50 | #include "nodes/makefuncs.h" |
51 | #include "nodes/nodeFuncs.h" |
52 | #include "optimizer/optimizer.h" |
53 | #include "parser/parse_node.h" |
54 | #include "parser/parse_agg.h" |
55 | #include "parser/parse_func.h" |
56 | #include "parser/parse_oper.h" |
57 | #include "parser/parser.h" |
58 | #include "parser/parsetree.h" |
59 | #include "rewrite/rewriteHandler.h" |
60 | #include "rewrite/rewriteManip.h" |
61 | #include "rewrite/rewriteSupport.h" |
62 | #include "utils/array.h" |
63 | #include "utils/builtins.h" |
64 | #include "utils/fmgroids.h" |
65 | #include "utils/guc.h" |
66 | #include "utils/hsearch.h" |
67 | #include "utils/lsyscache.h" |
68 | #include "utils/partcache.h" |
69 | #include "utils/rel.h" |
70 | #include "utils/ruleutils.h" |
71 | #include "utils/snapmgr.h" |
72 | #include "utils/syscache.h" |
73 | #include "utils/typcache.h" |
74 | #include "utils/varlena.h" |
75 | #include "utils/xml.h" |
76 | |
77 | |
78 | /* ---------- |
79 | * Pretty formatting constants |
80 | * ---------- |
81 | */ |
82 | |
83 | /* Indent counts */ |
84 | #define PRETTYINDENT_STD 8 |
85 | #define PRETTYINDENT_JOIN 4 |
86 | #define PRETTYINDENT_VAR 4 |
87 | |
88 | #define PRETTYINDENT_LIMIT 40 /* wrap limit */ |
89 | |
90 | /* Pretty flags */ |
91 | #define PRETTYFLAG_PAREN 0x0001 |
92 | #define PRETTYFLAG_INDENT 0x0002 |
93 | #define PRETTYFLAG_SCHEMA 0x0004 |
94 | |
95 | /* Default line length for pretty-print wrapping: 0 means wrap always */ |
96 | #define WRAP_COLUMN_DEFAULT 0 |
97 | |
98 | /* macros to test if pretty action needed */ |
99 | #define PRETTY_PAREN(context) ((context)->prettyFlags & PRETTYFLAG_PAREN) |
100 | #define PRETTY_INDENT(context) ((context)->prettyFlags & PRETTYFLAG_INDENT) |
101 | #define PRETTY_SCHEMA(context) ((context)->prettyFlags & PRETTYFLAG_SCHEMA) |
102 | |
103 | |
104 | /* ---------- |
105 | * Local data types |
106 | * ---------- |
107 | */ |
108 | |
109 | /* Context info needed for invoking a recursive querytree display routine */ |
110 | typedef struct |
111 | { |
112 | StringInfo buf; /* output buffer to append to */ |
113 | List *namespaces; /* List of deparse_namespace nodes */ |
114 | List *windowClause; /* Current query level's WINDOW clause */ |
115 | List *windowTList; /* targetlist for resolving WINDOW clause */ |
116 | int prettyFlags; /* enabling of pretty-print functions */ |
117 | int wrapColumn; /* max line length, or -1 for no limit */ |
118 | int indentLevel; /* current indent level for prettyprint */ |
119 | bool varprefix; /* true to print prefixes on Vars */ |
120 | ParseExprKind special_exprkind; /* set only for exprkinds needing special |
121 | * handling */ |
122 | } deparse_context; |
123 | |
124 | /* |
125 | * Each level of query context around a subtree needs a level of Var namespace. |
126 | * A Var having varlevelsup=N refers to the N'th item (counting from 0) in |
127 | * the current context's namespaces list. |
128 | * |
129 | * The rangetable is the list of actual RTEs from the query tree, and the |
130 | * cte list is the list of actual CTEs. |
131 | * |
132 | * rtable_names holds the alias name to be used for each RTE (either a C |
133 | * string, or NULL for nameless RTEs such as unnamed joins). |
134 | * rtable_columns holds the column alias names to be used for each RTE. |
135 | * |
136 | * In some cases we need to make names of merged JOIN USING columns unique |
137 | * across the whole query, not only per-RTE. If so, unique_using is true |
138 | * and using_names is a list of C strings representing names already assigned |
139 | * to USING columns. |
140 | * |
141 | * When deparsing plan trees, there is always just a single item in the |
142 | * deparse_namespace list (since a plan tree never contains Vars with |
143 | * varlevelsup > 0). We store the PlanState node that is the immediate |
144 | * parent of the expression to be deparsed, as well as a list of that |
145 | * PlanState's ancestors. In addition, we store its outer and inner subplan |
146 | * state nodes, as well as their plan nodes' targetlists, and the index tlist |
147 | * if the current plan node might contain INDEX_VAR Vars. (These fields could |
148 | * be derived on-the-fly from the current PlanState, but it seems notationally |
149 | * clearer to set them up as separate fields.) |
150 | */ |
151 | typedef struct |
152 | { |
153 | List *rtable; /* List of RangeTblEntry nodes */ |
154 | List *rtable_names; /* Parallel list of names for RTEs */ |
155 | List *rtable_columns; /* Parallel list of deparse_columns structs */ |
156 | List *ctes; /* List of CommonTableExpr nodes */ |
157 | /* Workspace for column alias assignment: */ |
158 | bool unique_using; /* Are we making USING names globally unique */ |
159 | List *using_names; /* List of assigned names for USING columns */ |
160 | /* Remaining fields are used only when deparsing a Plan tree: */ |
161 | PlanState *planstate; /* immediate parent of current expression */ |
162 | List *ancestors; /* ancestors of planstate */ |
163 | PlanState *outer_planstate; /* outer subplan state, or NULL if none */ |
164 | PlanState *inner_planstate; /* inner subplan state, or NULL if none */ |
165 | List *outer_tlist; /* referent for OUTER_VAR Vars */ |
166 | List *inner_tlist; /* referent for INNER_VAR Vars */ |
167 | List *index_tlist; /* referent for INDEX_VAR Vars */ |
168 | } deparse_namespace; |
169 | |
170 | /* |
171 | * Per-relation data about column alias names. |
172 | * |
173 | * Selecting aliases is unreasonably complicated because of the need to dump |
174 | * rules/views whose underlying tables may have had columns added, deleted, or |
175 | * renamed since the query was parsed. We must nonetheless print the rule/view |
176 | * in a form that can be reloaded and will produce the same results as before. |
177 | * |
178 | * For each RTE used in the query, we must assign column aliases that are |
179 | * unique within that RTE. SQL does not require this of the original query, |
180 | * but due to factors such as *-expansion we need to be able to uniquely |
181 | * reference every column in a decompiled query. As long as we qualify all |
182 | * column references, per-RTE uniqueness is sufficient for that. |
183 | * |
184 | * However, we can't ensure per-column name uniqueness for unnamed join RTEs, |
185 | * since they just inherit column names from their input RTEs, and we can't |
186 | * rename the columns at the join level. Most of the time this isn't an issue |
187 | * because we don't need to reference the join's output columns as such; we |
188 | * can reference the input columns instead. That approach can fail for merged |
189 | * JOIN USING columns, however, so when we have one of those in an unnamed |
190 | * join, we have to make that column's alias globally unique across the whole |
191 | * query to ensure it can be referenced unambiguously. |
192 | * |
193 | * Another problem is that a JOIN USING clause requires the columns to be |
194 | * merged to have the same aliases in both input RTEs, and that no other |
195 | * columns in those RTEs or their children conflict with the USING names. |
196 | * To handle that, we do USING-column alias assignment in a recursive |
197 | * traversal of the query's jointree. When descending through a JOIN with |
198 | * USING, we preassign the USING column names to the child columns, overriding |
199 | * other rules for column alias assignment. We also mark each RTE with a list |
200 | * of all USING column names selected for joins containing that RTE, so that |
201 | * when we assign other columns' aliases later, we can avoid conflicts. |
202 | * |
203 | * Another problem is that if a JOIN's input tables have had columns added or |
204 | * deleted since the query was parsed, we must generate a column alias list |
205 | * for the join that matches the current set of input columns --- otherwise, a |
206 | * change in the number of columns in the left input would throw off matching |
207 | * of aliases to columns of the right input. Thus, positions in the printable |
208 | * column alias list are not necessarily one-for-one with varattnos of the |
209 | * JOIN, so we need a separate new_colnames[] array for printing purposes. |
210 | */ |
211 | typedef struct |
212 | { |
213 | /* |
214 | * colnames is an array containing column aliases to use for columns that |
215 | * existed when the query was parsed. Dropped columns have NULL entries. |
216 | * This array can be directly indexed by varattno to get a Var's name. |
217 | * |
218 | * Non-NULL entries are guaranteed unique within the RTE, *except* when |
219 | * this is for an unnamed JOIN RTE. In that case we merely copy up names |
220 | * from the two input RTEs. |
221 | * |
222 | * During the recursive descent in set_using_names(), forcible assignment |
223 | * of a child RTE's column name is represented by pre-setting that element |
224 | * of the child's colnames array. So at that stage, NULL entries in this |
225 | * array just mean that no name has been preassigned, not necessarily that |
226 | * the column is dropped. |
227 | */ |
228 | int num_cols; /* length of colnames[] array */ |
229 | char **colnames; /* array of C strings and NULLs */ |
230 | |
231 | /* |
232 | * new_colnames is an array containing column aliases to use for columns |
233 | * that would exist if the query was re-parsed against the current |
234 | * definitions of its base tables. This is what to print as the column |
235 | * alias list for the RTE. This array does not include dropped columns, |
236 | * but it will include columns added since original parsing. Indexes in |
237 | * it therefore have little to do with current varattno values. As above, |
238 | * entries are unique unless this is for an unnamed JOIN RTE. (In such an |
239 | * RTE, we never actually print this array, but we must compute it anyway |
240 | * for possible use in computing column names of upper joins.) The |
241 | * parallel array is_new_col marks which of these columns are new since |
242 | * original parsing. Entries with is_new_col false must match the |
243 | * non-NULL colnames entries one-for-one. |
244 | */ |
245 | int num_new_cols; /* length of new_colnames[] array */ |
246 | char **new_colnames; /* array of C strings */ |
247 | bool *is_new_col; /* array of bool flags */ |
248 | |
249 | /* This flag tells whether we should actually print a column alias list */ |
250 | bool printaliases; |
251 | |
252 | /* This list has all names used as USING names in joins above this RTE */ |
253 | List *parentUsing; /* names assigned to parent merged columns */ |
254 | |
255 | /* |
256 | * If this struct is for a JOIN RTE, we fill these fields during the |
257 | * set_using_names() pass to describe its relationship to its child RTEs. |
258 | * |
259 | * leftattnos and rightattnos are arrays with one entry per existing |
260 | * output column of the join (hence, indexable by join varattno). For a |
261 | * simple reference to a column of the left child, leftattnos[i] is the |
262 | * child RTE's attno and rightattnos[i] is zero; and conversely for a |
263 | * column of the right child. But for merged columns produced by JOIN |
264 | * USING/NATURAL JOIN, both leftattnos[i] and rightattnos[i] are nonzero. |
265 | * Also, if the column has been dropped, both are zero. |
266 | * |
267 | * If it's a JOIN USING, usingNames holds the alias names selected for the |
268 | * merged columns (these might be different from the original USING list, |
269 | * if we had to modify names to achieve uniqueness). |
270 | */ |
271 | int leftrti; /* rangetable index of left child */ |
272 | int rightrti; /* rangetable index of right child */ |
273 | int *leftattnos; /* left-child varattnos of join cols, or 0 */ |
274 | int *rightattnos; /* right-child varattnos of join cols, or 0 */ |
275 | List *usingNames; /* names assigned to merged columns */ |
276 | } deparse_columns; |
277 | |
278 | /* This macro is analogous to rt_fetch(), but for deparse_columns structs */ |
279 | #define deparse_columns_fetch(rangetable_index, dpns) \ |
280 | ((deparse_columns *) list_nth((dpns)->rtable_columns, (rangetable_index)-1)) |
281 | |
282 | /* |
283 | * Entry in set_rtable_names' hash table |
284 | */ |
285 | typedef struct |
286 | { |
287 | char name[NAMEDATALEN]; /* Hash key --- must be first */ |
288 | int counter; /* Largest addition used so far for name */ |
289 | } NameHashEntry; |
290 | |
291 | |
292 | /* ---------- |
293 | * Global data |
294 | * ---------- |
295 | */ |
296 | static SPIPlanPtr plan_getrulebyoid = NULL; |
297 | static const char *query_getrulebyoid = "SELECT * FROM pg_catalog.pg_rewrite WHERE oid = $1" ; |
298 | static SPIPlanPtr plan_getviewrule = NULL; |
299 | static const char *query_getviewrule = "SELECT * FROM pg_catalog.pg_rewrite WHERE ev_class = $1 AND rulename = $2" ; |
300 | |
301 | /* GUC parameters */ |
302 | bool quote_all_identifiers = false; |
303 | |
304 | |
305 | /* ---------- |
306 | * Local functions |
307 | * |
308 | * Most of these functions used to use fixed-size buffers to build their |
309 | * results. Now, they take an (already initialized) StringInfo object |
310 | * as a parameter, and append their text output to its contents. |
311 | * ---------- |
312 | */ |
313 | static char *deparse_expression_pretty(Node *expr, List *dpcontext, |
314 | bool forceprefix, bool showimplicit, |
315 | int prettyFlags, int startIndent); |
316 | static char *pg_get_viewdef_worker(Oid viewoid, |
317 | int prettyFlags, int wrapColumn); |
318 | static char *pg_get_triggerdef_worker(Oid trigid, bool pretty); |
319 | static int decompile_column_index_array(Datum column_index_array, Oid relId, |
320 | StringInfo buf); |
321 | static char *pg_get_ruledef_worker(Oid ruleoid, int prettyFlags); |
322 | static char *pg_get_indexdef_worker(Oid indexrelid, int colno, |
323 | const Oid *excludeOps, |
324 | bool attrsOnly, bool keysOnly, |
325 | bool showTblSpc, bool inherits, |
326 | int prettyFlags, bool missing_ok); |
327 | static char *pg_get_statisticsobj_worker(Oid statextid, bool missing_ok); |
328 | static char *pg_get_partkeydef_worker(Oid relid, int prettyFlags, |
329 | bool attrsOnly, bool missing_ok); |
330 | static char *pg_get_constraintdef_worker(Oid constraintId, bool fullCommand, |
331 | int prettyFlags, bool missing_ok); |
332 | static text *pg_get_expr_worker(text *expr, Oid relid, const char *relname, |
333 | int prettyFlags); |
334 | static int print_function_arguments(StringInfo buf, HeapTuple proctup, |
335 | bool print_table_args, bool print_defaults); |
336 | static void print_function_rettype(StringInfo buf, HeapTuple proctup); |
337 | static void print_function_trftypes(StringInfo buf, HeapTuple proctup); |
338 | static void set_rtable_names(deparse_namespace *dpns, List *parent_namespaces, |
339 | Bitmapset *rels_used); |
340 | static void set_deparse_for_query(deparse_namespace *dpns, Query *query, |
341 | List *parent_namespaces); |
342 | static void set_simple_column_names(deparse_namespace *dpns); |
343 | static bool has_dangerous_join_using(deparse_namespace *dpns, Node *jtnode); |
344 | static void set_using_names(deparse_namespace *dpns, Node *jtnode, |
345 | List *parentUsing); |
346 | static void set_relation_column_names(deparse_namespace *dpns, |
347 | RangeTblEntry *rte, |
348 | deparse_columns *colinfo); |
349 | static void set_join_column_names(deparse_namespace *dpns, RangeTblEntry *rte, |
350 | deparse_columns *colinfo); |
351 | static bool colname_is_unique(const char *colname, deparse_namespace *dpns, |
352 | deparse_columns *colinfo); |
353 | static char *make_colname_unique(char *colname, deparse_namespace *dpns, |
354 | deparse_columns *colinfo); |
355 | static void expand_colnames_array_to(deparse_columns *colinfo, int n); |
356 | static void identify_join_columns(JoinExpr *j, RangeTblEntry *jrte, |
357 | deparse_columns *colinfo); |
358 | static void flatten_join_using_qual(Node *qual, |
359 | List **leftvars, List **rightvars); |
360 | static char *get_rtable_name(int rtindex, deparse_context *context); |
361 | static void set_deparse_planstate(deparse_namespace *dpns, PlanState *ps); |
362 | static void push_child_plan(deparse_namespace *dpns, PlanState *ps, |
363 | deparse_namespace *save_dpns); |
364 | static void pop_child_plan(deparse_namespace *dpns, |
365 | deparse_namespace *save_dpns); |
366 | static void push_ancestor_plan(deparse_namespace *dpns, ListCell *ancestor_cell, |
367 | deparse_namespace *save_dpns); |
368 | static void pop_ancestor_plan(deparse_namespace *dpns, |
369 | deparse_namespace *save_dpns); |
370 | static void make_ruledef(StringInfo buf, HeapTuple ruletup, TupleDesc rulettc, |
371 | int prettyFlags); |
372 | static void make_viewdef(StringInfo buf, HeapTuple ruletup, TupleDesc rulettc, |
373 | int prettyFlags, int wrapColumn); |
374 | static void get_query_def(Query *query, StringInfo buf, List *parentnamespace, |
375 | TupleDesc resultDesc, |
376 | int prettyFlags, int wrapColumn, int startIndent); |
377 | static void get_values_def(List *values_lists, deparse_context *context); |
378 | static void get_with_clause(Query *query, deparse_context *context); |
379 | static void get_select_query_def(Query *query, deparse_context *context, |
380 | TupleDesc resultDesc); |
381 | static void get_insert_query_def(Query *query, deparse_context *context); |
382 | static void get_update_query_def(Query *query, deparse_context *context); |
383 | static void get_update_query_targetlist_def(Query *query, List *targetList, |
384 | deparse_context *context, |
385 | RangeTblEntry *rte); |
386 | static void get_delete_query_def(Query *query, deparse_context *context); |
387 | static void get_utility_query_def(Query *query, deparse_context *context); |
388 | static void get_basic_select_query(Query *query, deparse_context *context, |
389 | TupleDesc resultDesc); |
390 | static void get_target_list(List *targetList, deparse_context *context, |
391 | TupleDesc resultDesc); |
392 | static void get_setop_query(Node *setOp, Query *query, |
393 | deparse_context *context, |
394 | TupleDesc resultDesc); |
395 | static Node *get_rule_sortgroupclause(Index ref, List *tlist, |
396 | bool force_colno, |
397 | deparse_context *context); |
398 | static void get_rule_groupingset(GroupingSet *gset, List *targetlist, |
399 | bool omit_parens, deparse_context *context); |
400 | static void get_rule_orderby(List *orderList, List *targetList, |
401 | bool force_colno, deparse_context *context); |
402 | static void get_rule_windowclause(Query *query, deparse_context *context); |
403 | static void get_rule_windowspec(WindowClause *wc, List *targetList, |
404 | deparse_context *context); |
405 | static char *get_variable(Var *var, int levelsup, bool istoplevel, |
406 | deparse_context *context); |
407 | static void get_special_variable(Node *node, deparse_context *context, |
408 | void *private); |
409 | static void resolve_special_varno(Node *node, deparse_context *context, |
410 | void *private, |
411 | void (*callback) (Node *, deparse_context *, void *)); |
412 | static Node *find_param_referent(Param *param, deparse_context *context, |
413 | deparse_namespace **dpns_p, ListCell **ancestor_cell_p); |
414 | static void get_parameter(Param *param, deparse_context *context); |
415 | static const char *get_simple_binary_op_name(OpExpr *expr); |
416 | static bool isSimpleNode(Node *node, Node *parentNode, int prettyFlags); |
417 | static void appendContextKeyword(deparse_context *context, const char *str, |
418 | int indentBefore, int indentAfter, int indentPlus); |
419 | static void removeStringInfoSpaces(StringInfo str); |
420 | static void get_rule_expr(Node *node, deparse_context *context, |
421 | bool showimplicit); |
422 | static void get_rule_expr_toplevel(Node *node, deparse_context *context, |
423 | bool showimplicit); |
424 | static void get_rule_expr_funccall(Node *node, deparse_context *context, |
425 | bool showimplicit); |
426 | static bool looks_like_function(Node *node); |
427 | static void get_oper_expr(OpExpr *expr, deparse_context *context); |
428 | static void get_func_expr(FuncExpr *expr, deparse_context *context, |
429 | bool showimplicit); |
430 | static void get_agg_expr(Aggref *aggref, deparse_context *context, |
431 | Aggref *original_aggref); |
432 | static void get_agg_combine_expr(Node *node, deparse_context *context, |
433 | void *private); |
434 | static void get_windowfunc_expr(WindowFunc *wfunc, deparse_context *context); |
435 | static void get_coercion_expr(Node *arg, deparse_context *context, |
436 | Oid resulttype, int32 resulttypmod, |
437 | Node *parentNode); |
438 | static void get_const_expr(Const *constval, deparse_context *context, |
439 | int showtype); |
440 | static void get_const_collation(Const *constval, deparse_context *context); |
441 | static void simple_quote_literal(StringInfo buf, const char *val); |
442 | static void get_sublink_expr(SubLink *sublink, deparse_context *context); |
443 | static void get_tablefunc(TableFunc *tf, deparse_context *context, |
444 | bool showimplicit); |
445 | static void get_from_clause(Query *query, const char *prefix, |
446 | deparse_context *context); |
447 | static void get_from_clause_item(Node *jtnode, Query *query, |
448 | deparse_context *context); |
449 | static void get_column_alias_list(deparse_columns *colinfo, |
450 | deparse_context *context); |
451 | static void get_from_clause_coldeflist(RangeTblFunction *rtfunc, |
452 | deparse_columns *colinfo, |
453 | deparse_context *context); |
454 | static void get_tablesample_def(TableSampleClause *tablesample, |
455 | deparse_context *context); |
456 | static void get_opclass_name(Oid opclass, Oid actual_datatype, |
457 | StringInfo buf); |
458 | static Node *processIndirection(Node *node, deparse_context *context); |
459 | static void printSubscripts(SubscriptingRef *sbsref, deparse_context *context); |
460 | static char *get_relation_name(Oid relid); |
461 | static char *generate_relation_name(Oid relid, List *namespaces); |
462 | static char *generate_qualified_relation_name(Oid relid); |
463 | static char *generate_function_name(Oid funcid, int nargs, |
464 | List *argnames, Oid *argtypes, |
465 | bool has_variadic, bool *use_variadic_p, |
466 | ParseExprKind special_exprkind); |
467 | static char *generate_operator_name(Oid operid, Oid arg1, Oid arg2); |
468 | static void add_cast_to(StringInfo buf, Oid typid); |
469 | static char *generate_qualified_type_name(Oid typid); |
470 | static text *string_to_text(char *str); |
471 | static char *flatten_reloptions(Oid relid); |
472 | |
473 | #define only_marker(rte) ((rte)->inh ? "" : "ONLY ") |
474 | |
475 | |
476 | /* ---------- |
477 | * get_ruledef - Do it all and return a text |
478 | * that could be used as a statement |
479 | * to recreate the rule |
480 | * ---------- |
481 | */ |
482 | Datum |
483 | pg_get_ruledef(PG_FUNCTION_ARGS) |
484 | { |
485 | Oid ruleoid = PG_GETARG_OID(0); |
486 | int prettyFlags; |
487 | char *res; |
488 | |
489 | prettyFlags = PRETTYFLAG_INDENT; |
490 | |
491 | res = pg_get_ruledef_worker(ruleoid, prettyFlags); |
492 | |
493 | if (res == NULL) |
494 | PG_RETURN_NULL(); |
495 | |
496 | PG_RETURN_TEXT_P(string_to_text(res)); |
497 | } |
498 | |
499 | |
500 | Datum |
501 | pg_get_ruledef_ext(PG_FUNCTION_ARGS) |
502 | { |
503 | Oid ruleoid = PG_GETARG_OID(0); |
504 | bool pretty = PG_GETARG_BOOL(1); |
505 | int prettyFlags; |
506 | char *res; |
507 | |
508 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
509 | |
510 | res = pg_get_ruledef_worker(ruleoid, prettyFlags); |
511 | |
512 | if (res == NULL) |
513 | PG_RETURN_NULL(); |
514 | |
515 | PG_RETURN_TEXT_P(string_to_text(res)); |
516 | } |
517 | |
518 | |
519 | static char * |
520 | pg_get_ruledef_worker(Oid ruleoid, int prettyFlags) |
521 | { |
522 | Datum args[1]; |
523 | char nulls[1]; |
524 | int spirc; |
525 | HeapTuple ruletup; |
526 | TupleDesc rulettc; |
527 | StringInfoData buf; |
528 | |
529 | /* |
530 | * Do this first so that string is alloc'd in outer context not SPI's. |
531 | */ |
532 | initStringInfo(&buf); |
533 | |
534 | /* |
535 | * Connect to SPI manager |
536 | */ |
537 | if (SPI_connect() != SPI_OK_CONNECT) |
538 | elog(ERROR, "SPI_connect failed" ); |
539 | |
540 | /* |
541 | * On the first call prepare the plan to lookup pg_rewrite. We read |
542 | * pg_rewrite over the SPI manager instead of using the syscache to be |
543 | * checked for read access on pg_rewrite. |
544 | */ |
545 | if (plan_getrulebyoid == NULL) |
546 | { |
547 | Oid argtypes[1]; |
548 | SPIPlanPtr plan; |
549 | |
550 | argtypes[0] = OIDOID; |
551 | plan = SPI_prepare(query_getrulebyoid, 1, argtypes); |
552 | if (plan == NULL) |
553 | elog(ERROR, "SPI_prepare failed for \"%s\"" , query_getrulebyoid); |
554 | SPI_keepplan(plan); |
555 | plan_getrulebyoid = plan; |
556 | } |
557 | |
558 | /* |
559 | * Get the pg_rewrite tuple for this rule |
560 | */ |
561 | args[0] = ObjectIdGetDatum(ruleoid); |
562 | nulls[0] = ' '; |
563 | spirc = SPI_execute_plan(plan_getrulebyoid, args, nulls, true, 0); |
564 | if (spirc != SPI_OK_SELECT) |
565 | elog(ERROR, "failed to get pg_rewrite tuple for rule %u" , ruleoid); |
566 | if (SPI_processed != 1) |
567 | { |
568 | /* |
569 | * There is no tuple data available here, just keep the output buffer |
570 | * empty. |
571 | */ |
572 | } |
573 | else |
574 | { |
575 | /* |
576 | * Get the rule's definition and put it into executor's memory |
577 | */ |
578 | ruletup = SPI_tuptable->vals[0]; |
579 | rulettc = SPI_tuptable->tupdesc; |
580 | make_ruledef(&buf, ruletup, rulettc, prettyFlags); |
581 | } |
582 | |
583 | /* |
584 | * Disconnect from SPI manager |
585 | */ |
586 | if (SPI_finish() != SPI_OK_FINISH) |
587 | elog(ERROR, "SPI_finish failed" ); |
588 | |
589 | if (buf.len == 0) |
590 | return NULL; |
591 | |
592 | return buf.data; |
593 | } |
594 | |
595 | |
596 | /* ---------- |
597 | * get_viewdef - Mainly the same thing, but we |
598 | * only return the SELECT part of a view |
599 | * ---------- |
600 | */ |
601 | Datum |
602 | pg_get_viewdef(PG_FUNCTION_ARGS) |
603 | { |
604 | /* By OID */ |
605 | Oid viewoid = PG_GETARG_OID(0); |
606 | int prettyFlags; |
607 | char *res; |
608 | |
609 | prettyFlags = PRETTYFLAG_INDENT; |
610 | |
611 | res = pg_get_viewdef_worker(viewoid, prettyFlags, WRAP_COLUMN_DEFAULT); |
612 | |
613 | if (res == NULL) |
614 | PG_RETURN_NULL(); |
615 | |
616 | PG_RETURN_TEXT_P(string_to_text(res)); |
617 | } |
618 | |
619 | |
620 | Datum |
621 | pg_get_viewdef_ext(PG_FUNCTION_ARGS) |
622 | { |
623 | /* By OID */ |
624 | Oid viewoid = PG_GETARG_OID(0); |
625 | bool pretty = PG_GETARG_BOOL(1); |
626 | int prettyFlags; |
627 | char *res; |
628 | |
629 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
630 | |
631 | res = pg_get_viewdef_worker(viewoid, prettyFlags, WRAP_COLUMN_DEFAULT); |
632 | |
633 | if (res == NULL) |
634 | PG_RETURN_NULL(); |
635 | |
636 | PG_RETURN_TEXT_P(string_to_text(res)); |
637 | } |
638 | |
639 | Datum |
640 | pg_get_viewdef_wrap(PG_FUNCTION_ARGS) |
641 | { |
642 | /* By OID */ |
643 | Oid viewoid = PG_GETARG_OID(0); |
644 | int wrap = PG_GETARG_INT32(1); |
645 | int prettyFlags; |
646 | char *res; |
647 | |
648 | /* calling this implies we want pretty printing */ |
649 | prettyFlags = PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA; |
650 | |
651 | res = pg_get_viewdef_worker(viewoid, prettyFlags, wrap); |
652 | |
653 | if (res == NULL) |
654 | PG_RETURN_NULL(); |
655 | |
656 | PG_RETURN_TEXT_P(string_to_text(res)); |
657 | } |
658 | |
659 | Datum |
660 | pg_get_viewdef_name(PG_FUNCTION_ARGS) |
661 | { |
662 | /* By qualified name */ |
663 | text *viewname = PG_GETARG_TEXT_PP(0); |
664 | int prettyFlags; |
665 | RangeVar *viewrel; |
666 | Oid viewoid; |
667 | char *res; |
668 | |
669 | prettyFlags = PRETTYFLAG_INDENT; |
670 | |
671 | /* Look up view name. Can't lock it - we might not have privileges. */ |
672 | viewrel = makeRangeVarFromNameList(textToQualifiedNameList(viewname)); |
673 | viewoid = RangeVarGetRelid(viewrel, NoLock, false); |
674 | |
675 | res = pg_get_viewdef_worker(viewoid, prettyFlags, WRAP_COLUMN_DEFAULT); |
676 | |
677 | if (res == NULL) |
678 | PG_RETURN_NULL(); |
679 | |
680 | PG_RETURN_TEXT_P(string_to_text(res)); |
681 | } |
682 | |
683 | |
684 | Datum |
685 | pg_get_viewdef_name_ext(PG_FUNCTION_ARGS) |
686 | { |
687 | /* By qualified name */ |
688 | text *viewname = PG_GETARG_TEXT_PP(0); |
689 | bool pretty = PG_GETARG_BOOL(1); |
690 | int prettyFlags; |
691 | RangeVar *viewrel; |
692 | Oid viewoid; |
693 | char *res; |
694 | |
695 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
696 | |
697 | /* Look up view name. Can't lock it - we might not have privileges. */ |
698 | viewrel = makeRangeVarFromNameList(textToQualifiedNameList(viewname)); |
699 | viewoid = RangeVarGetRelid(viewrel, NoLock, false); |
700 | |
701 | res = pg_get_viewdef_worker(viewoid, prettyFlags, WRAP_COLUMN_DEFAULT); |
702 | |
703 | if (res == NULL) |
704 | PG_RETURN_NULL(); |
705 | |
706 | PG_RETURN_TEXT_P(string_to_text(res)); |
707 | } |
708 | |
709 | /* |
710 | * Common code for by-OID and by-name variants of pg_get_viewdef |
711 | */ |
712 | static char * |
713 | pg_get_viewdef_worker(Oid viewoid, int prettyFlags, int wrapColumn) |
714 | { |
715 | Datum args[2]; |
716 | char nulls[2]; |
717 | int spirc; |
718 | HeapTuple ruletup; |
719 | TupleDesc rulettc; |
720 | StringInfoData buf; |
721 | |
722 | /* |
723 | * Do this first so that string is alloc'd in outer context not SPI's. |
724 | */ |
725 | initStringInfo(&buf); |
726 | |
727 | /* |
728 | * Connect to SPI manager |
729 | */ |
730 | if (SPI_connect() != SPI_OK_CONNECT) |
731 | elog(ERROR, "SPI_connect failed" ); |
732 | |
733 | /* |
734 | * On the first call prepare the plan to lookup pg_rewrite. We read |
735 | * pg_rewrite over the SPI manager instead of using the syscache to be |
736 | * checked for read access on pg_rewrite. |
737 | */ |
738 | if (plan_getviewrule == NULL) |
739 | { |
740 | Oid argtypes[2]; |
741 | SPIPlanPtr plan; |
742 | |
743 | argtypes[0] = OIDOID; |
744 | argtypes[1] = NAMEOID; |
745 | plan = SPI_prepare(query_getviewrule, 2, argtypes); |
746 | if (plan == NULL) |
747 | elog(ERROR, "SPI_prepare failed for \"%s\"" , query_getviewrule); |
748 | SPI_keepplan(plan); |
749 | plan_getviewrule = plan; |
750 | } |
751 | |
752 | /* |
753 | * Get the pg_rewrite tuple for the view's SELECT rule |
754 | */ |
755 | args[0] = ObjectIdGetDatum(viewoid); |
756 | args[1] = DirectFunctionCall1(namein, CStringGetDatum(ViewSelectRuleName)); |
757 | nulls[0] = ' '; |
758 | nulls[1] = ' '; |
759 | spirc = SPI_execute_plan(plan_getviewrule, args, nulls, true, 0); |
760 | if (spirc != SPI_OK_SELECT) |
761 | elog(ERROR, "failed to get pg_rewrite tuple for view %u" , viewoid); |
762 | if (SPI_processed != 1) |
763 | { |
764 | /* |
765 | * There is no tuple data available here, just keep the output buffer |
766 | * empty. |
767 | */ |
768 | } |
769 | else |
770 | { |
771 | /* |
772 | * Get the rule's definition and put it into executor's memory |
773 | */ |
774 | ruletup = SPI_tuptable->vals[0]; |
775 | rulettc = SPI_tuptable->tupdesc; |
776 | make_viewdef(&buf, ruletup, rulettc, prettyFlags, wrapColumn); |
777 | } |
778 | |
779 | /* |
780 | * Disconnect from SPI manager |
781 | */ |
782 | if (SPI_finish() != SPI_OK_FINISH) |
783 | elog(ERROR, "SPI_finish failed" ); |
784 | |
785 | if (buf.len == 0) |
786 | return NULL; |
787 | |
788 | return buf.data; |
789 | } |
790 | |
791 | /* ---------- |
792 | * get_triggerdef - Get the definition of a trigger |
793 | * ---------- |
794 | */ |
795 | Datum |
796 | pg_get_triggerdef(PG_FUNCTION_ARGS) |
797 | { |
798 | Oid trigid = PG_GETARG_OID(0); |
799 | char *res; |
800 | |
801 | res = pg_get_triggerdef_worker(trigid, false); |
802 | |
803 | if (res == NULL) |
804 | PG_RETURN_NULL(); |
805 | |
806 | PG_RETURN_TEXT_P(string_to_text(res)); |
807 | } |
808 | |
809 | Datum |
810 | pg_get_triggerdef_ext(PG_FUNCTION_ARGS) |
811 | { |
812 | Oid trigid = PG_GETARG_OID(0); |
813 | bool pretty = PG_GETARG_BOOL(1); |
814 | char *res; |
815 | |
816 | res = pg_get_triggerdef_worker(trigid, pretty); |
817 | |
818 | if (res == NULL) |
819 | PG_RETURN_NULL(); |
820 | |
821 | PG_RETURN_TEXT_P(string_to_text(res)); |
822 | } |
823 | |
824 | static char * |
825 | pg_get_triggerdef_worker(Oid trigid, bool pretty) |
826 | { |
827 | HeapTuple ht_trig; |
828 | Form_pg_trigger trigrec; |
829 | StringInfoData buf; |
830 | Relation tgrel; |
831 | ScanKeyData skey[1]; |
832 | SysScanDesc tgscan; |
833 | int findx = 0; |
834 | char *tgname; |
835 | char *tgoldtable; |
836 | char *tgnewtable; |
837 | Oid argtypes[1]; /* dummy */ |
838 | Datum value; |
839 | bool isnull; |
840 | |
841 | /* |
842 | * Fetch the pg_trigger tuple by the Oid of the trigger |
843 | */ |
844 | tgrel = table_open(TriggerRelationId, AccessShareLock); |
845 | |
846 | ScanKeyInit(&skey[0], |
847 | Anum_pg_trigger_oid, |
848 | BTEqualStrategyNumber, F_OIDEQ, |
849 | ObjectIdGetDatum(trigid)); |
850 | |
851 | tgscan = systable_beginscan(tgrel, TriggerOidIndexId, true, |
852 | NULL, 1, skey); |
853 | |
854 | ht_trig = systable_getnext(tgscan); |
855 | |
856 | if (!HeapTupleIsValid(ht_trig)) |
857 | { |
858 | systable_endscan(tgscan); |
859 | table_close(tgrel, AccessShareLock); |
860 | return NULL; |
861 | } |
862 | |
863 | trigrec = (Form_pg_trigger) GETSTRUCT(ht_trig); |
864 | |
865 | /* |
866 | * Start the trigger definition. Note that the trigger's name should never |
867 | * be schema-qualified, but the trigger rel's name may be. |
868 | */ |
869 | initStringInfo(&buf); |
870 | |
871 | tgname = NameStr(trigrec->tgname); |
872 | appendStringInfo(&buf, "CREATE %sTRIGGER %s " , |
873 | OidIsValid(trigrec->tgconstraint) ? "CONSTRAINT " : "" , |
874 | quote_identifier(tgname)); |
875 | |
876 | if (TRIGGER_FOR_BEFORE(trigrec->tgtype)) |
877 | appendStringInfoString(&buf, "BEFORE" ); |
878 | else if (TRIGGER_FOR_AFTER(trigrec->tgtype)) |
879 | appendStringInfoString(&buf, "AFTER" ); |
880 | else if (TRIGGER_FOR_INSTEAD(trigrec->tgtype)) |
881 | appendStringInfoString(&buf, "INSTEAD OF" ); |
882 | else |
883 | elog(ERROR, "unexpected tgtype value: %d" , trigrec->tgtype); |
884 | |
885 | if (TRIGGER_FOR_INSERT(trigrec->tgtype)) |
886 | { |
887 | appendStringInfoString(&buf, " INSERT" ); |
888 | findx++; |
889 | } |
890 | if (TRIGGER_FOR_DELETE(trigrec->tgtype)) |
891 | { |
892 | if (findx > 0) |
893 | appendStringInfoString(&buf, " OR DELETE" ); |
894 | else |
895 | appendStringInfoString(&buf, " DELETE" ); |
896 | findx++; |
897 | } |
898 | if (TRIGGER_FOR_UPDATE(trigrec->tgtype)) |
899 | { |
900 | if (findx > 0) |
901 | appendStringInfoString(&buf, " OR UPDATE" ); |
902 | else |
903 | appendStringInfoString(&buf, " UPDATE" ); |
904 | findx++; |
905 | /* tgattr is first var-width field, so OK to access directly */ |
906 | if (trigrec->tgattr.dim1 > 0) |
907 | { |
908 | int i; |
909 | |
910 | appendStringInfoString(&buf, " OF " ); |
911 | for (i = 0; i < trigrec->tgattr.dim1; i++) |
912 | { |
913 | char *attname; |
914 | |
915 | if (i > 0) |
916 | appendStringInfoString(&buf, ", " ); |
917 | attname = get_attname(trigrec->tgrelid, |
918 | trigrec->tgattr.values[i], false); |
919 | appendStringInfoString(&buf, quote_identifier(attname)); |
920 | } |
921 | } |
922 | } |
923 | if (TRIGGER_FOR_TRUNCATE(trigrec->tgtype)) |
924 | { |
925 | if (findx > 0) |
926 | appendStringInfoString(&buf, " OR TRUNCATE" ); |
927 | else |
928 | appendStringInfoString(&buf, " TRUNCATE" ); |
929 | findx++; |
930 | } |
931 | |
932 | /* |
933 | * In non-pretty mode, always schema-qualify the target table name for |
934 | * safety. In pretty mode, schema-qualify only if not visible. |
935 | */ |
936 | appendStringInfo(&buf, " ON %s " , |
937 | pretty ? |
938 | generate_relation_name(trigrec->tgrelid, NIL) : |
939 | generate_qualified_relation_name(trigrec->tgrelid)); |
940 | |
941 | if (OidIsValid(trigrec->tgconstraint)) |
942 | { |
943 | if (OidIsValid(trigrec->tgconstrrelid)) |
944 | appendStringInfo(&buf, "FROM %s " , |
945 | generate_relation_name(trigrec->tgconstrrelid, NIL)); |
946 | if (!trigrec->tgdeferrable) |
947 | appendStringInfoString(&buf, "NOT " ); |
948 | appendStringInfoString(&buf, "DEFERRABLE INITIALLY " ); |
949 | if (trigrec->tginitdeferred) |
950 | appendStringInfoString(&buf, "DEFERRED " ); |
951 | else |
952 | appendStringInfoString(&buf, "IMMEDIATE " ); |
953 | } |
954 | |
955 | value = fastgetattr(ht_trig, Anum_pg_trigger_tgoldtable, |
956 | tgrel->rd_att, &isnull); |
957 | if (!isnull) |
958 | tgoldtable = NameStr(*DatumGetName(value)); |
959 | else |
960 | tgoldtable = NULL; |
961 | value = fastgetattr(ht_trig, Anum_pg_trigger_tgnewtable, |
962 | tgrel->rd_att, &isnull); |
963 | if (!isnull) |
964 | tgnewtable = NameStr(*DatumGetName(value)); |
965 | else |
966 | tgnewtable = NULL; |
967 | if (tgoldtable != NULL || tgnewtable != NULL) |
968 | { |
969 | appendStringInfoString(&buf, "REFERENCING " ); |
970 | if (tgoldtable != NULL) |
971 | appendStringInfo(&buf, "OLD TABLE AS %s " , |
972 | quote_identifier(tgoldtable)); |
973 | if (tgnewtable != NULL) |
974 | appendStringInfo(&buf, "NEW TABLE AS %s " , |
975 | quote_identifier(tgnewtable)); |
976 | } |
977 | |
978 | if (TRIGGER_FOR_ROW(trigrec->tgtype)) |
979 | appendStringInfoString(&buf, "FOR EACH ROW " ); |
980 | else |
981 | appendStringInfoString(&buf, "FOR EACH STATEMENT " ); |
982 | |
983 | /* If the trigger has a WHEN qualification, add that */ |
984 | value = fastgetattr(ht_trig, Anum_pg_trigger_tgqual, |
985 | tgrel->rd_att, &isnull); |
986 | if (!isnull) |
987 | { |
988 | Node *qual; |
989 | char relkind; |
990 | deparse_context context; |
991 | deparse_namespace dpns; |
992 | RangeTblEntry *oldrte; |
993 | RangeTblEntry *newrte; |
994 | |
995 | appendStringInfoString(&buf, "WHEN (" ); |
996 | |
997 | qual = stringToNode(TextDatumGetCString(value)); |
998 | |
999 | relkind = get_rel_relkind(trigrec->tgrelid); |
1000 | |
1001 | /* Build minimal OLD and NEW RTEs for the rel */ |
1002 | oldrte = makeNode(RangeTblEntry); |
1003 | oldrte->rtekind = RTE_RELATION; |
1004 | oldrte->relid = trigrec->tgrelid; |
1005 | oldrte->relkind = relkind; |
1006 | oldrte->rellockmode = AccessShareLock; |
1007 | oldrte->alias = makeAlias("old" , NIL); |
1008 | oldrte->eref = oldrte->alias; |
1009 | oldrte->lateral = false; |
1010 | oldrte->inh = false; |
1011 | oldrte->inFromCl = true; |
1012 | |
1013 | newrte = makeNode(RangeTblEntry); |
1014 | newrte->rtekind = RTE_RELATION; |
1015 | newrte->relid = trigrec->tgrelid; |
1016 | newrte->relkind = relkind; |
1017 | newrte->rellockmode = AccessShareLock; |
1018 | newrte->alias = makeAlias("new" , NIL); |
1019 | newrte->eref = newrte->alias; |
1020 | newrte->lateral = false; |
1021 | newrte->inh = false; |
1022 | newrte->inFromCl = true; |
1023 | |
1024 | /* Build two-element rtable */ |
1025 | memset(&dpns, 0, sizeof(dpns)); |
1026 | dpns.rtable = list_make2(oldrte, newrte); |
1027 | dpns.ctes = NIL; |
1028 | set_rtable_names(&dpns, NIL, NULL); |
1029 | set_simple_column_names(&dpns); |
1030 | |
1031 | /* Set up context with one-deep namespace stack */ |
1032 | context.buf = &buf; |
1033 | context.namespaces = list_make1(&dpns); |
1034 | context.windowClause = NIL; |
1035 | context.windowTList = NIL; |
1036 | context.varprefix = true; |
1037 | context.prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
1038 | context.wrapColumn = WRAP_COLUMN_DEFAULT; |
1039 | context.indentLevel = PRETTYINDENT_STD; |
1040 | context.special_exprkind = EXPR_KIND_NONE; |
1041 | |
1042 | get_rule_expr(qual, &context, false); |
1043 | |
1044 | appendStringInfoString(&buf, ") " ); |
1045 | } |
1046 | |
1047 | appendStringInfo(&buf, "EXECUTE FUNCTION %s(" , |
1048 | generate_function_name(trigrec->tgfoid, 0, |
1049 | NIL, argtypes, |
1050 | false, NULL, EXPR_KIND_NONE)); |
1051 | |
1052 | if (trigrec->tgnargs > 0) |
1053 | { |
1054 | char *p; |
1055 | int i; |
1056 | |
1057 | value = fastgetattr(ht_trig, Anum_pg_trigger_tgargs, |
1058 | tgrel->rd_att, &isnull); |
1059 | if (isnull) |
1060 | elog(ERROR, "tgargs is null for trigger %u" , trigid); |
1061 | p = (char *) VARDATA_ANY(DatumGetByteaPP(value)); |
1062 | for (i = 0; i < trigrec->tgnargs; i++) |
1063 | { |
1064 | if (i > 0) |
1065 | appendStringInfoString(&buf, ", " ); |
1066 | simple_quote_literal(&buf, p); |
1067 | /* advance p to next string embedded in tgargs */ |
1068 | while (*p) |
1069 | p++; |
1070 | p++; |
1071 | } |
1072 | } |
1073 | |
1074 | /* We deliberately do not put semi-colon at end */ |
1075 | appendStringInfoChar(&buf, ')'); |
1076 | |
1077 | /* Clean up */ |
1078 | systable_endscan(tgscan); |
1079 | |
1080 | table_close(tgrel, AccessShareLock); |
1081 | |
1082 | return buf.data; |
1083 | } |
1084 | |
1085 | /* ---------- |
1086 | * get_indexdef - Get the definition of an index |
1087 | * |
1088 | * In the extended version, there is a colno argument as well as pretty bool. |
1089 | * if colno == 0, we want a complete index definition. |
1090 | * if colno > 0, we only want the Nth index key's variable or expression. |
1091 | * |
1092 | * Note that the SQL-function versions of this omit any info about the |
1093 | * index tablespace; this is intentional because pg_dump wants it that way. |
1094 | * However pg_get_indexdef_string() includes the index tablespace. |
1095 | * ---------- |
1096 | */ |
1097 | Datum |
1098 | pg_get_indexdef(PG_FUNCTION_ARGS) |
1099 | { |
1100 | Oid indexrelid = PG_GETARG_OID(0); |
1101 | int prettyFlags; |
1102 | char *res; |
1103 | |
1104 | prettyFlags = PRETTYFLAG_INDENT; |
1105 | |
1106 | res = pg_get_indexdef_worker(indexrelid, 0, NULL, |
1107 | false, false, |
1108 | false, false, |
1109 | prettyFlags, true); |
1110 | |
1111 | if (res == NULL) |
1112 | PG_RETURN_NULL(); |
1113 | |
1114 | PG_RETURN_TEXT_P(string_to_text(res)); |
1115 | } |
1116 | |
1117 | Datum |
1118 | pg_get_indexdef_ext(PG_FUNCTION_ARGS) |
1119 | { |
1120 | Oid indexrelid = PG_GETARG_OID(0); |
1121 | int32 colno = PG_GETARG_INT32(1); |
1122 | bool pretty = PG_GETARG_BOOL(2); |
1123 | int prettyFlags; |
1124 | char *res; |
1125 | |
1126 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
1127 | |
1128 | res = pg_get_indexdef_worker(indexrelid, colno, NULL, |
1129 | colno != 0, false, |
1130 | false, false, |
1131 | prettyFlags, true); |
1132 | |
1133 | if (res == NULL) |
1134 | PG_RETURN_NULL(); |
1135 | |
1136 | PG_RETURN_TEXT_P(string_to_text(res)); |
1137 | } |
1138 | |
1139 | /* |
1140 | * Internal version for use by ALTER TABLE. |
1141 | * Includes a tablespace clause in the result. |
1142 | * Returns a palloc'd C string; no pretty-printing. |
1143 | */ |
1144 | char * |
1145 | pg_get_indexdef_string(Oid indexrelid) |
1146 | { |
1147 | return pg_get_indexdef_worker(indexrelid, 0, NULL, |
1148 | false, false, |
1149 | true, true, |
1150 | 0, false); |
1151 | } |
1152 | |
1153 | /* Internal version that just reports the key-column definitions */ |
1154 | char * |
1155 | pg_get_indexdef_columns(Oid indexrelid, bool pretty) |
1156 | { |
1157 | int prettyFlags; |
1158 | |
1159 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
1160 | |
1161 | return pg_get_indexdef_worker(indexrelid, 0, NULL, |
1162 | true, true, |
1163 | false, false, |
1164 | prettyFlags, false); |
1165 | } |
1166 | |
1167 | /* |
1168 | * Internal workhorse to decompile an index definition. |
1169 | * |
1170 | * This is now used for exclusion constraints as well: if excludeOps is not |
1171 | * NULL then it points to an array of exclusion operator OIDs. |
1172 | */ |
1173 | static char * |
1174 | pg_get_indexdef_worker(Oid indexrelid, int colno, |
1175 | const Oid *excludeOps, |
1176 | bool attrsOnly, bool keysOnly, |
1177 | bool showTblSpc, bool inherits, |
1178 | int prettyFlags, bool missing_ok) |
1179 | { |
1180 | /* might want a separate isConstraint parameter later */ |
1181 | bool isConstraint = (excludeOps != NULL); |
1182 | HeapTuple ht_idx; |
1183 | HeapTuple ht_idxrel; |
1184 | HeapTuple ht_am; |
1185 | Form_pg_index idxrec; |
1186 | Form_pg_class idxrelrec; |
1187 | Form_pg_am amrec; |
1188 | IndexAmRoutine *amroutine; |
1189 | List *indexprs; |
1190 | ListCell *indexpr_item; |
1191 | List *context; |
1192 | Oid indrelid; |
1193 | int keyno; |
1194 | Datum indcollDatum; |
1195 | Datum indclassDatum; |
1196 | Datum indoptionDatum; |
1197 | bool isnull; |
1198 | oidvector *indcollation; |
1199 | oidvector *indclass; |
1200 | int2vector *indoption; |
1201 | StringInfoData buf; |
1202 | char *str; |
1203 | char *sep; |
1204 | |
1205 | /* |
1206 | * Fetch the pg_index tuple by the Oid of the index |
1207 | */ |
1208 | ht_idx = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexrelid)); |
1209 | if (!HeapTupleIsValid(ht_idx)) |
1210 | { |
1211 | if (missing_ok) |
1212 | return NULL; |
1213 | elog(ERROR, "cache lookup failed for index %u" , indexrelid); |
1214 | } |
1215 | idxrec = (Form_pg_index) GETSTRUCT(ht_idx); |
1216 | |
1217 | indrelid = idxrec->indrelid; |
1218 | Assert(indexrelid == idxrec->indexrelid); |
1219 | |
1220 | /* Must get indcollation, indclass, and indoption the hard way */ |
1221 | indcollDatum = SysCacheGetAttr(INDEXRELID, ht_idx, |
1222 | Anum_pg_index_indcollation, &isnull); |
1223 | Assert(!isnull); |
1224 | indcollation = (oidvector *) DatumGetPointer(indcollDatum); |
1225 | |
1226 | indclassDatum = SysCacheGetAttr(INDEXRELID, ht_idx, |
1227 | Anum_pg_index_indclass, &isnull); |
1228 | Assert(!isnull); |
1229 | indclass = (oidvector *) DatumGetPointer(indclassDatum); |
1230 | |
1231 | indoptionDatum = SysCacheGetAttr(INDEXRELID, ht_idx, |
1232 | Anum_pg_index_indoption, &isnull); |
1233 | Assert(!isnull); |
1234 | indoption = (int2vector *) DatumGetPointer(indoptionDatum); |
1235 | |
1236 | /* |
1237 | * Fetch the pg_class tuple of the index relation |
1238 | */ |
1239 | ht_idxrel = SearchSysCache1(RELOID, ObjectIdGetDatum(indexrelid)); |
1240 | if (!HeapTupleIsValid(ht_idxrel)) |
1241 | elog(ERROR, "cache lookup failed for relation %u" , indexrelid); |
1242 | idxrelrec = (Form_pg_class) GETSTRUCT(ht_idxrel); |
1243 | |
1244 | /* |
1245 | * Fetch the pg_am tuple of the index' access method |
1246 | */ |
1247 | ht_am = SearchSysCache1(AMOID, ObjectIdGetDatum(idxrelrec->relam)); |
1248 | if (!HeapTupleIsValid(ht_am)) |
1249 | elog(ERROR, "cache lookup failed for access method %u" , |
1250 | idxrelrec->relam); |
1251 | amrec = (Form_pg_am) GETSTRUCT(ht_am); |
1252 | |
1253 | /* Fetch the index AM's API struct */ |
1254 | amroutine = GetIndexAmRoutine(amrec->amhandler); |
1255 | |
1256 | /* |
1257 | * Get the index expressions, if any. (NOTE: we do not use the relcache |
1258 | * versions of the expressions and predicate, because we want to display |
1259 | * non-const-folded expressions.) |
1260 | */ |
1261 | if (!heap_attisnull(ht_idx, Anum_pg_index_indexprs, NULL)) |
1262 | { |
1263 | Datum exprsDatum; |
1264 | bool isnull; |
1265 | char *; |
1266 | |
1267 | exprsDatum = SysCacheGetAttr(INDEXRELID, ht_idx, |
1268 | Anum_pg_index_indexprs, &isnull); |
1269 | Assert(!isnull); |
1270 | exprsString = TextDatumGetCString(exprsDatum); |
1271 | indexprs = (List *) stringToNode(exprsString); |
1272 | pfree(exprsString); |
1273 | } |
1274 | else |
1275 | indexprs = NIL; |
1276 | |
1277 | indexpr_item = list_head(indexprs); |
1278 | |
1279 | context = deparse_context_for(get_relation_name(indrelid), indrelid); |
1280 | |
1281 | /* |
1282 | * Start the index definition. Note that the index's name should never be |
1283 | * schema-qualified, but the indexed rel's name may be. |
1284 | */ |
1285 | initStringInfo(&buf); |
1286 | |
1287 | if (!attrsOnly) |
1288 | { |
1289 | if (!isConstraint) |
1290 | appendStringInfo(&buf, "CREATE %sINDEX %s ON %s%s USING %s (" , |
1291 | idxrec->indisunique ? "UNIQUE " : "" , |
1292 | quote_identifier(NameStr(idxrelrec->relname)), |
1293 | idxrelrec->relkind == RELKIND_PARTITIONED_INDEX |
1294 | && !inherits ? "ONLY " : "" , |
1295 | (prettyFlags & PRETTYFLAG_SCHEMA) ? |
1296 | generate_relation_name(indrelid, NIL) : |
1297 | generate_qualified_relation_name(indrelid), |
1298 | quote_identifier(NameStr(amrec->amname))); |
1299 | else /* currently, must be EXCLUDE constraint */ |
1300 | appendStringInfo(&buf, "EXCLUDE USING %s (" , |
1301 | quote_identifier(NameStr(amrec->amname))); |
1302 | } |
1303 | |
1304 | /* |
1305 | * Report the indexed attributes |
1306 | */ |
1307 | sep = "" ; |
1308 | for (keyno = 0; keyno < idxrec->indnatts; keyno++) |
1309 | { |
1310 | AttrNumber attnum = idxrec->indkey.values[keyno]; |
1311 | Oid keycoltype; |
1312 | Oid keycolcollation; |
1313 | |
1314 | /* |
1315 | * Ignore non-key attributes if told to. |
1316 | */ |
1317 | if (keysOnly && keyno >= idxrec->indnkeyatts) |
1318 | break; |
1319 | |
1320 | /* Otherwise, print INCLUDE to divide key and non-key attrs. */ |
1321 | if (!colno && keyno == idxrec->indnkeyatts) |
1322 | { |
1323 | appendStringInfoString(&buf, ") INCLUDE (" ); |
1324 | sep = "" ; |
1325 | } |
1326 | |
1327 | if (!colno) |
1328 | appendStringInfoString(&buf, sep); |
1329 | sep = ", " ; |
1330 | |
1331 | if (attnum != 0) |
1332 | { |
1333 | /* Simple index column */ |
1334 | char *attname; |
1335 | int32 keycoltypmod; |
1336 | |
1337 | attname = get_attname(indrelid, attnum, false); |
1338 | if (!colno || colno == keyno + 1) |
1339 | appendStringInfoString(&buf, quote_identifier(attname)); |
1340 | get_atttypetypmodcoll(indrelid, attnum, |
1341 | &keycoltype, &keycoltypmod, |
1342 | &keycolcollation); |
1343 | } |
1344 | else |
1345 | { |
1346 | /* expressional index */ |
1347 | Node *indexkey; |
1348 | |
1349 | if (indexpr_item == NULL) |
1350 | elog(ERROR, "too few entries in indexprs list" ); |
1351 | indexkey = (Node *) lfirst(indexpr_item); |
1352 | indexpr_item = lnext(indexpr_item); |
1353 | /* Deparse */ |
1354 | str = deparse_expression_pretty(indexkey, context, false, false, |
1355 | prettyFlags, 0); |
1356 | if (!colno || colno == keyno + 1) |
1357 | { |
1358 | /* Need parens if it's not a bare function call */ |
1359 | if (looks_like_function(indexkey)) |
1360 | appendStringInfoString(&buf, str); |
1361 | else |
1362 | appendStringInfo(&buf, "(%s)" , str); |
1363 | } |
1364 | keycoltype = exprType(indexkey); |
1365 | keycolcollation = exprCollation(indexkey); |
1366 | } |
1367 | |
1368 | /* Print additional decoration for (selected) key columns */ |
1369 | if (!attrsOnly && keyno < idxrec->indnkeyatts && |
1370 | (!colno || colno == keyno + 1)) |
1371 | { |
1372 | int16 opt = indoption->values[keyno]; |
1373 | Oid indcoll = indcollation->values[keyno]; |
1374 | |
1375 | /* Add collation, if not default for column */ |
1376 | if (OidIsValid(indcoll) && indcoll != keycolcollation) |
1377 | appendStringInfo(&buf, " COLLATE %s" , |
1378 | generate_collation_name((indcoll))); |
1379 | |
1380 | /* Add the operator class name, if not default */ |
1381 | get_opclass_name(indclass->values[keyno], keycoltype, &buf); |
1382 | |
1383 | /* Add options if relevant */ |
1384 | if (amroutine->amcanorder) |
1385 | { |
1386 | /* if it supports sort ordering, report DESC and NULLS opts */ |
1387 | if (opt & INDOPTION_DESC) |
1388 | { |
1389 | appendStringInfoString(&buf, " DESC" ); |
1390 | /* NULLS FIRST is the default in this case */ |
1391 | if (!(opt & INDOPTION_NULLS_FIRST)) |
1392 | appendStringInfoString(&buf, " NULLS LAST" ); |
1393 | } |
1394 | else |
1395 | { |
1396 | if (opt & INDOPTION_NULLS_FIRST) |
1397 | appendStringInfoString(&buf, " NULLS FIRST" ); |
1398 | } |
1399 | } |
1400 | |
1401 | /* Add the exclusion operator if relevant */ |
1402 | if (excludeOps != NULL) |
1403 | appendStringInfo(&buf, " WITH %s" , |
1404 | generate_operator_name(excludeOps[keyno], |
1405 | keycoltype, |
1406 | keycoltype)); |
1407 | } |
1408 | } |
1409 | |
1410 | if (!attrsOnly) |
1411 | { |
1412 | appendStringInfoChar(&buf, ')'); |
1413 | |
1414 | /* |
1415 | * If it has options, append "WITH (options)" |
1416 | */ |
1417 | str = flatten_reloptions(indexrelid); |
1418 | if (str) |
1419 | { |
1420 | appendStringInfo(&buf, " WITH (%s)" , str); |
1421 | pfree(str); |
1422 | } |
1423 | |
1424 | /* |
1425 | * Print tablespace, but only if requested |
1426 | */ |
1427 | if (showTblSpc) |
1428 | { |
1429 | Oid tblspc; |
1430 | |
1431 | tblspc = get_rel_tablespace(indexrelid); |
1432 | if (OidIsValid(tblspc)) |
1433 | { |
1434 | if (isConstraint) |
1435 | appendStringInfoString(&buf, " USING INDEX" ); |
1436 | appendStringInfo(&buf, " TABLESPACE %s" , |
1437 | quote_identifier(get_tablespace_name(tblspc))); |
1438 | } |
1439 | } |
1440 | |
1441 | /* |
1442 | * If it's a partial index, decompile and append the predicate |
1443 | */ |
1444 | if (!heap_attisnull(ht_idx, Anum_pg_index_indpred, NULL)) |
1445 | { |
1446 | Node *node; |
1447 | Datum predDatum; |
1448 | bool isnull; |
1449 | char *predString; |
1450 | |
1451 | /* Convert text string to node tree */ |
1452 | predDatum = SysCacheGetAttr(INDEXRELID, ht_idx, |
1453 | Anum_pg_index_indpred, &isnull); |
1454 | Assert(!isnull); |
1455 | predString = TextDatumGetCString(predDatum); |
1456 | node = (Node *) stringToNode(predString); |
1457 | pfree(predString); |
1458 | |
1459 | /* Deparse */ |
1460 | str = deparse_expression_pretty(node, context, false, false, |
1461 | prettyFlags, 0); |
1462 | if (isConstraint) |
1463 | appendStringInfo(&buf, " WHERE (%s)" , str); |
1464 | else |
1465 | appendStringInfo(&buf, " WHERE %s" , str); |
1466 | } |
1467 | } |
1468 | |
1469 | /* Clean up */ |
1470 | ReleaseSysCache(ht_idx); |
1471 | ReleaseSysCache(ht_idxrel); |
1472 | ReleaseSysCache(ht_am); |
1473 | |
1474 | return buf.data; |
1475 | } |
1476 | |
1477 | /* |
1478 | * pg_get_statisticsobjdef |
1479 | * Get the definition of an extended statistics object |
1480 | */ |
1481 | Datum |
1482 | pg_get_statisticsobjdef(PG_FUNCTION_ARGS) |
1483 | { |
1484 | Oid statextid = PG_GETARG_OID(0); |
1485 | char *res; |
1486 | |
1487 | res = pg_get_statisticsobj_worker(statextid, true); |
1488 | |
1489 | if (res == NULL) |
1490 | PG_RETURN_NULL(); |
1491 | |
1492 | PG_RETURN_TEXT_P(string_to_text(res)); |
1493 | } |
1494 | |
1495 | /* |
1496 | * Internal workhorse to decompile an extended statistics object. |
1497 | */ |
1498 | static char * |
1499 | pg_get_statisticsobj_worker(Oid statextid, bool missing_ok) |
1500 | { |
1501 | Form_pg_statistic_ext statextrec; |
1502 | HeapTuple statexttup; |
1503 | StringInfoData buf; |
1504 | int colno; |
1505 | char *nsp; |
1506 | ArrayType *arr; |
1507 | char *enabled; |
1508 | Datum datum; |
1509 | bool isnull; |
1510 | bool ndistinct_enabled; |
1511 | bool dependencies_enabled; |
1512 | bool mcv_enabled; |
1513 | int i; |
1514 | |
1515 | statexttup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statextid)); |
1516 | |
1517 | if (!HeapTupleIsValid(statexttup)) |
1518 | { |
1519 | if (missing_ok) |
1520 | return NULL; |
1521 | elog(ERROR, "cache lookup failed for statistics object %u" , statextid); |
1522 | } |
1523 | |
1524 | statextrec = (Form_pg_statistic_ext) GETSTRUCT(statexttup); |
1525 | |
1526 | initStringInfo(&buf); |
1527 | |
1528 | nsp = get_namespace_name(statextrec->stxnamespace); |
1529 | appendStringInfo(&buf, "CREATE STATISTICS %s" , |
1530 | quote_qualified_identifier(nsp, |
1531 | NameStr(statextrec->stxname))); |
1532 | |
1533 | /* |
1534 | * Decode the stxkind column so that we know which stats types to print. |
1535 | */ |
1536 | datum = SysCacheGetAttr(STATEXTOID, statexttup, |
1537 | Anum_pg_statistic_ext_stxkind, &isnull); |
1538 | Assert(!isnull); |
1539 | arr = DatumGetArrayTypeP(datum); |
1540 | if (ARR_NDIM(arr) != 1 || |
1541 | ARR_HASNULL(arr) || |
1542 | ARR_ELEMTYPE(arr) != CHAROID) |
1543 | elog(ERROR, "stxkind is not a 1-D char array" ); |
1544 | enabled = (char *) ARR_DATA_PTR(arr); |
1545 | |
1546 | ndistinct_enabled = false; |
1547 | dependencies_enabled = false; |
1548 | mcv_enabled = false; |
1549 | |
1550 | for (i = 0; i < ARR_DIMS(arr)[0]; i++) |
1551 | { |
1552 | if (enabled[i] == STATS_EXT_NDISTINCT) |
1553 | ndistinct_enabled = true; |
1554 | if (enabled[i] == STATS_EXT_DEPENDENCIES) |
1555 | dependencies_enabled = true; |
1556 | if (enabled[i] == STATS_EXT_MCV) |
1557 | mcv_enabled = true; |
1558 | } |
1559 | |
1560 | /* |
1561 | * If any option is disabled, then we'll need to append the types clause |
1562 | * to show which options are enabled. We omit the types clause on purpose |
1563 | * when all options are enabled, so a pg_dump/pg_restore will create all |
1564 | * statistics types on a newer postgres version, if the statistics had all |
1565 | * options enabled on the original version. |
1566 | */ |
1567 | if (!ndistinct_enabled || !dependencies_enabled || !mcv_enabled) |
1568 | { |
1569 | bool gotone = false; |
1570 | |
1571 | appendStringInfoString(&buf, " (" ); |
1572 | |
1573 | if (ndistinct_enabled) |
1574 | { |
1575 | appendStringInfoString(&buf, "ndistinct" ); |
1576 | gotone = true; |
1577 | } |
1578 | |
1579 | if (dependencies_enabled) |
1580 | { |
1581 | appendStringInfo(&buf, "%sdependencies" , gotone ? ", " : "" ); |
1582 | gotone = true; |
1583 | } |
1584 | |
1585 | if (mcv_enabled) |
1586 | appendStringInfo(&buf, "%smcv" , gotone ? ", " : "" ); |
1587 | |
1588 | appendStringInfoChar(&buf, ')'); |
1589 | } |
1590 | |
1591 | appendStringInfoString(&buf, " ON " ); |
1592 | |
1593 | for (colno = 0; colno < statextrec->stxkeys.dim1; colno++) |
1594 | { |
1595 | AttrNumber attnum = statextrec->stxkeys.values[colno]; |
1596 | char *attname; |
1597 | |
1598 | if (colno > 0) |
1599 | appendStringInfoString(&buf, ", " ); |
1600 | |
1601 | attname = get_attname(statextrec->stxrelid, attnum, false); |
1602 | |
1603 | appendStringInfoString(&buf, quote_identifier(attname)); |
1604 | } |
1605 | |
1606 | appendStringInfo(&buf, " FROM %s" , |
1607 | generate_relation_name(statextrec->stxrelid, NIL)); |
1608 | |
1609 | ReleaseSysCache(statexttup); |
1610 | |
1611 | return buf.data; |
1612 | } |
1613 | |
1614 | /* |
1615 | * pg_get_partkeydef |
1616 | * |
1617 | * Returns the partition key specification, ie, the following: |
1618 | * |
1619 | * PARTITION BY { RANGE | LIST | HASH } (column opt_collation opt_opclass [, ...]) |
1620 | */ |
1621 | Datum |
1622 | pg_get_partkeydef(PG_FUNCTION_ARGS) |
1623 | { |
1624 | Oid relid = PG_GETARG_OID(0); |
1625 | char *res; |
1626 | |
1627 | res = pg_get_partkeydef_worker(relid, PRETTYFLAG_INDENT, false, true); |
1628 | |
1629 | if (res == NULL) |
1630 | PG_RETURN_NULL(); |
1631 | |
1632 | PG_RETURN_TEXT_P(string_to_text(res)); |
1633 | } |
1634 | |
1635 | /* Internal version that just reports the column definitions */ |
1636 | char * |
1637 | pg_get_partkeydef_columns(Oid relid, bool pretty) |
1638 | { |
1639 | int prettyFlags; |
1640 | |
1641 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
1642 | |
1643 | return pg_get_partkeydef_worker(relid, prettyFlags, true, false); |
1644 | } |
1645 | |
1646 | /* |
1647 | * Internal workhorse to decompile a partition key definition. |
1648 | */ |
1649 | static char * |
1650 | pg_get_partkeydef_worker(Oid relid, int prettyFlags, |
1651 | bool attrsOnly, bool missing_ok) |
1652 | { |
1653 | Form_pg_partitioned_table form; |
1654 | HeapTuple tuple; |
1655 | oidvector *partclass; |
1656 | oidvector *partcollation; |
1657 | List *partexprs; |
1658 | ListCell *partexpr_item; |
1659 | List *context; |
1660 | Datum datum; |
1661 | bool isnull; |
1662 | StringInfoData buf; |
1663 | int keyno; |
1664 | char *str; |
1665 | char *sep; |
1666 | |
1667 | tuple = SearchSysCache1(PARTRELID, ObjectIdGetDatum(relid)); |
1668 | if (!HeapTupleIsValid(tuple)) |
1669 | { |
1670 | if (missing_ok) |
1671 | return NULL; |
1672 | elog(ERROR, "cache lookup failed for partition key of %u" , relid); |
1673 | } |
1674 | |
1675 | form = (Form_pg_partitioned_table) GETSTRUCT(tuple); |
1676 | |
1677 | Assert(form->partrelid == relid); |
1678 | |
1679 | /* Must get partclass and partcollation the hard way */ |
1680 | datum = SysCacheGetAttr(PARTRELID, tuple, |
1681 | Anum_pg_partitioned_table_partclass, &isnull); |
1682 | Assert(!isnull); |
1683 | partclass = (oidvector *) DatumGetPointer(datum); |
1684 | |
1685 | datum = SysCacheGetAttr(PARTRELID, tuple, |
1686 | Anum_pg_partitioned_table_partcollation, &isnull); |
1687 | Assert(!isnull); |
1688 | partcollation = (oidvector *) DatumGetPointer(datum); |
1689 | |
1690 | |
1691 | /* |
1692 | * Get the expressions, if any. (NOTE: we do not use the relcache |
1693 | * versions of the expressions, because we want to display |
1694 | * non-const-folded expressions.) |
1695 | */ |
1696 | if (!heap_attisnull(tuple, Anum_pg_partitioned_table_partexprs, NULL)) |
1697 | { |
1698 | Datum exprsDatum; |
1699 | bool isnull; |
1700 | char *; |
1701 | |
1702 | exprsDatum = SysCacheGetAttr(PARTRELID, tuple, |
1703 | Anum_pg_partitioned_table_partexprs, &isnull); |
1704 | Assert(!isnull); |
1705 | exprsString = TextDatumGetCString(exprsDatum); |
1706 | partexprs = (List *) stringToNode(exprsString); |
1707 | |
1708 | if (!IsA(partexprs, List)) |
1709 | elog(ERROR, "unexpected node type found in partexprs: %d" , |
1710 | (int) nodeTag(partexprs)); |
1711 | |
1712 | pfree(exprsString); |
1713 | } |
1714 | else |
1715 | partexprs = NIL; |
1716 | |
1717 | partexpr_item = list_head(partexprs); |
1718 | context = deparse_context_for(get_relation_name(relid), relid); |
1719 | |
1720 | initStringInfo(&buf); |
1721 | |
1722 | switch (form->partstrat) |
1723 | { |
1724 | case PARTITION_STRATEGY_HASH: |
1725 | if (!attrsOnly) |
1726 | appendStringInfo(&buf, "HASH" ); |
1727 | break; |
1728 | case PARTITION_STRATEGY_LIST: |
1729 | if (!attrsOnly) |
1730 | appendStringInfoString(&buf, "LIST" ); |
1731 | break; |
1732 | case PARTITION_STRATEGY_RANGE: |
1733 | if (!attrsOnly) |
1734 | appendStringInfoString(&buf, "RANGE" ); |
1735 | break; |
1736 | default: |
1737 | elog(ERROR, "unexpected partition strategy: %d" , |
1738 | (int) form->partstrat); |
1739 | } |
1740 | |
1741 | if (!attrsOnly) |
1742 | appendStringInfoString(&buf, " (" ); |
1743 | sep = "" ; |
1744 | for (keyno = 0; keyno < form->partnatts; keyno++) |
1745 | { |
1746 | AttrNumber attnum = form->partattrs.values[keyno]; |
1747 | Oid keycoltype; |
1748 | Oid keycolcollation; |
1749 | Oid partcoll; |
1750 | |
1751 | appendStringInfoString(&buf, sep); |
1752 | sep = ", " ; |
1753 | if (attnum != 0) |
1754 | { |
1755 | /* Simple attribute reference */ |
1756 | char *attname; |
1757 | int32 keycoltypmod; |
1758 | |
1759 | attname = get_attname(relid, attnum, false); |
1760 | appendStringInfoString(&buf, quote_identifier(attname)); |
1761 | get_atttypetypmodcoll(relid, attnum, |
1762 | &keycoltype, &keycoltypmod, |
1763 | &keycolcollation); |
1764 | } |
1765 | else |
1766 | { |
1767 | /* Expression */ |
1768 | Node *partkey; |
1769 | |
1770 | if (partexpr_item == NULL) |
1771 | elog(ERROR, "too few entries in partexprs list" ); |
1772 | partkey = (Node *) lfirst(partexpr_item); |
1773 | partexpr_item = lnext(partexpr_item); |
1774 | |
1775 | /* Deparse */ |
1776 | str = deparse_expression_pretty(partkey, context, false, false, |
1777 | prettyFlags, 0); |
1778 | /* Need parens if it's not a bare function call */ |
1779 | if (looks_like_function(partkey)) |
1780 | appendStringInfoString(&buf, str); |
1781 | else |
1782 | appendStringInfo(&buf, "(%s)" , str); |
1783 | |
1784 | keycoltype = exprType(partkey); |
1785 | keycolcollation = exprCollation(partkey); |
1786 | } |
1787 | |
1788 | /* Add collation, if not default for column */ |
1789 | partcoll = partcollation->values[keyno]; |
1790 | if (!attrsOnly && OidIsValid(partcoll) && partcoll != keycolcollation) |
1791 | appendStringInfo(&buf, " COLLATE %s" , |
1792 | generate_collation_name((partcoll))); |
1793 | |
1794 | /* Add the operator class name, if not default */ |
1795 | if (!attrsOnly) |
1796 | get_opclass_name(partclass->values[keyno], keycoltype, &buf); |
1797 | } |
1798 | |
1799 | if (!attrsOnly) |
1800 | appendStringInfoChar(&buf, ')'); |
1801 | |
1802 | /* Clean up */ |
1803 | ReleaseSysCache(tuple); |
1804 | |
1805 | return buf.data; |
1806 | } |
1807 | |
1808 | /* |
1809 | * pg_get_partition_constraintdef |
1810 | * |
1811 | * Returns partition constraint expression as a string for the input relation |
1812 | */ |
1813 | Datum |
1814 | pg_get_partition_constraintdef(PG_FUNCTION_ARGS) |
1815 | { |
1816 | Oid relationId = PG_GETARG_OID(0); |
1817 | Expr *constr_expr; |
1818 | int prettyFlags; |
1819 | List *context; |
1820 | char *consrc; |
1821 | |
1822 | constr_expr = get_partition_qual_relid(relationId); |
1823 | |
1824 | /* Quick exit if no partition constraint */ |
1825 | if (constr_expr == NULL) |
1826 | PG_RETURN_NULL(); |
1827 | |
1828 | /* |
1829 | * Deparse and return the constraint expression. |
1830 | */ |
1831 | prettyFlags = PRETTYFLAG_INDENT; |
1832 | context = deparse_context_for(get_relation_name(relationId), relationId); |
1833 | consrc = deparse_expression_pretty((Node *) constr_expr, context, false, |
1834 | false, prettyFlags, 0); |
1835 | |
1836 | PG_RETURN_TEXT_P(string_to_text(consrc)); |
1837 | } |
1838 | |
1839 | /* |
1840 | * pg_get_partconstrdef_string |
1841 | * |
1842 | * Returns the partition constraint as a C-string for the input relation, with |
1843 | * the given alias. No pretty-printing. |
1844 | */ |
1845 | char * |
1846 | pg_get_partconstrdef_string(Oid partitionId, char *aliasname) |
1847 | { |
1848 | Expr *constr_expr; |
1849 | List *context; |
1850 | |
1851 | constr_expr = get_partition_qual_relid(partitionId); |
1852 | context = deparse_context_for(aliasname, partitionId); |
1853 | |
1854 | return deparse_expression((Node *) constr_expr, context, true, false); |
1855 | } |
1856 | |
1857 | /* |
1858 | * pg_get_constraintdef |
1859 | * |
1860 | * Returns the definition for the constraint, ie, everything that needs to |
1861 | * appear after "ALTER TABLE ... ADD CONSTRAINT <constraintname>". |
1862 | */ |
1863 | Datum |
1864 | pg_get_constraintdef(PG_FUNCTION_ARGS) |
1865 | { |
1866 | Oid constraintId = PG_GETARG_OID(0); |
1867 | int prettyFlags; |
1868 | char *res; |
1869 | |
1870 | prettyFlags = PRETTYFLAG_INDENT; |
1871 | |
1872 | res = pg_get_constraintdef_worker(constraintId, false, prettyFlags, true); |
1873 | |
1874 | if (res == NULL) |
1875 | PG_RETURN_NULL(); |
1876 | |
1877 | PG_RETURN_TEXT_P(string_to_text(res)); |
1878 | } |
1879 | |
1880 | Datum |
1881 | pg_get_constraintdef_ext(PG_FUNCTION_ARGS) |
1882 | { |
1883 | Oid constraintId = PG_GETARG_OID(0); |
1884 | bool pretty = PG_GETARG_BOOL(1); |
1885 | int prettyFlags; |
1886 | char *res; |
1887 | |
1888 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
1889 | |
1890 | res = pg_get_constraintdef_worker(constraintId, false, prettyFlags, true); |
1891 | |
1892 | if (res == NULL) |
1893 | PG_RETURN_NULL(); |
1894 | |
1895 | PG_RETURN_TEXT_P(string_to_text(res)); |
1896 | } |
1897 | |
1898 | /* |
1899 | * Internal version that returns a full ALTER TABLE ... ADD CONSTRAINT command |
1900 | */ |
1901 | char * |
1902 | pg_get_constraintdef_command(Oid constraintId) |
1903 | { |
1904 | return pg_get_constraintdef_worker(constraintId, true, 0, false); |
1905 | } |
1906 | |
1907 | /* |
1908 | * As of 9.4, we now use an MVCC snapshot for this. |
1909 | */ |
1910 | static char * |
1911 | pg_get_constraintdef_worker(Oid constraintId, bool fullCommand, |
1912 | int prettyFlags, bool missing_ok) |
1913 | { |
1914 | HeapTuple tup; |
1915 | Form_pg_constraint conForm; |
1916 | StringInfoData buf; |
1917 | SysScanDesc scandesc; |
1918 | ScanKeyData scankey[1]; |
1919 | Snapshot snapshot = RegisterSnapshot(GetTransactionSnapshot()); |
1920 | Relation relation = table_open(ConstraintRelationId, AccessShareLock); |
1921 | |
1922 | ScanKeyInit(&scankey[0], |
1923 | Anum_pg_constraint_oid, |
1924 | BTEqualStrategyNumber, F_OIDEQ, |
1925 | ObjectIdGetDatum(constraintId)); |
1926 | |
1927 | scandesc = systable_beginscan(relation, |
1928 | ConstraintOidIndexId, |
1929 | true, |
1930 | snapshot, |
1931 | 1, |
1932 | scankey); |
1933 | |
1934 | /* |
1935 | * We later use the tuple with SysCacheGetAttr() as if we had obtained it |
1936 | * via SearchSysCache, which works fine. |
1937 | */ |
1938 | tup = systable_getnext(scandesc); |
1939 | |
1940 | UnregisterSnapshot(snapshot); |
1941 | |
1942 | if (!HeapTupleIsValid(tup)) |
1943 | { |
1944 | if (missing_ok) |
1945 | { |
1946 | systable_endscan(scandesc); |
1947 | table_close(relation, AccessShareLock); |
1948 | return NULL; |
1949 | } |
1950 | elog(ERROR, "could not find tuple for constraint %u" , constraintId); |
1951 | } |
1952 | |
1953 | conForm = (Form_pg_constraint) GETSTRUCT(tup); |
1954 | |
1955 | initStringInfo(&buf); |
1956 | |
1957 | if (fullCommand) |
1958 | { |
1959 | if (OidIsValid(conForm->conrelid)) |
1960 | { |
1961 | /* |
1962 | * Currently, callers want ALTER TABLE (without ONLY) for CHECK |
1963 | * constraints, and other types of constraints don't inherit |
1964 | * anyway so it doesn't matter whether we say ONLY or not. Someday |
1965 | * we might need to let callers specify whether to put ONLY in the |
1966 | * command. |
1967 | */ |
1968 | appendStringInfo(&buf, "ALTER TABLE %s ADD CONSTRAINT %s " , |
1969 | generate_qualified_relation_name(conForm->conrelid), |
1970 | quote_identifier(NameStr(conForm->conname))); |
1971 | } |
1972 | else |
1973 | { |
1974 | /* Must be a domain constraint */ |
1975 | Assert(OidIsValid(conForm->contypid)); |
1976 | appendStringInfo(&buf, "ALTER DOMAIN %s ADD CONSTRAINT %s " , |
1977 | generate_qualified_type_name(conForm->contypid), |
1978 | quote_identifier(NameStr(conForm->conname))); |
1979 | } |
1980 | } |
1981 | |
1982 | switch (conForm->contype) |
1983 | { |
1984 | case CONSTRAINT_FOREIGN: |
1985 | { |
1986 | Datum val; |
1987 | bool isnull; |
1988 | const char *string; |
1989 | |
1990 | /* Start off the constraint definition */ |
1991 | appendStringInfoString(&buf, "FOREIGN KEY (" ); |
1992 | |
1993 | /* Fetch and build referencing-column list */ |
1994 | val = SysCacheGetAttr(CONSTROID, tup, |
1995 | Anum_pg_constraint_conkey, &isnull); |
1996 | if (isnull) |
1997 | elog(ERROR, "null conkey for constraint %u" , |
1998 | constraintId); |
1999 | |
2000 | decompile_column_index_array(val, conForm->conrelid, &buf); |
2001 | |
2002 | /* add foreign relation name */ |
2003 | appendStringInfo(&buf, ") REFERENCES %s(" , |
2004 | generate_relation_name(conForm->confrelid, |
2005 | NIL)); |
2006 | |
2007 | /* Fetch and build referenced-column list */ |
2008 | val = SysCacheGetAttr(CONSTROID, tup, |
2009 | Anum_pg_constraint_confkey, &isnull); |
2010 | if (isnull) |
2011 | elog(ERROR, "null confkey for constraint %u" , |
2012 | constraintId); |
2013 | |
2014 | decompile_column_index_array(val, conForm->confrelid, &buf); |
2015 | |
2016 | appendStringInfoChar(&buf, ')'); |
2017 | |
2018 | /* Add match type */ |
2019 | switch (conForm->confmatchtype) |
2020 | { |
2021 | case FKCONSTR_MATCH_FULL: |
2022 | string = " MATCH FULL" ; |
2023 | break; |
2024 | case FKCONSTR_MATCH_PARTIAL: |
2025 | string = " MATCH PARTIAL" ; |
2026 | break; |
2027 | case FKCONSTR_MATCH_SIMPLE: |
2028 | string = "" ; |
2029 | break; |
2030 | default: |
2031 | elog(ERROR, "unrecognized confmatchtype: %d" , |
2032 | conForm->confmatchtype); |
2033 | string = "" ; /* keep compiler quiet */ |
2034 | break; |
2035 | } |
2036 | appendStringInfoString(&buf, string); |
2037 | |
2038 | /* Add ON UPDATE and ON DELETE clauses, if needed */ |
2039 | switch (conForm->confupdtype) |
2040 | { |
2041 | case FKCONSTR_ACTION_NOACTION: |
2042 | string = NULL; /* suppress default */ |
2043 | break; |
2044 | case FKCONSTR_ACTION_RESTRICT: |
2045 | string = "RESTRICT" ; |
2046 | break; |
2047 | case FKCONSTR_ACTION_CASCADE: |
2048 | string = "CASCADE" ; |
2049 | break; |
2050 | case FKCONSTR_ACTION_SETNULL: |
2051 | string = "SET NULL" ; |
2052 | break; |
2053 | case FKCONSTR_ACTION_SETDEFAULT: |
2054 | string = "SET DEFAULT" ; |
2055 | break; |
2056 | default: |
2057 | elog(ERROR, "unrecognized confupdtype: %d" , |
2058 | conForm->confupdtype); |
2059 | string = NULL; /* keep compiler quiet */ |
2060 | break; |
2061 | } |
2062 | if (string) |
2063 | appendStringInfo(&buf, " ON UPDATE %s" , string); |
2064 | |
2065 | switch (conForm->confdeltype) |
2066 | { |
2067 | case FKCONSTR_ACTION_NOACTION: |
2068 | string = NULL; /* suppress default */ |
2069 | break; |
2070 | case FKCONSTR_ACTION_RESTRICT: |
2071 | string = "RESTRICT" ; |
2072 | break; |
2073 | case FKCONSTR_ACTION_CASCADE: |
2074 | string = "CASCADE" ; |
2075 | break; |
2076 | case FKCONSTR_ACTION_SETNULL: |
2077 | string = "SET NULL" ; |
2078 | break; |
2079 | case FKCONSTR_ACTION_SETDEFAULT: |
2080 | string = "SET DEFAULT" ; |
2081 | break; |
2082 | default: |
2083 | elog(ERROR, "unrecognized confdeltype: %d" , |
2084 | conForm->confdeltype); |
2085 | string = NULL; /* keep compiler quiet */ |
2086 | break; |
2087 | } |
2088 | if (string) |
2089 | appendStringInfo(&buf, " ON DELETE %s" , string); |
2090 | |
2091 | break; |
2092 | } |
2093 | case CONSTRAINT_PRIMARY: |
2094 | case CONSTRAINT_UNIQUE: |
2095 | { |
2096 | Datum val; |
2097 | bool isnull; |
2098 | Oid indexId; |
2099 | int keyatts; |
2100 | HeapTuple indtup; |
2101 | |
2102 | /* Start off the constraint definition */ |
2103 | if (conForm->contype == CONSTRAINT_PRIMARY) |
2104 | appendStringInfoString(&buf, "PRIMARY KEY (" ); |
2105 | else |
2106 | appendStringInfoString(&buf, "UNIQUE (" ); |
2107 | |
2108 | /* Fetch and build target column list */ |
2109 | val = SysCacheGetAttr(CONSTROID, tup, |
2110 | Anum_pg_constraint_conkey, &isnull); |
2111 | if (isnull) |
2112 | elog(ERROR, "null conkey for constraint %u" , |
2113 | constraintId); |
2114 | |
2115 | keyatts = decompile_column_index_array(val, conForm->conrelid, &buf); |
2116 | |
2117 | appendStringInfoChar(&buf, ')'); |
2118 | |
2119 | indexId = get_constraint_index(constraintId); |
2120 | |
2121 | /* Build including column list (from pg_index.indkeys) */ |
2122 | indtup = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId)); |
2123 | if (!HeapTupleIsValid(indtup)) |
2124 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
2125 | val = SysCacheGetAttr(INDEXRELID, indtup, |
2126 | Anum_pg_index_indnatts, &isnull); |
2127 | if (isnull) |
2128 | elog(ERROR, "null indnatts for index %u" , indexId); |
2129 | if (DatumGetInt32(val) > keyatts) |
2130 | { |
2131 | Datum cols; |
2132 | Datum *keys; |
2133 | int nKeys; |
2134 | int j; |
2135 | |
2136 | appendStringInfoString(&buf, " INCLUDE (" ); |
2137 | |
2138 | cols = SysCacheGetAttr(INDEXRELID, indtup, |
2139 | Anum_pg_index_indkey, &isnull); |
2140 | if (isnull) |
2141 | elog(ERROR, "null indkey for index %u" , indexId); |
2142 | |
2143 | deconstruct_array(DatumGetArrayTypeP(cols), |
2144 | INT2OID, 2, true, 's', |
2145 | &keys, NULL, &nKeys); |
2146 | |
2147 | for (j = keyatts; j < nKeys; j++) |
2148 | { |
2149 | char *colName; |
2150 | |
2151 | colName = get_attname(conForm->conrelid, |
2152 | DatumGetInt16(keys[j]), false); |
2153 | if (j > keyatts) |
2154 | appendStringInfoString(&buf, ", " ); |
2155 | appendStringInfoString(&buf, quote_identifier(colName)); |
2156 | } |
2157 | |
2158 | appendStringInfoChar(&buf, ')'); |
2159 | } |
2160 | ReleaseSysCache(indtup); |
2161 | |
2162 | /* XXX why do we only print these bits if fullCommand? */ |
2163 | if (fullCommand && OidIsValid(indexId)) |
2164 | { |
2165 | char *options = flatten_reloptions(indexId); |
2166 | Oid tblspc; |
2167 | |
2168 | if (options) |
2169 | { |
2170 | appendStringInfo(&buf, " WITH (%s)" , options); |
2171 | pfree(options); |
2172 | } |
2173 | |
2174 | /* |
2175 | * Print the tablespace, unless it's the database default. |
2176 | * This is to help ALTER TABLE usage of this facility, |
2177 | * which needs this behavior to recreate exact catalog |
2178 | * state. |
2179 | */ |
2180 | tblspc = get_rel_tablespace(indexId); |
2181 | if (OidIsValid(tblspc)) |
2182 | appendStringInfo(&buf, " USING INDEX TABLESPACE %s" , |
2183 | quote_identifier(get_tablespace_name(tblspc))); |
2184 | } |
2185 | |
2186 | break; |
2187 | } |
2188 | case CONSTRAINT_CHECK: |
2189 | { |
2190 | Datum val; |
2191 | bool isnull; |
2192 | char *conbin; |
2193 | char *consrc; |
2194 | Node *expr; |
2195 | List *context; |
2196 | |
2197 | /* Fetch constraint expression in parsetree form */ |
2198 | val = SysCacheGetAttr(CONSTROID, tup, |
2199 | Anum_pg_constraint_conbin, &isnull); |
2200 | if (isnull) |
2201 | elog(ERROR, "null conbin for constraint %u" , |
2202 | constraintId); |
2203 | |
2204 | conbin = TextDatumGetCString(val); |
2205 | expr = stringToNode(conbin); |
2206 | |
2207 | /* Set up deparsing context for Var nodes in constraint */ |
2208 | if (conForm->conrelid != InvalidOid) |
2209 | { |
2210 | /* relation constraint */ |
2211 | context = deparse_context_for(get_relation_name(conForm->conrelid), |
2212 | conForm->conrelid); |
2213 | } |
2214 | else |
2215 | { |
2216 | /* domain constraint --- can't have Vars */ |
2217 | context = NIL; |
2218 | } |
2219 | |
2220 | consrc = deparse_expression_pretty(expr, context, false, false, |
2221 | prettyFlags, 0); |
2222 | |
2223 | /* |
2224 | * Now emit the constraint definition, adding NO INHERIT if |
2225 | * necessary. |
2226 | * |
2227 | * There are cases where the constraint expression will be |
2228 | * fully parenthesized and we don't need the outer parens ... |
2229 | * but there are other cases where we do need 'em. Be |
2230 | * conservative for now. |
2231 | * |
2232 | * Note that simply checking for leading '(' and trailing ')' |
2233 | * would NOT be good enough, consider "(x > 0) AND (y > 0)". |
2234 | */ |
2235 | appendStringInfo(&buf, "CHECK (%s)%s" , |
2236 | consrc, |
2237 | conForm->connoinherit ? " NO INHERIT" : "" ); |
2238 | break; |
2239 | } |
2240 | case CONSTRAINT_TRIGGER: |
2241 | |
2242 | /* |
2243 | * There isn't an ALTER TABLE syntax for creating a user-defined |
2244 | * constraint trigger, but it seems better to print something than |
2245 | * throw an error; if we throw error then this function couldn't |
2246 | * safely be applied to all rows of pg_constraint. |
2247 | */ |
2248 | appendStringInfoString(&buf, "TRIGGER" ); |
2249 | break; |
2250 | case CONSTRAINT_EXCLUSION: |
2251 | { |
2252 | Oid indexOid = conForm->conindid; |
2253 | Datum val; |
2254 | bool isnull; |
2255 | Datum *elems; |
2256 | int nElems; |
2257 | int i; |
2258 | Oid *operators; |
2259 | |
2260 | /* Extract operator OIDs from the pg_constraint tuple */ |
2261 | val = SysCacheGetAttr(CONSTROID, tup, |
2262 | Anum_pg_constraint_conexclop, |
2263 | &isnull); |
2264 | if (isnull) |
2265 | elog(ERROR, "null conexclop for constraint %u" , |
2266 | constraintId); |
2267 | |
2268 | deconstruct_array(DatumGetArrayTypeP(val), |
2269 | OIDOID, sizeof(Oid), true, 'i', |
2270 | &elems, NULL, &nElems); |
2271 | |
2272 | operators = (Oid *) palloc(nElems * sizeof(Oid)); |
2273 | for (i = 0; i < nElems; i++) |
2274 | operators[i] = DatumGetObjectId(elems[i]); |
2275 | |
2276 | /* pg_get_indexdef_worker does the rest */ |
2277 | /* suppress tablespace because pg_dump wants it that way */ |
2278 | appendStringInfoString(&buf, |
2279 | pg_get_indexdef_worker(indexOid, |
2280 | 0, |
2281 | operators, |
2282 | false, |
2283 | false, |
2284 | false, |
2285 | false, |
2286 | prettyFlags, |
2287 | false)); |
2288 | break; |
2289 | } |
2290 | default: |
2291 | elog(ERROR, "invalid constraint type \"%c\"" , conForm->contype); |
2292 | break; |
2293 | } |
2294 | |
2295 | if (conForm->condeferrable) |
2296 | appendStringInfoString(&buf, " DEFERRABLE" ); |
2297 | if (conForm->condeferred) |
2298 | appendStringInfoString(&buf, " INITIALLY DEFERRED" ); |
2299 | if (!conForm->convalidated) |
2300 | appendStringInfoString(&buf, " NOT VALID" ); |
2301 | |
2302 | /* Cleanup */ |
2303 | systable_endscan(scandesc); |
2304 | table_close(relation, AccessShareLock); |
2305 | |
2306 | return buf.data; |
2307 | } |
2308 | |
2309 | |
2310 | /* |
2311 | * Convert an int16[] Datum into a comma-separated list of column names |
2312 | * for the indicated relation; append the list to buf. Returns the number |
2313 | * of keys. |
2314 | */ |
2315 | static int |
2316 | decompile_column_index_array(Datum column_index_array, Oid relId, |
2317 | StringInfo buf) |
2318 | { |
2319 | Datum *keys; |
2320 | int nKeys; |
2321 | int j; |
2322 | |
2323 | /* Extract data from array of int16 */ |
2324 | deconstruct_array(DatumGetArrayTypeP(column_index_array), |
2325 | INT2OID, 2, true, 's', |
2326 | &keys, NULL, &nKeys); |
2327 | |
2328 | for (j = 0; j < nKeys; j++) |
2329 | { |
2330 | char *colName; |
2331 | |
2332 | colName = get_attname(relId, DatumGetInt16(keys[j]), false); |
2333 | |
2334 | if (j == 0) |
2335 | appendStringInfoString(buf, quote_identifier(colName)); |
2336 | else |
2337 | appendStringInfo(buf, ", %s" , quote_identifier(colName)); |
2338 | } |
2339 | |
2340 | return nKeys; |
2341 | } |
2342 | |
2343 | |
2344 | /* ---------- |
2345 | * get_expr - Decompile an expression tree |
2346 | * |
2347 | * Input: an expression tree in nodeToString form, and a relation OID |
2348 | * |
2349 | * Output: reverse-listed expression |
2350 | * |
2351 | * Currently, the expression can only refer to a single relation, namely |
2352 | * the one specified by the second parameter. This is sufficient for |
2353 | * partial indexes, column default expressions, etc. We also support |
2354 | * Var-free expressions, for which the OID can be InvalidOid. |
2355 | * ---------- |
2356 | */ |
2357 | Datum |
2358 | pg_get_expr(PG_FUNCTION_ARGS) |
2359 | { |
2360 | text *expr = PG_GETARG_TEXT_PP(0); |
2361 | Oid relid = PG_GETARG_OID(1); |
2362 | int prettyFlags; |
2363 | char *relname; |
2364 | |
2365 | prettyFlags = PRETTYFLAG_INDENT; |
2366 | |
2367 | if (OidIsValid(relid)) |
2368 | { |
2369 | /* Get the name for the relation */ |
2370 | relname = get_rel_name(relid); |
2371 | |
2372 | /* |
2373 | * If the OID isn't actually valid, don't throw an error, just return |
2374 | * NULL. This is a bit questionable, but it's what we've done |
2375 | * historically, and it can help avoid unwanted failures when |
2376 | * examining catalog entries for just-deleted relations. |
2377 | */ |
2378 | if (relname == NULL) |
2379 | PG_RETURN_NULL(); |
2380 | } |
2381 | else |
2382 | relname = NULL; |
2383 | |
2384 | PG_RETURN_TEXT_P(pg_get_expr_worker(expr, relid, relname, prettyFlags)); |
2385 | } |
2386 | |
2387 | Datum |
2388 | pg_get_expr_ext(PG_FUNCTION_ARGS) |
2389 | { |
2390 | text *expr = PG_GETARG_TEXT_PP(0); |
2391 | Oid relid = PG_GETARG_OID(1); |
2392 | bool pretty = PG_GETARG_BOOL(2); |
2393 | int prettyFlags; |
2394 | char *relname; |
2395 | |
2396 | prettyFlags = pretty ? (PRETTYFLAG_PAREN | PRETTYFLAG_INDENT | PRETTYFLAG_SCHEMA) : PRETTYFLAG_INDENT; |
2397 | |
2398 | if (OidIsValid(relid)) |
2399 | { |
2400 | /* Get the name for the relation */ |
2401 | relname = get_rel_name(relid); |
2402 | /* See notes above */ |
2403 | if (relname == NULL) |
2404 | PG_RETURN_NULL(); |
2405 | } |
2406 | else |
2407 | relname = NULL; |
2408 | |
2409 | PG_RETURN_TEXT_P(pg_get_expr_worker(expr, relid, relname, prettyFlags)); |
2410 | } |
2411 | |
2412 | static text * |
2413 | pg_get_expr_worker(text *expr, Oid relid, const char *relname, int prettyFlags) |
2414 | { |
2415 | Node *node; |
2416 | List *context; |
2417 | char *exprstr; |
2418 | char *str; |
2419 | |
2420 | /* Convert input TEXT object to C string */ |
2421 | exprstr = text_to_cstring(expr); |
2422 | |
2423 | /* Convert expression to node tree */ |
2424 | node = (Node *) stringToNode(exprstr); |
2425 | |
2426 | pfree(exprstr); |
2427 | |
2428 | /* Prepare deparse context if needed */ |
2429 | if (OidIsValid(relid)) |
2430 | context = deparse_context_for(relname, relid); |
2431 | else |
2432 | context = NIL; |
2433 | |
2434 | /* Deparse */ |
2435 | str = deparse_expression_pretty(node, context, false, false, |
2436 | prettyFlags, 0); |
2437 | |
2438 | return string_to_text(str); |
2439 | } |
2440 | |
2441 | |
2442 | /* ---------- |
2443 | * get_userbyid - Get a user name by roleid and |
2444 | * fallback to 'unknown (OID=n)' |
2445 | * ---------- |
2446 | */ |
2447 | Datum |
2448 | pg_get_userbyid(PG_FUNCTION_ARGS) |
2449 | { |
2450 | Oid roleid = PG_GETARG_OID(0); |
2451 | Name result; |
2452 | HeapTuple roletup; |
2453 | Form_pg_authid role_rec; |
2454 | |
2455 | /* |
2456 | * Allocate space for the result |
2457 | */ |
2458 | result = (Name) palloc(NAMEDATALEN); |
2459 | memset(NameStr(*result), 0, NAMEDATALEN); |
2460 | |
2461 | /* |
2462 | * Get the pg_authid entry and print the result |
2463 | */ |
2464 | roletup = SearchSysCache1(AUTHOID, ObjectIdGetDatum(roleid)); |
2465 | if (HeapTupleIsValid(roletup)) |
2466 | { |
2467 | role_rec = (Form_pg_authid) GETSTRUCT(roletup); |
2468 | StrNCpy(NameStr(*result), NameStr(role_rec->rolname), NAMEDATALEN); |
2469 | ReleaseSysCache(roletup); |
2470 | } |
2471 | else |
2472 | sprintf(NameStr(*result), "unknown (OID=%u)" , roleid); |
2473 | |
2474 | PG_RETURN_NAME(result); |
2475 | } |
2476 | |
2477 | |
2478 | /* |
2479 | * pg_get_serial_sequence |
2480 | * Get the name of the sequence used by an identity or serial column, |
2481 | * formatted suitably for passing to setval, nextval or currval. |
2482 | * First parameter is not treated as double-quoted, second parameter |
2483 | * is --- see documentation for reason. |
2484 | */ |
2485 | Datum |
2486 | pg_get_serial_sequence(PG_FUNCTION_ARGS) |
2487 | { |
2488 | text *tablename = PG_GETARG_TEXT_PP(0); |
2489 | text *columnname = PG_GETARG_TEXT_PP(1); |
2490 | RangeVar *tablerv; |
2491 | Oid tableOid; |
2492 | char *column; |
2493 | AttrNumber attnum; |
2494 | Oid sequenceId = InvalidOid; |
2495 | Relation depRel; |
2496 | ScanKeyData key[3]; |
2497 | SysScanDesc scan; |
2498 | HeapTuple tup; |
2499 | |
2500 | /* Look up table name. Can't lock it - we might not have privileges. */ |
2501 | tablerv = makeRangeVarFromNameList(textToQualifiedNameList(tablename)); |
2502 | tableOid = RangeVarGetRelid(tablerv, NoLock, false); |
2503 | |
2504 | /* Get the number of the column */ |
2505 | column = text_to_cstring(columnname); |
2506 | |
2507 | attnum = get_attnum(tableOid, column); |
2508 | if (attnum == InvalidAttrNumber) |
2509 | ereport(ERROR, |
2510 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
2511 | errmsg("column \"%s\" of relation \"%s\" does not exist" , |
2512 | column, tablerv->relname))); |
2513 | |
2514 | /* Search the dependency table for the dependent sequence */ |
2515 | depRel = table_open(DependRelationId, AccessShareLock); |
2516 | |
2517 | ScanKeyInit(&key[0], |
2518 | Anum_pg_depend_refclassid, |
2519 | BTEqualStrategyNumber, F_OIDEQ, |
2520 | ObjectIdGetDatum(RelationRelationId)); |
2521 | ScanKeyInit(&key[1], |
2522 | Anum_pg_depend_refobjid, |
2523 | BTEqualStrategyNumber, F_OIDEQ, |
2524 | ObjectIdGetDatum(tableOid)); |
2525 | ScanKeyInit(&key[2], |
2526 | Anum_pg_depend_refobjsubid, |
2527 | BTEqualStrategyNumber, F_INT4EQ, |
2528 | Int32GetDatum(attnum)); |
2529 | |
2530 | scan = systable_beginscan(depRel, DependReferenceIndexId, true, |
2531 | NULL, 3, key); |
2532 | |
2533 | while (HeapTupleIsValid(tup = systable_getnext(scan))) |
2534 | { |
2535 | Form_pg_depend deprec = (Form_pg_depend) GETSTRUCT(tup); |
2536 | |
2537 | /* |
2538 | * Look for an auto dependency (serial column) or internal dependency |
2539 | * (identity column) of a sequence on a column. (We need the relkind |
2540 | * test because indexes can also have auto dependencies on columns.) |
2541 | */ |
2542 | if (deprec->classid == RelationRelationId && |
2543 | deprec->objsubid == 0 && |
2544 | (deprec->deptype == DEPENDENCY_AUTO || |
2545 | deprec->deptype == DEPENDENCY_INTERNAL) && |
2546 | get_rel_relkind(deprec->objid) == RELKIND_SEQUENCE) |
2547 | { |
2548 | sequenceId = deprec->objid; |
2549 | break; |
2550 | } |
2551 | } |
2552 | |
2553 | systable_endscan(scan); |
2554 | table_close(depRel, AccessShareLock); |
2555 | |
2556 | if (OidIsValid(sequenceId)) |
2557 | { |
2558 | char *result; |
2559 | |
2560 | result = generate_qualified_relation_name(sequenceId); |
2561 | |
2562 | PG_RETURN_TEXT_P(string_to_text(result)); |
2563 | } |
2564 | |
2565 | PG_RETURN_NULL(); |
2566 | } |
2567 | |
2568 | |
2569 | /* |
2570 | * pg_get_functiondef |
2571 | * Returns the complete "CREATE OR REPLACE FUNCTION ..." statement for |
2572 | * the specified function. |
2573 | * |
2574 | * Note: if you change the output format of this function, be careful not |
2575 | * to break psql's rules (in \ef and \sf) for identifying the start of the |
2576 | * function body. To wit: the function body starts on a line that begins |
2577 | * with "AS ", and no preceding line will look like that. |
2578 | */ |
2579 | Datum |
2580 | pg_get_functiondef(PG_FUNCTION_ARGS) |
2581 | { |
2582 | Oid funcid = PG_GETARG_OID(0); |
2583 | StringInfoData buf; |
2584 | StringInfoData dq; |
2585 | HeapTuple proctup; |
2586 | Form_pg_proc proc; |
2587 | bool isfunction; |
2588 | Datum tmp; |
2589 | bool isnull; |
2590 | const char *prosrc; |
2591 | const char *name; |
2592 | const char *nsp; |
2593 | float4 procost; |
2594 | int oldlen; |
2595 | |
2596 | initStringInfo(&buf); |
2597 | |
2598 | /* Look up the function */ |
2599 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
2600 | if (!HeapTupleIsValid(proctup)) |
2601 | PG_RETURN_NULL(); |
2602 | |
2603 | proc = (Form_pg_proc) GETSTRUCT(proctup); |
2604 | name = NameStr(proc->proname); |
2605 | |
2606 | if (proc->prokind == PROKIND_AGGREGATE) |
2607 | ereport(ERROR, |
2608 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
2609 | errmsg("\"%s\" is an aggregate function" , name))); |
2610 | |
2611 | isfunction = (proc->prokind != PROKIND_PROCEDURE); |
2612 | |
2613 | /* |
2614 | * We always qualify the function name, to ensure the right function gets |
2615 | * replaced. |
2616 | */ |
2617 | nsp = get_namespace_name(proc->pronamespace); |
2618 | appendStringInfo(&buf, "CREATE OR REPLACE %s %s(" , |
2619 | isfunction ? "FUNCTION" : "PROCEDURE" , |
2620 | quote_qualified_identifier(nsp, name)); |
2621 | (void) print_function_arguments(&buf, proctup, false, true); |
2622 | appendStringInfoString(&buf, ")\n" ); |
2623 | if (isfunction) |
2624 | { |
2625 | appendStringInfoString(&buf, " RETURNS " ); |
2626 | print_function_rettype(&buf, proctup); |
2627 | appendStringInfoChar(&buf, '\n'); |
2628 | } |
2629 | |
2630 | print_function_trftypes(&buf, proctup); |
2631 | |
2632 | appendStringInfo(&buf, " LANGUAGE %s\n" , |
2633 | quote_identifier(get_language_name(proc->prolang, false))); |
2634 | |
2635 | /* Emit some miscellaneous options on one line */ |
2636 | oldlen = buf.len; |
2637 | |
2638 | if (proc->prokind == PROKIND_WINDOW) |
2639 | appendStringInfoString(&buf, " WINDOW" ); |
2640 | switch (proc->provolatile) |
2641 | { |
2642 | case PROVOLATILE_IMMUTABLE: |
2643 | appendStringInfoString(&buf, " IMMUTABLE" ); |
2644 | break; |
2645 | case PROVOLATILE_STABLE: |
2646 | appendStringInfoString(&buf, " STABLE" ); |
2647 | break; |
2648 | case PROVOLATILE_VOLATILE: |
2649 | break; |
2650 | } |
2651 | |
2652 | switch (proc->proparallel) |
2653 | { |
2654 | case PROPARALLEL_SAFE: |
2655 | appendStringInfoString(&buf, " PARALLEL SAFE" ); |
2656 | break; |
2657 | case PROPARALLEL_RESTRICTED: |
2658 | appendStringInfoString(&buf, " PARALLEL RESTRICTED" ); |
2659 | break; |
2660 | case PROPARALLEL_UNSAFE: |
2661 | break; |
2662 | } |
2663 | |
2664 | if (proc->proisstrict) |
2665 | appendStringInfoString(&buf, " STRICT" ); |
2666 | if (proc->prosecdef) |
2667 | appendStringInfoString(&buf, " SECURITY DEFINER" ); |
2668 | if (proc->proleakproof) |
2669 | appendStringInfoString(&buf, " LEAKPROOF" ); |
2670 | |
2671 | /* This code for the default cost and rows should match functioncmds.c */ |
2672 | if (proc->prolang == INTERNALlanguageId || |
2673 | proc->prolang == ClanguageId) |
2674 | procost = 1; |
2675 | else |
2676 | procost = 100; |
2677 | if (proc->procost != procost) |
2678 | appendStringInfo(&buf, " COST %g" , proc->procost); |
2679 | |
2680 | if (proc->prorows > 0 && proc->prorows != 1000) |
2681 | appendStringInfo(&buf, " ROWS %g" , proc->prorows); |
2682 | |
2683 | if (proc->prosupport) |
2684 | { |
2685 | Oid argtypes[1]; |
2686 | |
2687 | /* |
2688 | * We should qualify the support function's name if it wouldn't be |
2689 | * resolved by lookup in the current search path. |
2690 | */ |
2691 | argtypes[0] = INTERNALOID; |
2692 | appendStringInfo(&buf, " SUPPORT %s" , |
2693 | generate_function_name(proc->prosupport, 1, |
2694 | NIL, argtypes, |
2695 | false, NULL, EXPR_KIND_NONE)); |
2696 | } |
2697 | |
2698 | if (oldlen != buf.len) |
2699 | appendStringInfoChar(&buf, '\n'); |
2700 | |
2701 | /* Emit any proconfig options, one per line */ |
2702 | tmp = SysCacheGetAttr(PROCOID, proctup, Anum_pg_proc_proconfig, &isnull); |
2703 | if (!isnull) |
2704 | { |
2705 | ArrayType *a = DatumGetArrayTypeP(tmp); |
2706 | int i; |
2707 | |
2708 | Assert(ARR_ELEMTYPE(a) == TEXTOID); |
2709 | Assert(ARR_NDIM(a) == 1); |
2710 | Assert(ARR_LBOUND(a)[0] == 1); |
2711 | |
2712 | for (i = 1; i <= ARR_DIMS(a)[0]; i++) |
2713 | { |
2714 | Datum d; |
2715 | |
2716 | d = array_ref(a, 1, &i, |
2717 | -1 /* varlenarray */ , |
2718 | -1 /* TEXT's typlen */ , |
2719 | false /* TEXT's typbyval */ , |
2720 | 'i' /* TEXT's typalign */ , |
2721 | &isnull); |
2722 | if (!isnull) |
2723 | { |
2724 | char *configitem = TextDatumGetCString(d); |
2725 | char *pos; |
2726 | |
2727 | pos = strchr(configitem, '='); |
2728 | if (pos == NULL) |
2729 | continue; |
2730 | *pos++ = '\0'; |
2731 | |
2732 | appendStringInfo(&buf, " SET %s TO " , |
2733 | quote_identifier(configitem)); |
2734 | |
2735 | /* |
2736 | * Variables that are marked GUC_LIST_QUOTE were already fully |
2737 | * quoted by flatten_set_variable_args() before they were put |
2738 | * into the proconfig array. However, because the quoting |
2739 | * rules used there aren't exactly like SQL's, we have to |
2740 | * break the list value apart and then quote the elements as |
2741 | * string literals. (The elements may be double-quoted as-is, |
2742 | * but we can't just feed them to the SQL parser; it would do |
2743 | * the wrong thing with elements that are zero-length or |
2744 | * longer than NAMEDATALEN.) |
2745 | * |
2746 | * Variables that are not so marked should just be emitted as |
2747 | * simple string literals. If the variable is not known to |
2748 | * guc.c, we'll do that; this makes it unsafe to use |
2749 | * GUC_LIST_QUOTE for extension variables. |
2750 | */ |
2751 | if (GetConfigOptionFlags(configitem, true) & GUC_LIST_QUOTE) |
2752 | { |
2753 | List *namelist; |
2754 | ListCell *lc; |
2755 | |
2756 | /* Parse string into list of identifiers */ |
2757 | if (!SplitGUCList(pos, ',', &namelist)) |
2758 | { |
2759 | /* this shouldn't fail really */ |
2760 | elog(ERROR, "invalid list syntax in proconfig item" ); |
2761 | } |
2762 | foreach(lc, namelist) |
2763 | { |
2764 | char *curname = (char *) lfirst(lc); |
2765 | |
2766 | simple_quote_literal(&buf, curname); |
2767 | if (lnext(lc)) |
2768 | appendStringInfoString(&buf, ", " ); |
2769 | } |
2770 | } |
2771 | else |
2772 | simple_quote_literal(&buf, pos); |
2773 | appendStringInfoChar(&buf, '\n'); |
2774 | } |
2775 | } |
2776 | } |
2777 | |
2778 | /* And finally the function definition ... */ |
2779 | appendStringInfoString(&buf, "AS " ); |
2780 | |
2781 | tmp = SysCacheGetAttr(PROCOID, proctup, Anum_pg_proc_probin, &isnull); |
2782 | if (!isnull) |
2783 | { |
2784 | simple_quote_literal(&buf, TextDatumGetCString(tmp)); |
2785 | appendStringInfoString(&buf, ", " ); /* assume prosrc isn't null */ |
2786 | } |
2787 | |
2788 | tmp = SysCacheGetAttr(PROCOID, proctup, Anum_pg_proc_prosrc, &isnull); |
2789 | if (isnull) |
2790 | elog(ERROR, "null prosrc" ); |
2791 | prosrc = TextDatumGetCString(tmp); |
2792 | |
2793 | /* |
2794 | * We always use dollar quoting. Figure out a suitable delimiter. |
2795 | * |
2796 | * Since the user is likely to be editing the function body string, we |
2797 | * shouldn't use a short delimiter that he might easily create a conflict |
2798 | * with. Hence prefer "$function$"/"$procedure$", but extend if needed. |
2799 | */ |
2800 | initStringInfo(&dq); |
2801 | appendStringInfoChar(&dq, '$'); |
2802 | appendStringInfoString(&dq, (isfunction ? "function" : "procedure" )); |
2803 | while (strstr(prosrc, dq.data) != NULL) |
2804 | appendStringInfoChar(&dq, 'x'); |
2805 | appendStringInfoChar(&dq, '$'); |
2806 | |
2807 | appendStringInfoString(&buf, dq.data); |
2808 | appendStringInfoString(&buf, prosrc); |
2809 | appendStringInfoString(&buf, dq.data); |
2810 | |
2811 | appendStringInfoChar(&buf, '\n'); |
2812 | |
2813 | ReleaseSysCache(proctup); |
2814 | |
2815 | PG_RETURN_TEXT_P(string_to_text(buf.data)); |
2816 | } |
2817 | |
2818 | /* |
2819 | * pg_get_function_arguments |
2820 | * Get a nicely-formatted list of arguments for a function. |
2821 | * This is everything that would go between the parentheses in |
2822 | * CREATE FUNCTION. |
2823 | */ |
2824 | Datum |
2825 | pg_get_function_arguments(PG_FUNCTION_ARGS) |
2826 | { |
2827 | Oid funcid = PG_GETARG_OID(0); |
2828 | StringInfoData buf; |
2829 | HeapTuple proctup; |
2830 | |
2831 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
2832 | if (!HeapTupleIsValid(proctup)) |
2833 | PG_RETURN_NULL(); |
2834 | |
2835 | initStringInfo(&buf); |
2836 | |
2837 | (void) print_function_arguments(&buf, proctup, false, true); |
2838 | |
2839 | ReleaseSysCache(proctup); |
2840 | |
2841 | PG_RETURN_TEXT_P(string_to_text(buf.data)); |
2842 | } |
2843 | |
2844 | /* |
2845 | * pg_get_function_identity_arguments |
2846 | * Get a formatted list of arguments for a function. |
2847 | * This is everything that would go between the parentheses in |
2848 | * ALTER FUNCTION, etc. In particular, don't print defaults. |
2849 | */ |
2850 | Datum |
2851 | pg_get_function_identity_arguments(PG_FUNCTION_ARGS) |
2852 | { |
2853 | Oid funcid = PG_GETARG_OID(0); |
2854 | StringInfoData buf; |
2855 | HeapTuple proctup; |
2856 | |
2857 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
2858 | if (!HeapTupleIsValid(proctup)) |
2859 | PG_RETURN_NULL(); |
2860 | |
2861 | initStringInfo(&buf); |
2862 | |
2863 | (void) print_function_arguments(&buf, proctup, false, false); |
2864 | |
2865 | ReleaseSysCache(proctup); |
2866 | |
2867 | PG_RETURN_TEXT_P(string_to_text(buf.data)); |
2868 | } |
2869 | |
2870 | /* |
2871 | * pg_get_function_result |
2872 | * Get a nicely-formatted version of the result type of a function. |
2873 | * This is what would appear after RETURNS in CREATE FUNCTION. |
2874 | */ |
2875 | Datum |
2876 | pg_get_function_result(PG_FUNCTION_ARGS) |
2877 | { |
2878 | Oid funcid = PG_GETARG_OID(0); |
2879 | StringInfoData buf; |
2880 | HeapTuple proctup; |
2881 | |
2882 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
2883 | if (!HeapTupleIsValid(proctup)) |
2884 | PG_RETURN_NULL(); |
2885 | |
2886 | if (((Form_pg_proc) GETSTRUCT(proctup))->prokind == PROKIND_PROCEDURE) |
2887 | { |
2888 | ReleaseSysCache(proctup); |
2889 | PG_RETURN_NULL(); |
2890 | } |
2891 | |
2892 | initStringInfo(&buf); |
2893 | |
2894 | print_function_rettype(&buf, proctup); |
2895 | |
2896 | ReleaseSysCache(proctup); |
2897 | |
2898 | PG_RETURN_TEXT_P(string_to_text(buf.data)); |
2899 | } |
2900 | |
2901 | /* |
2902 | * Guts of pg_get_function_result: append the function's return type |
2903 | * to the specified buffer. |
2904 | */ |
2905 | static void |
2906 | print_function_rettype(StringInfo buf, HeapTuple proctup) |
2907 | { |
2908 | Form_pg_proc proc = (Form_pg_proc) GETSTRUCT(proctup); |
2909 | int ntabargs = 0; |
2910 | StringInfoData rbuf; |
2911 | |
2912 | initStringInfo(&rbuf); |
2913 | |
2914 | if (proc->proretset) |
2915 | { |
2916 | /* It might be a table function; try to print the arguments */ |
2917 | appendStringInfoString(&rbuf, "TABLE(" ); |
2918 | ntabargs = print_function_arguments(&rbuf, proctup, true, false); |
2919 | if (ntabargs > 0) |
2920 | appendStringInfoChar(&rbuf, ')'); |
2921 | else |
2922 | resetStringInfo(&rbuf); |
2923 | } |
2924 | |
2925 | if (ntabargs == 0) |
2926 | { |
2927 | /* Not a table function, so do the normal thing */ |
2928 | if (proc->proretset) |
2929 | appendStringInfoString(&rbuf, "SETOF " ); |
2930 | appendStringInfoString(&rbuf, format_type_be(proc->prorettype)); |
2931 | } |
2932 | |
2933 | appendStringInfoString(buf, rbuf.data); |
2934 | } |
2935 | |
2936 | /* |
2937 | * Common code for pg_get_function_arguments and pg_get_function_result: |
2938 | * append the desired subset of arguments to buf. We print only TABLE |
2939 | * arguments when print_table_args is true, and all the others when it's false. |
2940 | * We print argument defaults only if print_defaults is true. |
2941 | * Function return value is the number of arguments printed. |
2942 | */ |
2943 | static int |
2944 | print_function_arguments(StringInfo buf, HeapTuple proctup, |
2945 | bool print_table_args, bool print_defaults) |
2946 | { |
2947 | Form_pg_proc proc = (Form_pg_proc) GETSTRUCT(proctup); |
2948 | int numargs; |
2949 | Oid *argtypes; |
2950 | char **argnames; |
2951 | char *argmodes; |
2952 | int insertorderbyat = -1; |
2953 | int argsprinted; |
2954 | int inputargno; |
2955 | int nlackdefaults; |
2956 | ListCell *nextargdefault = NULL; |
2957 | int i; |
2958 | |
2959 | numargs = get_func_arg_info(proctup, |
2960 | &argtypes, &argnames, &argmodes); |
2961 | |
2962 | nlackdefaults = numargs; |
2963 | if (print_defaults && proc->pronargdefaults > 0) |
2964 | { |
2965 | Datum proargdefaults; |
2966 | bool isnull; |
2967 | |
2968 | proargdefaults = SysCacheGetAttr(PROCOID, proctup, |
2969 | Anum_pg_proc_proargdefaults, |
2970 | &isnull); |
2971 | if (!isnull) |
2972 | { |
2973 | char *str; |
2974 | List *argdefaults; |
2975 | |
2976 | str = TextDatumGetCString(proargdefaults); |
2977 | argdefaults = castNode(List, stringToNode(str)); |
2978 | pfree(str); |
2979 | nextargdefault = list_head(argdefaults); |
2980 | /* nlackdefaults counts only *input* arguments lacking defaults */ |
2981 | nlackdefaults = proc->pronargs - list_length(argdefaults); |
2982 | } |
2983 | } |
2984 | |
2985 | /* Check for special treatment of ordered-set aggregates */ |
2986 | if (proc->prokind == PROKIND_AGGREGATE) |
2987 | { |
2988 | HeapTuple aggtup; |
2989 | Form_pg_aggregate agg; |
2990 | |
2991 | aggtup = SearchSysCache1(AGGFNOID, proc->oid); |
2992 | if (!HeapTupleIsValid(aggtup)) |
2993 | elog(ERROR, "cache lookup failed for aggregate %u" , |
2994 | proc->oid); |
2995 | agg = (Form_pg_aggregate) GETSTRUCT(aggtup); |
2996 | if (AGGKIND_IS_ORDERED_SET(agg->aggkind)) |
2997 | insertorderbyat = agg->aggnumdirectargs; |
2998 | ReleaseSysCache(aggtup); |
2999 | } |
3000 | |
3001 | argsprinted = 0; |
3002 | inputargno = 0; |
3003 | for (i = 0; i < numargs; i++) |
3004 | { |
3005 | Oid argtype = argtypes[i]; |
3006 | char *argname = argnames ? argnames[i] : NULL; |
3007 | char argmode = argmodes ? argmodes[i] : PROARGMODE_IN; |
3008 | const char *modename; |
3009 | bool isinput; |
3010 | |
3011 | switch (argmode) |
3012 | { |
3013 | case PROARGMODE_IN: |
3014 | modename = "" ; |
3015 | isinput = true; |
3016 | break; |
3017 | case PROARGMODE_INOUT: |
3018 | modename = "INOUT " ; |
3019 | isinput = true; |
3020 | break; |
3021 | case PROARGMODE_OUT: |
3022 | modename = "OUT " ; |
3023 | isinput = false; |
3024 | break; |
3025 | case PROARGMODE_VARIADIC: |
3026 | modename = "VARIADIC " ; |
3027 | isinput = true; |
3028 | break; |
3029 | case PROARGMODE_TABLE: |
3030 | modename = "" ; |
3031 | isinput = false; |
3032 | break; |
3033 | default: |
3034 | elog(ERROR, "invalid parameter mode '%c'" , argmode); |
3035 | modename = NULL; /* keep compiler quiet */ |
3036 | isinput = false; |
3037 | break; |
3038 | } |
3039 | if (isinput) |
3040 | inputargno++; /* this is a 1-based counter */ |
3041 | |
3042 | if (print_table_args != (argmode == PROARGMODE_TABLE)) |
3043 | continue; |
3044 | |
3045 | if (argsprinted == insertorderbyat) |
3046 | { |
3047 | if (argsprinted) |
3048 | appendStringInfoChar(buf, ' '); |
3049 | appendStringInfoString(buf, "ORDER BY " ); |
3050 | } |
3051 | else if (argsprinted) |
3052 | appendStringInfoString(buf, ", " ); |
3053 | |
3054 | appendStringInfoString(buf, modename); |
3055 | if (argname && argname[0]) |
3056 | appendStringInfo(buf, "%s " , quote_identifier(argname)); |
3057 | appendStringInfoString(buf, format_type_be(argtype)); |
3058 | if (print_defaults && isinput && inputargno > nlackdefaults) |
3059 | { |
3060 | Node *expr; |
3061 | |
3062 | Assert(nextargdefault != NULL); |
3063 | expr = (Node *) lfirst(nextargdefault); |
3064 | nextargdefault = lnext(nextargdefault); |
3065 | |
3066 | appendStringInfo(buf, " DEFAULT %s" , |
3067 | deparse_expression(expr, NIL, false, false)); |
3068 | } |
3069 | argsprinted++; |
3070 | |
3071 | /* nasty hack: print the last arg twice for variadic ordered-set agg */ |
3072 | if (argsprinted == insertorderbyat && i == numargs - 1) |
3073 | { |
3074 | i--; |
3075 | /* aggs shouldn't have defaults anyway, but just to be sure ... */ |
3076 | print_defaults = false; |
3077 | } |
3078 | } |
3079 | |
3080 | return argsprinted; |
3081 | } |
3082 | |
3083 | static bool |
3084 | is_input_argument(int nth, const char *argmodes) |
3085 | { |
3086 | return (!argmodes |
3087 | || argmodes[nth] == PROARGMODE_IN |
3088 | || argmodes[nth] == PROARGMODE_INOUT |
3089 | || argmodes[nth] == PROARGMODE_VARIADIC); |
3090 | } |
3091 | |
3092 | /* |
3093 | * Append used transformed types to specified buffer |
3094 | */ |
3095 | static void |
3096 | print_function_trftypes(StringInfo buf, HeapTuple proctup) |
3097 | { |
3098 | Oid *trftypes; |
3099 | int ntypes; |
3100 | |
3101 | ntypes = get_func_trftypes(proctup, &trftypes); |
3102 | if (ntypes > 0) |
3103 | { |
3104 | int i; |
3105 | |
3106 | appendStringInfoString(buf, "\n TRANSFORM " ); |
3107 | for (i = 0; i < ntypes; i++) |
3108 | { |
3109 | if (i != 0) |
3110 | appendStringInfoString(buf, ", " ); |
3111 | appendStringInfo(buf, "FOR TYPE %s" , format_type_be(trftypes[i])); |
3112 | } |
3113 | } |
3114 | } |
3115 | |
3116 | /* |
3117 | * Get textual representation of a function argument's default value. The |
3118 | * second argument of this function is the argument number among all arguments |
3119 | * (i.e. proallargtypes, *not* proargtypes), starting with 1, because that's |
3120 | * how information_schema.sql uses it. |
3121 | */ |
3122 | Datum |
3123 | pg_get_function_arg_default(PG_FUNCTION_ARGS) |
3124 | { |
3125 | Oid funcid = PG_GETARG_OID(0); |
3126 | int32 nth_arg = PG_GETARG_INT32(1); |
3127 | HeapTuple proctup; |
3128 | Form_pg_proc proc; |
3129 | int numargs; |
3130 | Oid *argtypes; |
3131 | char **argnames; |
3132 | char *argmodes; |
3133 | int i; |
3134 | List *argdefaults; |
3135 | Node *node; |
3136 | char *str; |
3137 | int nth_inputarg; |
3138 | Datum proargdefaults; |
3139 | bool isnull; |
3140 | int nth_default; |
3141 | |
3142 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
3143 | if (!HeapTupleIsValid(proctup)) |
3144 | PG_RETURN_NULL(); |
3145 | |
3146 | numargs = get_func_arg_info(proctup, &argtypes, &argnames, &argmodes); |
3147 | if (nth_arg < 1 || nth_arg > numargs || !is_input_argument(nth_arg - 1, argmodes)) |
3148 | { |
3149 | ReleaseSysCache(proctup); |
3150 | PG_RETURN_NULL(); |
3151 | } |
3152 | |
3153 | nth_inputarg = 0; |
3154 | for (i = 0; i < nth_arg; i++) |
3155 | if (is_input_argument(i, argmodes)) |
3156 | nth_inputarg++; |
3157 | |
3158 | proargdefaults = SysCacheGetAttr(PROCOID, proctup, |
3159 | Anum_pg_proc_proargdefaults, |
3160 | &isnull); |
3161 | if (isnull) |
3162 | { |
3163 | ReleaseSysCache(proctup); |
3164 | PG_RETURN_NULL(); |
3165 | } |
3166 | |
3167 | str = TextDatumGetCString(proargdefaults); |
3168 | argdefaults = castNode(List, stringToNode(str)); |
3169 | pfree(str); |
3170 | |
3171 | proc = (Form_pg_proc) GETSTRUCT(proctup); |
3172 | |
3173 | /* |
3174 | * Calculate index into proargdefaults: proargdefaults corresponds to the |
3175 | * last N input arguments, where N = pronargdefaults. |
3176 | */ |
3177 | nth_default = nth_inputarg - 1 - (proc->pronargs - proc->pronargdefaults); |
3178 | |
3179 | if (nth_default < 0 || nth_default >= list_length(argdefaults)) |
3180 | { |
3181 | ReleaseSysCache(proctup); |
3182 | PG_RETURN_NULL(); |
3183 | } |
3184 | node = list_nth(argdefaults, nth_default); |
3185 | str = deparse_expression(node, NIL, false, false); |
3186 | |
3187 | ReleaseSysCache(proctup); |
3188 | |
3189 | PG_RETURN_TEXT_P(string_to_text(str)); |
3190 | } |
3191 | |
3192 | |
3193 | /* |
3194 | * deparse_expression - General utility for deparsing expressions |
3195 | * |
3196 | * calls deparse_expression_pretty with all prettyPrinting disabled |
3197 | */ |
3198 | char * |
3199 | deparse_expression(Node *expr, List *dpcontext, |
3200 | bool forceprefix, bool showimplicit) |
3201 | { |
3202 | return deparse_expression_pretty(expr, dpcontext, forceprefix, |
3203 | showimplicit, 0, 0); |
3204 | } |
3205 | |
3206 | /* ---------- |
3207 | * deparse_expression_pretty - General utility for deparsing expressions |
3208 | * |
3209 | * expr is the node tree to be deparsed. It must be a transformed expression |
3210 | * tree (ie, not the raw output of gram.y). |
3211 | * |
3212 | * dpcontext is a list of deparse_namespace nodes representing the context |
3213 | * for interpreting Vars in the node tree. It can be NIL if no Vars are |
3214 | * expected. |
3215 | * |
3216 | * forceprefix is true to force all Vars to be prefixed with their table names. |
3217 | * |
3218 | * showimplicit is true to force all implicit casts to be shown explicitly. |
3219 | * |
3220 | * Tries to pretty up the output according to prettyFlags and startIndent. |
3221 | * |
3222 | * The result is a palloc'd string. |
3223 | * ---------- |
3224 | */ |
3225 | static char * |
3226 | deparse_expression_pretty(Node *expr, List *dpcontext, |
3227 | bool forceprefix, bool showimplicit, |
3228 | int prettyFlags, int startIndent) |
3229 | { |
3230 | StringInfoData buf; |
3231 | deparse_context context; |
3232 | |
3233 | initStringInfo(&buf); |
3234 | context.buf = &buf; |
3235 | context.namespaces = dpcontext; |
3236 | context.windowClause = NIL; |
3237 | context.windowTList = NIL; |
3238 | context.varprefix = forceprefix; |
3239 | context.prettyFlags = prettyFlags; |
3240 | context.wrapColumn = WRAP_COLUMN_DEFAULT; |
3241 | context.indentLevel = startIndent; |
3242 | context.special_exprkind = EXPR_KIND_NONE; |
3243 | |
3244 | get_rule_expr(expr, &context, showimplicit); |
3245 | |
3246 | return buf.data; |
3247 | } |
3248 | |
3249 | /* ---------- |
3250 | * deparse_context_for - Build deparse context for a single relation |
3251 | * |
3252 | * Given the reference name (alias) and OID of a relation, build deparsing |
3253 | * context for an expression referencing only that relation (as varno 1, |
3254 | * varlevelsup 0). This is sufficient for many uses of deparse_expression. |
3255 | * ---------- |
3256 | */ |
3257 | List * |
3258 | deparse_context_for(const char *aliasname, Oid relid) |
3259 | { |
3260 | deparse_namespace *dpns; |
3261 | RangeTblEntry *rte; |
3262 | |
3263 | dpns = (deparse_namespace *) palloc0(sizeof(deparse_namespace)); |
3264 | |
3265 | /* Build a minimal RTE for the rel */ |
3266 | rte = makeNode(RangeTblEntry); |
3267 | rte->rtekind = RTE_RELATION; |
3268 | rte->relid = relid; |
3269 | rte->relkind = RELKIND_RELATION; /* no need for exactness here */ |
3270 | rte->rellockmode = AccessShareLock; |
3271 | rte->alias = makeAlias(aliasname, NIL); |
3272 | rte->eref = rte->alias; |
3273 | rte->lateral = false; |
3274 | rte->inh = false; |
3275 | rte->inFromCl = true; |
3276 | |
3277 | /* Build one-element rtable */ |
3278 | dpns->rtable = list_make1(rte); |
3279 | dpns->ctes = NIL; |
3280 | set_rtable_names(dpns, NIL, NULL); |
3281 | set_simple_column_names(dpns); |
3282 | |
3283 | /* Return a one-deep namespace stack */ |
3284 | return list_make1(dpns); |
3285 | } |
3286 | |
3287 | /* |
3288 | * deparse_context_for_plan_rtable - Build deparse context for a plan's rtable |
3289 | * |
3290 | * When deparsing an expression in a Plan tree, we use the plan's rangetable |
3291 | * to resolve names of simple Vars. The initialization of column names for |
3292 | * this is rather expensive if the rangetable is large, and it'll be the same |
3293 | * for every expression in the Plan tree; so we do it just once and re-use |
3294 | * the result of this function for each expression. (Note that the result |
3295 | * is not usable until set_deparse_context_planstate() is applied to it.) |
3296 | * |
3297 | * In addition to the plan's rangetable list, pass the per-RTE alias names |
3298 | * assigned by a previous call to select_rtable_names_for_explain. |
3299 | */ |
3300 | List * |
3301 | deparse_context_for_plan_rtable(List *rtable, List *rtable_names) |
3302 | { |
3303 | deparse_namespace *dpns; |
3304 | |
3305 | dpns = (deparse_namespace *) palloc0(sizeof(deparse_namespace)); |
3306 | |
3307 | /* Initialize fields that stay the same across the whole plan tree */ |
3308 | dpns->rtable = rtable; |
3309 | dpns->rtable_names = rtable_names; |
3310 | dpns->ctes = NIL; |
3311 | |
3312 | /* |
3313 | * Set up column name aliases. We will get rather bogus results for join |
3314 | * RTEs, but that doesn't matter because plan trees don't contain any join |
3315 | * alias Vars. |
3316 | */ |
3317 | set_simple_column_names(dpns); |
3318 | |
3319 | /* Return a one-deep namespace stack */ |
3320 | return list_make1(dpns); |
3321 | } |
3322 | |
3323 | /* |
3324 | * set_deparse_context_planstate - Specify Plan node containing expression |
3325 | * |
3326 | * When deparsing an expression in a Plan tree, we might have to resolve |
3327 | * OUTER_VAR, INNER_VAR, or INDEX_VAR references. To do this, the caller must |
3328 | * provide the parent PlanState node. Then OUTER_VAR and INNER_VAR references |
3329 | * can be resolved by drilling down into the left and right child plans. |
3330 | * Similarly, INDEX_VAR references can be resolved by reference to the |
3331 | * indextlist given in a parent IndexOnlyScan node, or to the scan tlist in |
3332 | * ForeignScan and CustomScan nodes. (Note that we don't currently support |
3333 | * deparsing of indexquals in regular IndexScan or BitmapIndexScan nodes; |
3334 | * for those, we can only deparse the indexqualorig fields, which won't |
3335 | * contain INDEX_VAR Vars.) |
3336 | * |
3337 | * Note: planstate really ought to be declared as "PlanState *", but we use |
3338 | * "Node *" to avoid having to include execnodes.h in ruleutils.h. |
3339 | * |
3340 | * The ancestors list is a list of the PlanState's parent PlanStates, the |
3341 | * most-closely-nested first. This is needed to resolve PARAM_EXEC Params. |
3342 | * Note we assume that all the PlanStates share the same rtable. |
3343 | * |
3344 | * Once this function has been called, deparse_expression() can be called on |
3345 | * subsidiary expression(s) of the specified PlanState node. To deparse |
3346 | * expressions of a different Plan node in the same Plan tree, re-call this |
3347 | * function to identify the new parent Plan node. |
3348 | * |
3349 | * The result is the same List passed in; this is a notational convenience. |
3350 | */ |
3351 | List * |
3352 | set_deparse_context_planstate(List *dpcontext, |
3353 | Node *planstate, List *ancestors) |
3354 | { |
3355 | deparse_namespace *dpns; |
3356 | |
3357 | /* Should always have one-entry namespace list for Plan deparsing */ |
3358 | Assert(list_length(dpcontext) == 1); |
3359 | dpns = (deparse_namespace *) linitial(dpcontext); |
3360 | |
3361 | /* Set our attention on the specific plan node passed in */ |
3362 | set_deparse_planstate(dpns, (PlanState *) planstate); |
3363 | dpns->ancestors = ancestors; |
3364 | |
3365 | return dpcontext; |
3366 | } |
3367 | |
3368 | /* |
3369 | * select_rtable_names_for_explain - Select RTE aliases for EXPLAIN |
3370 | * |
3371 | * Determine the relation aliases we'll use during an EXPLAIN operation. |
3372 | * This is just a frontend to set_rtable_names. We have to expose the aliases |
3373 | * to EXPLAIN because EXPLAIN needs to know the right alias names to print. |
3374 | */ |
3375 | List * |
3376 | select_rtable_names_for_explain(List *rtable, Bitmapset *rels_used) |
3377 | { |
3378 | deparse_namespace dpns; |
3379 | |
3380 | memset(&dpns, 0, sizeof(dpns)); |
3381 | dpns.rtable = rtable; |
3382 | dpns.ctes = NIL; |
3383 | set_rtable_names(&dpns, NIL, rels_used); |
3384 | /* We needn't bother computing column aliases yet */ |
3385 | |
3386 | return dpns.rtable_names; |
3387 | } |
3388 | |
3389 | /* |
3390 | * set_rtable_names: select RTE aliases to be used in printing a query |
3391 | * |
3392 | * We fill in dpns->rtable_names with a list of names that is one-for-one with |
3393 | * the already-filled dpns->rtable list. Each RTE name is unique among those |
3394 | * in the new namespace plus any ancestor namespaces listed in |
3395 | * parent_namespaces. |
3396 | * |
3397 | * If rels_used isn't NULL, only RTE indexes listed in it are given aliases. |
3398 | * |
3399 | * Note that this function is only concerned with relation names, not column |
3400 | * names. |
3401 | */ |
3402 | static void |
3403 | set_rtable_names(deparse_namespace *dpns, List *parent_namespaces, |
3404 | Bitmapset *rels_used) |
3405 | { |
3406 | HASHCTL hash_ctl; |
3407 | HTAB *names_hash; |
3408 | NameHashEntry *hentry; |
3409 | bool found; |
3410 | int rtindex; |
3411 | ListCell *lc; |
3412 | |
3413 | dpns->rtable_names = NIL; |
3414 | /* nothing more to do if empty rtable */ |
3415 | if (dpns->rtable == NIL) |
3416 | return; |
3417 | |
3418 | /* |
3419 | * We use a hash table to hold known names, so that this process is O(N) |
3420 | * not O(N^2) for N names. |
3421 | */ |
3422 | MemSet(&hash_ctl, 0, sizeof(hash_ctl)); |
3423 | hash_ctl.keysize = NAMEDATALEN; |
3424 | hash_ctl.entrysize = sizeof(NameHashEntry); |
3425 | hash_ctl.hcxt = CurrentMemoryContext; |
3426 | names_hash = hash_create("set_rtable_names names" , |
3427 | list_length(dpns->rtable), |
3428 | &hash_ctl, |
3429 | HASH_ELEM | HASH_CONTEXT); |
3430 | /* Preload the hash table with names appearing in parent_namespaces */ |
3431 | foreach(lc, parent_namespaces) |
3432 | { |
3433 | deparse_namespace *olddpns = (deparse_namespace *) lfirst(lc); |
3434 | ListCell *lc2; |
3435 | |
3436 | foreach(lc2, olddpns->rtable_names) |
3437 | { |
3438 | char *oldname = (char *) lfirst(lc2); |
3439 | |
3440 | if (oldname == NULL) |
3441 | continue; |
3442 | hentry = (NameHashEntry *) hash_search(names_hash, |
3443 | oldname, |
3444 | HASH_ENTER, |
3445 | &found); |
3446 | /* we do not complain about duplicate names in parent namespaces */ |
3447 | hentry->counter = 0; |
3448 | } |
3449 | } |
3450 | |
3451 | /* Now we can scan the rtable */ |
3452 | rtindex = 1; |
3453 | foreach(lc, dpns->rtable) |
3454 | { |
3455 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
3456 | char *refname; |
3457 | |
3458 | /* Just in case this takes an unreasonable amount of time ... */ |
3459 | CHECK_FOR_INTERRUPTS(); |
3460 | |
3461 | if (rels_used && !bms_is_member(rtindex, rels_used)) |
3462 | { |
3463 | /* Ignore unreferenced RTE */ |
3464 | refname = NULL; |
3465 | } |
3466 | else if (rte->alias) |
3467 | { |
3468 | /* If RTE has a user-defined alias, prefer that */ |
3469 | refname = rte->alias->aliasname; |
3470 | } |
3471 | else if (rte->rtekind == RTE_RELATION) |
3472 | { |
3473 | /* Use the current actual name of the relation */ |
3474 | refname = get_rel_name(rte->relid); |
3475 | } |
3476 | else if (rte->rtekind == RTE_JOIN) |
3477 | { |
3478 | /* Unnamed join has no refname */ |
3479 | refname = NULL; |
3480 | } |
3481 | else |
3482 | { |
3483 | /* Otherwise use whatever the parser assigned */ |
3484 | refname = rte->eref->aliasname; |
3485 | } |
3486 | |
3487 | /* |
3488 | * If the selected name isn't unique, append digits to make it so, and |
3489 | * make a new hash entry for it once we've got a unique name. For a |
3490 | * very long input name, we might have to truncate to stay within |
3491 | * NAMEDATALEN. |
3492 | */ |
3493 | if (refname) |
3494 | { |
3495 | hentry = (NameHashEntry *) hash_search(names_hash, |
3496 | refname, |
3497 | HASH_ENTER, |
3498 | &found); |
3499 | if (found) |
3500 | { |
3501 | /* Name already in use, must choose a new one */ |
3502 | int refnamelen = strlen(refname); |
3503 | char *modname = (char *) palloc(refnamelen + 16); |
3504 | NameHashEntry *hentry2; |
3505 | |
3506 | do |
3507 | { |
3508 | hentry->counter++; |
3509 | for (;;) |
3510 | { |
3511 | /* |
3512 | * We avoid using %.*s here because it can misbehave |
3513 | * if the data is not valid in what libc thinks is the |
3514 | * prevailing encoding. |
3515 | */ |
3516 | memcpy(modname, refname, refnamelen); |
3517 | sprintf(modname + refnamelen, "_%d" , hentry->counter); |
3518 | if (strlen(modname) < NAMEDATALEN) |
3519 | break; |
3520 | /* drop chars from refname to keep all the digits */ |
3521 | refnamelen = pg_mbcliplen(refname, refnamelen, |
3522 | refnamelen - 1); |
3523 | } |
3524 | hentry2 = (NameHashEntry *) hash_search(names_hash, |
3525 | modname, |
3526 | HASH_ENTER, |
3527 | &found); |
3528 | } while (found); |
3529 | hentry2->counter = 0; /* init new hash entry */ |
3530 | refname = modname; |
3531 | } |
3532 | else |
3533 | { |
3534 | /* Name not previously used, need only initialize hentry */ |
3535 | hentry->counter = 0; |
3536 | } |
3537 | } |
3538 | |
3539 | dpns->rtable_names = lappend(dpns->rtable_names, refname); |
3540 | rtindex++; |
3541 | } |
3542 | |
3543 | hash_destroy(names_hash); |
3544 | } |
3545 | |
3546 | /* |
3547 | * set_deparse_for_query: set up deparse_namespace for deparsing a Query tree |
3548 | * |
3549 | * For convenience, this is defined to initialize the deparse_namespace struct |
3550 | * from scratch. |
3551 | */ |
3552 | static void |
3553 | set_deparse_for_query(deparse_namespace *dpns, Query *query, |
3554 | List *parent_namespaces) |
3555 | { |
3556 | ListCell *lc; |
3557 | ListCell *lc2; |
3558 | |
3559 | /* Initialize *dpns and fill rtable/ctes links */ |
3560 | memset(dpns, 0, sizeof(deparse_namespace)); |
3561 | dpns->rtable = query->rtable; |
3562 | dpns->ctes = query->cteList; |
3563 | |
3564 | /* Assign a unique relation alias to each RTE */ |
3565 | set_rtable_names(dpns, parent_namespaces, NULL); |
3566 | |
3567 | /* Initialize dpns->rtable_columns to contain zeroed structs */ |
3568 | dpns->rtable_columns = NIL; |
3569 | while (list_length(dpns->rtable_columns) < list_length(dpns->rtable)) |
3570 | dpns->rtable_columns = lappend(dpns->rtable_columns, |
3571 | palloc0(sizeof(deparse_columns))); |
3572 | |
3573 | /* If it's a utility query, it won't have a jointree */ |
3574 | if (query->jointree) |
3575 | { |
3576 | /* Detect whether global uniqueness of USING names is needed */ |
3577 | dpns->unique_using = |
3578 | has_dangerous_join_using(dpns, (Node *) query->jointree); |
3579 | |
3580 | /* |
3581 | * Select names for columns merged by USING, via a recursive pass over |
3582 | * the query jointree. |
3583 | */ |
3584 | set_using_names(dpns, (Node *) query->jointree, NIL); |
3585 | } |
3586 | |
3587 | /* |
3588 | * Now assign remaining column aliases for each RTE. We do this in a |
3589 | * linear scan of the rtable, so as to process RTEs whether or not they |
3590 | * are in the jointree (we mustn't miss NEW.*, INSERT target relations, |
3591 | * etc). JOIN RTEs must be processed after their children, but this is |
3592 | * okay because they appear later in the rtable list than their children |
3593 | * (cf Asserts in identify_join_columns()). |
3594 | */ |
3595 | forboth(lc, dpns->rtable, lc2, dpns->rtable_columns) |
3596 | { |
3597 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
3598 | deparse_columns *colinfo = (deparse_columns *) lfirst(lc2); |
3599 | |
3600 | if (rte->rtekind == RTE_JOIN) |
3601 | set_join_column_names(dpns, rte, colinfo); |
3602 | else |
3603 | set_relation_column_names(dpns, rte, colinfo); |
3604 | } |
3605 | } |
3606 | |
3607 | /* |
3608 | * set_simple_column_names: fill in column aliases for non-query situations |
3609 | * |
3610 | * This handles EXPLAIN and cases where we only have relation RTEs. Without |
3611 | * a join tree, we can't do anything smart about join RTEs, but we don't |
3612 | * need to (note that EXPLAIN should never see join alias Vars anyway). |
3613 | * If we do hit a join RTE we'll just process it like a non-table base RTE. |
3614 | */ |
3615 | static void |
3616 | set_simple_column_names(deparse_namespace *dpns) |
3617 | { |
3618 | ListCell *lc; |
3619 | ListCell *lc2; |
3620 | |
3621 | /* Initialize dpns->rtable_columns to contain zeroed structs */ |
3622 | dpns->rtable_columns = NIL; |
3623 | while (list_length(dpns->rtable_columns) < list_length(dpns->rtable)) |
3624 | dpns->rtable_columns = lappend(dpns->rtable_columns, |
3625 | palloc0(sizeof(deparse_columns))); |
3626 | |
3627 | /* Assign unique column aliases within each RTE */ |
3628 | forboth(lc, dpns->rtable, lc2, dpns->rtable_columns) |
3629 | { |
3630 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
3631 | deparse_columns *colinfo = (deparse_columns *) lfirst(lc2); |
3632 | |
3633 | set_relation_column_names(dpns, rte, colinfo); |
3634 | } |
3635 | } |
3636 | |
3637 | /* |
3638 | * has_dangerous_join_using: search jointree for unnamed JOIN USING |
3639 | * |
3640 | * Merged columns of a JOIN USING may act differently from either of the input |
3641 | * columns, either because they are merged with COALESCE (in a FULL JOIN) or |
3642 | * because an implicit coercion of the underlying input column is required. |
3643 | * In such a case the column must be referenced as a column of the JOIN not as |
3644 | * a column of either input. And this is problematic if the join is unnamed |
3645 | * (alias-less): we cannot qualify the column's name with an RTE name, since |
3646 | * there is none. (Forcibly assigning an alias to the join is not a solution, |
3647 | * since that will prevent legal references to tables below the join.) |
3648 | * To ensure that every column in the query is unambiguously referenceable, |
3649 | * we must assign such merged columns names that are globally unique across |
3650 | * the whole query, aliasing other columns out of the way as necessary. |
3651 | * |
3652 | * Because the ensuing re-aliasing is fairly damaging to the readability of |
3653 | * the query, we don't do this unless we have to. So, we must pre-scan |
3654 | * the join tree to see if we have to, before starting set_using_names(). |
3655 | */ |
3656 | static bool |
3657 | has_dangerous_join_using(deparse_namespace *dpns, Node *jtnode) |
3658 | { |
3659 | if (IsA(jtnode, RangeTblRef)) |
3660 | { |
3661 | /* nothing to do here */ |
3662 | } |
3663 | else if (IsA(jtnode, FromExpr)) |
3664 | { |
3665 | FromExpr *f = (FromExpr *) jtnode; |
3666 | ListCell *lc; |
3667 | |
3668 | foreach(lc, f->fromlist) |
3669 | { |
3670 | if (has_dangerous_join_using(dpns, (Node *) lfirst(lc))) |
3671 | return true; |
3672 | } |
3673 | } |
3674 | else if (IsA(jtnode, JoinExpr)) |
3675 | { |
3676 | JoinExpr *j = (JoinExpr *) jtnode; |
3677 | |
3678 | /* Is it an unnamed JOIN with USING? */ |
3679 | if (j->alias == NULL && j->usingClause) |
3680 | { |
3681 | /* |
3682 | * Yes, so check each join alias var to see if any of them are not |
3683 | * simple references to underlying columns. If so, we have a |
3684 | * dangerous situation and must pick unique aliases. |
3685 | */ |
3686 | RangeTblEntry *jrte = rt_fetch(j->rtindex, dpns->rtable); |
3687 | ListCell *lc; |
3688 | |
3689 | foreach(lc, jrte->joinaliasvars) |
3690 | { |
3691 | Var *aliasvar = (Var *) lfirst(lc); |
3692 | |
3693 | if (aliasvar != NULL && !IsA(aliasvar, Var)) |
3694 | return true; |
3695 | } |
3696 | } |
3697 | |
3698 | /* Nope, but inspect children */ |
3699 | if (has_dangerous_join_using(dpns, j->larg)) |
3700 | return true; |
3701 | if (has_dangerous_join_using(dpns, j->rarg)) |
3702 | return true; |
3703 | } |
3704 | else |
3705 | elog(ERROR, "unrecognized node type: %d" , |
3706 | (int) nodeTag(jtnode)); |
3707 | return false; |
3708 | } |
3709 | |
3710 | /* |
3711 | * set_using_names: select column aliases to be used for merged USING columns |
3712 | * |
3713 | * We do this during a recursive descent of the query jointree. |
3714 | * dpns->unique_using must already be set to determine the global strategy. |
3715 | * |
3716 | * Column alias info is saved in the dpns->rtable_columns list, which is |
3717 | * assumed to be filled with pre-zeroed deparse_columns structs. |
3718 | * |
3719 | * parentUsing is a list of all USING aliases assigned in parent joins of |
3720 | * the current jointree node. (The passed-in list must not be modified.) |
3721 | */ |
3722 | static void |
3723 | set_using_names(deparse_namespace *dpns, Node *jtnode, List *parentUsing) |
3724 | { |
3725 | if (IsA(jtnode, RangeTblRef)) |
3726 | { |
3727 | /* nothing to do now */ |
3728 | } |
3729 | else if (IsA(jtnode, FromExpr)) |
3730 | { |
3731 | FromExpr *f = (FromExpr *) jtnode; |
3732 | ListCell *lc; |
3733 | |
3734 | foreach(lc, f->fromlist) |
3735 | set_using_names(dpns, (Node *) lfirst(lc), parentUsing); |
3736 | } |
3737 | else if (IsA(jtnode, JoinExpr)) |
3738 | { |
3739 | JoinExpr *j = (JoinExpr *) jtnode; |
3740 | RangeTblEntry *rte = rt_fetch(j->rtindex, dpns->rtable); |
3741 | deparse_columns *colinfo = deparse_columns_fetch(j->rtindex, dpns); |
3742 | int *leftattnos; |
3743 | int *rightattnos; |
3744 | deparse_columns *leftcolinfo; |
3745 | deparse_columns *rightcolinfo; |
3746 | int i; |
3747 | ListCell *lc; |
3748 | |
3749 | /* Get info about the shape of the join */ |
3750 | identify_join_columns(j, rte, colinfo); |
3751 | leftattnos = colinfo->leftattnos; |
3752 | rightattnos = colinfo->rightattnos; |
3753 | |
3754 | /* Look up the not-yet-filled-in child deparse_columns structs */ |
3755 | leftcolinfo = deparse_columns_fetch(colinfo->leftrti, dpns); |
3756 | rightcolinfo = deparse_columns_fetch(colinfo->rightrti, dpns); |
3757 | |
3758 | /* |
3759 | * If this join is unnamed, then we cannot substitute new aliases at |
3760 | * this level, so any name requirements pushed down to here must be |
3761 | * pushed down again to the children. |
3762 | */ |
3763 | if (rte->alias == NULL) |
3764 | { |
3765 | for (i = 0; i < colinfo->num_cols; i++) |
3766 | { |
3767 | char *colname = colinfo->colnames[i]; |
3768 | |
3769 | if (colname == NULL) |
3770 | continue; |
3771 | |
3772 | /* Push down to left column, unless it's a system column */ |
3773 | if (leftattnos[i] > 0) |
3774 | { |
3775 | expand_colnames_array_to(leftcolinfo, leftattnos[i]); |
3776 | leftcolinfo->colnames[leftattnos[i] - 1] = colname; |
3777 | } |
3778 | |
3779 | /* Same on the righthand side */ |
3780 | if (rightattnos[i] > 0) |
3781 | { |
3782 | expand_colnames_array_to(rightcolinfo, rightattnos[i]); |
3783 | rightcolinfo->colnames[rightattnos[i] - 1] = colname; |
3784 | } |
3785 | } |
3786 | } |
3787 | |
3788 | /* |
3789 | * If there's a USING clause, select the USING column names and push |
3790 | * those names down to the children. We have two strategies: |
3791 | * |
3792 | * If dpns->unique_using is true, we force all USING names to be |
3793 | * unique across the whole query level. In principle we'd only need |
3794 | * the names of dangerous USING columns to be globally unique, but to |
3795 | * safely assign all USING names in a single pass, we have to enforce |
3796 | * the same uniqueness rule for all of them. However, if a USING |
3797 | * column's name has been pushed down from the parent, we should use |
3798 | * it as-is rather than making a uniqueness adjustment. This is |
3799 | * necessary when we're at an unnamed join, and it creates no risk of |
3800 | * ambiguity. Also, if there's a user-written output alias for a |
3801 | * merged column, we prefer to use that rather than the input name; |
3802 | * this simplifies the logic and seems likely to lead to less aliasing |
3803 | * overall. |
3804 | * |
3805 | * If dpns->unique_using is false, we only need USING names to be |
3806 | * unique within their own join RTE. We still need to honor |
3807 | * pushed-down names, though. |
3808 | * |
3809 | * Though significantly different in results, these two strategies are |
3810 | * implemented by the same code, with only the difference of whether |
3811 | * to put assigned names into dpns->using_names. |
3812 | */ |
3813 | if (j->usingClause) |
3814 | { |
3815 | /* Copy the input parentUsing list so we don't modify it */ |
3816 | parentUsing = list_copy(parentUsing); |
3817 | |
3818 | /* USING names must correspond to the first join output columns */ |
3819 | expand_colnames_array_to(colinfo, list_length(j->usingClause)); |
3820 | i = 0; |
3821 | foreach(lc, j->usingClause) |
3822 | { |
3823 | char *colname = strVal(lfirst(lc)); |
3824 | |
3825 | /* Assert it's a merged column */ |
3826 | Assert(leftattnos[i] != 0 && rightattnos[i] != 0); |
3827 | |
3828 | /* Adopt passed-down name if any, else select unique name */ |
3829 | if (colinfo->colnames[i] != NULL) |
3830 | colname = colinfo->colnames[i]; |
3831 | else |
3832 | { |
3833 | /* Prefer user-written output alias if any */ |
3834 | if (rte->alias && i < list_length(rte->alias->colnames)) |
3835 | colname = strVal(list_nth(rte->alias->colnames, i)); |
3836 | /* Make it appropriately unique */ |
3837 | colname = make_colname_unique(colname, dpns, colinfo); |
3838 | if (dpns->unique_using) |
3839 | dpns->using_names = lappend(dpns->using_names, |
3840 | colname); |
3841 | /* Save it as output column name, too */ |
3842 | colinfo->colnames[i] = colname; |
3843 | } |
3844 | |
3845 | /* Remember selected names for use later */ |
3846 | colinfo->usingNames = lappend(colinfo->usingNames, colname); |
3847 | parentUsing = lappend(parentUsing, colname); |
3848 | |
3849 | /* Push down to left column, unless it's a system column */ |
3850 | if (leftattnos[i] > 0) |
3851 | { |
3852 | expand_colnames_array_to(leftcolinfo, leftattnos[i]); |
3853 | leftcolinfo->colnames[leftattnos[i] - 1] = colname; |
3854 | } |
3855 | |
3856 | /* Same on the righthand side */ |
3857 | if (rightattnos[i] > 0) |
3858 | { |
3859 | expand_colnames_array_to(rightcolinfo, rightattnos[i]); |
3860 | rightcolinfo->colnames[rightattnos[i] - 1] = colname; |
3861 | } |
3862 | |
3863 | i++; |
3864 | } |
3865 | } |
3866 | |
3867 | /* Mark child deparse_columns structs with correct parentUsing info */ |
3868 | leftcolinfo->parentUsing = parentUsing; |
3869 | rightcolinfo->parentUsing = parentUsing; |
3870 | |
3871 | /* Now recursively assign USING column names in children */ |
3872 | set_using_names(dpns, j->larg, parentUsing); |
3873 | set_using_names(dpns, j->rarg, parentUsing); |
3874 | } |
3875 | else |
3876 | elog(ERROR, "unrecognized node type: %d" , |
3877 | (int) nodeTag(jtnode)); |
3878 | } |
3879 | |
3880 | /* |
3881 | * set_relation_column_names: select column aliases for a non-join RTE |
3882 | * |
3883 | * Column alias info is saved in *colinfo, which is assumed to be pre-zeroed. |
3884 | * If any colnames entries are already filled in, those override local |
3885 | * choices. |
3886 | */ |
3887 | static void |
3888 | set_relation_column_names(deparse_namespace *dpns, RangeTblEntry *rte, |
3889 | deparse_columns *colinfo) |
3890 | { |
3891 | int ncolumns; |
3892 | char **real_colnames; |
3893 | bool changed_any; |
3894 | int noldcolumns; |
3895 | int i; |
3896 | int j; |
3897 | |
3898 | /* |
3899 | * Extract the RTE's "real" column names. This is comparable to |
3900 | * get_rte_attribute_name, except that it's important to disregard dropped |
3901 | * columns. We put NULL into the array for a dropped column. |
3902 | */ |
3903 | if (rte->rtekind == RTE_RELATION) |
3904 | { |
3905 | /* Relation --- look to the system catalogs for up-to-date info */ |
3906 | Relation rel; |
3907 | TupleDesc tupdesc; |
3908 | |
3909 | rel = relation_open(rte->relid, AccessShareLock); |
3910 | tupdesc = RelationGetDescr(rel); |
3911 | |
3912 | ncolumns = tupdesc->natts; |
3913 | real_colnames = (char **) palloc(ncolumns * sizeof(char *)); |
3914 | |
3915 | for (i = 0; i < ncolumns; i++) |
3916 | { |
3917 | Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
3918 | |
3919 | if (attr->attisdropped) |
3920 | real_colnames[i] = NULL; |
3921 | else |
3922 | real_colnames[i] = pstrdup(NameStr(attr->attname)); |
3923 | } |
3924 | relation_close(rel, AccessShareLock); |
3925 | } |
3926 | else |
3927 | { |
3928 | /* Otherwise use the column names from eref */ |
3929 | ListCell *lc; |
3930 | |
3931 | ncolumns = list_length(rte->eref->colnames); |
3932 | real_colnames = (char **) palloc(ncolumns * sizeof(char *)); |
3933 | |
3934 | i = 0; |
3935 | foreach(lc, rte->eref->colnames) |
3936 | { |
3937 | /* |
3938 | * If the column name shown in eref is an empty string, then it's |
3939 | * a column that was dropped at the time of parsing the query, so |
3940 | * treat it as dropped. |
3941 | */ |
3942 | char *cname = strVal(lfirst(lc)); |
3943 | |
3944 | if (cname[0] == '\0') |
3945 | cname = NULL; |
3946 | real_colnames[i] = cname; |
3947 | i++; |
3948 | } |
3949 | } |
3950 | |
3951 | /* |
3952 | * Ensure colinfo->colnames has a slot for each column. (It could be long |
3953 | * enough already, if we pushed down a name for the last column.) Note: |
3954 | * it's possible that there are now more columns than there were when the |
3955 | * query was parsed, ie colnames could be longer than rte->eref->colnames. |
3956 | * We must assign unique aliases to the new columns too, else there could |
3957 | * be unresolved conflicts when the view/rule is reloaded. |
3958 | */ |
3959 | expand_colnames_array_to(colinfo, ncolumns); |
3960 | Assert(colinfo->num_cols == ncolumns); |
3961 | |
3962 | /* |
3963 | * Make sufficiently large new_colnames and is_new_col arrays, too. |
3964 | * |
3965 | * Note: because we leave colinfo->num_new_cols zero until after the loop, |
3966 | * colname_is_unique will not consult that array, which is fine because it |
3967 | * would only be duplicate effort. |
3968 | */ |
3969 | colinfo->new_colnames = (char **) palloc(ncolumns * sizeof(char *)); |
3970 | colinfo->is_new_col = (bool *) palloc(ncolumns * sizeof(bool)); |
3971 | |
3972 | /* |
3973 | * Scan the columns, select a unique alias for each one, and store it in |
3974 | * colinfo->colnames and colinfo->new_colnames. The former array has NULL |
3975 | * entries for dropped columns, the latter omits them. Also mark |
3976 | * new_colnames entries as to whether they are new since parse time; this |
3977 | * is the case for entries beyond the length of rte->eref->colnames. |
3978 | */ |
3979 | noldcolumns = list_length(rte->eref->colnames); |
3980 | changed_any = false; |
3981 | j = 0; |
3982 | for (i = 0; i < ncolumns; i++) |
3983 | { |
3984 | char *real_colname = real_colnames[i]; |
3985 | char *colname = colinfo->colnames[i]; |
3986 | |
3987 | /* Skip dropped columns */ |
3988 | if (real_colname == NULL) |
3989 | { |
3990 | Assert(colname == NULL); /* colnames[i] is already NULL */ |
3991 | continue; |
3992 | } |
3993 | |
3994 | /* If alias already assigned, that's what to use */ |
3995 | if (colname == NULL) |
3996 | { |
3997 | /* If user wrote an alias, prefer that over real column name */ |
3998 | if (rte->alias && i < list_length(rte->alias->colnames)) |
3999 | colname = strVal(list_nth(rte->alias->colnames, i)); |
4000 | else |
4001 | colname = real_colname; |
4002 | |
4003 | /* Unique-ify and insert into colinfo */ |
4004 | colname = make_colname_unique(colname, dpns, colinfo); |
4005 | |
4006 | colinfo->colnames[i] = colname; |
4007 | } |
4008 | |
4009 | /* Put names of non-dropped columns in new_colnames[] too */ |
4010 | colinfo->new_colnames[j] = colname; |
4011 | /* And mark them as new or not */ |
4012 | colinfo->is_new_col[j] = (i >= noldcolumns); |
4013 | j++; |
4014 | |
4015 | /* Remember if any assigned aliases differ from "real" name */ |
4016 | if (!changed_any && strcmp(colname, real_colname) != 0) |
4017 | changed_any = true; |
4018 | } |
4019 | |
4020 | /* |
4021 | * Set correct length for new_colnames[] array. (Note: if columns have |
4022 | * been added, colinfo->num_cols includes them, which is not really quite |
4023 | * right but is harmless, since any new columns must be at the end where |
4024 | * they won't affect varattnos of pre-existing columns.) |
4025 | */ |
4026 | colinfo->num_new_cols = j; |
4027 | |
4028 | /* |
4029 | * For a relation RTE, we need only print the alias column names if any |
4030 | * are different from the underlying "real" names. For a function RTE, |
4031 | * always emit a complete column alias list; this is to protect against |
4032 | * possible instability of the default column names (eg, from altering |
4033 | * parameter names). For tablefunc RTEs, we never print aliases, because |
4034 | * the column names are part of the clause itself. For other RTE types, |
4035 | * print if we changed anything OR if there were user-written column |
4036 | * aliases (since the latter would be part of the underlying "reality"). |
4037 | */ |
4038 | if (rte->rtekind == RTE_RELATION) |
4039 | colinfo->printaliases = changed_any; |
4040 | else if (rte->rtekind == RTE_FUNCTION) |
4041 | colinfo->printaliases = true; |
4042 | else if (rte->rtekind == RTE_TABLEFUNC) |
4043 | colinfo->printaliases = false; |
4044 | else if (rte->alias && rte->alias->colnames != NIL) |
4045 | colinfo->printaliases = true; |
4046 | else |
4047 | colinfo->printaliases = changed_any; |
4048 | } |
4049 | |
4050 | /* |
4051 | * set_join_column_names: select column aliases for a join RTE |
4052 | * |
4053 | * Column alias info is saved in *colinfo, which is assumed to be pre-zeroed. |
4054 | * If any colnames entries are already filled in, those override local |
4055 | * choices. Also, names for USING columns were already chosen by |
4056 | * set_using_names(). We further expect that column alias selection has been |
4057 | * completed for both input RTEs. |
4058 | */ |
4059 | static void |
4060 | set_join_column_names(deparse_namespace *dpns, RangeTblEntry *rte, |
4061 | deparse_columns *colinfo) |
4062 | { |
4063 | deparse_columns *leftcolinfo; |
4064 | deparse_columns *rightcolinfo; |
4065 | bool changed_any; |
4066 | int noldcolumns; |
4067 | int nnewcolumns; |
4068 | Bitmapset *leftmerged = NULL; |
4069 | Bitmapset *rightmerged = NULL; |
4070 | int i; |
4071 | int j; |
4072 | int ic; |
4073 | int jc; |
4074 | |
4075 | /* Look up the previously-filled-in child deparse_columns structs */ |
4076 | leftcolinfo = deparse_columns_fetch(colinfo->leftrti, dpns); |
4077 | rightcolinfo = deparse_columns_fetch(colinfo->rightrti, dpns); |
4078 | |
4079 | /* |
4080 | * Ensure colinfo->colnames has a slot for each column. (It could be long |
4081 | * enough already, if we pushed down a name for the last column.) Note: |
4082 | * it's possible that one or both inputs now have more columns than there |
4083 | * were when the query was parsed, but we'll deal with that below. We |
4084 | * only need entries in colnames for pre-existing columns. |
4085 | */ |
4086 | noldcolumns = list_length(rte->eref->colnames); |
4087 | expand_colnames_array_to(colinfo, noldcolumns); |
4088 | Assert(colinfo->num_cols == noldcolumns); |
4089 | |
4090 | /* |
4091 | * Scan the join output columns, select an alias for each one, and store |
4092 | * it in colinfo->colnames. If there are USING columns, set_using_names() |
4093 | * already selected their names, so we can start the loop at the first |
4094 | * non-merged column. |
4095 | */ |
4096 | changed_any = false; |
4097 | for (i = list_length(colinfo->usingNames); i < noldcolumns; i++) |
4098 | { |
4099 | char *colname = colinfo->colnames[i]; |
4100 | char *real_colname; |
4101 | |
4102 | /* Ignore dropped column (only possible for non-merged column) */ |
4103 | if (colinfo->leftattnos[i] == 0 && colinfo->rightattnos[i] == 0) |
4104 | { |
4105 | Assert(colname == NULL); |
4106 | continue; |
4107 | } |
4108 | |
4109 | /* Get the child column name */ |
4110 | if (colinfo->leftattnos[i] > 0) |
4111 | real_colname = leftcolinfo->colnames[colinfo->leftattnos[i] - 1]; |
4112 | else if (colinfo->rightattnos[i] > 0) |
4113 | real_colname = rightcolinfo->colnames[colinfo->rightattnos[i] - 1]; |
4114 | else |
4115 | { |
4116 | /* We're joining system columns --- use eref name */ |
4117 | real_colname = strVal(list_nth(rte->eref->colnames, i)); |
4118 | } |
4119 | Assert(real_colname != NULL); |
4120 | |
4121 | /* In an unnamed join, just report child column names as-is */ |
4122 | if (rte->alias == NULL) |
4123 | { |
4124 | colinfo->colnames[i] = real_colname; |
4125 | continue; |
4126 | } |
4127 | |
4128 | /* If alias already assigned, that's what to use */ |
4129 | if (colname == NULL) |
4130 | { |
4131 | /* If user wrote an alias, prefer that over real column name */ |
4132 | if (rte->alias && i < list_length(rte->alias->colnames)) |
4133 | colname = strVal(list_nth(rte->alias->colnames, i)); |
4134 | else |
4135 | colname = real_colname; |
4136 | |
4137 | /* Unique-ify and insert into colinfo */ |
4138 | colname = make_colname_unique(colname, dpns, colinfo); |
4139 | |
4140 | colinfo->colnames[i] = colname; |
4141 | } |
4142 | |
4143 | /* Remember if any assigned aliases differ from "real" name */ |
4144 | if (!changed_any && strcmp(colname, real_colname) != 0) |
4145 | changed_any = true; |
4146 | } |
4147 | |
4148 | /* |
4149 | * Calculate number of columns the join would have if it were re-parsed |
4150 | * now, and create storage for the new_colnames and is_new_col arrays. |
4151 | * |
4152 | * Note: colname_is_unique will be consulting new_colnames[] during the |
4153 | * loops below, so its not-yet-filled entries must be zeroes. |
4154 | */ |
4155 | nnewcolumns = leftcolinfo->num_new_cols + rightcolinfo->num_new_cols - |
4156 | list_length(colinfo->usingNames); |
4157 | colinfo->num_new_cols = nnewcolumns; |
4158 | colinfo->new_colnames = (char **) palloc0(nnewcolumns * sizeof(char *)); |
4159 | colinfo->is_new_col = (bool *) palloc0(nnewcolumns * sizeof(bool)); |
4160 | |
4161 | /* |
4162 | * Generating the new_colnames array is a bit tricky since any new columns |
4163 | * added since parse time must be inserted in the right places. This code |
4164 | * must match the parser, which will order a join's columns as merged |
4165 | * columns first (in USING-clause order), then non-merged columns from the |
4166 | * left input (in attnum order), then non-merged columns from the right |
4167 | * input (ditto). If one of the inputs is itself a join, its columns will |
4168 | * be ordered according to the same rule, which means newly-added columns |
4169 | * might not be at the end. We can figure out what's what by consulting |
4170 | * the leftattnos and rightattnos arrays plus the input is_new_col arrays. |
4171 | * |
4172 | * In these loops, i indexes leftattnos/rightattnos (so it's join varattno |
4173 | * less one), j indexes new_colnames/is_new_col, and ic/jc have similar |
4174 | * meanings for the current child RTE. |
4175 | */ |
4176 | |
4177 | /* Handle merged columns; they are first and can't be new */ |
4178 | i = j = 0; |
4179 | while (i < noldcolumns && |
4180 | colinfo->leftattnos[i] != 0 && |
4181 | colinfo->rightattnos[i] != 0) |
4182 | { |
4183 | /* column name is already determined and known unique */ |
4184 | colinfo->new_colnames[j] = colinfo->colnames[i]; |
4185 | colinfo->is_new_col[j] = false; |
4186 | |
4187 | /* build bitmapsets of child attnums of merged columns */ |
4188 | if (colinfo->leftattnos[i] > 0) |
4189 | leftmerged = bms_add_member(leftmerged, colinfo->leftattnos[i]); |
4190 | if (colinfo->rightattnos[i] > 0) |
4191 | rightmerged = bms_add_member(rightmerged, colinfo->rightattnos[i]); |
4192 | |
4193 | i++, j++; |
4194 | } |
4195 | |
4196 | /* Handle non-merged left-child columns */ |
4197 | ic = 0; |
4198 | for (jc = 0; jc < leftcolinfo->num_new_cols; jc++) |
4199 | { |
4200 | char *child_colname = leftcolinfo->new_colnames[jc]; |
4201 | |
4202 | if (!leftcolinfo->is_new_col[jc]) |
4203 | { |
4204 | /* Advance ic to next non-dropped old column of left child */ |
4205 | while (ic < leftcolinfo->num_cols && |
4206 | leftcolinfo->colnames[ic] == NULL) |
4207 | ic++; |
4208 | Assert(ic < leftcolinfo->num_cols); |
4209 | ic++; |
4210 | /* If it is a merged column, we already processed it */ |
4211 | if (bms_is_member(ic, leftmerged)) |
4212 | continue; |
4213 | /* Else, advance i to the corresponding existing join column */ |
4214 | while (i < colinfo->num_cols && |
4215 | colinfo->colnames[i] == NULL) |
4216 | i++; |
4217 | Assert(i < colinfo->num_cols); |
4218 | Assert(ic == colinfo->leftattnos[i]); |
4219 | /* Use the already-assigned name of this column */ |
4220 | colinfo->new_colnames[j] = colinfo->colnames[i]; |
4221 | i++; |
4222 | } |
4223 | else |
4224 | { |
4225 | /* |
4226 | * Unique-ify the new child column name and assign, unless we're |
4227 | * in an unnamed join, in which case just copy |
4228 | */ |
4229 | if (rte->alias != NULL) |
4230 | { |
4231 | colinfo->new_colnames[j] = |
4232 | make_colname_unique(child_colname, dpns, colinfo); |
4233 | if (!changed_any && |
4234 | strcmp(colinfo->new_colnames[j], child_colname) != 0) |
4235 | changed_any = true; |
4236 | } |
4237 | else |
4238 | colinfo->new_colnames[j] = child_colname; |
4239 | } |
4240 | |
4241 | colinfo->is_new_col[j] = leftcolinfo->is_new_col[jc]; |
4242 | j++; |
4243 | } |
4244 | |
4245 | /* Handle non-merged right-child columns in exactly the same way */ |
4246 | ic = 0; |
4247 | for (jc = 0; jc < rightcolinfo->num_new_cols; jc++) |
4248 | { |
4249 | char *child_colname = rightcolinfo->new_colnames[jc]; |
4250 | |
4251 | if (!rightcolinfo->is_new_col[jc]) |
4252 | { |
4253 | /* Advance ic to next non-dropped old column of right child */ |
4254 | while (ic < rightcolinfo->num_cols && |
4255 | rightcolinfo->colnames[ic] == NULL) |
4256 | ic++; |
4257 | Assert(ic < rightcolinfo->num_cols); |
4258 | ic++; |
4259 | /* If it is a merged column, we already processed it */ |
4260 | if (bms_is_member(ic, rightmerged)) |
4261 | continue; |
4262 | /* Else, advance i to the corresponding existing join column */ |
4263 | while (i < colinfo->num_cols && |
4264 | colinfo->colnames[i] == NULL) |
4265 | i++; |
4266 | Assert(i < colinfo->num_cols); |
4267 | Assert(ic == colinfo->rightattnos[i]); |
4268 | /* Use the already-assigned name of this column */ |
4269 | colinfo->new_colnames[j] = colinfo->colnames[i]; |
4270 | i++; |
4271 | } |
4272 | else |
4273 | { |
4274 | /* |
4275 | * Unique-ify the new child column name and assign, unless we're |
4276 | * in an unnamed join, in which case just copy |
4277 | */ |
4278 | if (rte->alias != NULL) |
4279 | { |
4280 | colinfo->new_colnames[j] = |
4281 | make_colname_unique(child_colname, dpns, colinfo); |
4282 | if (!changed_any && |
4283 | strcmp(colinfo->new_colnames[j], child_colname) != 0) |
4284 | changed_any = true; |
4285 | } |
4286 | else |
4287 | colinfo->new_colnames[j] = child_colname; |
4288 | } |
4289 | |
4290 | colinfo->is_new_col[j] = rightcolinfo->is_new_col[jc]; |
4291 | j++; |
4292 | } |
4293 | |
4294 | /* Assert we processed the right number of columns */ |
4295 | #ifdef USE_ASSERT_CHECKING |
4296 | while (i < colinfo->num_cols && colinfo->colnames[i] == NULL) |
4297 | i++; |
4298 | Assert(i == colinfo->num_cols); |
4299 | Assert(j == nnewcolumns); |
4300 | #endif |
4301 | |
4302 | /* |
4303 | * For a named join, print column aliases if we changed any from the child |
4304 | * names. Unnamed joins cannot print aliases. |
4305 | */ |
4306 | if (rte->alias != NULL) |
4307 | colinfo->printaliases = changed_any; |
4308 | else |
4309 | colinfo->printaliases = false; |
4310 | } |
4311 | |
4312 | /* |
4313 | * colname_is_unique: is colname distinct from already-chosen column names? |
4314 | * |
4315 | * dpns is query-wide info, colinfo is for the column's RTE |
4316 | */ |
4317 | static bool |
4318 | colname_is_unique(const char *colname, deparse_namespace *dpns, |
4319 | deparse_columns *colinfo) |
4320 | { |
4321 | int i; |
4322 | ListCell *lc; |
4323 | |
4324 | /* Check against already-assigned column aliases within RTE */ |
4325 | for (i = 0; i < colinfo->num_cols; i++) |
4326 | { |
4327 | char *oldname = colinfo->colnames[i]; |
4328 | |
4329 | if (oldname && strcmp(oldname, colname) == 0) |
4330 | return false; |
4331 | } |
4332 | |
4333 | /* |
4334 | * If we're building a new_colnames array, check that too (this will be |
4335 | * partially but not completely redundant with the previous checks) |
4336 | */ |
4337 | for (i = 0; i < colinfo->num_new_cols; i++) |
4338 | { |
4339 | char *oldname = colinfo->new_colnames[i]; |
4340 | |
4341 | if (oldname && strcmp(oldname, colname) == 0) |
4342 | return false; |
4343 | } |
4344 | |
4345 | /* Also check against USING-column names that must be globally unique */ |
4346 | foreach(lc, dpns->using_names) |
4347 | { |
4348 | char *oldname = (char *) lfirst(lc); |
4349 | |
4350 | if (strcmp(oldname, colname) == 0) |
4351 | return false; |
4352 | } |
4353 | |
4354 | /* Also check against names already assigned for parent-join USING cols */ |
4355 | foreach(lc, colinfo->parentUsing) |
4356 | { |
4357 | char *oldname = (char *) lfirst(lc); |
4358 | |
4359 | if (strcmp(oldname, colname) == 0) |
4360 | return false; |
4361 | } |
4362 | |
4363 | return true; |
4364 | } |
4365 | |
4366 | /* |
4367 | * make_colname_unique: modify colname if necessary to make it unique |
4368 | * |
4369 | * dpns is query-wide info, colinfo is for the column's RTE |
4370 | */ |
4371 | static char * |
4372 | make_colname_unique(char *colname, deparse_namespace *dpns, |
4373 | deparse_columns *colinfo) |
4374 | { |
4375 | /* |
4376 | * If the selected name isn't unique, append digits to make it so. For a |
4377 | * very long input name, we might have to truncate to stay within |
4378 | * NAMEDATALEN. |
4379 | */ |
4380 | if (!colname_is_unique(colname, dpns, colinfo)) |
4381 | { |
4382 | int colnamelen = strlen(colname); |
4383 | char *modname = (char *) palloc(colnamelen + 16); |
4384 | int i = 0; |
4385 | |
4386 | do |
4387 | { |
4388 | i++; |
4389 | for (;;) |
4390 | { |
4391 | /* |
4392 | * We avoid using %.*s here because it can misbehave if the |
4393 | * data is not valid in what libc thinks is the prevailing |
4394 | * encoding. |
4395 | */ |
4396 | memcpy(modname, colname, colnamelen); |
4397 | sprintf(modname + colnamelen, "_%d" , i); |
4398 | if (strlen(modname) < NAMEDATALEN) |
4399 | break; |
4400 | /* drop chars from colname to keep all the digits */ |
4401 | colnamelen = pg_mbcliplen(colname, colnamelen, |
4402 | colnamelen - 1); |
4403 | } |
4404 | } while (!colname_is_unique(modname, dpns, colinfo)); |
4405 | colname = modname; |
4406 | } |
4407 | return colname; |
4408 | } |
4409 | |
4410 | /* |
4411 | * expand_colnames_array_to: make colinfo->colnames at least n items long |
4412 | * |
4413 | * Any added array entries are initialized to zero. |
4414 | */ |
4415 | static void |
4416 | expand_colnames_array_to(deparse_columns *colinfo, int n) |
4417 | { |
4418 | if (n > colinfo->num_cols) |
4419 | { |
4420 | if (colinfo->colnames == NULL) |
4421 | colinfo->colnames = (char **) palloc0(n * sizeof(char *)); |
4422 | else |
4423 | { |
4424 | colinfo->colnames = (char **) repalloc(colinfo->colnames, |
4425 | n * sizeof(char *)); |
4426 | memset(colinfo->colnames + colinfo->num_cols, 0, |
4427 | (n - colinfo->num_cols) * sizeof(char *)); |
4428 | } |
4429 | colinfo->num_cols = n; |
4430 | } |
4431 | } |
4432 | |
4433 | /* |
4434 | * identify_join_columns: figure out where columns of a join come from |
4435 | * |
4436 | * Fills the join-specific fields of the colinfo struct, except for |
4437 | * usingNames which is filled later. |
4438 | */ |
4439 | static void |
4440 | identify_join_columns(JoinExpr *j, RangeTblEntry *jrte, |
4441 | deparse_columns *colinfo) |
4442 | { |
4443 | int numjoincols; |
4444 | int i; |
4445 | ListCell *lc; |
4446 | |
4447 | /* Extract left/right child RT indexes */ |
4448 | if (IsA(j->larg, RangeTblRef)) |
4449 | colinfo->leftrti = ((RangeTblRef *) j->larg)->rtindex; |
4450 | else if (IsA(j->larg, JoinExpr)) |
4451 | colinfo->leftrti = ((JoinExpr *) j->larg)->rtindex; |
4452 | else |
4453 | elog(ERROR, "unrecognized node type in jointree: %d" , |
4454 | (int) nodeTag(j->larg)); |
4455 | if (IsA(j->rarg, RangeTblRef)) |
4456 | colinfo->rightrti = ((RangeTblRef *) j->rarg)->rtindex; |
4457 | else if (IsA(j->rarg, JoinExpr)) |
4458 | colinfo->rightrti = ((JoinExpr *) j->rarg)->rtindex; |
4459 | else |
4460 | elog(ERROR, "unrecognized node type in jointree: %d" , |
4461 | (int) nodeTag(j->rarg)); |
4462 | |
4463 | /* Assert children will be processed earlier than join in second pass */ |
4464 | Assert(colinfo->leftrti < j->rtindex); |
4465 | Assert(colinfo->rightrti < j->rtindex); |
4466 | |
4467 | /* Initialize result arrays with zeroes */ |
4468 | numjoincols = list_length(jrte->joinaliasvars); |
4469 | Assert(numjoincols == list_length(jrte->eref->colnames)); |
4470 | colinfo->leftattnos = (int *) palloc0(numjoincols * sizeof(int)); |
4471 | colinfo->rightattnos = (int *) palloc0(numjoincols * sizeof(int)); |
4472 | |
4473 | /* Scan the joinaliasvars list to identify simple column references */ |
4474 | i = 0; |
4475 | foreach(lc, jrte->joinaliasvars) |
4476 | { |
4477 | Var *aliasvar = (Var *) lfirst(lc); |
4478 | |
4479 | /* get rid of any implicit coercion above the Var */ |
4480 | aliasvar = (Var *) strip_implicit_coercions((Node *) aliasvar); |
4481 | |
4482 | if (aliasvar == NULL) |
4483 | { |
4484 | /* It's a dropped column; nothing to do here */ |
4485 | } |
4486 | else if (IsA(aliasvar, Var)) |
4487 | { |
4488 | Assert(aliasvar->varlevelsup == 0); |
4489 | Assert(aliasvar->varattno != 0); |
4490 | if (aliasvar->varno == colinfo->leftrti) |
4491 | colinfo->leftattnos[i] = aliasvar->varattno; |
4492 | else if (aliasvar->varno == colinfo->rightrti) |
4493 | colinfo->rightattnos[i] = aliasvar->varattno; |
4494 | else |
4495 | elog(ERROR, "unexpected varno %d in JOIN RTE" , |
4496 | aliasvar->varno); |
4497 | } |
4498 | else if (IsA(aliasvar, CoalesceExpr)) |
4499 | { |
4500 | /* |
4501 | * It's a merged column in FULL JOIN USING. Ignore it for now and |
4502 | * let the code below identify the merged columns. |
4503 | */ |
4504 | } |
4505 | else |
4506 | elog(ERROR, "unrecognized node type in join alias vars: %d" , |
4507 | (int) nodeTag(aliasvar)); |
4508 | |
4509 | i++; |
4510 | } |
4511 | |
4512 | /* |
4513 | * If there's a USING clause, deconstruct the join quals to identify the |
4514 | * merged columns. This is a tad painful but if we cannot rely on the |
4515 | * column names, there is no other representation of which columns were |
4516 | * joined by USING. (Unless the join type is FULL, we can't tell from the |
4517 | * joinaliasvars list which columns are merged.) Note: we assume that the |
4518 | * merged columns are the first output column(s) of the join. |
4519 | */ |
4520 | if (j->usingClause) |
4521 | { |
4522 | List *leftvars = NIL; |
4523 | List *rightvars = NIL; |
4524 | ListCell *lc2; |
4525 | |
4526 | /* Extract left- and right-side Vars from the qual expression */ |
4527 | flatten_join_using_qual(j->quals, &leftvars, &rightvars); |
4528 | Assert(list_length(leftvars) == list_length(j->usingClause)); |
4529 | Assert(list_length(rightvars) == list_length(j->usingClause)); |
4530 | |
4531 | /* Mark the output columns accordingly */ |
4532 | i = 0; |
4533 | forboth(lc, leftvars, lc2, rightvars) |
4534 | { |
4535 | Var *leftvar = (Var *) lfirst(lc); |
4536 | Var *rightvar = (Var *) lfirst(lc2); |
4537 | |
4538 | Assert(leftvar->varlevelsup == 0); |
4539 | Assert(leftvar->varattno != 0); |
4540 | if (leftvar->varno != colinfo->leftrti) |
4541 | elog(ERROR, "unexpected varno %d in JOIN USING qual" , |
4542 | leftvar->varno); |
4543 | colinfo->leftattnos[i] = leftvar->varattno; |
4544 | |
4545 | Assert(rightvar->varlevelsup == 0); |
4546 | Assert(rightvar->varattno != 0); |
4547 | if (rightvar->varno != colinfo->rightrti) |
4548 | elog(ERROR, "unexpected varno %d in JOIN USING qual" , |
4549 | rightvar->varno); |
4550 | colinfo->rightattnos[i] = rightvar->varattno; |
4551 | |
4552 | i++; |
4553 | } |
4554 | } |
4555 | } |
4556 | |
4557 | /* |
4558 | * flatten_join_using_qual: extract Vars being joined from a JOIN/USING qual |
4559 | * |
4560 | * We assume that transformJoinUsingClause won't have produced anything except |
4561 | * AND nodes, equality operator nodes, and possibly implicit coercions, and |
4562 | * that the AND node inputs match left-to-right with the original USING list. |
4563 | * |
4564 | * Caller must initialize the result lists to NIL. |
4565 | */ |
4566 | static void |
4567 | flatten_join_using_qual(Node *qual, List **leftvars, List **rightvars) |
4568 | { |
4569 | if (IsA(qual, BoolExpr)) |
4570 | { |
4571 | /* Handle AND nodes by recursion */ |
4572 | BoolExpr *b = (BoolExpr *) qual; |
4573 | ListCell *lc; |
4574 | |
4575 | Assert(b->boolop == AND_EXPR); |
4576 | foreach(lc, b->args) |
4577 | { |
4578 | flatten_join_using_qual((Node *) lfirst(lc), |
4579 | leftvars, rightvars); |
4580 | } |
4581 | } |
4582 | else if (IsA(qual, OpExpr)) |
4583 | { |
4584 | /* Otherwise we should have an equality operator */ |
4585 | OpExpr *op = (OpExpr *) qual; |
4586 | Var *var; |
4587 | |
4588 | if (list_length(op->args) != 2) |
4589 | elog(ERROR, "unexpected unary operator in JOIN/USING qual" ); |
4590 | /* Arguments should be Vars with perhaps implicit coercions */ |
4591 | var = (Var *) strip_implicit_coercions((Node *) linitial(op->args)); |
4592 | if (!IsA(var, Var)) |
4593 | elog(ERROR, "unexpected node type in JOIN/USING qual: %d" , |
4594 | (int) nodeTag(var)); |
4595 | *leftvars = lappend(*leftvars, var); |
4596 | var = (Var *) strip_implicit_coercions((Node *) lsecond(op->args)); |
4597 | if (!IsA(var, Var)) |
4598 | elog(ERROR, "unexpected node type in JOIN/USING qual: %d" , |
4599 | (int) nodeTag(var)); |
4600 | *rightvars = lappend(*rightvars, var); |
4601 | } |
4602 | else |
4603 | { |
4604 | /* Perhaps we have an implicit coercion to boolean? */ |
4605 | Node *q = strip_implicit_coercions(qual); |
4606 | |
4607 | if (q != qual) |
4608 | flatten_join_using_qual(q, leftvars, rightvars); |
4609 | else |
4610 | elog(ERROR, "unexpected node type in JOIN/USING qual: %d" , |
4611 | (int) nodeTag(qual)); |
4612 | } |
4613 | } |
4614 | |
4615 | /* |
4616 | * get_rtable_name: convenience function to get a previously assigned RTE alias |
4617 | * |
4618 | * The RTE must belong to the topmost namespace level in "context". |
4619 | */ |
4620 | static char * |
4621 | get_rtable_name(int rtindex, deparse_context *context) |
4622 | { |
4623 | deparse_namespace *dpns = (deparse_namespace *) linitial(context->namespaces); |
4624 | |
4625 | Assert(rtindex > 0 && rtindex <= list_length(dpns->rtable_names)); |
4626 | return (char *) list_nth(dpns->rtable_names, rtindex - 1); |
4627 | } |
4628 | |
4629 | /* |
4630 | * set_deparse_planstate: set up deparse_namespace to parse subexpressions |
4631 | * of a given PlanState node |
4632 | * |
4633 | * This sets the planstate, outer_planstate, inner_planstate, outer_tlist, |
4634 | * inner_tlist, and index_tlist fields. Caller is responsible for adjusting |
4635 | * the ancestors list if necessary. Note that the rtable and ctes fields do |
4636 | * not need to change when shifting attention to different plan nodes in a |
4637 | * single plan tree. |
4638 | */ |
4639 | static void |
4640 | set_deparse_planstate(deparse_namespace *dpns, PlanState *ps) |
4641 | { |
4642 | dpns->planstate = ps; |
4643 | |
4644 | /* |
4645 | * We special-case Append and MergeAppend to pretend that the first child |
4646 | * plan is the OUTER referent; we have to interpret OUTER Vars in their |
4647 | * tlists according to one of the children, and the first one is the most |
4648 | * natural choice. Likewise special-case ModifyTable to pretend that the |
4649 | * first child plan is the OUTER referent; this is to support RETURNING |
4650 | * lists containing references to non-target relations. |
4651 | */ |
4652 | if (IsA(ps, AppendState)) |
4653 | dpns->outer_planstate = ((AppendState *) ps)->appendplans[0]; |
4654 | else if (IsA(ps, MergeAppendState)) |
4655 | dpns->outer_planstate = ((MergeAppendState *) ps)->mergeplans[0]; |
4656 | else if (IsA(ps, ModifyTableState)) |
4657 | dpns->outer_planstate = ((ModifyTableState *) ps)->mt_plans[0]; |
4658 | else |
4659 | dpns->outer_planstate = outerPlanState(ps); |
4660 | |
4661 | if (dpns->outer_planstate) |
4662 | dpns->outer_tlist = dpns->outer_planstate->plan->targetlist; |
4663 | else |
4664 | dpns->outer_tlist = NIL; |
4665 | |
4666 | /* |
4667 | * For a SubqueryScan, pretend the subplan is INNER referent. (We don't |
4668 | * use OUTER because that could someday conflict with the normal meaning.) |
4669 | * Likewise, for a CteScan, pretend the subquery's plan is INNER referent. |
4670 | * For ON CONFLICT .. UPDATE we just need the inner tlist to point to the |
4671 | * excluded expression's tlist. (Similar to the SubqueryScan we don't want |
4672 | * to reuse OUTER, it's used for RETURNING in some modify table cases, |
4673 | * although not INSERT .. CONFLICT). |
4674 | */ |
4675 | if (IsA(ps, SubqueryScanState)) |
4676 | dpns->inner_planstate = ((SubqueryScanState *) ps)->subplan; |
4677 | else if (IsA(ps, CteScanState)) |
4678 | dpns->inner_planstate = ((CteScanState *) ps)->cteplanstate; |
4679 | else if (IsA(ps, ModifyTableState)) |
4680 | dpns->inner_planstate = ps; |
4681 | else |
4682 | dpns->inner_planstate = innerPlanState(ps); |
4683 | |
4684 | if (IsA(ps, ModifyTableState)) |
4685 | dpns->inner_tlist = ((ModifyTableState *) ps)->mt_excludedtlist; |
4686 | else if (dpns->inner_planstate) |
4687 | dpns->inner_tlist = dpns->inner_planstate->plan->targetlist; |
4688 | else |
4689 | dpns->inner_tlist = NIL; |
4690 | |
4691 | /* Set up referent for INDEX_VAR Vars, if needed */ |
4692 | if (IsA(ps->plan, IndexOnlyScan)) |
4693 | dpns->index_tlist = ((IndexOnlyScan *) ps->plan)->indextlist; |
4694 | else if (IsA(ps->plan, ForeignScan)) |
4695 | dpns->index_tlist = ((ForeignScan *) ps->plan)->fdw_scan_tlist; |
4696 | else if (IsA(ps->plan, CustomScan)) |
4697 | dpns->index_tlist = ((CustomScan *) ps->plan)->custom_scan_tlist; |
4698 | else |
4699 | dpns->index_tlist = NIL; |
4700 | } |
4701 | |
4702 | /* |
4703 | * push_child_plan: temporarily transfer deparsing attention to a child plan |
4704 | * |
4705 | * When expanding an OUTER_VAR or INNER_VAR reference, we must adjust the |
4706 | * deparse context in case the referenced expression itself uses |
4707 | * OUTER_VAR/INNER_VAR. We modify the top stack entry in-place to avoid |
4708 | * affecting levelsup issues (although in a Plan tree there really shouldn't |
4709 | * be any). |
4710 | * |
4711 | * Caller must provide a local deparse_namespace variable to save the |
4712 | * previous state for pop_child_plan. |
4713 | */ |
4714 | static void |
4715 | push_child_plan(deparse_namespace *dpns, PlanState *ps, |
4716 | deparse_namespace *save_dpns) |
4717 | { |
4718 | /* Save state for restoration later */ |
4719 | *save_dpns = *dpns; |
4720 | |
4721 | /* Link current plan node into ancestors list */ |
4722 | dpns->ancestors = lcons(dpns->planstate, dpns->ancestors); |
4723 | |
4724 | /* Set attention on selected child */ |
4725 | set_deparse_planstate(dpns, ps); |
4726 | } |
4727 | |
4728 | /* |
4729 | * pop_child_plan: undo the effects of push_child_plan |
4730 | */ |
4731 | static void |
4732 | pop_child_plan(deparse_namespace *dpns, deparse_namespace *save_dpns) |
4733 | { |
4734 | List *ancestors; |
4735 | |
4736 | /* Get rid of ancestors list cell added by push_child_plan */ |
4737 | ancestors = list_delete_first(dpns->ancestors); |
4738 | |
4739 | /* Restore fields changed by push_child_plan */ |
4740 | *dpns = *save_dpns; |
4741 | |
4742 | /* Make sure dpns->ancestors is right (may be unnecessary) */ |
4743 | dpns->ancestors = ancestors; |
4744 | } |
4745 | |
4746 | /* |
4747 | * push_ancestor_plan: temporarily transfer deparsing attention to an |
4748 | * ancestor plan |
4749 | * |
4750 | * When expanding a Param reference, we must adjust the deparse context |
4751 | * to match the plan node that contains the expression being printed; |
4752 | * otherwise we'd fail if that expression itself contains a Param or |
4753 | * OUTER_VAR/INNER_VAR/INDEX_VAR variable. |
4754 | * |
4755 | * The target ancestor is conveniently identified by the ListCell holding it |
4756 | * in dpns->ancestors. |
4757 | * |
4758 | * Caller must provide a local deparse_namespace variable to save the |
4759 | * previous state for pop_ancestor_plan. |
4760 | */ |
4761 | static void |
4762 | push_ancestor_plan(deparse_namespace *dpns, ListCell *ancestor_cell, |
4763 | deparse_namespace *save_dpns) |
4764 | { |
4765 | PlanState *ps = (PlanState *) lfirst(ancestor_cell); |
4766 | List *ancestors; |
4767 | |
4768 | /* Save state for restoration later */ |
4769 | *save_dpns = *dpns; |
4770 | |
4771 | /* Build a new ancestor list with just this node's ancestors */ |
4772 | ancestors = NIL; |
4773 | while ((ancestor_cell = lnext(ancestor_cell)) != NULL) |
4774 | ancestors = lappend(ancestors, lfirst(ancestor_cell)); |
4775 | dpns->ancestors = ancestors; |
4776 | |
4777 | /* Set attention on selected ancestor */ |
4778 | set_deparse_planstate(dpns, ps); |
4779 | } |
4780 | |
4781 | /* |
4782 | * pop_ancestor_plan: undo the effects of push_ancestor_plan |
4783 | */ |
4784 | static void |
4785 | pop_ancestor_plan(deparse_namespace *dpns, deparse_namespace *save_dpns) |
4786 | { |
4787 | /* Free the ancestor list made in push_ancestor_plan */ |
4788 | list_free(dpns->ancestors); |
4789 | |
4790 | /* Restore fields changed by push_ancestor_plan */ |
4791 | *dpns = *save_dpns; |
4792 | } |
4793 | |
4794 | |
4795 | /* ---------- |
4796 | * make_ruledef - reconstruct the CREATE RULE command |
4797 | * for a given pg_rewrite tuple |
4798 | * ---------- |
4799 | */ |
4800 | static void |
4801 | make_ruledef(StringInfo buf, HeapTuple ruletup, TupleDesc rulettc, |
4802 | int prettyFlags) |
4803 | { |
4804 | char *rulename; |
4805 | char ev_type; |
4806 | Oid ev_class; |
4807 | bool is_instead; |
4808 | char *ev_qual; |
4809 | char *ev_action; |
4810 | List *actions = NIL; |
4811 | Relation ev_relation; |
4812 | TupleDesc viewResultDesc = NULL; |
4813 | int fno; |
4814 | Datum dat; |
4815 | bool isnull; |
4816 | |
4817 | /* |
4818 | * Get the attribute values from the rules tuple |
4819 | */ |
4820 | fno = SPI_fnumber(rulettc, "rulename" ); |
4821 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
4822 | Assert(!isnull); |
4823 | rulename = NameStr(*(DatumGetName(dat))); |
4824 | |
4825 | fno = SPI_fnumber(rulettc, "ev_type" ); |
4826 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
4827 | Assert(!isnull); |
4828 | ev_type = DatumGetChar(dat); |
4829 | |
4830 | fno = SPI_fnumber(rulettc, "ev_class" ); |
4831 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
4832 | Assert(!isnull); |
4833 | ev_class = DatumGetObjectId(dat); |
4834 | |
4835 | fno = SPI_fnumber(rulettc, "is_instead" ); |
4836 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
4837 | Assert(!isnull); |
4838 | is_instead = DatumGetBool(dat); |
4839 | |
4840 | /* these could be nulls */ |
4841 | fno = SPI_fnumber(rulettc, "ev_qual" ); |
4842 | ev_qual = SPI_getvalue(ruletup, rulettc, fno); |
4843 | |
4844 | fno = SPI_fnumber(rulettc, "ev_action" ); |
4845 | ev_action = SPI_getvalue(ruletup, rulettc, fno); |
4846 | if (ev_action != NULL) |
4847 | actions = (List *) stringToNode(ev_action); |
4848 | |
4849 | ev_relation = table_open(ev_class, AccessShareLock); |
4850 | |
4851 | /* |
4852 | * Build the rules definition text |
4853 | */ |
4854 | appendStringInfo(buf, "CREATE RULE %s AS" , |
4855 | quote_identifier(rulename)); |
4856 | |
4857 | if (prettyFlags & PRETTYFLAG_INDENT) |
4858 | appendStringInfoString(buf, "\n ON " ); |
4859 | else |
4860 | appendStringInfoString(buf, " ON " ); |
4861 | |
4862 | /* The event the rule is fired for */ |
4863 | switch (ev_type) |
4864 | { |
4865 | case '1': |
4866 | appendStringInfoString(buf, "SELECT" ); |
4867 | viewResultDesc = RelationGetDescr(ev_relation); |
4868 | break; |
4869 | |
4870 | case '2': |
4871 | appendStringInfoString(buf, "UPDATE" ); |
4872 | break; |
4873 | |
4874 | case '3': |
4875 | appendStringInfoString(buf, "INSERT" ); |
4876 | break; |
4877 | |
4878 | case '4': |
4879 | appendStringInfoString(buf, "DELETE" ); |
4880 | break; |
4881 | |
4882 | default: |
4883 | ereport(ERROR, |
4884 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
4885 | errmsg("rule \"%s\" has unsupported event type %d" , |
4886 | rulename, ev_type))); |
4887 | break; |
4888 | } |
4889 | |
4890 | /* The relation the rule is fired on */ |
4891 | appendStringInfo(buf, " TO %s" , |
4892 | (prettyFlags & PRETTYFLAG_SCHEMA) ? |
4893 | generate_relation_name(ev_class, NIL) : |
4894 | generate_qualified_relation_name(ev_class)); |
4895 | |
4896 | /* If the rule has an event qualification, add it */ |
4897 | if (ev_qual == NULL) |
4898 | ev_qual = "" ; |
4899 | if (strlen(ev_qual) > 0 && strcmp(ev_qual, "<>" ) != 0) |
4900 | { |
4901 | Node *qual; |
4902 | Query *query; |
4903 | deparse_context context; |
4904 | deparse_namespace dpns; |
4905 | |
4906 | if (prettyFlags & PRETTYFLAG_INDENT) |
4907 | appendStringInfoString(buf, "\n " ); |
4908 | appendStringInfoString(buf, " WHERE " ); |
4909 | |
4910 | qual = stringToNode(ev_qual); |
4911 | |
4912 | /* |
4913 | * We need to make a context for recognizing any Vars in the qual |
4914 | * (which can only be references to OLD and NEW). Use the rtable of |
4915 | * the first query in the action list for this purpose. |
4916 | */ |
4917 | query = (Query *) linitial(actions); |
4918 | |
4919 | /* |
4920 | * If the action is INSERT...SELECT, OLD/NEW have been pushed down |
4921 | * into the SELECT, and that's what we need to look at. (Ugly kluge |
4922 | * ... try to fix this when we redesign querytrees.) |
4923 | */ |
4924 | query = getInsertSelectQuery(query, NULL); |
4925 | |
4926 | /* Must acquire locks right away; see notes in get_query_def() */ |
4927 | AcquireRewriteLocks(query, false, false); |
4928 | |
4929 | context.buf = buf; |
4930 | context.namespaces = list_make1(&dpns); |
4931 | context.windowClause = NIL; |
4932 | context.windowTList = NIL; |
4933 | context.varprefix = (list_length(query->rtable) != 1); |
4934 | context.prettyFlags = prettyFlags; |
4935 | context.wrapColumn = WRAP_COLUMN_DEFAULT; |
4936 | context.indentLevel = PRETTYINDENT_STD; |
4937 | context.special_exprkind = EXPR_KIND_NONE; |
4938 | |
4939 | set_deparse_for_query(&dpns, query, NIL); |
4940 | |
4941 | get_rule_expr(qual, &context, false); |
4942 | } |
4943 | |
4944 | appendStringInfoString(buf, " DO " ); |
4945 | |
4946 | /* The INSTEAD keyword (if so) */ |
4947 | if (is_instead) |
4948 | appendStringInfoString(buf, "INSTEAD " ); |
4949 | |
4950 | /* Finally the rules actions */ |
4951 | if (list_length(actions) > 1) |
4952 | { |
4953 | ListCell *action; |
4954 | Query *query; |
4955 | |
4956 | appendStringInfoChar(buf, '('); |
4957 | foreach(action, actions) |
4958 | { |
4959 | query = (Query *) lfirst(action); |
4960 | get_query_def(query, buf, NIL, viewResultDesc, |
4961 | prettyFlags, WRAP_COLUMN_DEFAULT, 0); |
4962 | if (prettyFlags) |
4963 | appendStringInfoString(buf, ";\n" ); |
4964 | else |
4965 | appendStringInfoString(buf, "; " ); |
4966 | } |
4967 | appendStringInfoString(buf, ");" ); |
4968 | } |
4969 | else if (list_length(actions) == 0) |
4970 | { |
4971 | appendStringInfoString(buf, "NOTHING;" ); |
4972 | } |
4973 | else |
4974 | { |
4975 | Query *query; |
4976 | |
4977 | query = (Query *) linitial(actions); |
4978 | get_query_def(query, buf, NIL, viewResultDesc, |
4979 | prettyFlags, WRAP_COLUMN_DEFAULT, 0); |
4980 | appendStringInfoChar(buf, ';'); |
4981 | } |
4982 | |
4983 | table_close(ev_relation, AccessShareLock); |
4984 | } |
4985 | |
4986 | |
4987 | /* ---------- |
4988 | * make_viewdef - reconstruct the SELECT part of a |
4989 | * view rewrite rule |
4990 | * ---------- |
4991 | */ |
4992 | static void |
4993 | make_viewdef(StringInfo buf, HeapTuple ruletup, TupleDesc rulettc, |
4994 | int prettyFlags, int wrapColumn) |
4995 | { |
4996 | Query *query; |
4997 | char ev_type; |
4998 | Oid ev_class; |
4999 | bool is_instead; |
5000 | char *ev_qual; |
5001 | char *ev_action; |
5002 | List *actions = NIL; |
5003 | Relation ev_relation; |
5004 | int fno; |
5005 | Datum dat; |
5006 | bool isnull; |
5007 | |
5008 | /* |
5009 | * Get the attribute values from the rules tuple |
5010 | */ |
5011 | fno = SPI_fnumber(rulettc, "ev_type" ); |
5012 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
5013 | Assert(!isnull); |
5014 | ev_type = DatumGetChar(dat); |
5015 | |
5016 | fno = SPI_fnumber(rulettc, "ev_class" ); |
5017 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
5018 | Assert(!isnull); |
5019 | ev_class = DatumGetObjectId(dat); |
5020 | |
5021 | fno = SPI_fnumber(rulettc, "is_instead" ); |
5022 | dat = SPI_getbinval(ruletup, rulettc, fno, &isnull); |
5023 | Assert(!isnull); |
5024 | is_instead = DatumGetBool(dat); |
5025 | |
5026 | /* these could be nulls */ |
5027 | fno = SPI_fnumber(rulettc, "ev_qual" ); |
5028 | ev_qual = SPI_getvalue(ruletup, rulettc, fno); |
5029 | |
5030 | fno = SPI_fnumber(rulettc, "ev_action" ); |
5031 | ev_action = SPI_getvalue(ruletup, rulettc, fno); |
5032 | if (ev_action != NULL) |
5033 | actions = (List *) stringToNode(ev_action); |
5034 | |
5035 | if (list_length(actions) != 1) |
5036 | { |
5037 | /* keep output buffer empty and leave */ |
5038 | return; |
5039 | } |
5040 | |
5041 | query = (Query *) linitial(actions); |
5042 | |
5043 | if (ev_type != '1' || !is_instead || |
5044 | strcmp(ev_qual, "<>" ) != 0 || query->commandType != CMD_SELECT) |
5045 | { |
5046 | /* keep output buffer empty and leave */ |
5047 | return; |
5048 | } |
5049 | |
5050 | ev_relation = table_open(ev_class, AccessShareLock); |
5051 | |
5052 | get_query_def(query, buf, NIL, RelationGetDescr(ev_relation), |
5053 | prettyFlags, wrapColumn, 0); |
5054 | appendStringInfoChar(buf, ';'); |
5055 | |
5056 | table_close(ev_relation, AccessShareLock); |
5057 | } |
5058 | |
5059 | |
5060 | /* ---------- |
5061 | * get_query_def - Parse back one query parsetree |
5062 | * |
5063 | * If resultDesc is not NULL, then it is the output tuple descriptor for |
5064 | * the view represented by a SELECT query. |
5065 | * ---------- |
5066 | */ |
5067 | static void |
5068 | get_query_def(Query *query, StringInfo buf, List *parentnamespace, |
5069 | TupleDesc resultDesc, |
5070 | int prettyFlags, int wrapColumn, int startIndent) |
5071 | { |
5072 | deparse_context context; |
5073 | deparse_namespace dpns; |
5074 | |
5075 | /* Guard against excessively long or deeply-nested queries */ |
5076 | CHECK_FOR_INTERRUPTS(); |
5077 | check_stack_depth(); |
5078 | |
5079 | /* |
5080 | * Before we begin to examine the query, acquire locks on referenced |
5081 | * relations, and fix up deleted columns in JOIN RTEs. This ensures |
5082 | * consistent results. Note we assume it's OK to scribble on the passed |
5083 | * querytree! |
5084 | * |
5085 | * We are only deparsing the query (we are not about to execute it), so we |
5086 | * only need AccessShareLock on the relations it mentions. |
5087 | */ |
5088 | AcquireRewriteLocks(query, false, false); |
5089 | |
5090 | context.buf = buf; |
5091 | context.namespaces = lcons(&dpns, list_copy(parentnamespace)); |
5092 | context.windowClause = NIL; |
5093 | context.windowTList = NIL; |
5094 | context.varprefix = (parentnamespace != NIL || |
5095 | list_length(query->rtable) != 1); |
5096 | context.prettyFlags = prettyFlags; |
5097 | context.wrapColumn = wrapColumn; |
5098 | context.indentLevel = startIndent; |
5099 | context.special_exprkind = EXPR_KIND_NONE; |
5100 | |
5101 | set_deparse_for_query(&dpns, query, parentnamespace); |
5102 | |
5103 | switch (query->commandType) |
5104 | { |
5105 | case CMD_SELECT: |
5106 | get_select_query_def(query, &context, resultDesc); |
5107 | break; |
5108 | |
5109 | case CMD_UPDATE: |
5110 | get_update_query_def(query, &context); |
5111 | break; |
5112 | |
5113 | case CMD_INSERT: |
5114 | get_insert_query_def(query, &context); |
5115 | break; |
5116 | |
5117 | case CMD_DELETE: |
5118 | get_delete_query_def(query, &context); |
5119 | break; |
5120 | |
5121 | case CMD_NOTHING: |
5122 | appendStringInfoString(buf, "NOTHING" ); |
5123 | break; |
5124 | |
5125 | case CMD_UTILITY: |
5126 | get_utility_query_def(query, &context); |
5127 | break; |
5128 | |
5129 | default: |
5130 | elog(ERROR, "unrecognized query command type: %d" , |
5131 | query->commandType); |
5132 | break; |
5133 | } |
5134 | } |
5135 | |
5136 | /* ---------- |
5137 | * get_values_def - Parse back a VALUES list |
5138 | * ---------- |
5139 | */ |
5140 | static void |
5141 | get_values_def(List *values_lists, deparse_context *context) |
5142 | { |
5143 | StringInfo buf = context->buf; |
5144 | bool first_list = true; |
5145 | ListCell *vtl; |
5146 | |
5147 | appendStringInfoString(buf, "VALUES " ); |
5148 | |
5149 | foreach(vtl, values_lists) |
5150 | { |
5151 | List *sublist = (List *) lfirst(vtl); |
5152 | bool first_col = true; |
5153 | ListCell *lc; |
5154 | |
5155 | if (first_list) |
5156 | first_list = false; |
5157 | else |
5158 | appendStringInfoString(buf, ", " ); |
5159 | |
5160 | appendStringInfoChar(buf, '('); |
5161 | foreach(lc, sublist) |
5162 | { |
5163 | Node *col = (Node *) lfirst(lc); |
5164 | |
5165 | if (first_col) |
5166 | first_col = false; |
5167 | else |
5168 | appendStringInfoChar(buf, ','); |
5169 | |
5170 | /* |
5171 | * Print the value. Whole-row Vars need special treatment. |
5172 | */ |
5173 | get_rule_expr_toplevel(col, context, false); |
5174 | } |
5175 | appendStringInfoChar(buf, ')'); |
5176 | } |
5177 | } |
5178 | |
5179 | /* ---------- |
5180 | * get_with_clause - Parse back a WITH clause |
5181 | * ---------- |
5182 | */ |
5183 | static void |
5184 | get_with_clause(Query *query, deparse_context *context) |
5185 | { |
5186 | StringInfo buf = context->buf; |
5187 | const char *sep; |
5188 | ListCell *l; |
5189 | |
5190 | if (query->cteList == NIL) |
5191 | return; |
5192 | |
5193 | if (PRETTY_INDENT(context)) |
5194 | { |
5195 | context->indentLevel += PRETTYINDENT_STD; |
5196 | appendStringInfoChar(buf, ' '); |
5197 | } |
5198 | |
5199 | if (query->hasRecursive) |
5200 | sep = "WITH RECURSIVE " ; |
5201 | else |
5202 | sep = "WITH " ; |
5203 | foreach(l, query->cteList) |
5204 | { |
5205 | CommonTableExpr *cte = (CommonTableExpr *) lfirst(l); |
5206 | |
5207 | appendStringInfoString(buf, sep); |
5208 | appendStringInfoString(buf, quote_identifier(cte->ctename)); |
5209 | if (cte->aliascolnames) |
5210 | { |
5211 | bool first = true; |
5212 | ListCell *col; |
5213 | |
5214 | appendStringInfoChar(buf, '('); |
5215 | foreach(col, cte->aliascolnames) |
5216 | { |
5217 | if (first) |
5218 | first = false; |
5219 | else |
5220 | appendStringInfoString(buf, ", " ); |
5221 | appendStringInfoString(buf, |
5222 | quote_identifier(strVal(lfirst(col)))); |
5223 | } |
5224 | appendStringInfoChar(buf, ')'); |
5225 | } |
5226 | appendStringInfoString(buf, " AS " ); |
5227 | switch (cte->ctematerialized) |
5228 | { |
5229 | case CTEMaterializeDefault: |
5230 | break; |
5231 | case CTEMaterializeAlways: |
5232 | appendStringInfoString(buf, "MATERIALIZED " ); |
5233 | break; |
5234 | case CTEMaterializeNever: |
5235 | appendStringInfoString(buf, "NOT MATERIALIZED " ); |
5236 | break; |
5237 | } |
5238 | appendStringInfoChar(buf, '('); |
5239 | if (PRETTY_INDENT(context)) |
5240 | appendContextKeyword(context, "" , 0, 0, 0); |
5241 | get_query_def((Query *) cte->ctequery, buf, context->namespaces, NULL, |
5242 | context->prettyFlags, context->wrapColumn, |
5243 | context->indentLevel); |
5244 | if (PRETTY_INDENT(context)) |
5245 | appendContextKeyword(context, "" , 0, 0, 0); |
5246 | appendStringInfoChar(buf, ')'); |
5247 | sep = ", " ; |
5248 | } |
5249 | |
5250 | if (PRETTY_INDENT(context)) |
5251 | { |
5252 | context->indentLevel -= PRETTYINDENT_STD; |
5253 | appendContextKeyword(context, "" , 0, 0, 0); |
5254 | } |
5255 | else |
5256 | appendStringInfoChar(buf, ' '); |
5257 | } |
5258 | |
5259 | /* ---------- |
5260 | * get_select_query_def - Parse back a SELECT parsetree |
5261 | * ---------- |
5262 | */ |
5263 | static void |
5264 | get_select_query_def(Query *query, deparse_context *context, |
5265 | TupleDesc resultDesc) |
5266 | { |
5267 | StringInfo buf = context->buf; |
5268 | List *save_windowclause; |
5269 | List *save_windowtlist; |
5270 | bool force_colno; |
5271 | ListCell *l; |
5272 | |
5273 | /* Insert the WITH clause if given */ |
5274 | get_with_clause(query, context); |
5275 | |
5276 | /* Set up context for possible window functions */ |
5277 | save_windowclause = context->windowClause; |
5278 | context->windowClause = query->windowClause; |
5279 | save_windowtlist = context->windowTList; |
5280 | context->windowTList = query->targetList; |
5281 | |
5282 | /* |
5283 | * If the Query node has a setOperations tree, then it's the top level of |
5284 | * a UNION/INTERSECT/EXCEPT query; only the WITH, ORDER BY and LIMIT |
5285 | * fields are interesting in the top query itself. |
5286 | */ |
5287 | if (query->setOperations) |
5288 | { |
5289 | get_setop_query(query->setOperations, query, context, resultDesc); |
5290 | /* ORDER BY clauses must be simple in this case */ |
5291 | force_colno = true; |
5292 | } |
5293 | else |
5294 | { |
5295 | get_basic_select_query(query, context, resultDesc); |
5296 | force_colno = false; |
5297 | } |
5298 | |
5299 | /* Add the ORDER BY clause if given */ |
5300 | if (query->sortClause != NIL) |
5301 | { |
5302 | appendContextKeyword(context, " ORDER BY " , |
5303 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
5304 | get_rule_orderby(query->sortClause, query->targetList, |
5305 | force_colno, context); |
5306 | } |
5307 | |
5308 | /* Add the LIMIT clause if given */ |
5309 | if (query->limitOffset != NULL) |
5310 | { |
5311 | appendContextKeyword(context, " OFFSET " , |
5312 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5313 | get_rule_expr(query->limitOffset, context, false); |
5314 | } |
5315 | if (query->limitCount != NULL) |
5316 | { |
5317 | appendContextKeyword(context, " LIMIT " , |
5318 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5319 | if (IsA(query->limitCount, Const) && |
5320 | ((Const *) query->limitCount)->constisnull) |
5321 | appendStringInfoString(buf, "ALL" ); |
5322 | else |
5323 | get_rule_expr(query->limitCount, context, false); |
5324 | } |
5325 | |
5326 | /* Add FOR [KEY] UPDATE/SHARE clauses if present */ |
5327 | if (query->hasForUpdate) |
5328 | { |
5329 | foreach(l, query->rowMarks) |
5330 | { |
5331 | RowMarkClause *rc = (RowMarkClause *) lfirst(l); |
5332 | |
5333 | /* don't print implicit clauses */ |
5334 | if (rc->pushedDown) |
5335 | continue; |
5336 | |
5337 | switch (rc->strength) |
5338 | { |
5339 | case LCS_NONE: |
5340 | /* we intentionally throw an error for LCS_NONE */ |
5341 | elog(ERROR, "unrecognized LockClauseStrength %d" , |
5342 | (int) rc->strength); |
5343 | break; |
5344 | case LCS_FORKEYSHARE: |
5345 | appendContextKeyword(context, " FOR KEY SHARE" , |
5346 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5347 | break; |
5348 | case LCS_FORSHARE: |
5349 | appendContextKeyword(context, " FOR SHARE" , |
5350 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5351 | break; |
5352 | case LCS_FORNOKEYUPDATE: |
5353 | appendContextKeyword(context, " FOR NO KEY UPDATE" , |
5354 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5355 | break; |
5356 | case LCS_FORUPDATE: |
5357 | appendContextKeyword(context, " FOR UPDATE" , |
5358 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5359 | break; |
5360 | } |
5361 | |
5362 | appendStringInfo(buf, " OF %s" , |
5363 | quote_identifier(get_rtable_name(rc->rti, |
5364 | context))); |
5365 | if (rc->waitPolicy == LockWaitError) |
5366 | appendStringInfoString(buf, " NOWAIT" ); |
5367 | else if (rc->waitPolicy == LockWaitSkip) |
5368 | appendStringInfoString(buf, " SKIP LOCKED" ); |
5369 | } |
5370 | } |
5371 | |
5372 | context->windowClause = save_windowclause; |
5373 | context->windowTList = save_windowtlist; |
5374 | } |
5375 | |
5376 | /* |
5377 | * Detect whether query looks like SELECT ... FROM VALUES(); |
5378 | * if so, return the VALUES RTE. Otherwise return NULL. |
5379 | */ |
5380 | static RangeTblEntry * |
5381 | get_simple_values_rte(Query *query) |
5382 | { |
5383 | RangeTblEntry *result = NULL; |
5384 | ListCell *lc; |
5385 | |
5386 | /* |
5387 | * We want to return true even if the Query also contains OLD or NEW rule |
5388 | * RTEs. So the idea is to scan the rtable and see if there is only one |
5389 | * inFromCl RTE that is a VALUES RTE. |
5390 | */ |
5391 | foreach(lc, query->rtable) |
5392 | { |
5393 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
5394 | |
5395 | if (rte->rtekind == RTE_VALUES && rte->inFromCl) |
5396 | { |
5397 | if (result) |
5398 | return NULL; /* multiple VALUES (probably not possible) */ |
5399 | result = rte; |
5400 | } |
5401 | else if (rte->rtekind == RTE_RELATION && !rte->inFromCl) |
5402 | continue; /* ignore rule entries */ |
5403 | else |
5404 | return NULL; /* something else -> not simple VALUES */ |
5405 | } |
5406 | |
5407 | /* |
5408 | * We don't need to check the targetlist in any great detail, because |
5409 | * parser/analyze.c will never generate a "bare" VALUES RTE --- they only |
5410 | * appear inside auto-generated sub-queries with very restricted |
5411 | * structure. However, DefineView might have modified the tlist by |
5412 | * injecting new column aliases; so compare tlist resnames against the |
5413 | * RTE's names to detect that. |
5414 | */ |
5415 | if (result) |
5416 | { |
5417 | ListCell *lcn; |
5418 | |
5419 | if (list_length(query->targetList) != list_length(result->eref->colnames)) |
5420 | return NULL; /* this probably cannot happen */ |
5421 | forboth(lc, query->targetList, lcn, result->eref->colnames) |
5422 | { |
5423 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
5424 | char *cname = strVal(lfirst(lcn)); |
5425 | |
5426 | if (tle->resjunk) |
5427 | return NULL; /* this probably cannot happen */ |
5428 | if (tle->resname == NULL || strcmp(tle->resname, cname) != 0) |
5429 | return NULL; /* column name has been changed */ |
5430 | } |
5431 | } |
5432 | |
5433 | return result; |
5434 | } |
5435 | |
5436 | static void |
5437 | get_basic_select_query(Query *query, deparse_context *context, |
5438 | TupleDesc resultDesc) |
5439 | { |
5440 | StringInfo buf = context->buf; |
5441 | RangeTblEntry *values_rte; |
5442 | char *sep; |
5443 | ListCell *l; |
5444 | |
5445 | if (PRETTY_INDENT(context)) |
5446 | { |
5447 | context->indentLevel += PRETTYINDENT_STD; |
5448 | appendStringInfoChar(buf, ' '); |
5449 | } |
5450 | |
5451 | /* |
5452 | * If the query looks like SELECT * FROM (VALUES ...), then print just the |
5453 | * VALUES part. This reverses what transformValuesClause() did at parse |
5454 | * time. |
5455 | */ |
5456 | values_rte = get_simple_values_rte(query); |
5457 | if (values_rte) |
5458 | { |
5459 | get_values_def(values_rte->values_lists, context); |
5460 | return; |
5461 | } |
5462 | |
5463 | /* |
5464 | * Build up the query string - first we say SELECT |
5465 | */ |
5466 | appendStringInfoString(buf, "SELECT" ); |
5467 | |
5468 | /* Add the DISTINCT clause if given */ |
5469 | if (query->distinctClause != NIL) |
5470 | { |
5471 | if (query->hasDistinctOn) |
5472 | { |
5473 | appendStringInfoString(buf, " DISTINCT ON (" ); |
5474 | sep = "" ; |
5475 | foreach(l, query->distinctClause) |
5476 | { |
5477 | SortGroupClause *srt = (SortGroupClause *) lfirst(l); |
5478 | |
5479 | appendStringInfoString(buf, sep); |
5480 | get_rule_sortgroupclause(srt->tleSortGroupRef, query->targetList, |
5481 | false, context); |
5482 | sep = ", " ; |
5483 | } |
5484 | appendStringInfoChar(buf, ')'); |
5485 | } |
5486 | else |
5487 | appendStringInfoString(buf, " DISTINCT" ); |
5488 | } |
5489 | |
5490 | /* Then we tell what to select (the targetlist) */ |
5491 | get_target_list(query->targetList, context, resultDesc); |
5492 | |
5493 | /* Add the FROM clause if needed */ |
5494 | get_from_clause(query, " FROM " , context); |
5495 | |
5496 | /* Add the WHERE clause if given */ |
5497 | if (query->jointree->quals != NULL) |
5498 | { |
5499 | appendContextKeyword(context, " WHERE " , |
5500 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
5501 | get_rule_expr(query->jointree->quals, context, false); |
5502 | } |
5503 | |
5504 | /* Add the GROUP BY clause if given */ |
5505 | if (query->groupClause != NULL || query->groupingSets != NULL) |
5506 | { |
5507 | ParseExprKind save_exprkind; |
5508 | |
5509 | appendContextKeyword(context, " GROUP BY " , |
5510 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
5511 | |
5512 | save_exprkind = context->special_exprkind; |
5513 | context->special_exprkind = EXPR_KIND_GROUP_BY; |
5514 | |
5515 | if (query->groupingSets == NIL) |
5516 | { |
5517 | sep = "" ; |
5518 | foreach(l, query->groupClause) |
5519 | { |
5520 | SortGroupClause *grp = (SortGroupClause *) lfirst(l); |
5521 | |
5522 | appendStringInfoString(buf, sep); |
5523 | get_rule_sortgroupclause(grp->tleSortGroupRef, query->targetList, |
5524 | false, context); |
5525 | sep = ", " ; |
5526 | } |
5527 | } |
5528 | else |
5529 | { |
5530 | sep = "" ; |
5531 | foreach(l, query->groupingSets) |
5532 | { |
5533 | GroupingSet *grp = lfirst(l); |
5534 | |
5535 | appendStringInfoString(buf, sep); |
5536 | get_rule_groupingset(grp, query->targetList, true, context); |
5537 | sep = ", " ; |
5538 | } |
5539 | } |
5540 | |
5541 | context->special_exprkind = save_exprkind; |
5542 | } |
5543 | |
5544 | /* Add the HAVING clause if given */ |
5545 | if (query->havingQual != NULL) |
5546 | { |
5547 | appendContextKeyword(context, " HAVING " , |
5548 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 0); |
5549 | get_rule_expr(query->havingQual, context, false); |
5550 | } |
5551 | |
5552 | /* Add the WINDOW clause if needed */ |
5553 | if (query->windowClause != NIL) |
5554 | get_rule_windowclause(query, context); |
5555 | } |
5556 | |
5557 | /* ---------- |
5558 | * get_target_list - Parse back a SELECT target list |
5559 | * |
5560 | * This is also used for RETURNING lists in INSERT/UPDATE/DELETE. |
5561 | * ---------- |
5562 | */ |
5563 | static void |
5564 | get_target_list(List *targetList, deparse_context *context, |
5565 | TupleDesc resultDesc) |
5566 | { |
5567 | StringInfo buf = context->buf; |
5568 | StringInfoData targetbuf; |
5569 | bool last_was_multiline = false; |
5570 | char *sep; |
5571 | int colno; |
5572 | ListCell *l; |
5573 | |
5574 | /* we use targetbuf to hold each TLE's text temporarily */ |
5575 | initStringInfo(&targetbuf); |
5576 | |
5577 | sep = " " ; |
5578 | colno = 0; |
5579 | foreach(l, targetList) |
5580 | { |
5581 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
5582 | char *colname; |
5583 | char *attname; |
5584 | |
5585 | if (tle->resjunk) |
5586 | continue; /* ignore junk entries */ |
5587 | |
5588 | appendStringInfoString(buf, sep); |
5589 | sep = ", " ; |
5590 | colno++; |
5591 | |
5592 | /* |
5593 | * Put the new field text into targetbuf so we can decide after we've |
5594 | * got it whether or not it needs to go on a new line. |
5595 | */ |
5596 | resetStringInfo(&targetbuf); |
5597 | context->buf = &targetbuf; |
5598 | |
5599 | /* |
5600 | * We special-case Var nodes rather than using get_rule_expr. This is |
5601 | * needed because get_rule_expr will display a whole-row Var as |
5602 | * "foo.*", which is the preferred notation in most contexts, but at |
5603 | * the top level of a SELECT list it's not right (the parser will |
5604 | * expand that notation into multiple columns, yielding behavior |
5605 | * different from a whole-row Var). We need to call get_variable |
5606 | * directly so that we can tell it to do the right thing, and so that |
5607 | * we can get the attribute name which is the default AS label. |
5608 | */ |
5609 | if (tle->expr && (IsA(tle->expr, Var))) |
5610 | { |
5611 | attname = get_variable((Var *) tle->expr, 0, true, context); |
5612 | } |
5613 | else |
5614 | { |
5615 | get_rule_expr((Node *) tle->expr, context, true); |
5616 | /* We'll show the AS name unless it's this: */ |
5617 | attname = "?column?" ; |
5618 | } |
5619 | |
5620 | /* |
5621 | * Figure out what the result column should be called. In the context |
5622 | * of a view, use the view's tuple descriptor (so as to pick up the |
5623 | * effects of any column RENAME that's been done on the view). |
5624 | * Otherwise, just use what we can find in the TLE. |
5625 | */ |
5626 | if (resultDesc && colno <= resultDesc->natts) |
5627 | colname = NameStr(TupleDescAttr(resultDesc, colno - 1)->attname); |
5628 | else |
5629 | colname = tle->resname; |
5630 | |
5631 | /* Show AS unless the column's name is correct as-is */ |
5632 | if (colname) /* resname could be NULL */ |
5633 | { |
5634 | if (attname == NULL || strcmp(attname, colname) != 0) |
5635 | appendStringInfo(&targetbuf, " AS %s" , quote_identifier(colname)); |
5636 | } |
5637 | |
5638 | /* Restore context's output buffer */ |
5639 | context->buf = buf; |
5640 | |
5641 | /* Consider line-wrapping if enabled */ |
5642 | if (PRETTY_INDENT(context) && context->wrapColumn >= 0) |
5643 | { |
5644 | int leading_nl_pos; |
5645 | |
5646 | /* Does the new field start with a new line? */ |
5647 | if (targetbuf.len > 0 && targetbuf.data[0] == '\n') |
5648 | leading_nl_pos = 0; |
5649 | else |
5650 | leading_nl_pos = -1; |
5651 | |
5652 | /* If so, we shouldn't add anything */ |
5653 | if (leading_nl_pos >= 0) |
5654 | { |
5655 | /* instead, remove any trailing spaces currently in buf */ |
5656 | removeStringInfoSpaces(buf); |
5657 | } |
5658 | else |
5659 | { |
5660 | char *trailing_nl; |
5661 | |
5662 | /* Locate the start of the current line in the output buffer */ |
5663 | trailing_nl = strrchr(buf->data, '\n'); |
5664 | if (trailing_nl == NULL) |
5665 | trailing_nl = buf->data; |
5666 | else |
5667 | trailing_nl++; |
5668 | |
5669 | /* |
5670 | * Add a newline, plus some indentation, if the new field is |
5671 | * not the first and either the new field would cause an |
5672 | * overflow or the last field used more than one line. |
5673 | */ |
5674 | if (colno > 1 && |
5675 | ((strlen(trailing_nl) + targetbuf.len > context->wrapColumn) || |
5676 | last_was_multiline)) |
5677 | appendContextKeyword(context, "" , -PRETTYINDENT_STD, |
5678 | PRETTYINDENT_STD, PRETTYINDENT_VAR); |
5679 | } |
5680 | |
5681 | /* Remember this field's multiline status for next iteration */ |
5682 | last_was_multiline = |
5683 | (strchr(targetbuf.data + leading_nl_pos + 1, '\n') != NULL); |
5684 | } |
5685 | |
5686 | /* Add the new field */ |
5687 | appendStringInfoString(buf, targetbuf.data); |
5688 | } |
5689 | |
5690 | /* clean up */ |
5691 | pfree(targetbuf.data); |
5692 | } |
5693 | |
5694 | static void |
5695 | get_setop_query(Node *setOp, Query *query, deparse_context *context, |
5696 | TupleDesc resultDesc) |
5697 | { |
5698 | StringInfo buf = context->buf; |
5699 | bool need_paren; |
5700 | |
5701 | /* Guard against excessively long or deeply-nested queries */ |
5702 | CHECK_FOR_INTERRUPTS(); |
5703 | check_stack_depth(); |
5704 | |
5705 | if (IsA(setOp, RangeTblRef)) |
5706 | { |
5707 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
5708 | RangeTblEntry *rte = rt_fetch(rtr->rtindex, query->rtable); |
5709 | Query *subquery = rte->subquery; |
5710 | |
5711 | Assert(subquery != NULL); |
5712 | Assert(subquery->setOperations == NULL); |
5713 | /* Need parens if WITH, ORDER BY, FOR UPDATE, or LIMIT; see gram.y */ |
5714 | need_paren = (subquery->cteList || |
5715 | subquery->sortClause || |
5716 | subquery->rowMarks || |
5717 | subquery->limitOffset || |
5718 | subquery->limitCount); |
5719 | if (need_paren) |
5720 | appendStringInfoChar(buf, '('); |
5721 | get_query_def(subquery, buf, context->namespaces, resultDesc, |
5722 | context->prettyFlags, context->wrapColumn, |
5723 | context->indentLevel); |
5724 | if (need_paren) |
5725 | appendStringInfoChar(buf, ')'); |
5726 | } |
5727 | else if (IsA(setOp, SetOperationStmt)) |
5728 | { |
5729 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
5730 | int subindent; |
5731 | |
5732 | /* |
5733 | * We force parens when nesting two SetOperationStmts, except when the |
5734 | * lefthand input is another setop of the same kind. Syntactically, |
5735 | * we could omit parens in rather more cases, but it seems best to use |
5736 | * parens to flag cases where the setop operator changes. If we use |
5737 | * parens, we also increase the indentation level for the child query. |
5738 | * |
5739 | * There are some cases in which parens are needed around a leaf query |
5740 | * too, but those are more easily handled at the next level down (see |
5741 | * code above). |
5742 | */ |
5743 | if (IsA(op->larg, SetOperationStmt)) |
5744 | { |
5745 | SetOperationStmt *lop = (SetOperationStmt *) op->larg; |
5746 | |
5747 | if (op->op == lop->op && op->all == lop->all) |
5748 | need_paren = false; |
5749 | else |
5750 | need_paren = true; |
5751 | } |
5752 | else |
5753 | need_paren = false; |
5754 | |
5755 | if (need_paren) |
5756 | { |
5757 | appendStringInfoChar(buf, '('); |
5758 | subindent = PRETTYINDENT_STD; |
5759 | appendContextKeyword(context, "" , subindent, 0, 0); |
5760 | } |
5761 | else |
5762 | subindent = 0; |
5763 | |
5764 | get_setop_query(op->larg, query, context, resultDesc); |
5765 | |
5766 | if (need_paren) |
5767 | appendContextKeyword(context, ") " , -subindent, 0, 0); |
5768 | else if (PRETTY_INDENT(context)) |
5769 | appendContextKeyword(context, "" , -subindent, 0, 0); |
5770 | else |
5771 | appendStringInfoChar(buf, ' '); |
5772 | |
5773 | switch (op->op) |
5774 | { |
5775 | case SETOP_UNION: |
5776 | appendStringInfoString(buf, "UNION " ); |
5777 | break; |
5778 | case SETOP_INTERSECT: |
5779 | appendStringInfoString(buf, "INTERSECT " ); |
5780 | break; |
5781 | case SETOP_EXCEPT: |
5782 | appendStringInfoString(buf, "EXCEPT " ); |
5783 | break; |
5784 | default: |
5785 | elog(ERROR, "unrecognized set op: %d" , |
5786 | (int) op->op); |
5787 | } |
5788 | if (op->all) |
5789 | appendStringInfoString(buf, "ALL " ); |
5790 | |
5791 | /* Always parenthesize if RHS is another setop */ |
5792 | need_paren = IsA(op->rarg, SetOperationStmt); |
5793 | |
5794 | /* |
5795 | * The indentation code here is deliberately a bit different from that |
5796 | * for the lefthand input, because we want the line breaks in |
5797 | * different places. |
5798 | */ |
5799 | if (need_paren) |
5800 | { |
5801 | appendStringInfoChar(buf, '('); |
5802 | subindent = PRETTYINDENT_STD; |
5803 | } |
5804 | else |
5805 | subindent = 0; |
5806 | appendContextKeyword(context, "" , subindent, 0, 0); |
5807 | |
5808 | get_setop_query(op->rarg, query, context, resultDesc); |
5809 | |
5810 | if (PRETTY_INDENT(context)) |
5811 | context->indentLevel -= subindent; |
5812 | if (need_paren) |
5813 | appendContextKeyword(context, ")" , 0, 0, 0); |
5814 | } |
5815 | else |
5816 | { |
5817 | elog(ERROR, "unrecognized node type: %d" , |
5818 | (int) nodeTag(setOp)); |
5819 | } |
5820 | } |
5821 | |
5822 | /* |
5823 | * Display a sort/group clause. |
5824 | * |
5825 | * Also returns the expression tree, so caller need not find it again. |
5826 | */ |
5827 | static Node * |
5828 | get_rule_sortgroupclause(Index ref, List *tlist, bool force_colno, |
5829 | deparse_context *context) |
5830 | { |
5831 | StringInfo buf = context->buf; |
5832 | TargetEntry *tle; |
5833 | Node *expr; |
5834 | |
5835 | tle = get_sortgroupref_tle(ref, tlist); |
5836 | expr = (Node *) tle->expr; |
5837 | |
5838 | /* |
5839 | * Use column-number form if requested by caller. Otherwise, if |
5840 | * expression is a constant, force it to be dumped with an explicit cast |
5841 | * as decoration --- this is because a simple integer constant is |
5842 | * ambiguous (and will be misinterpreted by findTargetlistEntry()) if we |
5843 | * dump it without any decoration. If it's anything more complex than a |
5844 | * simple Var, then force extra parens around it, to ensure it can't be |
5845 | * misinterpreted as a cube() or rollup() construct. |
5846 | */ |
5847 | if (force_colno) |
5848 | { |
5849 | Assert(!tle->resjunk); |
5850 | appendStringInfo(buf, "%d" , tle->resno); |
5851 | } |
5852 | else if (expr && IsA(expr, Const)) |
5853 | get_const_expr((Const *) expr, context, 1); |
5854 | else if (!expr || IsA(expr, Var)) |
5855 | get_rule_expr(expr, context, true); |
5856 | else |
5857 | { |
5858 | /* |
5859 | * We must force parens for function-like expressions even if |
5860 | * PRETTY_PAREN is off, since those are the ones in danger of |
5861 | * misparsing. For other expressions we need to force them only if |
5862 | * PRETTY_PAREN is on, since otherwise the expression will output them |
5863 | * itself. (We can't skip the parens.) |
5864 | */ |
5865 | bool need_paren = (PRETTY_PAREN(context) |
5866 | || IsA(expr, FuncExpr) |
5867 | ||IsA(expr, Aggref) |
5868 | ||IsA(expr, WindowFunc)); |
5869 | |
5870 | if (need_paren) |
5871 | appendStringInfoChar(context->buf, '('); |
5872 | get_rule_expr(expr, context, true); |
5873 | if (need_paren) |
5874 | appendStringInfoChar(context->buf, ')'); |
5875 | } |
5876 | |
5877 | return expr; |
5878 | } |
5879 | |
5880 | /* |
5881 | * Display a GroupingSet |
5882 | */ |
5883 | static void |
5884 | get_rule_groupingset(GroupingSet *gset, List *targetlist, |
5885 | bool omit_parens, deparse_context *context) |
5886 | { |
5887 | ListCell *l; |
5888 | StringInfo buf = context->buf; |
5889 | bool omit_child_parens = true; |
5890 | char *sep = "" ; |
5891 | |
5892 | switch (gset->kind) |
5893 | { |
5894 | case GROUPING_SET_EMPTY: |
5895 | appendStringInfoString(buf, "()" ); |
5896 | return; |
5897 | |
5898 | case GROUPING_SET_SIMPLE: |
5899 | { |
5900 | if (!omit_parens || list_length(gset->content) != 1) |
5901 | appendStringInfoChar(buf, '('); |
5902 | |
5903 | foreach(l, gset->content) |
5904 | { |
5905 | Index ref = lfirst_int(l); |
5906 | |
5907 | appendStringInfoString(buf, sep); |
5908 | get_rule_sortgroupclause(ref, targetlist, |
5909 | false, context); |
5910 | sep = ", " ; |
5911 | } |
5912 | |
5913 | if (!omit_parens || list_length(gset->content) != 1) |
5914 | appendStringInfoChar(buf, ')'); |
5915 | } |
5916 | return; |
5917 | |
5918 | case GROUPING_SET_ROLLUP: |
5919 | appendStringInfoString(buf, "ROLLUP(" ); |
5920 | break; |
5921 | case GROUPING_SET_CUBE: |
5922 | appendStringInfoString(buf, "CUBE(" ); |
5923 | break; |
5924 | case GROUPING_SET_SETS: |
5925 | appendStringInfoString(buf, "GROUPING SETS (" ); |
5926 | omit_child_parens = false; |
5927 | break; |
5928 | } |
5929 | |
5930 | foreach(l, gset->content) |
5931 | { |
5932 | appendStringInfoString(buf, sep); |
5933 | get_rule_groupingset(lfirst(l), targetlist, omit_child_parens, context); |
5934 | sep = ", " ; |
5935 | } |
5936 | |
5937 | appendStringInfoChar(buf, ')'); |
5938 | } |
5939 | |
5940 | /* |
5941 | * Display an ORDER BY list. |
5942 | */ |
5943 | static void |
5944 | get_rule_orderby(List *orderList, List *targetList, |
5945 | bool force_colno, deparse_context *context) |
5946 | { |
5947 | StringInfo buf = context->buf; |
5948 | const char *sep; |
5949 | ListCell *l; |
5950 | |
5951 | sep = "" ; |
5952 | foreach(l, orderList) |
5953 | { |
5954 | SortGroupClause *srt = (SortGroupClause *) lfirst(l); |
5955 | Node *sortexpr; |
5956 | Oid sortcoltype; |
5957 | TypeCacheEntry *typentry; |
5958 | |
5959 | appendStringInfoString(buf, sep); |
5960 | sortexpr = get_rule_sortgroupclause(srt->tleSortGroupRef, targetList, |
5961 | force_colno, context); |
5962 | sortcoltype = exprType(sortexpr); |
5963 | /* See whether operator is default < or > for datatype */ |
5964 | typentry = lookup_type_cache(sortcoltype, |
5965 | TYPECACHE_LT_OPR | TYPECACHE_GT_OPR); |
5966 | if (srt->sortop == typentry->lt_opr) |
5967 | { |
5968 | /* ASC is default, so emit nothing for it */ |
5969 | if (srt->nulls_first) |
5970 | appendStringInfoString(buf, " NULLS FIRST" ); |
5971 | } |
5972 | else if (srt->sortop == typentry->gt_opr) |
5973 | { |
5974 | appendStringInfoString(buf, " DESC" ); |
5975 | /* DESC defaults to NULLS FIRST */ |
5976 | if (!srt->nulls_first) |
5977 | appendStringInfoString(buf, " NULLS LAST" ); |
5978 | } |
5979 | else |
5980 | { |
5981 | appendStringInfo(buf, " USING %s" , |
5982 | generate_operator_name(srt->sortop, |
5983 | sortcoltype, |
5984 | sortcoltype)); |
5985 | /* be specific to eliminate ambiguity */ |
5986 | if (srt->nulls_first) |
5987 | appendStringInfoString(buf, " NULLS FIRST" ); |
5988 | else |
5989 | appendStringInfoString(buf, " NULLS LAST" ); |
5990 | } |
5991 | sep = ", " ; |
5992 | } |
5993 | } |
5994 | |
5995 | /* |
5996 | * Display a WINDOW clause. |
5997 | * |
5998 | * Note that the windowClause list might contain only anonymous window |
5999 | * specifications, in which case we should print nothing here. |
6000 | */ |
6001 | static void |
6002 | get_rule_windowclause(Query *query, deparse_context *context) |
6003 | { |
6004 | StringInfo buf = context->buf; |
6005 | const char *sep; |
6006 | ListCell *l; |
6007 | |
6008 | sep = NULL; |
6009 | foreach(l, query->windowClause) |
6010 | { |
6011 | WindowClause *wc = (WindowClause *) lfirst(l); |
6012 | |
6013 | if (wc->name == NULL) |
6014 | continue; /* ignore anonymous windows */ |
6015 | |
6016 | if (sep == NULL) |
6017 | appendContextKeyword(context, " WINDOW " , |
6018 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6019 | else |
6020 | appendStringInfoString(buf, sep); |
6021 | |
6022 | appendStringInfo(buf, "%s AS " , quote_identifier(wc->name)); |
6023 | |
6024 | get_rule_windowspec(wc, query->targetList, context); |
6025 | |
6026 | sep = ", " ; |
6027 | } |
6028 | } |
6029 | |
6030 | /* |
6031 | * Display a window definition |
6032 | */ |
6033 | static void |
6034 | get_rule_windowspec(WindowClause *wc, List *targetList, |
6035 | deparse_context *context) |
6036 | { |
6037 | StringInfo buf = context->buf; |
6038 | bool needspace = false; |
6039 | const char *sep; |
6040 | ListCell *l; |
6041 | |
6042 | appendStringInfoChar(buf, '('); |
6043 | if (wc->refname) |
6044 | { |
6045 | appendStringInfoString(buf, quote_identifier(wc->refname)); |
6046 | needspace = true; |
6047 | } |
6048 | /* partition clauses are always inherited, so only print if no refname */ |
6049 | if (wc->partitionClause && !wc->refname) |
6050 | { |
6051 | if (needspace) |
6052 | appendStringInfoChar(buf, ' '); |
6053 | appendStringInfoString(buf, "PARTITION BY " ); |
6054 | sep = "" ; |
6055 | foreach(l, wc->partitionClause) |
6056 | { |
6057 | SortGroupClause *grp = (SortGroupClause *) lfirst(l); |
6058 | |
6059 | appendStringInfoString(buf, sep); |
6060 | get_rule_sortgroupclause(grp->tleSortGroupRef, targetList, |
6061 | false, context); |
6062 | sep = ", " ; |
6063 | } |
6064 | needspace = true; |
6065 | } |
6066 | /* print ordering clause only if not inherited */ |
6067 | if (wc->orderClause && !wc->copiedOrder) |
6068 | { |
6069 | if (needspace) |
6070 | appendStringInfoChar(buf, ' '); |
6071 | appendStringInfoString(buf, "ORDER BY " ); |
6072 | get_rule_orderby(wc->orderClause, targetList, false, context); |
6073 | needspace = true; |
6074 | } |
6075 | /* framing clause is never inherited, so print unless it's default */ |
6076 | if (wc->frameOptions & FRAMEOPTION_NONDEFAULT) |
6077 | { |
6078 | if (needspace) |
6079 | appendStringInfoChar(buf, ' '); |
6080 | if (wc->frameOptions & FRAMEOPTION_RANGE) |
6081 | appendStringInfoString(buf, "RANGE " ); |
6082 | else if (wc->frameOptions & FRAMEOPTION_ROWS) |
6083 | appendStringInfoString(buf, "ROWS " ); |
6084 | else if (wc->frameOptions & FRAMEOPTION_GROUPS) |
6085 | appendStringInfoString(buf, "GROUPS " ); |
6086 | else |
6087 | Assert(false); |
6088 | if (wc->frameOptions & FRAMEOPTION_BETWEEN) |
6089 | appendStringInfoString(buf, "BETWEEN " ); |
6090 | if (wc->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) |
6091 | appendStringInfoString(buf, "UNBOUNDED PRECEDING " ); |
6092 | else if (wc->frameOptions & FRAMEOPTION_START_CURRENT_ROW) |
6093 | appendStringInfoString(buf, "CURRENT ROW " ); |
6094 | else if (wc->frameOptions & FRAMEOPTION_START_OFFSET) |
6095 | { |
6096 | get_rule_expr(wc->startOffset, context, false); |
6097 | if (wc->frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
6098 | appendStringInfoString(buf, " PRECEDING " ); |
6099 | else if (wc->frameOptions & FRAMEOPTION_START_OFFSET_FOLLOWING) |
6100 | appendStringInfoString(buf, " FOLLOWING " ); |
6101 | else |
6102 | Assert(false); |
6103 | } |
6104 | else |
6105 | Assert(false); |
6106 | if (wc->frameOptions & FRAMEOPTION_BETWEEN) |
6107 | { |
6108 | appendStringInfoString(buf, "AND " ); |
6109 | if (wc->frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING) |
6110 | appendStringInfoString(buf, "UNBOUNDED FOLLOWING " ); |
6111 | else if (wc->frameOptions & FRAMEOPTION_END_CURRENT_ROW) |
6112 | appendStringInfoString(buf, "CURRENT ROW " ); |
6113 | else if (wc->frameOptions & FRAMEOPTION_END_OFFSET) |
6114 | { |
6115 | get_rule_expr(wc->endOffset, context, false); |
6116 | if (wc->frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
6117 | appendStringInfoString(buf, " PRECEDING " ); |
6118 | else if (wc->frameOptions & FRAMEOPTION_END_OFFSET_FOLLOWING) |
6119 | appendStringInfoString(buf, " FOLLOWING " ); |
6120 | else |
6121 | Assert(false); |
6122 | } |
6123 | else |
6124 | Assert(false); |
6125 | } |
6126 | if (wc->frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW) |
6127 | appendStringInfoString(buf, "EXCLUDE CURRENT ROW " ); |
6128 | else if (wc->frameOptions & FRAMEOPTION_EXCLUDE_GROUP) |
6129 | appendStringInfoString(buf, "EXCLUDE GROUP " ); |
6130 | else if (wc->frameOptions & FRAMEOPTION_EXCLUDE_TIES) |
6131 | appendStringInfoString(buf, "EXCLUDE TIES " ); |
6132 | /* we will now have a trailing space; remove it */ |
6133 | buf->len--; |
6134 | } |
6135 | appendStringInfoChar(buf, ')'); |
6136 | } |
6137 | |
6138 | /* ---------- |
6139 | * get_insert_query_def - Parse back an INSERT parsetree |
6140 | * ---------- |
6141 | */ |
6142 | static void |
6143 | get_insert_query_def(Query *query, deparse_context *context) |
6144 | { |
6145 | StringInfo buf = context->buf; |
6146 | RangeTblEntry *select_rte = NULL; |
6147 | RangeTblEntry *values_rte = NULL; |
6148 | RangeTblEntry *rte; |
6149 | char *sep; |
6150 | ListCell *l; |
6151 | List *strippedexprs; |
6152 | |
6153 | /* Insert the WITH clause if given */ |
6154 | get_with_clause(query, context); |
6155 | |
6156 | /* |
6157 | * If it's an INSERT ... SELECT or multi-row VALUES, there will be a |
6158 | * single RTE for the SELECT or VALUES. Plain VALUES has neither. |
6159 | */ |
6160 | foreach(l, query->rtable) |
6161 | { |
6162 | rte = (RangeTblEntry *) lfirst(l); |
6163 | |
6164 | if (rte->rtekind == RTE_SUBQUERY) |
6165 | { |
6166 | if (select_rte) |
6167 | elog(ERROR, "too many subquery RTEs in INSERT" ); |
6168 | select_rte = rte; |
6169 | } |
6170 | |
6171 | if (rte->rtekind == RTE_VALUES) |
6172 | { |
6173 | if (values_rte) |
6174 | elog(ERROR, "too many values RTEs in INSERT" ); |
6175 | values_rte = rte; |
6176 | } |
6177 | } |
6178 | if (select_rte && values_rte) |
6179 | elog(ERROR, "both subquery and values RTEs in INSERT" ); |
6180 | |
6181 | /* |
6182 | * Start the query with INSERT INTO relname |
6183 | */ |
6184 | rte = rt_fetch(query->resultRelation, query->rtable); |
6185 | Assert(rte->rtekind == RTE_RELATION); |
6186 | |
6187 | if (PRETTY_INDENT(context)) |
6188 | { |
6189 | context->indentLevel += PRETTYINDENT_STD; |
6190 | appendStringInfoChar(buf, ' '); |
6191 | } |
6192 | appendStringInfo(buf, "INSERT INTO %s " , |
6193 | generate_relation_name(rte->relid, NIL)); |
6194 | /* INSERT requires AS keyword for target alias */ |
6195 | if (rte->alias != NULL) |
6196 | appendStringInfo(buf, "AS %s " , |
6197 | quote_identifier(rte->alias->aliasname)); |
6198 | |
6199 | /* |
6200 | * Add the insert-column-names list. Any indirection decoration needed on |
6201 | * the column names can be inferred from the top targetlist. |
6202 | */ |
6203 | strippedexprs = NIL; |
6204 | sep = "" ; |
6205 | if (query->targetList) |
6206 | appendStringInfoChar(buf, '('); |
6207 | foreach(l, query->targetList) |
6208 | { |
6209 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
6210 | |
6211 | if (tle->resjunk) |
6212 | continue; /* ignore junk entries */ |
6213 | |
6214 | appendStringInfoString(buf, sep); |
6215 | sep = ", " ; |
6216 | |
6217 | /* |
6218 | * Put out name of target column; look in the catalogs, not at |
6219 | * tle->resname, since resname will fail to track RENAME. |
6220 | */ |
6221 | appendStringInfoString(buf, |
6222 | quote_identifier(get_attname(rte->relid, |
6223 | tle->resno, |
6224 | false))); |
6225 | |
6226 | /* |
6227 | * Print any indirection needed (subfields or subscripts), and strip |
6228 | * off the top-level nodes representing the indirection assignments. |
6229 | * Add the stripped expressions to strippedexprs. (If it's a |
6230 | * single-VALUES statement, the stripped expressions are the VALUES to |
6231 | * print below. Otherwise they're just Vars and not really |
6232 | * interesting.) |
6233 | */ |
6234 | strippedexprs = lappend(strippedexprs, |
6235 | processIndirection((Node *) tle->expr, |
6236 | context)); |
6237 | } |
6238 | if (query->targetList) |
6239 | appendStringInfoString(buf, ") " ); |
6240 | |
6241 | if (query->override) |
6242 | { |
6243 | if (query->override == OVERRIDING_SYSTEM_VALUE) |
6244 | appendStringInfoString(buf, "OVERRIDING SYSTEM VALUE " ); |
6245 | else if (query->override == OVERRIDING_USER_VALUE) |
6246 | appendStringInfoString(buf, "OVERRIDING USER VALUE " ); |
6247 | } |
6248 | |
6249 | if (select_rte) |
6250 | { |
6251 | /* Add the SELECT */ |
6252 | get_query_def(select_rte->subquery, buf, NIL, NULL, |
6253 | context->prettyFlags, context->wrapColumn, |
6254 | context->indentLevel); |
6255 | } |
6256 | else if (values_rte) |
6257 | { |
6258 | /* Add the multi-VALUES expression lists */ |
6259 | get_values_def(values_rte->values_lists, context); |
6260 | } |
6261 | else if (strippedexprs) |
6262 | { |
6263 | /* Add the single-VALUES expression list */ |
6264 | appendContextKeyword(context, "VALUES (" , |
6265 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 2); |
6266 | get_rule_expr((Node *) strippedexprs, context, false); |
6267 | appendStringInfoChar(buf, ')'); |
6268 | } |
6269 | else |
6270 | { |
6271 | /* No expressions, so it must be DEFAULT VALUES */ |
6272 | appendStringInfoString(buf, "DEFAULT VALUES" ); |
6273 | } |
6274 | |
6275 | /* Add ON CONFLICT if present */ |
6276 | if (query->onConflict) |
6277 | { |
6278 | OnConflictExpr *confl = query->onConflict; |
6279 | |
6280 | appendStringInfoString(buf, " ON CONFLICT" ); |
6281 | |
6282 | if (confl->arbiterElems) |
6283 | { |
6284 | /* Add the single-VALUES expression list */ |
6285 | appendStringInfoChar(buf, '('); |
6286 | get_rule_expr((Node *) confl->arbiterElems, context, false); |
6287 | appendStringInfoChar(buf, ')'); |
6288 | |
6289 | /* Add a WHERE clause (for partial indexes) if given */ |
6290 | if (confl->arbiterWhere != NULL) |
6291 | { |
6292 | bool save_varprefix; |
6293 | |
6294 | /* |
6295 | * Force non-prefixing of Vars, since parser assumes that they |
6296 | * belong to target relation. WHERE clause does not use |
6297 | * InferenceElem, so this is separately required. |
6298 | */ |
6299 | save_varprefix = context->varprefix; |
6300 | context->varprefix = false; |
6301 | |
6302 | appendContextKeyword(context, " WHERE " , |
6303 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6304 | get_rule_expr(confl->arbiterWhere, context, false); |
6305 | |
6306 | context->varprefix = save_varprefix; |
6307 | } |
6308 | } |
6309 | else if (OidIsValid(confl->constraint)) |
6310 | { |
6311 | char *constraint = get_constraint_name(confl->constraint); |
6312 | |
6313 | if (!constraint) |
6314 | elog(ERROR, "cache lookup failed for constraint %u" , |
6315 | confl->constraint); |
6316 | appendStringInfo(buf, " ON CONSTRAINT %s" , |
6317 | quote_identifier(constraint)); |
6318 | } |
6319 | |
6320 | if (confl->action == ONCONFLICT_NOTHING) |
6321 | { |
6322 | appendStringInfoString(buf, " DO NOTHING" ); |
6323 | } |
6324 | else |
6325 | { |
6326 | appendStringInfoString(buf, " DO UPDATE SET " ); |
6327 | /* Deparse targetlist */ |
6328 | get_update_query_targetlist_def(query, confl->onConflictSet, |
6329 | context, rte); |
6330 | |
6331 | /* Add a WHERE clause if given */ |
6332 | if (confl->onConflictWhere != NULL) |
6333 | { |
6334 | appendContextKeyword(context, " WHERE " , |
6335 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6336 | get_rule_expr(confl->onConflictWhere, context, false); |
6337 | } |
6338 | } |
6339 | } |
6340 | |
6341 | /* Add RETURNING if present */ |
6342 | if (query->returningList) |
6343 | { |
6344 | appendContextKeyword(context, " RETURNING" , |
6345 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6346 | get_target_list(query->returningList, context, NULL); |
6347 | } |
6348 | } |
6349 | |
6350 | |
6351 | /* ---------- |
6352 | * get_update_query_def - Parse back an UPDATE parsetree |
6353 | * ---------- |
6354 | */ |
6355 | static void |
6356 | get_update_query_def(Query *query, deparse_context *context) |
6357 | { |
6358 | StringInfo buf = context->buf; |
6359 | RangeTblEntry *rte; |
6360 | |
6361 | /* Insert the WITH clause if given */ |
6362 | get_with_clause(query, context); |
6363 | |
6364 | /* |
6365 | * Start the query with UPDATE relname SET |
6366 | */ |
6367 | rte = rt_fetch(query->resultRelation, query->rtable); |
6368 | Assert(rte->rtekind == RTE_RELATION); |
6369 | if (PRETTY_INDENT(context)) |
6370 | { |
6371 | appendStringInfoChar(buf, ' '); |
6372 | context->indentLevel += PRETTYINDENT_STD; |
6373 | } |
6374 | appendStringInfo(buf, "UPDATE %s%s" , |
6375 | only_marker(rte), |
6376 | generate_relation_name(rte->relid, NIL)); |
6377 | if (rte->alias != NULL) |
6378 | appendStringInfo(buf, " %s" , |
6379 | quote_identifier(rte->alias->aliasname)); |
6380 | appendStringInfoString(buf, " SET " ); |
6381 | |
6382 | /* Deparse targetlist */ |
6383 | get_update_query_targetlist_def(query, query->targetList, context, rte); |
6384 | |
6385 | /* Add the FROM clause if needed */ |
6386 | get_from_clause(query, " FROM " , context); |
6387 | |
6388 | /* Add a WHERE clause if given */ |
6389 | if (query->jointree->quals != NULL) |
6390 | { |
6391 | appendContextKeyword(context, " WHERE " , |
6392 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6393 | get_rule_expr(query->jointree->quals, context, false); |
6394 | } |
6395 | |
6396 | /* Add RETURNING if present */ |
6397 | if (query->returningList) |
6398 | { |
6399 | appendContextKeyword(context, " RETURNING" , |
6400 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6401 | get_target_list(query->returningList, context, NULL); |
6402 | } |
6403 | } |
6404 | |
6405 | |
6406 | /* ---------- |
6407 | * get_update_query_targetlist_def - Parse back an UPDATE targetlist |
6408 | * ---------- |
6409 | */ |
6410 | static void |
6411 | get_update_query_targetlist_def(Query *query, List *targetList, |
6412 | deparse_context *context, RangeTblEntry *rte) |
6413 | { |
6414 | StringInfo buf = context->buf; |
6415 | ListCell *l; |
6416 | ListCell *next_ma_cell; |
6417 | int remaining_ma_columns; |
6418 | const char *sep; |
6419 | SubLink *cur_ma_sublink; |
6420 | List *ma_sublinks; |
6421 | |
6422 | /* |
6423 | * Prepare to deal with MULTIEXPR assignments: collect the source SubLinks |
6424 | * into a list. We expect them to appear, in ID order, in resjunk tlist |
6425 | * entries. |
6426 | */ |
6427 | ma_sublinks = NIL; |
6428 | if (query->hasSubLinks) /* else there can't be any */ |
6429 | { |
6430 | foreach(l, targetList) |
6431 | { |
6432 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
6433 | |
6434 | if (tle->resjunk && IsA(tle->expr, SubLink)) |
6435 | { |
6436 | SubLink *sl = (SubLink *) tle->expr; |
6437 | |
6438 | if (sl->subLinkType == MULTIEXPR_SUBLINK) |
6439 | { |
6440 | ma_sublinks = lappend(ma_sublinks, sl); |
6441 | Assert(sl->subLinkId == list_length(ma_sublinks)); |
6442 | } |
6443 | } |
6444 | } |
6445 | } |
6446 | next_ma_cell = list_head(ma_sublinks); |
6447 | cur_ma_sublink = NULL; |
6448 | remaining_ma_columns = 0; |
6449 | |
6450 | /* Add the comma separated list of 'attname = value' */ |
6451 | sep = "" ; |
6452 | foreach(l, targetList) |
6453 | { |
6454 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
6455 | Node *expr; |
6456 | |
6457 | if (tle->resjunk) |
6458 | continue; /* ignore junk entries */ |
6459 | |
6460 | /* Emit separator (OK whether we're in multiassignment or not) */ |
6461 | appendStringInfoString(buf, sep); |
6462 | sep = ", " ; |
6463 | |
6464 | /* |
6465 | * Check to see if we're starting a multiassignment group: if so, |
6466 | * output a left paren. |
6467 | */ |
6468 | if (next_ma_cell != NULL && cur_ma_sublink == NULL) |
6469 | { |
6470 | /* |
6471 | * We must dig down into the expr to see if it's a PARAM_MULTIEXPR |
6472 | * Param. That could be buried under FieldStores and |
6473 | * SubscriptingRefs and CoerceToDomains (cf processIndirection()), |
6474 | * and underneath those there could be an implicit type coercion. |
6475 | * Because we would ignore implicit type coercions anyway, we |
6476 | * don't need to be as careful as processIndirection() is about |
6477 | * descending past implicit CoerceToDomains. |
6478 | */ |
6479 | expr = (Node *) tle->expr; |
6480 | while (expr) |
6481 | { |
6482 | if (IsA(expr, FieldStore)) |
6483 | { |
6484 | FieldStore *fstore = (FieldStore *) expr; |
6485 | |
6486 | expr = (Node *) linitial(fstore->newvals); |
6487 | } |
6488 | else if (IsA(expr, SubscriptingRef)) |
6489 | { |
6490 | SubscriptingRef *sbsref = (SubscriptingRef *) expr; |
6491 | |
6492 | if (sbsref->refassgnexpr == NULL) |
6493 | break; |
6494 | |
6495 | expr = (Node *) sbsref->refassgnexpr; |
6496 | } |
6497 | else if (IsA(expr, CoerceToDomain)) |
6498 | { |
6499 | CoerceToDomain *cdomain = (CoerceToDomain *) expr; |
6500 | |
6501 | if (cdomain->coercionformat != COERCE_IMPLICIT_CAST) |
6502 | break; |
6503 | expr = (Node *) cdomain->arg; |
6504 | } |
6505 | else |
6506 | break; |
6507 | } |
6508 | expr = strip_implicit_coercions(expr); |
6509 | |
6510 | if (expr && IsA(expr, Param) && |
6511 | ((Param *) expr)->paramkind == PARAM_MULTIEXPR) |
6512 | { |
6513 | cur_ma_sublink = (SubLink *) lfirst(next_ma_cell); |
6514 | next_ma_cell = lnext(next_ma_cell); |
6515 | remaining_ma_columns = count_nonjunk_tlist_entries( |
6516 | ((Query *) cur_ma_sublink->subselect)->targetList); |
6517 | Assert(((Param *) expr)->paramid == |
6518 | ((cur_ma_sublink->subLinkId << 16) | 1)); |
6519 | appendStringInfoChar(buf, '('); |
6520 | } |
6521 | } |
6522 | |
6523 | /* |
6524 | * Put out name of target column; look in the catalogs, not at |
6525 | * tle->resname, since resname will fail to track RENAME. |
6526 | */ |
6527 | appendStringInfoString(buf, |
6528 | quote_identifier(get_attname(rte->relid, |
6529 | tle->resno, |
6530 | false))); |
6531 | |
6532 | /* |
6533 | * Print any indirection needed (subfields or subscripts), and strip |
6534 | * off the top-level nodes representing the indirection assignments. |
6535 | */ |
6536 | expr = processIndirection((Node *) tle->expr, context); |
6537 | |
6538 | /* |
6539 | * If we're in a multiassignment, skip printing anything more, unless |
6540 | * this is the last column; in which case, what we print should be the |
6541 | * sublink, not the Param. |
6542 | */ |
6543 | if (cur_ma_sublink != NULL) |
6544 | { |
6545 | if (--remaining_ma_columns > 0) |
6546 | continue; /* not the last column of multiassignment */ |
6547 | appendStringInfoChar(buf, ')'); |
6548 | expr = (Node *) cur_ma_sublink; |
6549 | cur_ma_sublink = NULL; |
6550 | } |
6551 | |
6552 | appendStringInfoString(buf, " = " ); |
6553 | |
6554 | get_rule_expr(expr, context, false); |
6555 | } |
6556 | } |
6557 | |
6558 | |
6559 | /* ---------- |
6560 | * get_delete_query_def - Parse back a DELETE parsetree |
6561 | * ---------- |
6562 | */ |
6563 | static void |
6564 | get_delete_query_def(Query *query, deparse_context *context) |
6565 | { |
6566 | StringInfo buf = context->buf; |
6567 | RangeTblEntry *rte; |
6568 | |
6569 | /* Insert the WITH clause if given */ |
6570 | get_with_clause(query, context); |
6571 | |
6572 | /* |
6573 | * Start the query with DELETE FROM relname |
6574 | */ |
6575 | rte = rt_fetch(query->resultRelation, query->rtable); |
6576 | Assert(rte->rtekind == RTE_RELATION); |
6577 | if (PRETTY_INDENT(context)) |
6578 | { |
6579 | appendStringInfoChar(buf, ' '); |
6580 | context->indentLevel += PRETTYINDENT_STD; |
6581 | } |
6582 | appendStringInfo(buf, "DELETE FROM %s%s" , |
6583 | only_marker(rte), |
6584 | generate_relation_name(rte->relid, NIL)); |
6585 | if (rte->alias != NULL) |
6586 | appendStringInfo(buf, " %s" , |
6587 | quote_identifier(rte->alias->aliasname)); |
6588 | |
6589 | /* Add the USING clause if given */ |
6590 | get_from_clause(query, " USING " , context); |
6591 | |
6592 | /* Add a WHERE clause if given */ |
6593 | if (query->jointree->quals != NULL) |
6594 | { |
6595 | appendContextKeyword(context, " WHERE " , |
6596 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6597 | get_rule_expr(query->jointree->quals, context, false); |
6598 | } |
6599 | |
6600 | /* Add RETURNING if present */ |
6601 | if (query->returningList) |
6602 | { |
6603 | appendContextKeyword(context, " RETURNING" , |
6604 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 1); |
6605 | get_target_list(query->returningList, context, NULL); |
6606 | } |
6607 | } |
6608 | |
6609 | |
6610 | /* ---------- |
6611 | * get_utility_query_def - Parse back a UTILITY parsetree |
6612 | * ---------- |
6613 | */ |
6614 | static void |
6615 | get_utility_query_def(Query *query, deparse_context *context) |
6616 | { |
6617 | StringInfo buf = context->buf; |
6618 | |
6619 | if (query->utilityStmt && IsA(query->utilityStmt, NotifyStmt)) |
6620 | { |
6621 | NotifyStmt *stmt = (NotifyStmt *) query->utilityStmt; |
6622 | |
6623 | appendContextKeyword(context, "" , |
6624 | 0, PRETTYINDENT_STD, 1); |
6625 | appendStringInfo(buf, "NOTIFY %s" , |
6626 | quote_identifier(stmt->conditionname)); |
6627 | if (stmt->payload) |
6628 | { |
6629 | appendStringInfoString(buf, ", " ); |
6630 | simple_quote_literal(buf, stmt->payload); |
6631 | } |
6632 | } |
6633 | else |
6634 | { |
6635 | /* Currently only NOTIFY utility commands can appear in rules */ |
6636 | elog(ERROR, "unexpected utility statement type" ); |
6637 | } |
6638 | } |
6639 | |
6640 | /* |
6641 | * Display a Var appropriately. |
6642 | * |
6643 | * In some cases (currently only when recursing into an unnamed join) |
6644 | * the Var's varlevelsup has to be interpreted with respect to a context |
6645 | * above the current one; levelsup indicates the offset. |
6646 | * |
6647 | * If istoplevel is true, the Var is at the top level of a SELECT's |
6648 | * targetlist, which means we need special treatment of whole-row Vars. |
6649 | * Instead of the normal "tab.*", we'll print "tab.*::typename", which is a |
6650 | * dirty hack to prevent "tab.*" from being expanded into multiple columns. |
6651 | * (The parser will strip the useless coercion, so no inefficiency is added in |
6652 | * dump and reload.) We used to print just "tab" in such cases, but that is |
6653 | * ambiguous and will yield the wrong result if "tab" is also a plain column |
6654 | * name in the query. |
6655 | * |
6656 | * Returns the attname of the Var, or NULL if the Var has no attname (because |
6657 | * it is a whole-row Var or a subplan output reference). |
6658 | */ |
6659 | static char * |
6660 | get_variable(Var *var, int levelsup, bool istoplevel, deparse_context *context) |
6661 | { |
6662 | StringInfo buf = context->buf; |
6663 | RangeTblEntry *rte; |
6664 | AttrNumber attnum; |
6665 | int netlevelsup; |
6666 | deparse_namespace *dpns; |
6667 | deparse_columns *colinfo; |
6668 | char *refname; |
6669 | char *attname; |
6670 | |
6671 | /* Find appropriate nesting depth */ |
6672 | netlevelsup = var->varlevelsup + levelsup; |
6673 | if (netlevelsup >= list_length(context->namespaces)) |
6674 | elog(ERROR, "bogus varlevelsup: %d offset %d" , |
6675 | var->varlevelsup, levelsup); |
6676 | dpns = (deparse_namespace *) list_nth(context->namespaces, |
6677 | netlevelsup); |
6678 | |
6679 | /* |
6680 | * Try to find the relevant RTE in this rtable. In a plan tree, it's |
6681 | * likely that varno is OUTER_VAR or INNER_VAR, in which case we must dig |
6682 | * down into the subplans, or INDEX_VAR, which is resolved similarly. Also |
6683 | * find the aliases previously assigned for this RTE. |
6684 | */ |
6685 | if (var->varno >= 1 && var->varno <= list_length(dpns->rtable)) |
6686 | { |
6687 | rte = rt_fetch(var->varno, dpns->rtable); |
6688 | refname = (char *) list_nth(dpns->rtable_names, var->varno - 1); |
6689 | colinfo = deparse_columns_fetch(var->varno, dpns); |
6690 | attnum = var->varattno; |
6691 | } |
6692 | else |
6693 | { |
6694 | resolve_special_varno((Node *) var, context, NULL, |
6695 | get_special_variable); |
6696 | return NULL; |
6697 | } |
6698 | |
6699 | /* |
6700 | * The planner will sometimes emit Vars referencing resjunk elements of a |
6701 | * subquery's target list (this is currently only possible if it chooses |
6702 | * to generate a "physical tlist" for a SubqueryScan or CteScan node). |
6703 | * Although we prefer to print subquery-referencing Vars using the |
6704 | * subquery's alias, that's not possible for resjunk items since they have |
6705 | * no alias. So in that case, drill down to the subplan and print the |
6706 | * contents of the referenced tlist item. This works because in a plan |
6707 | * tree, such Vars can only occur in a SubqueryScan or CteScan node, and |
6708 | * we'll have set dpns->inner_planstate to reference the child plan node. |
6709 | */ |
6710 | if ((rte->rtekind == RTE_SUBQUERY || rte->rtekind == RTE_CTE) && |
6711 | attnum > list_length(rte->eref->colnames) && |
6712 | dpns->inner_planstate) |
6713 | { |
6714 | TargetEntry *tle; |
6715 | deparse_namespace save_dpns; |
6716 | |
6717 | tle = get_tle_by_resno(dpns->inner_tlist, var->varattno); |
6718 | if (!tle) |
6719 | elog(ERROR, "invalid attnum %d for relation \"%s\"" , |
6720 | var->varattno, rte->eref->aliasname); |
6721 | |
6722 | Assert(netlevelsup == 0); |
6723 | push_child_plan(dpns, dpns->inner_planstate, &save_dpns); |
6724 | |
6725 | /* |
6726 | * Force parentheses because our caller probably assumed a Var is a |
6727 | * simple expression. |
6728 | */ |
6729 | if (!IsA(tle->expr, Var)) |
6730 | appendStringInfoChar(buf, '('); |
6731 | get_rule_expr((Node *) tle->expr, context, true); |
6732 | if (!IsA(tle->expr, Var)) |
6733 | appendStringInfoChar(buf, ')'); |
6734 | |
6735 | pop_child_plan(dpns, &save_dpns); |
6736 | return NULL; |
6737 | } |
6738 | |
6739 | /* |
6740 | * If it's an unnamed join, look at the expansion of the alias variable. |
6741 | * If it's a simple reference to one of the input vars, then recursively |
6742 | * print the name of that var instead. When it's not a simple reference, |
6743 | * we have to just print the unqualified join column name. (This can only |
6744 | * happen with "dangerous" merged columns in a JOIN USING; we took pains |
6745 | * previously to make the unqualified column name unique in such cases.) |
6746 | * |
6747 | * This wouldn't work in decompiling plan trees, because we don't store |
6748 | * joinaliasvars lists after planning; but a plan tree should never |
6749 | * contain a join alias variable. |
6750 | */ |
6751 | if (rte->rtekind == RTE_JOIN && rte->alias == NULL) |
6752 | { |
6753 | if (rte->joinaliasvars == NIL) |
6754 | elog(ERROR, "cannot decompile join alias var in plan tree" ); |
6755 | if (attnum > 0) |
6756 | { |
6757 | Var *aliasvar; |
6758 | |
6759 | aliasvar = (Var *) list_nth(rte->joinaliasvars, attnum - 1); |
6760 | /* we intentionally don't strip implicit coercions here */ |
6761 | if (aliasvar && IsA(aliasvar, Var)) |
6762 | { |
6763 | return get_variable(aliasvar, var->varlevelsup + levelsup, |
6764 | istoplevel, context); |
6765 | } |
6766 | } |
6767 | |
6768 | /* |
6769 | * Unnamed join has no refname. (Note: since it's unnamed, there is |
6770 | * no way the user could have referenced it to create a whole-row Var |
6771 | * for it. So we don't have to cover that case below.) |
6772 | */ |
6773 | Assert(refname == NULL); |
6774 | } |
6775 | |
6776 | if (attnum == InvalidAttrNumber) |
6777 | attname = NULL; |
6778 | else if (attnum > 0) |
6779 | { |
6780 | /* Get column name to use from the colinfo struct */ |
6781 | if (attnum > colinfo->num_cols) |
6782 | elog(ERROR, "invalid attnum %d for relation \"%s\"" , |
6783 | attnum, rte->eref->aliasname); |
6784 | attname = colinfo->colnames[attnum - 1]; |
6785 | if (attname == NULL) /* dropped column? */ |
6786 | elog(ERROR, "invalid attnum %d for relation \"%s\"" , |
6787 | attnum, rte->eref->aliasname); |
6788 | } |
6789 | else |
6790 | { |
6791 | /* System column - name is fixed, get it from the catalog */ |
6792 | attname = get_rte_attribute_name(rte, attnum); |
6793 | } |
6794 | |
6795 | if (refname && (context->varprefix || attname == NULL)) |
6796 | { |
6797 | appendStringInfoString(buf, quote_identifier(refname)); |
6798 | appendStringInfoChar(buf, '.'); |
6799 | } |
6800 | if (attname) |
6801 | appendStringInfoString(buf, quote_identifier(attname)); |
6802 | else |
6803 | { |
6804 | appendStringInfoChar(buf, '*'); |
6805 | if (istoplevel) |
6806 | appendStringInfo(buf, "::%s" , |
6807 | format_type_with_typemod(var->vartype, |
6808 | var->vartypmod)); |
6809 | } |
6810 | |
6811 | return attname; |
6812 | } |
6813 | |
6814 | /* |
6815 | * Deparse a Var which references OUTER_VAR, INNER_VAR, or INDEX_VAR. This |
6816 | * routine is actually a callback for get_special_varno, which handles finding |
6817 | * the correct TargetEntry. We get the expression contained in that |
6818 | * TargetEntry and just need to deparse it, a job we can throw back on |
6819 | * get_rule_expr. |
6820 | */ |
6821 | static void |
6822 | get_special_variable(Node *node, deparse_context *context, void *private) |
6823 | { |
6824 | StringInfo buf = context->buf; |
6825 | |
6826 | /* |
6827 | * Force parentheses because our caller probably assumed a Var is a simple |
6828 | * expression. |
6829 | */ |
6830 | if (!IsA(node, Var)) |
6831 | appendStringInfoChar(buf, '('); |
6832 | get_rule_expr(node, context, true); |
6833 | if (!IsA(node, Var)) |
6834 | appendStringInfoChar(buf, ')'); |
6835 | } |
6836 | |
6837 | /* |
6838 | * Chase through plan references to special varnos (OUTER_VAR, INNER_VAR, |
6839 | * INDEX_VAR) until we find a real Var or some kind of non-Var node; then, |
6840 | * invoke the callback provided. |
6841 | */ |
6842 | static void |
6843 | resolve_special_varno(Node *node, deparse_context *context, void *private, |
6844 | void (*callback) (Node *, deparse_context *, void *)) |
6845 | { |
6846 | Var *var; |
6847 | deparse_namespace *dpns; |
6848 | |
6849 | /* If it's not a Var, invoke the callback. */ |
6850 | if (!IsA(node, Var)) |
6851 | { |
6852 | callback(node, context, private); |
6853 | return; |
6854 | } |
6855 | |
6856 | /* Find appropriate nesting depth */ |
6857 | var = (Var *) node; |
6858 | dpns = (deparse_namespace *) list_nth(context->namespaces, |
6859 | var->varlevelsup); |
6860 | |
6861 | /* |
6862 | * It's a special RTE, so recurse. |
6863 | */ |
6864 | if (var->varno == OUTER_VAR && dpns->outer_tlist) |
6865 | { |
6866 | TargetEntry *tle; |
6867 | deparse_namespace save_dpns; |
6868 | |
6869 | tle = get_tle_by_resno(dpns->outer_tlist, var->varattno); |
6870 | if (!tle) |
6871 | elog(ERROR, "bogus varattno for OUTER_VAR var: %d" , var->varattno); |
6872 | |
6873 | push_child_plan(dpns, dpns->outer_planstate, &save_dpns); |
6874 | resolve_special_varno((Node *) tle->expr, context, private, callback); |
6875 | pop_child_plan(dpns, &save_dpns); |
6876 | return; |
6877 | } |
6878 | else if (var->varno == INNER_VAR && dpns->inner_tlist) |
6879 | { |
6880 | TargetEntry *tle; |
6881 | deparse_namespace save_dpns; |
6882 | |
6883 | tle = get_tle_by_resno(dpns->inner_tlist, var->varattno); |
6884 | if (!tle) |
6885 | elog(ERROR, "bogus varattno for INNER_VAR var: %d" , var->varattno); |
6886 | |
6887 | push_child_plan(dpns, dpns->inner_planstate, &save_dpns); |
6888 | resolve_special_varno((Node *) tle->expr, context, private, callback); |
6889 | pop_child_plan(dpns, &save_dpns); |
6890 | return; |
6891 | } |
6892 | else if (var->varno == INDEX_VAR && dpns->index_tlist) |
6893 | { |
6894 | TargetEntry *tle; |
6895 | |
6896 | tle = get_tle_by_resno(dpns->index_tlist, var->varattno); |
6897 | if (!tle) |
6898 | elog(ERROR, "bogus varattno for INDEX_VAR var: %d" , var->varattno); |
6899 | |
6900 | resolve_special_varno((Node *) tle->expr, context, private, callback); |
6901 | return; |
6902 | } |
6903 | else if (var->varno < 1 || var->varno > list_length(dpns->rtable)) |
6904 | elog(ERROR, "bogus varno: %d" , var->varno); |
6905 | |
6906 | /* Not special. Just invoke the callback. */ |
6907 | callback(node, context, private); |
6908 | } |
6909 | |
6910 | /* |
6911 | * Get the name of a field of an expression of composite type. The |
6912 | * expression is usually a Var, but we handle other cases too. |
6913 | * |
6914 | * levelsup is an extra offset to interpret the Var's varlevelsup correctly. |
6915 | * |
6916 | * This is fairly straightforward when the expression has a named composite |
6917 | * type; we need only look up the type in the catalogs. However, the type |
6918 | * could also be RECORD. Since no actual table or view column is allowed to |
6919 | * have type RECORD, a Var of type RECORD must refer to a JOIN or FUNCTION RTE |
6920 | * or to a subquery output. We drill down to find the ultimate defining |
6921 | * expression and attempt to infer the field name from it. We ereport if we |
6922 | * can't determine the name. |
6923 | * |
6924 | * Similarly, a PARAM of type RECORD has to refer to some expression of |
6925 | * a determinable composite type. |
6926 | */ |
6927 | static const char * |
6928 | get_name_for_var_field(Var *var, int fieldno, |
6929 | int levelsup, deparse_context *context) |
6930 | { |
6931 | RangeTblEntry *rte; |
6932 | AttrNumber attnum; |
6933 | int netlevelsup; |
6934 | deparse_namespace *dpns; |
6935 | TupleDesc tupleDesc; |
6936 | Node *expr; |
6937 | |
6938 | /* |
6939 | * If it's a RowExpr that was expanded from a whole-row Var, use the |
6940 | * column names attached to it. |
6941 | */ |
6942 | if (IsA(var, RowExpr)) |
6943 | { |
6944 | RowExpr *r = (RowExpr *) var; |
6945 | |
6946 | if (fieldno > 0 && fieldno <= list_length(r->colnames)) |
6947 | return strVal(list_nth(r->colnames, fieldno - 1)); |
6948 | } |
6949 | |
6950 | /* |
6951 | * If it's a Param of type RECORD, try to find what the Param refers to. |
6952 | */ |
6953 | if (IsA(var, Param)) |
6954 | { |
6955 | Param *param = (Param *) var; |
6956 | ListCell *ancestor_cell; |
6957 | |
6958 | expr = find_param_referent(param, context, &dpns, &ancestor_cell); |
6959 | if (expr) |
6960 | { |
6961 | /* Found a match, so recurse to decipher the field name */ |
6962 | deparse_namespace save_dpns; |
6963 | const char *result; |
6964 | |
6965 | push_ancestor_plan(dpns, ancestor_cell, &save_dpns); |
6966 | result = get_name_for_var_field((Var *) expr, fieldno, |
6967 | 0, context); |
6968 | pop_ancestor_plan(dpns, &save_dpns); |
6969 | return result; |
6970 | } |
6971 | } |
6972 | |
6973 | /* |
6974 | * If it's a Var of type RECORD, we have to find what the Var refers to; |
6975 | * if not, we can use get_expr_result_tupdesc(). |
6976 | */ |
6977 | if (!IsA(var, Var) || |
6978 | var->vartype != RECORDOID) |
6979 | { |
6980 | tupleDesc = get_expr_result_tupdesc((Node *) var, false); |
6981 | /* Got the tupdesc, so we can extract the field name */ |
6982 | Assert(fieldno >= 1 && fieldno <= tupleDesc->natts); |
6983 | return NameStr(TupleDescAttr(tupleDesc, fieldno - 1)->attname); |
6984 | } |
6985 | |
6986 | /* Find appropriate nesting depth */ |
6987 | netlevelsup = var->varlevelsup + levelsup; |
6988 | if (netlevelsup >= list_length(context->namespaces)) |
6989 | elog(ERROR, "bogus varlevelsup: %d offset %d" , |
6990 | var->varlevelsup, levelsup); |
6991 | dpns = (deparse_namespace *) list_nth(context->namespaces, |
6992 | netlevelsup); |
6993 | |
6994 | /* |
6995 | * Try to find the relevant RTE in this rtable. In a plan tree, it's |
6996 | * likely that varno is OUTER_VAR or INNER_VAR, in which case we must dig |
6997 | * down into the subplans, or INDEX_VAR, which is resolved similarly. |
6998 | */ |
6999 | if (var->varno >= 1 && var->varno <= list_length(dpns->rtable)) |
7000 | { |
7001 | rte = rt_fetch(var->varno, dpns->rtable); |
7002 | attnum = var->varattno; |
7003 | } |
7004 | else if (var->varno == OUTER_VAR && dpns->outer_tlist) |
7005 | { |
7006 | TargetEntry *tle; |
7007 | deparse_namespace save_dpns; |
7008 | const char *result; |
7009 | |
7010 | tle = get_tle_by_resno(dpns->outer_tlist, var->varattno); |
7011 | if (!tle) |
7012 | elog(ERROR, "bogus varattno for OUTER_VAR var: %d" , var->varattno); |
7013 | |
7014 | Assert(netlevelsup == 0); |
7015 | push_child_plan(dpns, dpns->outer_planstate, &save_dpns); |
7016 | |
7017 | result = get_name_for_var_field((Var *) tle->expr, fieldno, |
7018 | levelsup, context); |
7019 | |
7020 | pop_child_plan(dpns, &save_dpns); |
7021 | return result; |
7022 | } |
7023 | else if (var->varno == INNER_VAR && dpns->inner_tlist) |
7024 | { |
7025 | TargetEntry *tle; |
7026 | deparse_namespace save_dpns; |
7027 | const char *result; |
7028 | |
7029 | tle = get_tle_by_resno(dpns->inner_tlist, var->varattno); |
7030 | if (!tle) |
7031 | elog(ERROR, "bogus varattno for INNER_VAR var: %d" , var->varattno); |
7032 | |
7033 | Assert(netlevelsup == 0); |
7034 | push_child_plan(dpns, dpns->inner_planstate, &save_dpns); |
7035 | |
7036 | result = get_name_for_var_field((Var *) tle->expr, fieldno, |
7037 | levelsup, context); |
7038 | |
7039 | pop_child_plan(dpns, &save_dpns); |
7040 | return result; |
7041 | } |
7042 | else if (var->varno == INDEX_VAR && dpns->index_tlist) |
7043 | { |
7044 | TargetEntry *tle; |
7045 | const char *result; |
7046 | |
7047 | tle = get_tle_by_resno(dpns->index_tlist, var->varattno); |
7048 | if (!tle) |
7049 | elog(ERROR, "bogus varattno for INDEX_VAR var: %d" , var->varattno); |
7050 | |
7051 | Assert(netlevelsup == 0); |
7052 | |
7053 | result = get_name_for_var_field((Var *) tle->expr, fieldno, |
7054 | levelsup, context); |
7055 | |
7056 | return result; |
7057 | } |
7058 | else |
7059 | { |
7060 | elog(ERROR, "bogus varno: %d" , var->varno); |
7061 | return NULL; /* keep compiler quiet */ |
7062 | } |
7063 | |
7064 | if (attnum == InvalidAttrNumber) |
7065 | { |
7066 | /* Var is whole-row reference to RTE, so select the right field */ |
7067 | return get_rte_attribute_name(rte, fieldno); |
7068 | } |
7069 | |
7070 | /* |
7071 | * This part has essentially the same logic as the parser's |
7072 | * expandRecordVariable() function, but we are dealing with a different |
7073 | * representation of the input context, and we only need one field name |
7074 | * not a TupleDesc. Also, we need special cases for finding subquery and |
7075 | * CTE subplans when deparsing Plan trees. |
7076 | */ |
7077 | expr = (Node *) var; /* default if we can't drill down */ |
7078 | |
7079 | switch (rte->rtekind) |
7080 | { |
7081 | case RTE_RELATION: |
7082 | case RTE_VALUES: |
7083 | case RTE_NAMEDTUPLESTORE: |
7084 | case RTE_RESULT: |
7085 | |
7086 | /* |
7087 | * This case should not occur: a column of a table, values list, |
7088 | * or ENR shouldn't have type RECORD. Fall through and fail (most |
7089 | * likely) at the bottom. |
7090 | */ |
7091 | break; |
7092 | case RTE_SUBQUERY: |
7093 | /* Subselect-in-FROM: examine sub-select's output expr */ |
7094 | { |
7095 | if (rte->subquery) |
7096 | { |
7097 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
7098 | attnum); |
7099 | |
7100 | if (ste == NULL || ste->resjunk) |
7101 | elog(ERROR, "subquery %s does not have attribute %d" , |
7102 | rte->eref->aliasname, attnum); |
7103 | expr = (Node *) ste->expr; |
7104 | if (IsA(expr, Var)) |
7105 | { |
7106 | /* |
7107 | * Recurse into the sub-select to see what its Var |
7108 | * refers to. We have to build an additional level of |
7109 | * namespace to keep in step with varlevelsup in the |
7110 | * subselect. |
7111 | */ |
7112 | deparse_namespace mydpns; |
7113 | const char *result; |
7114 | |
7115 | set_deparse_for_query(&mydpns, rte->subquery, |
7116 | context->namespaces); |
7117 | |
7118 | context->namespaces = lcons(&mydpns, |
7119 | context->namespaces); |
7120 | |
7121 | result = get_name_for_var_field((Var *) expr, fieldno, |
7122 | 0, context); |
7123 | |
7124 | context->namespaces = |
7125 | list_delete_first(context->namespaces); |
7126 | |
7127 | return result; |
7128 | } |
7129 | /* else fall through to inspect the expression */ |
7130 | } |
7131 | else |
7132 | { |
7133 | /* |
7134 | * We're deparsing a Plan tree so we don't have complete |
7135 | * RTE entries (in particular, rte->subquery is NULL). But |
7136 | * the only place we'd see a Var directly referencing a |
7137 | * SUBQUERY RTE is in a SubqueryScan plan node, and we can |
7138 | * look into the child plan's tlist instead. |
7139 | */ |
7140 | TargetEntry *tle; |
7141 | deparse_namespace save_dpns; |
7142 | const char *result; |
7143 | |
7144 | if (!dpns->inner_planstate) |
7145 | elog(ERROR, "failed to find plan for subquery %s" , |
7146 | rte->eref->aliasname); |
7147 | tle = get_tle_by_resno(dpns->inner_tlist, attnum); |
7148 | if (!tle) |
7149 | elog(ERROR, "bogus varattno for subquery var: %d" , |
7150 | attnum); |
7151 | Assert(netlevelsup == 0); |
7152 | push_child_plan(dpns, dpns->inner_planstate, &save_dpns); |
7153 | |
7154 | result = get_name_for_var_field((Var *) tle->expr, fieldno, |
7155 | levelsup, context); |
7156 | |
7157 | pop_child_plan(dpns, &save_dpns); |
7158 | return result; |
7159 | } |
7160 | } |
7161 | break; |
7162 | case RTE_JOIN: |
7163 | /* Join RTE --- recursively inspect the alias variable */ |
7164 | if (rte->joinaliasvars == NIL) |
7165 | elog(ERROR, "cannot decompile join alias var in plan tree" ); |
7166 | Assert(attnum > 0 && attnum <= list_length(rte->joinaliasvars)); |
7167 | expr = (Node *) list_nth(rte->joinaliasvars, attnum - 1); |
7168 | Assert(expr != NULL); |
7169 | /* we intentionally don't strip implicit coercions here */ |
7170 | if (IsA(expr, Var)) |
7171 | return get_name_for_var_field((Var *) expr, fieldno, |
7172 | var->varlevelsup + levelsup, |
7173 | context); |
7174 | /* else fall through to inspect the expression */ |
7175 | break; |
7176 | case RTE_FUNCTION: |
7177 | case RTE_TABLEFUNC: |
7178 | |
7179 | /* |
7180 | * We couldn't get here unless a function is declared with one of |
7181 | * its result columns as RECORD, which is not allowed. |
7182 | */ |
7183 | break; |
7184 | case RTE_CTE: |
7185 | /* CTE reference: examine subquery's output expr */ |
7186 | { |
7187 | CommonTableExpr *cte = NULL; |
7188 | Index ctelevelsup; |
7189 | ListCell *lc; |
7190 | |
7191 | /* |
7192 | * Try to find the referenced CTE using the namespace stack. |
7193 | */ |
7194 | ctelevelsup = rte->ctelevelsup + netlevelsup; |
7195 | if (ctelevelsup >= list_length(context->namespaces)) |
7196 | lc = NULL; |
7197 | else |
7198 | { |
7199 | deparse_namespace *ctedpns; |
7200 | |
7201 | ctedpns = (deparse_namespace *) |
7202 | list_nth(context->namespaces, ctelevelsup); |
7203 | foreach(lc, ctedpns->ctes) |
7204 | { |
7205 | cte = (CommonTableExpr *) lfirst(lc); |
7206 | if (strcmp(cte->ctename, rte->ctename) == 0) |
7207 | break; |
7208 | } |
7209 | } |
7210 | if (lc != NULL) |
7211 | { |
7212 | Query *ctequery = (Query *) cte->ctequery; |
7213 | TargetEntry *ste = get_tle_by_resno(GetCTETargetList(cte), |
7214 | attnum); |
7215 | |
7216 | if (ste == NULL || ste->resjunk) |
7217 | elog(ERROR, "subquery %s does not have attribute %d" , |
7218 | rte->eref->aliasname, attnum); |
7219 | expr = (Node *) ste->expr; |
7220 | if (IsA(expr, Var)) |
7221 | { |
7222 | /* |
7223 | * Recurse into the CTE to see what its Var refers to. |
7224 | * We have to build an additional level of namespace |
7225 | * to keep in step with varlevelsup in the CTE. |
7226 | * Furthermore it could be an outer CTE, so we may |
7227 | * have to delete some levels of namespace. |
7228 | */ |
7229 | List *save_nslist = context->namespaces; |
7230 | List *new_nslist; |
7231 | deparse_namespace mydpns; |
7232 | const char *result; |
7233 | |
7234 | set_deparse_for_query(&mydpns, ctequery, |
7235 | context->namespaces); |
7236 | |
7237 | new_nslist = list_copy_tail(context->namespaces, |
7238 | ctelevelsup); |
7239 | context->namespaces = lcons(&mydpns, new_nslist); |
7240 | |
7241 | result = get_name_for_var_field((Var *) expr, fieldno, |
7242 | 0, context); |
7243 | |
7244 | context->namespaces = save_nslist; |
7245 | |
7246 | return result; |
7247 | } |
7248 | /* else fall through to inspect the expression */ |
7249 | } |
7250 | else |
7251 | { |
7252 | /* |
7253 | * We're deparsing a Plan tree so we don't have a CTE |
7254 | * list. But the only place we'd see a Var directly |
7255 | * referencing a CTE RTE is in a CteScan plan node, and we |
7256 | * can look into the subplan's tlist instead. |
7257 | */ |
7258 | TargetEntry *tle; |
7259 | deparse_namespace save_dpns; |
7260 | const char *result; |
7261 | |
7262 | if (!dpns->inner_planstate) |
7263 | elog(ERROR, "failed to find plan for CTE %s" , |
7264 | rte->eref->aliasname); |
7265 | tle = get_tle_by_resno(dpns->inner_tlist, attnum); |
7266 | if (!tle) |
7267 | elog(ERROR, "bogus varattno for subquery var: %d" , |
7268 | attnum); |
7269 | Assert(netlevelsup == 0); |
7270 | push_child_plan(dpns, dpns->inner_planstate, &save_dpns); |
7271 | |
7272 | result = get_name_for_var_field((Var *) tle->expr, fieldno, |
7273 | levelsup, context); |
7274 | |
7275 | pop_child_plan(dpns, &save_dpns); |
7276 | return result; |
7277 | } |
7278 | } |
7279 | break; |
7280 | } |
7281 | |
7282 | /* |
7283 | * We now have an expression we can't expand any more, so see if |
7284 | * get_expr_result_tupdesc() can do anything with it. |
7285 | */ |
7286 | tupleDesc = get_expr_result_tupdesc(expr, false); |
7287 | /* Got the tupdesc, so we can extract the field name */ |
7288 | Assert(fieldno >= 1 && fieldno <= tupleDesc->natts); |
7289 | return NameStr(TupleDescAttr(tupleDesc, fieldno - 1)->attname); |
7290 | } |
7291 | |
7292 | /* |
7293 | * Try to find the referenced expression for a PARAM_EXEC Param that might |
7294 | * reference a parameter supplied by an upper NestLoop or SubPlan plan node. |
7295 | * |
7296 | * If successful, return the expression and set *dpns_p and *ancestor_cell_p |
7297 | * appropriately for calling push_ancestor_plan(). If no referent can be |
7298 | * found, return NULL. |
7299 | */ |
7300 | static Node * |
7301 | find_param_referent(Param *param, deparse_context *context, |
7302 | deparse_namespace **dpns_p, ListCell **ancestor_cell_p) |
7303 | { |
7304 | /* Initialize output parameters to prevent compiler warnings */ |
7305 | *dpns_p = NULL; |
7306 | *ancestor_cell_p = NULL; |
7307 | |
7308 | /* |
7309 | * If it's a PARAM_EXEC parameter, look for a matching NestLoopParam or |
7310 | * SubPlan argument. This will necessarily be in some ancestor of the |
7311 | * current expression's PlanState. |
7312 | */ |
7313 | if (param->paramkind == PARAM_EXEC) |
7314 | { |
7315 | deparse_namespace *dpns; |
7316 | PlanState *child_ps; |
7317 | bool in_same_plan_level; |
7318 | ListCell *lc; |
7319 | |
7320 | dpns = (deparse_namespace *) linitial(context->namespaces); |
7321 | child_ps = dpns->planstate; |
7322 | in_same_plan_level = true; |
7323 | |
7324 | foreach(lc, dpns->ancestors) |
7325 | { |
7326 | PlanState *ps = (PlanState *) lfirst(lc); |
7327 | ListCell *lc2; |
7328 | |
7329 | /* |
7330 | * NestLoops transmit params to their inner child only; also, once |
7331 | * we've crawled up out of a subplan, this couldn't possibly be |
7332 | * the right match. |
7333 | */ |
7334 | if (IsA(ps, NestLoopState) && |
7335 | child_ps == innerPlanState(ps) && |
7336 | in_same_plan_level) |
7337 | { |
7338 | NestLoop *nl = (NestLoop *) ps->plan; |
7339 | |
7340 | foreach(lc2, nl->nestParams) |
7341 | { |
7342 | NestLoopParam *nlp = (NestLoopParam *) lfirst(lc2); |
7343 | |
7344 | if (nlp->paramno == param->paramid) |
7345 | { |
7346 | /* Found a match, so return it */ |
7347 | *dpns_p = dpns; |
7348 | *ancestor_cell_p = lc; |
7349 | return (Node *) nlp->paramval; |
7350 | } |
7351 | } |
7352 | } |
7353 | |
7354 | /* |
7355 | * Check to see if we're crawling up from a subplan. |
7356 | */ |
7357 | foreach(lc2, ps->subPlan) |
7358 | { |
7359 | SubPlanState *sstate = (SubPlanState *) lfirst(lc2); |
7360 | SubPlan *subplan = sstate->subplan; |
7361 | ListCell *lc3; |
7362 | ListCell *lc4; |
7363 | |
7364 | if (child_ps != sstate->planstate) |
7365 | continue; |
7366 | |
7367 | /* Matched subplan, so check its arguments */ |
7368 | forboth(lc3, subplan->parParam, lc4, subplan->args) |
7369 | { |
7370 | int paramid = lfirst_int(lc3); |
7371 | Node *arg = (Node *) lfirst(lc4); |
7372 | |
7373 | if (paramid == param->paramid) |
7374 | { |
7375 | /* Found a match, so return it */ |
7376 | *dpns_p = dpns; |
7377 | *ancestor_cell_p = lc; |
7378 | return arg; |
7379 | } |
7380 | } |
7381 | |
7382 | /* Keep looking, but we are emerging from a subplan. */ |
7383 | in_same_plan_level = false; |
7384 | break; |
7385 | } |
7386 | |
7387 | /* |
7388 | * Likewise check to see if we're emerging from an initplan. |
7389 | * Initplans never have any parParams, so no need to search that |
7390 | * list, but we need to know if we should reset |
7391 | * in_same_plan_level. |
7392 | */ |
7393 | foreach(lc2, ps->initPlan) |
7394 | { |
7395 | SubPlanState *sstate = (SubPlanState *) lfirst(lc2); |
7396 | |
7397 | if (child_ps != sstate->planstate) |
7398 | continue; |
7399 | |
7400 | /* No parameters to be had here. */ |
7401 | Assert(sstate->subplan->parParam == NIL); |
7402 | |
7403 | /* Keep looking, but we are emerging from an initplan. */ |
7404 | in_same_plan_level = false; |
7405 | break; |
7406 | } |
7407 | |
7408 | /* No luck, crawl up to next ancestor */ |
7409 | child_ps = ps; |
7410 | } |
7411 | } |
7412 | |
7413 | /* No referent found */ |
7414 | return NULL; |
7415 | } |
7416 | |
7417 | /* |
7418 | * Display a Param appropriately. |
7419 | */ |
7420 | static void |
7421 | get_parameter(Param *param, deparse_context *context) |
7422 | { |
7423 | Node *expr; |
7424 | deparse_namespace *dpns; |
7425 | ListCell *ancestor_cell; |
7426 | |
7427 | /* |
7428 | * If it's a PARAM_EXEC parameter, try to locate the expression from which |
7429 | * the parameter was computed. Note that failing to find a referent isn't |
7430 | * an error, since the Param might well be a subplan output rather than an |
7431 | * input. |
7432 | */ |
7433 | expr = find_param_referent(param, context, &dpns, &ancestor_cell); |
7434 | if (expr) |
7435 | { |
7436 | /* Found a match, so print it */ |
7437 | deparse_namespace save_dpns; |
7438 | bool save_varprefix; |
7439 | bool need_paren; |
7440 | |
7441 | /* Switch attention to the ancestor plan node */ |
7442 | push_ancestor_plan(dpns, ancestor_cell, &save_dpns); |
7443 | |
7444 | /* |
7445 | * Force prefixing of Vars, since they won't belong to the relation |
7446 | * being scanned in the original plan node. |
7447 | */ |
7448 | save_varprefix = context->varprefix; |
7449 | context->varprefix = true; |
7450 | |
7451 | /* |
7452 | * A Param's expansion is typically a Var, Aggref, or upper-level |
7453 | * Param, which wouldn't need extra parentheses. Otherwise, insert |
7454 | * parens to ensure the expression looks atomic. |
7455 | */ |
7456 | need_paren = !(IsA(expr, Var) || |
7457 | IsA(expr, Aggref) || |
7458 | IsA(expr, Param)); |
7459 | if (need_paren) |
7460 | appendStringInfoChar(context->buf, '('); |
7461 | |
7462 | get_rule_expr(expr, context, false); |
7463 | |
7464 | if (need_paren) |
7465 | appendStringInfoChar(context->buf, ')'); |
7466 | |
7467 | context->varprefix = save_varprefix; |
7468 | |
7469 | pop_ancestor_plan(dpns, &save_dpns); |
7470 | |
7471 | return; |
7472 | } |
7473 | |
7474 | /* |
7475 | * Not PARAM_EXEC, or couldn't find referent: just print $N. |
7476 | */ |
7477 | appendStringInfo(context->buf, "$%d" , param->paramid); |
7478 | } |
7479 | |
7480 | /* |
7481 | * get_simple_binary_op_name |
7482 | * |
7483 | * helper function for isSimpleNode |
7484 | * will return single char binary operator name, or NULL if it's not |
7485 | */ |
7486 | static const char * |
7487 | get_simple_binary_op_name(OpExpr *expr) |
7488 | { |
7489 | List *args = expr->args; |
7490 | |
7491 | if (list_length(args) == 2) |
7492 | { |
7493 | /* binary operator */ |
7494 | Node *arg1 = (Node *) linitial(args); |
7495 | Node *arg2 = (Node *) lsecond(args); |
7496 | const char *op; |
7497 | |
7498 | op = generate_operator_name(expr->opno, exprType(arg1), exprType(arg2)); |
7499 | if (strlen(op) == 1) |
7500 | return op; |
7501 | } |
7502 | return NULL; |
7503 | } |
7504 | |
7505 | |
7506 | /* |
7507 | * isSimpleNode - check if given node is simple (doesn't need parenthesizing) |
7508 | * |
7509 | * true : simple in the context of parent node's type |
7510 | * false : not simple |
7511 | */ |
7512 | static bool |
7513 | isSimpleNode(Node *node, Node *parentNode, int prettyFlags) |
7514 | { |
7515 | if (!node) |
7516 | return false; |
7517 | |
7518 | switch (nodeTag(node)) |
7519 | { |
7520 | case T_Var: |
7521 | case T_Const: |
7522 | case T_Param: |
7523 | case T_CoerceToDomainValue: |
7524 | case T_SetToDefault: |
7525 | case T_CurrentOfExpr: |
7526 | /* single words: always simple */ |
7527 | return true; |
7528 | |
7529 | case T_SubscriptingRef: |
7530 | case T_ArrayExpr: |
7531 | case T_RowExpr: |
7532 | case T_CoalesceExpr: |
7533 | case T_MinMaxExpr: |
7534 | case T_SQLValueFunction: |
7535 | case T_XmlExpr: |
7536 | case T_NextValueExpr: |
7537 | case T_NullIfExpr: |
7538 | case T_Aggref: |
7539 | case T_WindowFunc: |
7540 | case T_FuncExpr: |
7541 | /* function-like: name(..) or name[..] */ |
7542 | return true; |
7543 | |
7544 | /* CASE keywords act as parentheses */ |
7545 | case T_CaseExpr: |
7546 | return true; |
7547 | |
7548 | case T_FieldSelect: |
7549 | |
7550 | /* |
7551 | * appears simple since . has top precedence, unless parent is |
7552 | * T_FieldSelect itself! |
7553 | */ |
7554 | return (IsA(parentNode, FieldSelect) ? false : true); |
7555 | |
7556 | case T_FieldStore: |
7557 | |
7558 | /* |
7559 | * treat like FieldSelect (probably doesn't matter) |
7560 | */ |
7561 | return (IsA(parentNode, FieldStore) ? false : true); |
7562 | |
7563 | case T_CoerceToDomain: |
7564 | /* maybe simple, check args */ |
7565 | return isSimpleNode((Node *) ((CoerceToDomain *) node)->arg, |
7566 | node, prettyFlags); |
7567 | case T_RelabelType: |
7568 | return isSimpleNode((Node *) ((RelabelType *) node)->arg, |
7569 | node, prettyFlags); |
7570 | case T_CoerceViaIO: |
7571 | return isSimpleNode((Node *) ((CoerceViaIO *) node)->arg, |
7572 | node, prettyFlags); |
7573 | case T_ArrayCoerceExpr: |
7574 | return isSimpleNode((Node *) ((ArrayCoerceExpr *) node)->arg, |
7575 | node, prettyFlags); |
7576 | case T_ConvertRowtypeExpr: |
7577 | return isSimpleNode((Node *) ((ConvertRowtypeExpr *) node)->arg, |
7578 | node, prettyFlags); |
7579 | |
7580 | case T_OpExpr: |
7581 | { |
7582 | /* depends on parent node type; needs further checking */ |
7583 | if (prettyFlags & PRETTYFLAG_PAREN && IsA(parentNode, OpExpr)) |
7584 | { |
7585 | const char *op; |
7586 | const char *parentOp; |
7587 | bool is_lopriop; |
7588 | bool is_hipriop; |
7589 | bool is_lopriparent; |
7590 | bool is_hipriparent; |
7591 | |
7592 | op = get_simple_binary_op_name((OpExpr *) node); |
7593 | if (!op) |
7594 | return false; |
7595 | |
7596 | /* We know only the basic operators + - and * / % */ |
7597 | is_lopriop = (strchr("+-" , *op) != NULL); |
7598 | is_hipriop = (strchr("*/%" , *op) != NULL); |
7599 | if (!(is_lopriop || is_hipriop)) |
7600 | return false; |
7601 | |
7602 | parentOp = get_simple_binary_op_name((OpExpr *) parentNode); |
7603 | if (!parentOp) |
7604 | return false; |
7605 | |
7606 | is_lopriparent = (strchr("+-" , *parentOp) != NULL); |
7607 | is_hipriparent = (strchr("*/%" , *parentOp) != NULL); |
7608 | if (!(is_lopriparent || is_hipriparent)) |
7609 | return false; |
7610 | |
7611 | if (is_hipriop && is_lopriparent) |
7612 | return true; /* op binds tighter than parent */ |
7613 | |
7614 | if (is_lopriop && is_hipriparent) |
7615 | return false; |
7616 | |
7617 | /* |
7618 | * Operators are same priority --- can skip parens only if |
7619 | * we have (a - b) - c, not a - (b - c). |
7620 | */ |
7621 | if (node == (Node *) linitial(((OpExpr *) parentNode)->args)) |
7622 | return true; |
7623 | |
7624 | return false; |
7625 | } |
7626 | /* else do the same stuff as for T_SubLink et al. */ |
7627 | } |
7628 | /* FALLTHROUGH */ |
7629 | |
7630 | case T_SubLink: |
7631 | case T_NullTest: |
7632 | case T_BooleanTest: |
7633 | case T_DistinctExpr: |
7634 | switch (nodeTag(parentNode)) |
7635 | { |
7636 | case T_FuncExpr: |
7637 | { |
7638 | /* special handling for casts */ |
7639 | CoercionForm type = ((FuncExpr *) parentNode)->funcformat; |
7640 | |
7641 | if (type == COERCE_EXPLICIT_CAST || |
7642 | type == COERCE_IMPLICIT_CAST) |
7643 | return false; |
7644 | return true; /* own parentheses */ |
7645 | } |
7646 | case T_BoolExpr: /* lower precedence */ |
7647 | case T_SubscriptingRef: /* other separators */ |
7648 | case T_ArrayExpr: /* other separators */ |
7649 | case T_RowExpr: /* other separators */ |
7650 | case T_CoalesceExpr: /* own parentheses */ |
7651 | case T_MinMaxExpr: /* own parentheses */ |
7652 | case T_XmlExpr: /* own parentheses */ |
7653 | case T_NullIfExpr: /* other separators */ |
7654 | case T_Aggref: /* own parentheses */ |
7655 | case T_WindowFunc: /* own parentheses */ |
7656 | case T_CaseExpr: /* other separators */ |
7657 | return true; |
7658 | default: |
7659 | return false; |
7660 | } |
7661 | |
7662 | case T_BoolExpr: |
7663 | switch (nodeTag(parentNode)) |
7664 | { |
7665 | case T_BoolExpr: |
7666 | if (prettyFlags & PRETTYFLAG_PAREN) |
7667 | { |
7668 | BoolExprType type; |
7669 | BoolExprType parentType; |
7670 | |
7671 | type = ((BoolExpr *) node)->boolop; |
7672 | parentType = ((BoolExpr *) parentNode)->boolop; |
7673 | switch (type) |
7674 | { |
7675 | case NOT_EXPR: |
7676 | case AND_EXPR: |
7677 | if (parentType == AND_EXPR || parentType == OR_EXPR) |
7678 | return true; |
7679 | break; |
7680 | case OR_EXPR: |
7681 | if (parentType == OR_EXPR) |
7682 | return true; |
7683 | break; |
7684 | } |
7685 | } |
7686 | return false; |
7687 | case T_FuncExpr: |
7688 | { |
7689 | /* special handling for casts */ |
7690 | CoercionForm type = ((FuncExpr *) parentNode)->funcformat; |
7691 | |
7692 | if (type == COERCE_EXPLICIT_CAST || |
7693 | type == COERCE_IMPLICIT_CAST) |
7694 | return false; |
7695 | return true; /* own parentheses */ |
7696 | } |
7697 | case T_SubscriptingRef: /* other separators */ |
7698 | case T_ArrayExpr: /* other separators */ |
7699 | case T_RowExpr: /* other separators */ |
7700 | case T_CoalesceExpr: /* own parentheses */ |
7701 | case T_MinMaxExpr: /* own parentheses */ |
7702 | case T_XmlExpr: /* own parentheses */ |
7703 | case T_NullIfExpr: /* other separators */ |
7704 | case T_Aggref: /* own parentheses */ |
7705 | case T_WindowFunc: /* own parentheses */ |
7706 | case T_CaseExpr: /* other separators */ |
7707 | return true; |
7708 | default: |
7709 | return false; |
7710 | } |
7711 | |
7712 | default: |
7713 | break; |
7714 | } |
7715 | /* those we don't know: in dubio complexo */ |
7716 | return false; |
7717 | } |
7718 | |
7719 | |
7720 | /* |
7721 | * appendContextKeyword - append a keyword to buffer |
7722 | * |
7723 | * If prettyPrint is enabled, perform a line break, and adjust indentation. |
7724 | * Otherwise, just append the keyword. |
7725 | */ |
7726 | static void |
7727 | appendContextKeyword(deparse_context *context, const char *str, |
7728 | int indentBefore, int indentAfter, int indentPlus) |
7729 | { |
7730 | StringInfo buf = context->buf; |
7731 | |
7732 | if (PRETTY_INDENT(context)) |
7733 | { |
7734 | int indentAmount; |
7735 | |
7736 | context->indentLevel += indentBefore; |
7737 | |
7738 | /* remove any trailing spaces currently in the buffer ... */ |
7739 | removeStringInfoSpaces(buf); |
7740 | /* ... then add a newline and some spaces */ |
7741 | appendStringInfoChar(buf, '\n'); |
7742 | |
7743 | if (context->indentLevel < PRETTYINDENT_LIMIT) |
7744 | indentAmount = Max(context->indentLevel, 0) + indentPlus; |
7745 | else |
7746 | { |
7747 | /* |
7748 | * If we're indented more than PRETTYINDENT_LIMIT characters, try |
7749 | * to conserve horizontal space by reducing the per-level |
7750 | * indentation. For best results the scale factor here should |
7751 | * divide all the indent amounts that get added to indentLevel |
7752 | * (PRETTYINDENT_STD, etc). It's important that the indentation |
7753 | * not grow unboundedly, else deeply-nested trees use O(N^2) |
7754 | * whitespace; so we also wrap modulo PRETTYINDENT_LIMIT. |
7755 | */ |
7756 | indentAmount = PRETTYINDENT_LIMIT + |
7757 | (context->indentLevel - PRETTYINDENT_LIMIT) / |
7758 | (PRETTYINDENT_STD / 2); |
7759 | indentAmount %= PRETTYINDENT_LIMIT; |
7760 | /* scale/wrap logic affects indentLevel, but not indentPlus */ |
7761 | indentAmount += indentPlus; |
7762 | } |
7763 | appendStringInfoSpaces(buf, indentAmount); |
7764 | |
7765 | appendStringInfoString(buf, str); |
7766 | |
7767 | context->indentLevel += indentAfter; |
7768 | if (context->indentLevel < 0) |
7769 | context->indentLevel = 0; |
7770 | } |
7771 | else |
7772 | appendStringInfoString(buf, str); |
7773 | } |
7774 | |
7775 | /* |
7776 | * removeStringInfoSpaces - delete trailing spaces from a buffer. |
7777 | * |
7778 | * Possibly this should move to stringinfo.c at some point. |
7779 | */ |
7780 | static void |
7781 | removeStringInfoSpaces(StringInfo str) |
7782 | { |
7783 | while (str->len > 0 && str->data[str->len - 1] == ' ') |
7784 | str->data[--(str->len)] = '\0'; |
7785 | } |
7786 | |
7787 | |
7788 | /* |
7789 | * get_rule_expr_paren - deparse expr using get_rule_expr, |
7790 | * embracing the string with parentheses if necessary for prettyPrint. |
7791 | * |
7792 | * Never embrace if prettyFlags=0, because it's done in the calling node. |
7793 | * |
7794 | * Any node that does *not* embrace its argument node by sql syntax (with |
7795 | * parentheses, non-operator keywords like CASE/WHEN/ON, or comma etc) should |
7796 | * use get_rule_expr_paren instead of get_rule_expr so parentheses can be |
7797 | * added. |
7798 | */ |
7799 | static void |
7800 | get_rule_expr_paren(Node *node, deparse_context *context, |
7801 | bool showimplicit, Node *parentNode) |
7802 | { |
7803 | bool need_paren; |
7804 | |
7805 | need_paren = PRETTY_PAREN(context) && |
7806 | !isSimpleNode(node, parentNode, context->prettyFlags); |
7807 | |
7808 | if (need_paren) |
7809 | appendStringInfoChar(context->buf, '('); |
7810 | |
7811 | get_rule_expr(node, context, showimplicit); |
7812 | |
7813 | if (need_paren) |
7814 | appendStringInfoChar(context->buf, ')'); |
7815 | } |
7816 | |
7817 | |
7818 | /* ---------- |
7819 | * get_rule_expr - Parse back an expression |
7820 | * |
7821 | * Note: showimplicit determines whether we display any implicit cast that |
7822 | * is present at the top of the expression tree. It is a passed argument, |
7823 | * not a field of the context struct, because we change the value as we |
7824 | * recurse down into the expression. In general we suppress implicit casts |
7825 | * when the result type is known with certainty (eg, the arguments of an |
7826 | * OR must be boolean). We display implicit casts for arguments of functions |
7827 | * and operators, since this is needed to be certain that the same function |
7828 | * or operator will be chosen when the expression is re-parsed. |
7829 | * ---------- |
7830 | */ |
7831 | static void |
7832 | get_rule_expr(Node *node, deparse_context *context, |
7833 | bool showimplicit) |
7834 | { |
7835 | StringInfo buf = context->buf; |
7836 | |
7837 | if (node == NULL) |
7838 | return; |
7839 | |
7840 | /* Guard against excessively long or deeply-nested queries */ |
7841 | CHECK_FOR_INTERRUPTS(); |
7842 | check_stack_depth(); |
7843 | |
7844 | /* |
7845 | * Each level of get_rule_expr must emit an indivisible term |
7846 | * (parenthesized if necessary) to ensure result is reparsed into the same |
7847 | * expression tree. The only exception is that when the input is a List, |
7848 | * we emit the component items comma-separated with no surrounding |
7849 | * decoration; this is convenient for most callers. |
7850 | */ |
7851 | switch (nodeTag(node)) |
7852 | { |
7853 | case T_Var: |
7854 | (void) get_variable((Var *) node, 0, false, context); |
7855 | break; |
7856 | |
7857 | case T_Const: |
7858 | get_const_expr((Const *) node, context, 0); |
7859 | break; |
7860 | |
7861 | case T_Param: |
7862 | get_parameter((Param *) node, context); |
7863 | break; |
7864 | |
7865 | case T_Aggref: |
7866 | get_agg_expr((Aggref *) node, context, (Aggref *) node); |
7867 | break; |
7868 | |
7869 | case T_GroupingFunc: |
7870 | { |
7871 | GroupingFunc *gexpr = (GroupingFunc *) node; |
7872 | |
7873 | appendStringInfoString(buf, "GROUPING(" ); |
7874 | get_rule_expr((Node *) gexpr->args, context, true); |
7875 | appendStringInfoChar(buf, ')'); |
7876 | } |
7877 | break; |
7878 | |
7879 | case T_WindowFunc: |
7880 | get_windowfunc_expr((WindowFunc *) node, context); |
7881 | break; |
7882 | |
7883 | case T_SubscriptingRef: |
7884 | { |
7885 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
7886 | bool need_parens; |
7887 | |
7888 | /* |
7889 | * If the argument is a CaseTestExpr, we must be inside a |
7890 | * FieldStore, ie, we are assigning to an element of an array |
7891 | * within a composite column. Since we already punted on |
7892 | * displaying the FieldStore's target information, just punt |
7893 | * here too, and display only the assignment source |
7894 | * expression. |
7895 | */ |
7896 | if (IsA(sbsref->refexpr, CaseTestExpr)) |
7897 | { |
7898 | Assert(sbsref->refassgnexpr); |
7899 | get_rule_expr((Node *) sbsref->refassgnexpr, |
7900 | context, showimplicit); |
7901 | break; |
7902 | } |
7903 | |
7904 | /* |
7905 | * Parenthesize the argument unless it's a simple Var or a |
7906 | * FieldSelect. (In particular, if it's another |
7907 | * SubscriptingRef, we *must* parenthesize to avoid |
7908 | * confusion.) |
7909 | */ |
7910 | need_parens = !IsA(sbsref->refexpr, Var) && |
7911 | !IsA(sbsref->refexpr, FieldSelect); |
7912 | if (need_parens) |
7913 | appendStringInfoChar(buf, '('); |
7914 | get_rule_expr((Node *) sbsref->refexpr, context, showimplicit); |
7915 | if (need_parens) |
7916 | appendStringInfoChar(buf, ')'); |
7917 | |
7918 | /* |
7919 | * If there's a refassgnexpr, we want to print the node in the |
7920 | * format "container[subscripts] := refassgnexpr". This is |
7921 | * not legal SQL, so decompilation of INSERT or UPDATE |
7922 | * statements should always use processIndirection as part of |
7923 | * the statement-level syntax. We should only see this when |
7924 | * EXPLAIN tries to print the targetlist of a plan resulting |
7925 | * from such a statement. |
7926 | */ |
7927 | if (sbsref->refassgnexpr) |
7928 | { |
7929 | Node *refassgnexpr; |
7930 | |
7931 | /* |
7932 | * Use processIndirection to print this node's subscripts |
7933 | * as well as any additional field selections or |
7934 | * subscripting in immediate descendants. It returns the |
7935 | * RHS expr that is actually being "assigned". |
7936 | */ |
7937 | refassgnexpr = processIndirection(node, context); |
7938 | appendStringInfoString(buf, " := " ); |
7939 | get_rule_expr(refassgnexpr, context, showimplicit); |
7940 | } |
7941 | else |
7942 | { |
7943 | /* Just an ordinary container fetch, so print subscripts */ |
7944 | printSubscripts(sbsref, context); |
7945 | } |
7946 | } |
7947 | break; |
7948 | |
7949 | case T_FuncExpr: |
7950 | get_func_expr((FuncExpr *) node, context, showimplicit); |
7951 | break; |
7952 | |
7953 | case T_NamedArgExpr: |
7954 | { |
7955 | NamedArgExpr *na = (NamedArgExpr *) node; |
7956 | |
7957 | appendStringInfo(buf, "%s => " , quote_identifier(na->name)); |
7958 | get_rule_expr((Node *) na->arg, context, showimplicit); |
7959 | } |
7960 | break; |
7961 | |
7962 | case T_OpExpr: |
7963 | get_oper_expr((OpExpr *) node, context); |
7964 | break; |
7965 | |
7966 | case T_DistinctExpr: |
7967 | { |
7968 | DistinctExpr *expr = (DistinctExpr *) node; |
7969 | List *args = expr->args; |
7970 | Node *arg1 = (Node *) linitial(args); |
7971 | Node *arg2 = (Node *) lsecond(args); |
7972 | |
7973 | if (!PRETTY_PAREN(context)) |
7974 | appendStringInfoChar(buf, '('); |
7975 | get_rule_expr_paren(arg1, context, true, node); |
7976 | appendStringInfoString(buf, " IS DISTINCT FROM " ); |
7977 | get_rule_expr_paren(arg2, context, true, node); |
7978 | if (!PRETTY_PAREN(context)) |
7979 | appendStringInfoChar(buf, ')'); |
7980 | } |
7981 | break; |
7982 | |
7983 | case T_NullIfExpr: |
7984 | { |
7985 | NullIfExpr *nullifexpr = (NullIfExpr *) node; |
7986 | |
7987 | appendStringInfoString(buf, "NULLIF(" ); |
7988 | get_rule_expr((Node *) nullifexpr->args, context, true); |
7989 | appendStringInfoChar(buf, ')'); |
7990 | } |
7991 | break; |
7992 | |
7993 | case T_ScalarArrayOpExpr: |
7994 | { |
7995 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
7996 | List *args = expr->args; |
7997 | Node *arg1 = (Node *) linitial(args); |
7998 | Node *arg2 = (Node *) lsecond(args); |
7999 | |
8000 | if (!PRETTY_PAREN(context)) |
8001 | appendStringInfoChar(buf, '('); |
8002 | get_rule_expr_paren(arg1, context, true, node); |
8003 | appendStringInfo(buf, " %s %s (" , |
8004 | generate_operator_name(expr->opno, |
8005 | exprType(arg1), |
8006 | get_base_element_type(exprType(arg2))), |
8007 | expr->useOr ? "ANY" : "ALL" ); |
8008 | get_rule_expr_paren(arg2, context, true, node); |
8009 | |
8010 | /* |
8011 | * There's inherent ambiguity in "x op ANY/ALL (y)" when y is |
8012 | * a bare sub-SELECT. Since we're here, the sub-SELECT must |
8013 | * be meant as a scalar sub-SELECT yielding an array value to |
8014 | * be used in ScalarArrayOpExpr; but the grammar will |
8015 | * preferentially interpret such a construct as an ANY/ALL |
8016 | * SubLink. To prevent misparsing the output that way, insert |
8017 | * a dummy coercion (which will be stripped by parse analysis, |
8018 | * so no inefficiency is added in dump and reload). This is |
8019 | * indeed most likely what the user wrote to get the construct |
8020 | * accepted in the first place. |
8021 | */ |
8022 | if (IsA(arg2, SubLink) && |
8023 | ((SubLink *) arg2)->subLinkType == EXPR_SUBLINK) |
8024 | appendStringInfo(buf, "::%s" , |
8025 | format_type_with_typemod(exprType(arg2), |
8026 | exprTypmod(arg2))); |
8027 | appendStringInfoChar(buf, ')'); |
8028 | if (!PRETTY_PAREN(context)) |
8029 | appendStringInfoChar(buf, ')'); |
8030 | } |
8031 | break; |
8032 | |
8033 | case T_BoolExpr: |
8034 | { |
8035 | BoolExpr *expr = (BoolExpr *) node; |
8036 | Node *first_arg = linitial(expr->args); |
8037 | ListCell *arg = lnext(list_head(expr->args)); |
8038 | |
8039 | switch (expr->boolop) |
8040 | { |
8041 | case AND_EXPR: |
8042 | if (!PRETTY_PAREN(context)) |
8043 | appendStringInfoChar(buf, '('); |
8044 | get_rule_expr_paren(first_arg, context, |
8045 | false, node); |
8046 | while (arg) |
8047 | { |
8048 | appendStringInfoString(buf, " AND " ); |
8049 | get_rule_expr_paren((Node *) lfirst(arg), context, |
8050 | false, node); |
8051 | arg = lnext(arg); |
8052 | } |
8053 | if (!PRETTY_PAREN(context)) |
8054 | appendStringInfoChar(buf, ')'); |
8055 | break; |
8056 | |
8057 | case OR_EXPR: |
8058 | if (!PRETTY_PAREN(context)) |
8059 | appendStringInfoChar(buf, '('); |
8060 | get_rule_expr_paren(first_arg, context, |
8061 | false, node); |
8062 | while (arg) |
8063 | { |
8064 | appendStringInfoString(buf, " OR " ); |
8065 | get_rule_expr_paren((Node *) lfirst(arg), context, |
8066 | false, node); |
8067 | arg = lnext(arg); |
8068 | } |
8069 | if (!PRETTY_PAREN(context)) |
8070 | appendStringInfoChar(buf, ')'); |
8071 | break; |
8072 | |
8073 | case NOT_EXPR: |
8074 | if (!PRETTY_PAREN(context)) |
8075 | appendStringInfoChar(buf, '('); |
8076 | appendStringInfoString(buf, "NOT " ); |
8077 | get_rule_expr_paren(first_arg, context, |
8078 | false, node); |
8079 | if (!PRETTY_PAREN(context)) |
8080 | appendStringInfoChar(buf, ')'); |
8081 | break; |
8082 | |
8083 | default: |
8084 | elog(ERROR, "unrecognized boolop: %d" , |
8085 | (int) expr->boolop); |
8086 | } |
8087 | } |
8088 | break; |
8089 | |
8090 | case T_SubLink: |
8091 | get_sublink_expr((SubLink *) node, context); |
8092 | break; |
8093 | |
8094 | case T_SubPlan: |
8095 | { |
8096 | SubPlan *subplan = (SubPlan *) node; |
8097 | |
8098 | /* |
8099 | * We cannot see an already-planned subplan in rule deparsing, |
8100 | * only while EXPLAINing a query plan. We don't try to |
8101 | * reconstruct the original SQL, just reference the subplan |
8102 | * that appears elsewhere in EXPLAIN's result. |
8103 | */ |
8104 | if (subplan->useHashTable) |
8105 | appendStringInfo(buf, "(hashed %s)" , subplan->plan_name); |
8106 | else |
8107 | appendStringInfo(buf, "(%s)" , subplan->plan_name); |
8108 | } |
8109 | break; |
8110 | |
8111 | case T_AlternativeSubPlan: |
8112 | { |
8113 | AlternativeSubPlan *asplan = (AlternativeSubPlan *) node; |
8114 | ListCell *lc; |
8115 | |
8116 | /* As above, this can only happen during EXPLAIN */ |
8117 | appendStringInfoString(buf, "(alternatives: " ); |
8118 | foreach(lc, asplan->subplans) |
8119 | { |
8120 | SubPlan *splan = lfirst_node(SubPlan, lc); |
8121 | |
8122 | if (splan->useHashTable) |
8123 | appendStringInfo(buf, "hashed %s" , splan->plan_name); |
8124 | else |
8125 | appendStringInfoString(buf, splan->plan_name); |
8126 | if (lnext(lc)) |
8127 | appendStringInfoString(buf, " or " ); |
8128 | } |
8129 | appendStringInfoChar(buf, ')'); |
8130 | } |
8131 | break; |
8132 | |
8133 | case T_FieldSelect: |
8134 | { |
8135 | FieldSelect *fselect = (FieldSelect *) node; |
8136 | Node *arg = (Node *) fselect->arg; |
8137 | int fno = fselect->fieldnum; |
8138 | const char *fieldname; |
8139 | bool need_parens; |
8140 | |
8141 | /* |
8142 | * Parenthesize the argument unless it's an SubscriptingRef or |
8143 | * another FieldSelect. Note in particular that it would be |
8144 | * WRONG to not parenthesize a Var argument; simplicity is not |
8145 | * the issue here, having the right number of names is. |
8146 | */ |
8147 | need_parens = !IsA(arg, SubscriptingRef) && |
8148 | !IsA(arg, FieldSelect); |
8149 | if (need_parens) |
8150 | appendStringInfoChar(buf, '('); |
8151 | get_rule_expr(arg, context, true); |
8152 | if (need_parens) |
8153 | appendStringInfoChar(buf, ')'); |
8154 | |
8155 | /* |
8156 | * Get and print the field name. |
8157 | */ |
8158 | fieldname = get_name_for_var_field((Var *) arg, fno, |
8159 | 0, context); |
8160 | appendStringInfo(buf, ".%s" , quote_identifier(fieldname)); |
8161 | } |
8162 | break; |
8163 | |
8164 | case T_FieldStore: |
8165 | { |
8166 | FieldStore *fstore = (FieldStore *) node; |
8167 | bool need_parens; |
8168 | |
8169 | /* |
8170 | * There is no good way to represent a FieldStore as real SQL, |
8171 | * so decompilation of INSERT or UPDATE statements should |
8172 | * always use processIndirection as part of the |
8173 | * statement-level syntax. We should only get here when |
8174 | * EXPLAIN tries to print the targetlist of a plan resulting |
8175 | * from such a statement. The plan case is even harder than |
8176 | * ordinary rules would be, because the planner tries to |
8177 | * collapse multiple assignments to the same field or subfield |
8178 | * into one FieldStore; so we can see a list of target fields |
8179 | * not just one, and the arguments could be FieldStores |
8180 | * themselves. We don't bother to try to print the target |
8181 | * field names; we just print the source arguments, with a |
8182 | * ROW() around them if there's more than one. This isn't |
8183 | * terribly complete, but it's probably good enough for |
8184 | * EXPLAIN's purposes; especially since anything more would be |
8185 | * either hopelessly confusing or an even poorer |
8186 | * representation of what the plan is actually doing. |
8187 | */ |
8188 | need_parens = (list_length(fstore->newvals) != 1); |
8189 | if (need_parens) |
8190 | appendStringInfoString(buf, "ROW(" ); |
8191 | get_rule_expr((Node *) fstore->newvals, context, showimplicit); |
8192 | if (need_parens) |
8193 | appendStringInfoChar(buf, ')'); |
8194 | } |
8195 | break; |
8196 | |
8197 | case T_RelabelType: |
8198 | { |
8199 | RelabelType *relabel = (RelabelType *) node; |
8200 | Node *arg = (Node *) relabel->arg; |
8201 | |
8202 | if (relabel->relabelformat == COERCE_IMPLICIT_CAST && |
8203 | !showimplicit) |
8204 | { |
8205 | /* don't show the implicit cast */ |
8206 | get_rule_expr_paren(arg, context, false, node); |
8207 | } |
8208 | else |
8209 | { |
8210 | get_coercion_expr(arg, context, |
8211 | relabel->resulttype, |
8212 | relabel->resulttypmod, |
8213 | node); |
8214 | } |
8215 | } |
8216 | break; |
8217 | |
8218 | case T_CoerceViaIO: |
8219 | { |
8220 | CoerceViaIO *iocoerce = (CoerceViaIO *) node; |
8221 | Node *arg = (Node *) iocoerce->arg; |
8222 | |
8223 | if (iocoerce->coerceformat == COERCE_IMPLICIT_CAST && |
8224 | !showimplicit) |
8225 | { |
8226 | /* don't show the implicit cast */ |
8227 | get_rule_expr_paren(arg, context, false, node); |
8228 | } |
8229 | else |
8230 | { |
8231 | get_coercion_expr(arg, context, |
8232 | iocoerce->resulttype, |
8233 | -1, |
8234 | node); |
8235 | } |
8236 | } |
8237 | break; |
8238 | |
8239 | case T_ArrayCoerceExpr: |
8240 | { |
8241 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
8242 | Node *arg = (Node *) acoerce->arg; |
8243 | |
8244 | if (acoerce->coerceformat == COERCE_IMPLICIT_CAST && |
8245 | !showimplicit) |
8246 | { |
8247 | /* don't show the implicit cast */ |
8248 | get_rule_expr_paren(arg, context, false, node); |
8249 | } |
8250 | else |
8251 | { |
8252 | get_coercion_expr(arg, context, |
8253 | acoerce->resulttype, |
8254 | acoerce->resulttypmod, |
8255 | node); |
8256 | } |
8257 | } |
8258 | break; |
8259 | |
8260 | case T_ConvertRowtypeExpr: |
8261 | { |
8262 | ConvertRowtypeExpr *convert = (ConvertRowtypeExpr *) node; |
8263 | Node *arg = (Node *) convert->arg; |
8264 | |
8265 | if (convert->convertformat == COERCE_IMPLICIT_CAST && |
8266 | !showimplicit) |
8267 | { |
8268 | /* don't show the implicit cast */ |
8269 | get_rule_expr_paren(arg, context, false, node); |
8270 | } |
8271 | else |
8272 | { |
8273 | get_coercion_expr(arg, context, |
8274 | convert->resulttype, -1, |
8275 | node); |
8276 | } |
8277 | } |
8278 | break; |
8279 | |
8280 | case T_CollateExpr: |
8281 | { |
8282 | CollateExpr *collate = (CollateExpr *) node; |
8283 | Node *arg = (Node *) collate->arg; |
8284 | |
8285 | if (!PRETTY_PAREN(context)) |
8286 | appendStringInfoChar(buf, '('); |
8287 | get_rule_expr_paren(arg, context, showimplicit, node); |
8288 | appendStringInfo(buf, " COLLATE %s" , |
8289 | generate_collation_name(collate->collOid)); |
8290 | if (!PRETTY_PAREN(context)) |
8291 | appendStringInfoChar(buf, ')'); |
8292 | } |
8293 | break; |
8294 | |
8295 | case T_CaseExpr: |
8296 | { |
8297 | CaseExpr *caseexpr = (CaseExpr *) node; |
8298 | ListCell *temp; |
8299 | |
8300 | appendContextKeyword(context, "CASE" , |
8301 | 0, PRETTYINDENT_VAR, 0); |
8302 | if (caseexpr->arg) |
8303 | { |
8304 | appendStringInfoChar(buf, ' '); |
8305 | get_rule_expr((Node *) caseexpr->arg, context, true); |
8306 | } |
8307 | foreach(temp, caseexpr->args) |
8308 | { |
8309 | CaseWhen *when = (CaseWhen *) lfirst(temp); |
8310 | Node *w = (Node *) when->expr; |
8311 | |
8312 | if (caseexpr->arg) |
8313 | { |
8314 | /* |
8315 | * The parser should have produced WHEN clauses of the |
8316 | * form "CaseTestExpr = RHS", possibly with an |
8317 | * implicit coercion inserted above the CaseTestExpr. |
8318 | * For accurate decompilation of rules it's essential |
8319 | * that we show just the RHS. However in an |
8320 | * expression that's been through the optimizer, the |
8321 | * WHEN clause could be almost anything (since the |
8322 | * equality operator could have been expanded into an |
8323 | * inline function). If we don't recognize the form |
8324 | * of the WHEN clause, just punt and display it as-is. |
8325 | */ |
8326 | if (IsA(w, OpExpr)) |
8327 | { |
8328 | List *args = ((OpExpr *) w)->args; |
8329 | |
8330 | if (list_length(args) == 2 && |
8331 | IsA(strip_implicit_coercions(linitial(args)), |
8332 | CaseTestExpr)) |
8333 | w = (Node *) lsecond(args); |
8334 | } |
8335 | } |
8336 | |
8337 | if (!PRETTY_INDENT(context)) |
8338 | appendStringInfoChar(buf, ' '); |
8339 | appendContextKeyword(context, "WHEN " , |
8340 | 0, 0, 0); |
8341 | get_rule_expr(w, context, false); |
8342 | appendStringInfoString(buf, " THEN " ); |
8343 | get_rule_expr((Node *) when->result, context, true); |
8344 | } |
8345 | if (!PRETTY_INDENT(context)) |
8346 | appendStringInfoChar(buf, ' '); |
8347 | appendContextKeyword(context, "ELSE " , |
8348 | 0, 0, 0); |
8349 | get_rule_expr((Node *) caseexpr->defresult, context, true); |
8350 | if (!PRETTY_INDENT(context)) |
8351 | appendStringInfoChar(buf, ' '); |
8352 | appendContextKeyword(context, "END" , |
8353 | -PRETTYINDENT_VAR, 0, 0); |
8354 | } |
8355 | break; |
8356 | |
8357 | case T_CaseTestExpr: |
8358 | { |
8359 | /* |
8360 | * Normally we should never get here, since for expressions |
8361 | * that can contain this node type we attempt to avoid |
8362 | * recursing to it. But in an optimized expression we might |
8363 | * be unable to avoid that (see comments for CaseExpr). If we |
8364 | * do see one, print it as CASE_TEST_EXPR. |
8365 | */ |
8366 | appendStringInfoString(buf, "CASE_TEST_EXPR" ); |
8367 | } |
8368 | break; |
8369 | |
8370 | case T_ArrayExpr: |
8371 | { |
8372 | ArrayExpr *arrayexpr = (ArrayExpr *) node; |
8373 | |
8374 | appendStringInfoString(buf, "ARRAY[" ); |
8375 | get_rule_expr((Node *) arrayexpr->elements, context, true); |
8376 | appendStringInfoChar(buf, ']'); |
8377 | |
8378 | /* |
8379 | * If the array isn't empty, we assume its elements are |
8380 | * coerced to the desired type. If it's empty, though, we |
8381 | * need an explicit coercion to the array type. |
8382 | */ |
8383 | if (arrayexpr->elements == NIL) |
8384 | appendStringInfo(buf, "::%s" , |
8385 | format_type_with_typemod(arrayexpr->array_typeid, -1)); |
8386 | } |
8387 | break; |
8388 | |
8389 | case T_RowExpr: |
8390 | { |
8391 | RowExpr *rowexpr = (RowExpr *) node; |
8392 | TupleDesc tupdesc = NULL; |
8393 | ListCell *arg; |
8394 | int i; |
8395 | char *sep; |
8396 | |
8397 | /* |
8398 | * If it's a named type and not RECORD, we may have to skip |
8399 | * dropped columns and/or claim there are NULLs for added |
8400 | * columns. |
8401 | */ |
8402 | if (rowexpr->row_typeid != RECORDOID) |
8403 | { |
8404 | tupdesc = lookup_rowtype_tupdesc(rowexpr->row_typeid, -1); |
8405 | Assert(list_length(rowexpr->args) <= tupdesc->natts); |
8406 | } |
8407 | |
8408 | /* |
8409 | * SQL99 allows "ROW" to be omitted when there is more than |
8410 | * one column, but for simplicity we always print it. |
8411 | */ |
8412 | appendStringInfoString(buf, "ROW(" ); |
8413 | sep = "" ; |
8414 | i = 0; |
8415 | foreach(arg, rowexpr->args) |
8416 | { |
8417 | Node *e = (Node *) lfirst(arg); |
8418 | |
8419 | if (tupdesc == NULL || |
8420 | !TupleDescAttr(tupdesc, i)->attisdropped) |
8421 | { |
8422 | appendStringInfoString(buf, sep); |
8423 | /* Whole-row Vars need special treatment here */ |
8424 | get_rule_expr_toplevel(e, context, true); |
8425 | sep = ", " ; |
8426 | } |
8427 | i++; |
8428 | } |
8429 | if (tupdesc != NULL) |
8430 | { |
8431 | while (i < tupdesc->natts) |
8432 | { |
8433 | if (!TupleDescAttr(tupdesc, i)->attisdropped) |
8434 | { |
8435 | appendStringInfoString(buf, sep); |
8436 | appendStringInfoString(buf, "NULL" ); |
8437 | sep = ", " ; |
8438 | } |
8439 | i++; |
8440 | } |
8441 | |
8442 | ReleaseTupleDesc(tupdesc); |
8443 | } |
8444 | appendStringInfoChar(buf, ')'); |
8445 | if (rowexpr->row_format == COERCE_EXPLICIT_CAST) |
8446 | appendStringInfo(buf, "::%s" , |
8447 | format_type_with_typemod(rowexpr->row_typeid, -1)); |
8448 | } |
8449 | break; |
8450 | |
8451 | case T_RowCompareExpr: |
8452 | { |
8453 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
8454 | ListCell *arg; |
8455 | char *sep; |
8456 | |
8457 | /* |
8458 | * SQL99 allows "ROW" to be omitted when there is more than |
8459 | * one column, but for simplicity we always print it. |
8460 | */ |
8461 | appendStringInfoString(buf, "(ROW(" ); |
8462 | sep = "" ; |
8463 | foreach(arg, rcexpr->largs) |
8464 | { |
8465 | Node *e = (Node *) lfirst(arg); |
8466 | |
8467 | appendStringInfoString(buf, sep); |
8468 | get_rule_expr(e, context, true); |
8469 | sep = ", " ; |
8470 | } |
8471 | |
8472 | /* |
8473 | * We assume that the name of the first-column operator will |
8474 | * do for all the rest too. This is definitely open to |
8475 | * failure, eg if some but not all operators were renamed |
8476 | * since the construct was parsed, but there seems no way to |
8477 | * be perfect. |
8478 | */ |
8479 | appendStringInfo(buf, ") %s ROW(" , |
8480 | generate_operator_name(linitial_oid(rcexpr->opnos), |
8481 | exprType(linitial(rcexpr->largs)), |
8482 | exprType(linitial(rcexpr->rargs)))); |
8483 | sep = "" ; |
8484 | foreach(arg, rcexpr->rargs) |
8485 | { |
8486 | Node *e = (Node *) lfirst(arg); |
8487 | |
8488 | appendStringInfoString(buf, sep); |
8489 | get_rule_expr(e, context, true); |
8490 | sep = ", " ; |
8491 | } |
8492 | appendStringInfoString(buf, "))" ); |
8493 | } |
8494 | break; |
8495 | |
8496 | case T_CoalesceExpr: |
8497 | { |
8498 | CoalesceExpr *coalesceexpr = (CoalesceExpr *) node; |
8499 | |
8500 | appendStringInfoString(buf, "COALESCE(" ); |
8501 | get_rule_expr((Node *) coalesceexpr->args, context, true); |
8502 | appendStringInfoChar(buf, ')'); |
8503 | } |
8504 | break; |
8505 | |
8506 | case T_MinMaxExpr: |
8507 | { |
8508 | MinMaxExpr *minmaxexpr = (MinMaxExpr *) node; |
8509 | |
8510 | switch (minmaxexpr->op) |
8511 | { |
8512 | case IS_GREATEST: |
8513 | appendStringInfoString(buf, "GREATEST(" ); |
8514 | break; |
8515 | case IS_LEAST: |
8516 | appendStringInfoString(buf, "LEAST(" ); |
8517 | break; |
8518 | } |
8519 | get_rule_expr((Node *) minmaxexpr->args, context, true); |
8520 | appendStringInfoChar(buf, ')'); |
8521 | } |
8522 | break; |
8523 | |
8524 | case T_SQLValueFunction: |
8525 | { |
8526 | SQLValueFunction *svf = (SQLValueFunction *) node; |
8527 | |
8528 | /* |
8529 | * Note: this code knows that typmod for time, timestamp, and |
8530 | * timestamptz just prints as integer. |
8531 | */ |
8532 | switch (svf->op) |
8533 | { |
8534 | case SVFOP_CURRENT_DATE: |
8535 | appendStringInfoString(buf, "CURRENT_DATE" ); |
8536 | break; |
8537 | case SVFOP_CURRENT_TIME: |
8538 | appendStringInfoString(buf, "CURRENT_TIME" ); |
8539 | break; |
8540 | case SVFOP_CURRENT_TIME_N: |
8541 | appendStringInfo(buf, "CURRENT_TIME(%d)" , svf->typmod); |
8542 | break; |
8543 | case SVFOP_CURRENT_TIMESTAMP: |
8544 | appendStringInfoString(buf, "CURRENT_TIMESTAMP" ); |
8545 | break; |
8546 | case SVFOP_CURRENT_TIMESTAMP_N: |
8547 | appendStringInfo(buf, "CURRENT_TIMESTAMP(%d)" , |
8548 | svf->typmod); |
8549 | break; |
8550 | case SVFOP_LOCALTIME: |
8551 | appendStringInfoString(buf, "LOCALTIME" ); |
8552 | break; |
8553 | case SVFOP_LOCALTIME_N: |
8554 | appendStringInfo(buf, "LOCALTIME(%d)" , svf->typmod); |
8555 | break; |
8556 | case SVFOP_LOCALTIMESTAMP: |
8557 | appendStringInfoString(buf, "LOCALTIMESTAMP" ); |
8558 | break; |
8559 | case SVFOP_LOCALTIMESTAMP_N: |
8560 | appendStringInfo(buf, "LOCALTIMESTAMP(%d)" , |
8561 | svf->typmod); |
8562 | break; |
8563 | case SVFOP_CURRENT_ROLE: |
8564 | appendStringInfoString(buf, "CURRENT_ROLE" ); |
8565 | break; |
8566 | case SVFOP_CURRENT_USER: |
8567 | appendStringInfoString(buf, "CURRENT_USER" ); |
8568 | break; |
8569 | case SVFOP_USER: |
8570 | appendStringInfoString(buf, "USER" ); |
8571 | break; |
8572 | case SVFOP_SESSION_USER: |
8573 | appendStringInfoString(buf, "SESSION_USER" ); |
8574 | break; |
8575 | case SVFOP_CURRENT_CATALOG: |
8576 | appendStringInfoString(buf, "CURRENT_CATALOG" ); |
8577 | break; |
8578 | case SVFOP_CURRENT_SCHEMA: |
8579 | appendStringInfoString(buf, "CURRENT_SCHEMA" ); |
8580 | break; |
8581 | } |
8582 | } |
8583 | break; |
8584 | |
8585 | case T_XmlExpr: |
8586 | { |
8587 | XmlExpr *xexpr = (XmlExpr *) node; |
8588 | bool needcomma = false; |
8589 | ListCell *arg; |
8590 | ListCell *narg; |
8591 | Const *con; |
8592 | |
8593 | switch (xexpr->op) |
8594 | { |
8595 | case IS_XMLCONCAT: |
8596 | appendStringInfoString(buf, "XMLCONCAT(" ); |
8597 | break; |
8598 | case IS_XMLELEMENT: |
8599 | appendStringInfoString(buf, "XMLELEMENT(" ); |
8600 | break; |
8601 | case IS_XMLFOREST: |
8602 | appendStringInfoString(buf, "XMLFOREST(" ); |
8603 | break; |
8604 | case IS_XMLPARSE: |
8605 | appendStringInfoString(buf, "XMLPARSE(" ); |
8606 | break; |
8607 | case IS_XMLPI: |
8608 | appendStringInfoString(buf, "XMLPI(" ); |
8609 | break; |
8610 | case IS_XMLROOT: |
8611 | appendStringInfoString(buf, "XMLROOT(" ); |
8612 | break; |
8613 | case IS_XMLSERIALIZE: |
8614 | appendStringInfoString(buf, "XMLSERIALIZE(" ); |
8615 | break; |
8616 | case IS_DOCUMENT: |
8617 | break; |
8618 | } |
8619 | if (xexpr->op == IS_XMLPARSE || xexpr->op == IS_XMLSERIALIZE) |
8620 | { |
8621 | if (xexpr->xmloption == XMLOPTION_DOCUMENT) |
8622 | appendStringInfoString(buf, "DOCUMENT " ); |
8623 | else |
8624 | appendStringInfoString(buf, "CONTENT " ); |
8625 | } |
8626 | if (xexpr->name) |
8627 | { |
8628 | appendStringInfo(buf, "NAME %s" , |
8629 | quote_identifier(map_xml_name_to_sql_identifier(xexpr->name))); |
8630 | needcomma = true; |
8631 | } |
8632 | if (xexpr->named_args) |
8633 | { |
8634 | if (xexpr->op != IS_XMLFOREST) |
8635 | { |
8636 | if (needcomma) |
8637 | appendStringInfoString(buf, ", " ); |
8638 | appendStringInfoString(buf, "XMLATTRIBUTES(" ); |
8639 | needcomma = false; |
8640 | } |
8641 | forboth(arg, xexpr->named_args, narg, xexpr->arg_names) |
8642 | { |
8643 | Node *e = (Node *) lfirst(arg); |
8644 | char *argname = strVal(lfirst(narg)); |
8645 | |
8646 | if (needcomma) |
8647 | appendStringInfoString(buf, ", " ); |
8648 | get_rule_expr((Node *) e, context, true); |
8649 | appendStringInfo(buf, " AS %s" , |
8650 | quote_identifier(map_xml_name_to_sql_identifier(argname))); |
8651 | needcomma = true; |
8652 | } |
8653 | if (xexpr->op != IS_XMLFOREST) |
8654 | appendStringInfoChar(buf, ')'); |
8655 | } |
8656 | if (xexpr->args) |
8657 | { |
8658 | if (needcomma) |
8659 | appendStringInfoString(buf, ", " ); |
8660 | switch (xexpr->op) |
8661 | { |
8662 | case IS_XMLCONCAT: |
8663 | case IS_XMLELEMENT: |
8664 | case IS_XMLFOREST: |
8665 | case IS_XMLPI: |
8666 | case IS_XMLSERIALIZE: |
8667 | /* no extra decoration needed */ |
8668 | get_rule_expr((Node *) xexpr->args, context, true); |
8669 | break; |
8670 | case IS_XMLPARSE: |
8671 | Assert(list_length(xexpr->args) == 2); |
8672 | |
8673 | get_rule_expr((Node *) linitial(xexpr->args), |
8674 | context, true); |
8675 | |
8676 | con = lsecond_node(Const, xexpr->args); |
8677 | Assert(!con->constisnull); |
8678 | if (DatumGetBool(con->constvalue)) |
8679 | appendStringInfoString(buf, |
8680 | " PRESERVE WHITESPACE" ); |
8681 | else |
8682 | appendStringInfoString(buf, |
8683 | " STRIP WHITESPACE" ); |
8684 | break; |
8685 | case IS_XMLROOT: |
8686 | Assert(list_length(xexpr->args) == 3); |
8687 | |
8688 | get_rule_expr((Node *) linitial(xexpr->args), |
8689 | context, true); |
8690 | |
8691 | appendStringInfoString(buf, ", VERSION " ); |
8692 | con = (Const *) lsecond(xexpr->args); |
8693 | if (IsA(con, Const) && |
8694 | con->constisnull) |
8695 | appendStringInfoString(buf, "NO VALUE" ); |
8696 | else |
8697 | get_rule_expr((Node *) con, context, false); |
8698 | |
8699 | con = lthird_node(Const, xexpr->args); |
8700 | if (con->constisnull) |
8701 | /* suppress STANDALONE NO VALUE */ ; |
8702 | else |
8703 | { |
8704 | switch (DatumGetInt32(con->constvalue)) |
8705 | { |
8706 | case XML_STANDALONE_YES: |
8707 | appendStringInfoString(buf, |
8708 | ", STANDALONE YES" ); |
8709 | break; |
8710 | case XML_STANDALONE_NO: |
8711 | appendStringInfoString(buf, |
8712 | ", STANDALONE NO" ); |
8713 | break; |
8714 | case XML_STANDALONE_NO_VALUE: |
8715 | appendStringInfoString(buf, |
8716 | ", STANDALONE NO VALUE" ); |
8717 | break; |
8718 | default: |
8719 | break; |
8720 | } |
8721 | } |
8722 | break; |
8723 | case IS_DOCUMENT: |
8724 | get_rule_expr_paren((Node *) xexpr->args, context, false, node); |
8725 | break; |
8726 | } |
8727 | |
8728 | } |
8729 | if (xexpr->op == IS_XMLSERIALIZE) |
8730 | appendStringInfo(buf, " AS %s" , |
8731 | format_type_with_typemod(xexpr->type, |
8732 | xexpr->typmod)); |
8733 | if (xexpr->op == IS_DOCUMENT) |
8734 | appendStringInfoString(buf, " IS DOCUMENT" ); |
8735 | else |
8736 | appendStringInfoChar(buf, ')'); |
8737 | } |
8738 | break; |
8739 | |
8740 | case T_NullTest: |
8741 | { |
8742 | NullTest *ntest = (NullTest *) node; |
8743 | |
8744 | if (!PRETTY_PAREN(context)) |
8745 | appendStringInfoChar(buf, '('); |
8746 | get_rule_expr_paren((Node *) ntest->arg, context, true, node); |
8747 | |
8748 | /* |
8749 | * For scalar inputs, we prefer to print as IS [NOT] NULL, |
8750 | * which is shorter and traditional. If it's a rowtype input |
8751 | * but we're applying a scalar test, must print IS [NOT] |
8752 | * DISTINCT FROM NULL to be semantically correct. |
8753 | */ |
8754 | if (ntest->argisrow || |
8755 | !type_is_rowtype(exprType((Node *) ntest->arg))) |
8756 | { |
8757 | switch (ntest->nulltesttype) |
8758 | { |
8759 | case IS_NULL: |
8760 | appendStringInfoString(buf, " IS NULL" ); |
8761 | break; |
8762 | case IS_NOT_NULL: |
8763 | appendStringInfoString(buf, " IS NOT NULL" ); |
8764 | break; |
8765 | default: |
8766 | elog(ERROR, "unrecognized nulltesttype: %d" , |
8767 | (int) ntest->nulltesttype); |
8768 | } |
8769 | } |
8770 | else |
8771 | { |
8772 | switch (ntest->nulltesttype) |
8773 | { |
8774 | case IS_NULL: |
8775 | appendStringInfoString(buf, " IS NOT DISTINCT FROM NULL" ); |
8776 | break; |
8777 | case IS_NOT_NULL: |
8778 | appendStringInfoString(buf, " IS DISTINCT FROM NULL" ); |
8779 | break; |
8780 | default: |
8781 | elog(ERROR, "unrecognized nulltesttype: %d" , |
8782 | (int) ntest->nulltesttype); |
8783 | } |
8784 | } |
8785 | if (!PRETTY_PAREN(context)) |
8786 | appendStringInfoChar(buf, ')'); |
8787 | } |
8788 | break; |
8789 | |
8790 | case T_BooleanTest: |
8791 | { |
8792 | BooleanTest *btest = (BooleanTest *) node; |
8793 | |
8794 | if (!PRETTY_PAREN(context)) |
8795 | appendStringInfoChar(buf, '('); |
8796 | get_rule_expr_paren((Node *) btest->arg, context, false, node); |
8797 | switch (btest->booltesttype) |
8798 | { |
8799 | case IS_TRUE: |
8800 | appendStringInfoString(buf, " IS TRUE" ); |
8801 | break; |
8802 | case IS_NOT_TRUE: |
8803 | appendStringInfoString(buf, " IS NOT TRUE" ); |
8804 | break; |
8805 | case IS_FALSE: |
8806 | appendStringInfoString(buf, " IS FALSE" ); |
8807 | break; |
8808 | case IS_NOT_FALSE: |
8809 | appendStringInfoString(buf, " IS NOT FALSE" ); |
8810 | break; |
8811 | case IS_UNKNOWN: |
8812 | appendStringInfoString(buf, " IS UNKNOWN" ); |
8813 | break; |
8814 | case IS_NOT_UNKNOWN: |
8815 | appendStringInfoString(buf, " IS NOT UNKNOWN" ); |
8816 | break; |
8817 | default: |
8818 | elog(ERROR, "unrecognized booltesttype: %d" , |
8819 | (int) btest->booltesttype); |
8820 | } |
8821 | if (!PRETTY_PAREN(context)) |
8822 | appendStringInfoChar(buf, ')'); |
8823 | } |
8824 | break; |
8825 | |
8826 | case T_CoerceToDomain: |
8827 | { |
8828 | CoerceToDomain *ctest = (CoerceToDomain *) node; |
8829 | Node *arg = (Node *) ctest->arg; |
8830 | |
8831 | if (ctest->coercionformat == COERCE_IMPLICIT_CAST && |
8832 | !showimplicit) |
8833 | { |
8834 | /* don't show the implicit cast */ |
8835 | get_rule_expr(arg, context, false); |
8836 | } |
8837 | else |
8838 | { |
8839 | get_coercion_expr(arg, context, |
8840 | ctest->resulttype, |
8841 | ctest->resulttypmod, |
8842 | node); |
8843 | } |
8844 | } |
8845 | break; |
8846 | |
8847 | case T_CoerceToDomainValue: |
8848 | appendStringInfoString(buf, "VALUE" ); |
8849 | break; |
8850 | |
8851 | case T_SetToDefault: |
8852 | appendStringInfoString(buf, "DEFAULT" ); |
8853 | break; |
8854 | |
8855 | case T_CurrentOfExpr: |
8856 | { |
8857 | CurrentOfExpr *cexpr = (CurrentOfExpr *) node; |
8858 | |
8859 | if (cexpr->cursor_name) |
8860 | appendStringInfo(buf, "CURRENT OF %s" , |
8861 | quote_identifier(cexpr->cursor_name)); |
8862 | else |
8863 | appendStringInfo(buf, "CURRENT OF $%d" , |
8864 | cexpr->cursor_param); |
8865 | } |
8866 | break; |
8867 | |
8868 | case T_NextValueExpr: |
8869 | { |
8870 | NextValueExpr *nvexpr = (NextValueExpr *) node; |
8871 | |
8872 | /* |
8873 | * This isn't exactly nextval(), but that seems close enough |
8874 | * for EXPLAIN's purposes. |
8875 | */ |
8876 | appendStringInfoString(buf, "nextval(" ); |
8877 | simple_quote_literal(buf, |
8878 | generate_relation_name(nvexpr->seqid, |
8879 | NIL)); |
8880 | appendStringInfoChar(buf, ')'); |
8881 | } |
8882 | break; |
8883 | |
8884 | case T_InferenceElem: |
8885 | { |
8886 | InferenceElem *iexpr = (InferenceElem *) node; |
8887 | bool save_varprefix; |
8888 | bool need_parens; |
8889 | |
8890 | /* |
8891 | * InferenceElem can only refer to target relation, so a |
8892 | * prefix is not useful, and indeed would cause parse errors. |
8893 | */ |
8894 | save_varprefix = context->varprefix; |
8895 | context->varprefix = false; |
8896 | |
8897 | /* |
8898 | * Parenthesize the element unless it's a simple Var or a bare |
8899 | * function call. Follows pg_get_indexdef_worker(). |
8900 | */ |
8901 | need_parens = !IsA(iexpr->expr, Var); |
8902 | if (IsA(iexpr->expr, FuncExpr) && |
8903 | ((FuncExpr *) iexpr->expr)->funcformat == |
8904 | COERCE_EXPLICIT_CALL) |
8905 | need_parens = false; |
8906 | |
8907 | if (need_parens) |
8908 | appendStringInfoChar(buf, '('); |
8909 | get_rule_expr((Node *) iexpr->expr, |
8910 | context, false); |
8911 | if (need_parens) |
8912 | appendStringInfoChar(buf, ')'); |
8913 | |
8914 | context->varprefix = save_varprefix; |
8915 | |
8916 | if (iexpr->infercollid) |
8917 | appendStringInfo(buf, " COLLATE %s" , |
8918 | generate_collation_name(iexpr->infercollid)); |
8919 | |
8920 | /* Add the operator class name, if not default */ |
8921 | if (iexpr->inferopclass) |
8922 | { |
8923 | Oid inferopclass = iexpr->inferopclass; |
8924 | Oid inferopcinputtype = get_opclass_input_type(iexpr->inferopclass); |
8925 | |
8926 | get_opclass_name(inferopclass, inferopcinputtype, buf); |
8927 | } |
8928 | } |
8929 | break; |
8930 | |
8931 | case T_PartitionBoundSpec: |
8932 | { |
8933 | PartitionBoundSpec *spec = (PartitionBoundSpec *) node; |
8934 | ListCell *cell; |
8935 | char *sep; |
8936 | |
8937 | if (spec->is_default) |
8938 | { |
8939 | appendStringInfoString(buf, "DEFAULT" ); |
8940 | break; |
8941 | } |
8942 | |
8943 | switch (spec->strategy) |
8944 | { |
8945 | case PARTITION_STRATEGY_HASH: |
8946 | Assert(spec->modulus > 0 && spec->remainder >= 0); |
8947 | Assert(spec->modulus > spec->remainder); |
8948 | |
8949 | appendStringInfoString(buf, "FOR VALUES" ); |
8950 | appendStringInfo(buf, " WITH (modulus %d, remainder %d)" , |
8951 | spec->modulus, spec->remainder); |
8952 | break; |
8953 | |
8954 | case PARTITION_STRATEGY_LIST: |
8955 | Assert(spec->listdatums != NIL); |
8956 | |
8957 | appendStringInfoString(buf, "FOR VALUES IN (" ); |
8958 | sep = "" ; |
8959 | foreach(cell, spec->listdatums) |
8960 | { |
8961 | Const *val = castNode(Const, lfirst(cell)); |
8962 | |
8963 | appendStringInfoString(buf, sep); |
8964 | get_const_expr(val, context, -1); |
8965 | sep = ", " ; |
8966 | } |
8967 | |
8968 | appendStringInfoChar(buf, ')'); |
8969 | break; |
8970 | |
8971 | case PARTITION_STRATEGY_RANGE: |
8972 | Assert(spec->lowerdatums != NIL && |
8973 | spec->upperdatums != NIL && |
8974 | list_length(spec->lowerdatums) == |
8975 | list_length(spec->upperdatums)); |
8976 | |
8977 | appendStringInfo(buf, "FOR VALUES FROM %s TO %s" , |
8978 | get_range_partbound_string(spec->lowerdatums), |
8979 | get_range_partbound_string(spec->upperdatums)); |
8980 | break; |
8981 | |
8982 | default: |
8983 | elog(ERROR, "unrecognized partition strategy: %d" , |
8984 | (int) spec->strategy); |
8985 | break; |
8986 | } |
8987 | } |
8988 | break; |
8989 | |
8990 | case T_List: |
8991 | { |
8992 | char *sep; |
8993 | ListCell *l; |
8994 | |
8995 | sep = "" ; |
8996 | foreach(l, (List *) node) |
8997 | { |
8998 | appendStringInfoString(buf, sep); |
8999 | get_rule_expr((Node *) lfirst(l), context, showimplicit); |
9000 | sep = ", " ; |
9001 | } |
9002 | } |
9003 | break; |
9004 | |
9005 | case T_TableFunc: |
9006 | get_tablefunc((TableFunc *) node, context, showimplicit); |
9007 | break; |
9008 | |
9009 | default: |
9010 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(node)); |
9011 | break; |
9012 | } |
9013 | } |
9014 | |
9015 | /* |
9016 | * get_rule_expr_toplevel - Parse back a toplevel expression |
9017 | * |
9018 | * Same as get_rule_expr(), except that if the expr is just a Var, we pass |
9019 | * istoplevel = true not false to get_variable(). This causes whole-row Vars |
9020 | * to get printed with decoration that will prevent expansion of "*". |
9021 | * We need to use this in contexts such as ROW() and VALUES(), where the |
9022 | * parser would expand "foo.*" appearing at top level. (In principle we'd |
9023 | * use this in get_target_list() too, but that has additional worries about |
9024 | * whether to print AS, so it needs to invoke get_variable() directly anyway.) |
9025 | */ |
9026 | static void |
9027 | get_rule_expr_toplevel(Node *node, deparse_context *context, |
9028 | bool showimplicit) |
9029 | { |
9030 | if (node && IsA(node, Var)) |
9031 | (void) get_variable((Var *) node, 0, true, context); |
9032 | else |
9033 | get_rule_expr(node, context, showimplicit); |
9034 | } |
9035 | |
9036 | /* |
9037 | * get_rule_expr_funccall - Parse back a function-call expression |
9038 | * |
9039 | * Same as get_rule_expr(), except that we guarantee that the output will |
9040 | * look like a function call, or like one of the things the grammar treats as |
9041 | * equivalent to a function call (see the func_expr_windowless production). |
9042 | * This is needed in places where the grammar uses func_expr_windowless and |
9043 | * you can't substitute a parenthesized a_expr. If what we have isn't going |
9044 | * to look like a function call, wrap it in a dummy CAST() expression, which |
9045 | * will satisfy the grammar --- and, indeed, is likely what the user wrote to |
9046 | * produce such a thing. |
9047 | */ |
9048 | static void |
9049 | get_rule_expr_funccall(Node *node, deparse_context *context, |
9050 | bool showimplicit) |
9051 | { |
9052 | if (looks_like_function(node)) |
9053 | get_rule_expr(node, context, showimplicit); |
9054 | else |
9055 | { |
9056 | StringInfo buf = context->buf; |
9057 | |
9058 | appendStringInfoString(buf, "CAST(" ); |
9059 | /* no point in showing any top-level implicit cast */ |
9060 | get_rule_expr(node, context, false); |
9061 | appendStringInfo(buf, " AS %s)" , |
9062 | format_type_with_typemod(exprType(node), |
9063 | exprTypmod(node))); |
9064 | } |
9065 | } |
9066 | |
9067 | /* |
9068 | * Helper function to identify node types that satisfy func_expr_windowless. |
9069 | * If in doubt, "false" is always a safe answer. |
9070 | */ |
9071 | static bool |
9072 | looks_like_function(Node *node) |
9073 | { |
9074 | if (node == NULL) |
9075 | return false; /* probably shouldn't happen */ |
9076 | switch (nodeTag(node)) |
9077 | { |
9078 | case T_FuncExpr: |
9079 | /* OK, unless it's going to deparse as a cast */ |
9080 | return (((FuncExpr *) node)->funcformat == COERCE_EXPLICIT_CALL); |
9081 | case T_NullIfExpr: |
9082 | case T_CoalesceExpr: |
9083 | case T_MinMaxExpr: |
9084 | case T_SQLValueFunction: |
9085 | case T_XmlExpr: |
9086 | /* these are all accepted by func_expr_common_subexpr */ |
9087 | return true; |
9088 | default: |
9089 | break; |
9090 | } |
9091 | return false; |
9092 | } |
9093 | |
9094 | |
9095 | /* |
9096 | * get_oper_expr - Parse back an OpExpr node |
9097 | */ |
9098 | static void |
9099 | get_oper_expr(OpExpr *expr, deparse_context *context) |
9100 | { |
9101 | StringInfo buf = context->buf; |
9102 | Oid opno = expr->opno; |
9103 | List *args = expr->args; |
9104 | |
9105 | if (!PRETTY_PAREN(context)) |
9106 | appendStringInfoChar(buf, '('); |
9107 | if (list_length(args) == 2) |
9108 | { |
9109 | /* binary operator */ |
9110 | Node *arg1 = (Node *) linitial(args); |
9111 | Node *arg2 = (Node *) lsecond(args); |
9112 | |
9113 | get_rule_expr_paren(arg1, context, true, (Node *) expr); |
9114 | appendStringInfo(buf, " %s " , |
9115 | generate_operator_name(opno, |
9116 | exprType(arg1), |
9117 | exprType(arg2))); |
9118 | get_rule_expr_paren(arg2, context, true, (Node *) expr); |
9119 | } |
9120 | else |
9121 | { |
9122 | /* unary operator --- but which side? */ |
9123 | Node *arg = (Node *) linitial(args); |
9124 | HeapTuple tp; |
9125 | Form_pg_operator optup; |
9126 | |
9127 | tp = SearchSysCache1(OPEROID, ObjectIdGetDatum(opno)); |
9128 | if (!HeapTupleIsValid(tp)) |
9129 | elog(ERROR, "cache lookup failed for operator %u" , opno); |
9130 | optup = (Form_pg_operator) GETSTRUCT(tp); |
9131 | switch (optup->oprkind) |
9132 | { |
9133 | case 'l': |
9134 | appendStringInfo(buf, "%s " , |
9135 | generate_operator_name(opno, |
9136 | InvalidOid, |
9137 | exprType(arg))); |
9138 | get_rule_expr_paren(arg, context, true, (Node *) expr); |
9139 | break; |
9140 | case 'r': |
9141 | get_rule_expr_paren(arg, context, true, (Node *) expr); |
9142 | appendStringInfo(buf, " %s" , |
9143 | generate_operator_name(opno, |
9144 | exprType(arg), |
9145 | InvalidOid)); |
9146 | break; |
9147 | default: |
9148 | elog(ERROR, "bogus oprkind: %d" , optup->oprkind); |
9149 | } |
9150 | ReleaseSysCache(tp); |
9151 | } |
9152 | if (!PRETTY_PAREN(context)) |
9153 | appendStringInfoChar(buf, ')'); |
9154 | } |
9155 | |
9156 | /* |
9157 | * get_func_expr - Parse back a FuncExpr node |
9158 | */ |
9159 | static void |
9160 | get_func_expr(FuncExpr *expr, deparse_context *context, |
9161 | bool showimplicit) |
9162 | { |
9163 | StringInfo buf = context->buf; |
9164 | Oid funcoid = expr->funcid; |
9165 | Oid argtypes[FUNC_MAX_ARGS]; |
9166 | int nargs; |
9167 | List *argnames; |
9168 | bool use_variadic; |
9169 | ListCell *l; |
9170 | |
9171 | /* |
9172 | * If the function call came from an implicit coercion, then just show the |
9173 | * first argument --- unless caller wants to see implicit coercions. |
9174 | */ |
9175 | if (expr->funcformat == COERCE_IMPLICIT_CAST && !showimplicit) |
9176 | { |
9177 | get_rule_expr_paren((Node *) linitial(expr->args), context, |
9178 | false, (Node *) expr); |
9179 | return; |
9180 | } |
9181 | |
9182 | /* |
9183 | * If the function call came from a cast, then show the first argument |
9184 | * plus an explicit cast operation. |
9185 | */ |
9186 | if (expr->funcformat == COERCE_EXPLICIT_CAST || |
9187 | expr->funcformat == COERCE_IMPLICIT_CAST) |
9188 | { |
9189 | Node *arg = linitial(expr->args); |
9190 | Oid rettype = expr->funcresulttype; |
9191 | int32 coercedTypmod; |
9192 | |
9193 | /* Get the typmod if this is a length-coercion function */ |
9194 | (void) exprIsLengthCoercion((Node *) expr, &coercedTypmod); |
9195 | |
9196 | get_coercion_expr(arg, context, |
9197 | rettype, coercedTypmod, |
9198 | (Node *) expr); |
9199 | |
9200 | return; |
9201 | } |
9202 | |
9203 | /* |
9204 | * Normal function: display as proname(args). First we need to extract |
9205 | * the argument datatypes. |
9206 | */ |
9207 | if (list_length(expr->args) > FUNC_MAX_ARGS) |
9208 | ereport(ERROR, |
9209 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
9210 | errmsg("too many arguments" ))); |
9211 | nargs = 0; |
9212 | argnames = NIL; |
9213 | foreach(l, expr->args) |
9214 | { |
9215 | Node *arg = (Node *) lfirst(l); |
9216 | |
9217 | if (IsA(arg, NamedArgExpr)) |
9218 | argnames = lappend(argnames, ((NamedArgExpr *) arg)->name); |
9219 | argtypes[nargs] = exprType(arg); |
9220 | nargs++; |
9221 | } |
9222 | |
9223 | appendStringInfo(buf, "%s(" , |
9224 | generate_function_name(funcoid, nargs, |
9225 | argnames, argtypes, |
9226 | expr->funcvariadic, |
9227 | &use_variadic, |
9228 | context->special_exprkind)); |
9229 | nargs = 0; |
9230 | foreach(l, expr->args) |
9231 | { |
9232 | if (nargs++ > 0) |
9233 | appendStringInfoString(buf, ", " ); |
9234 | if (use_variadic && lnext(l) == NULL) |
9235 | appendStringInfoString(buf, "VARIADIC " ); |
9236 | get_rule_expr((Node *) lfirst(l), context, true); |
9237 | } |
9238 | appendStringInfoChar(buf, ')'); |
9239 | } |
9240 | |
9241 | /* |
9242 | * get_agg_expr - Parse back an Aggref node |
9243 | */ |
9244 | static void |
9245 | get_agg_expr(Aggref *aggref, deparse_context *context, |
9246 | Aggref *original_aggref) |
9247 | { |
9248 | StringInfo buf = context->buf; |
9249 | Oid argtypes[FUNC_MAX_ARGS]; |
9250 | int nargs; |
9251 | bool use_variadic; |
9252 | |
9253 | /* |
9254 | * For a combining aggregate, we look up and deparse the corresponding |
9255 | * partial aggregate instead. This is necessary because our input |
9256 | * argument list has been replaced; the new argument list always has just |
9257 | * one element, which will point to a partial Aggref that supplies us with |
9258 | * transition states to combine. |
9259 | */ |
9260 | if (DO_AGGSPLIT_COMBINE(aggref->aggsplit)) |
9261 | { |
9262 | TargetEntry *tle = linitial_node(TargetEntry, aggref->args); |
9263 | |
9264 | Assert(list_length(aggref->args) == 1); |
9265 | resolve_special_varno((Node *) tle->expr, context, original_aggref, |
9266 | get_agg_combine_expr); |
9267 | return; |
9268 | } |
9269 | |
9270 | /* |
9271 | * Mark as PARTIAL, if appropriate. We look to the original aggref so as |
9272 | * to avoid printing this when recursing from the code just above. |
9273 | */ |
9274 | if (DO_AGGSPLIT_SKIPFINAL(original_aggref->aggsplit)) |
9275 | appendStringInfoString(buf, "PARTIAL " ); |
9276 | |
9277 | /* Extract the argument types as seen by the parser */ |
9278 | nargs = get_aggregate_argtypes(aggref, argtypes); |
9279 | |
9280 | /* Print the aggregate name, schema-qualified if needed */ |
9281 | appendStringInfo(buf, "%s(%s" , |
9282 | generate_function_name(aggref->aggfnoid, nargs, |
9283 | NIL, argtypes, |
9284 | aggref->aggvariadic, |
9285 | &use_variadic, |
9286 | context->special_exprkind), |
9287 | (aggref->aggdistinct != NIL) ? "DISTINCT " : "" ); |
9288 | |
9289 | if (AGGKIND_IS_ORDERED_SET(aggref->aggkind)) |
9290 | { |
9291 | /* |
9292 | * Ordered-set aggregates do not use "*" syntax. Also, we needn't |
9293 | * worry about inserting VARIADIC. So we can just dump the direct |
9294 | * args as-is. |
9295 | */ |
9296 | Assert(!aggref->aggvariadic); |
9297 | get_rule_expr((Node *) aggref->aggdirectargs, context, true); |
9298 | Assert(aggref->aggorder != NIL); |
9299 | appendStringInfoString(buf, ") WITHIN GROUP (ORDER BY " ); |
9300 | get_rule_orderby(aggref->aggorder, aggref->args, false, context); |
9301 | } |
9302 | else |
9303 | { |
9304 | /* aggstar can be set only in zero-argument aggregates */ |
9305 | if (aggref->aggstar) |
9306 | appendStringInfoChar(buf, '*'); |
9307 | else |
9308 | { |
9309 | ListCell *l; |
9310 | int i; |
9311 | |
9312 | i = 0; |
9313 | foreach(l, aggref->args) |
9314 | { |
9315 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
9316 | Node *arg = (Node *) tle->expr; |
9317 | |
9318 | Assert(!IsA(arg, NamedArgExpr)); |
9319 | if (tle->resjunk) |
9320 | continue; |
9321 | if (i++ > 0) |
9322 | appendStringInfoString(buf, ", " ); |
9323 | if (use_variadic && i == nargs) |
9324 | appendStringInfoString(buf, "VARIADIC " ); |
9325 | get_rule_expr(arg, context, true); |
9326 | } |
9327 | } |
9328 | |
9329 | if (aggref->aggorder != NIL) |
9330 | { |
9331 | appendStringInfoString(buf, " ORDER BY " ); |
9332 | get_rule_orderby(aggref->aggorder, aggref->args, false, context); |
9333 | } |
9334 | } |
9335 | |
9336 | if (aggref->aggfilter != NULL) |
9337 | { |
9338 | appendStringInfoString(buf, ") FILTER (WHERE " ); |
9339 | get_rule_expr((Node *) aggref->aggfilter, context, false); |
9340 | } |
9341 | |
9342 | appendStringInfoChar(buf, ')'); |
9343 | } |
9344 | |
9345 | /* |
9346 | * This is a helper function for get_agg_expr(). It's used when we deparse |
9347 | * a combining Aggref; resolve_special_varno locates the corresponding partial |
9348 | * Aggref and then calls this. |
9349 | */ |
9350 | static void |
9351 | get_agg_combine_expr(Node *node, deparse_context *context, void *private) |
9352 | { |
9353 | Aggref *aggref; |
9354 | Aggref *original_aggref = private; |
9355 | |
9356 | if (!IsA(node, Aggref)) |
9357 | elog(ERROR, "combining Aggref does not point to an Aggref" ); |
9358 | |
9359 | aggref = (Aggref *) node; |
9360 | get_agg_expr(aggref, context, original_aggref); |
9361 | } |
9362 | |
9363 | /* |
9364 | * get_windowfunc_expr - Parse back a WindowFunc node |
9365 | */ |
9366 | static void |
9367 | get_windowfunc_expr(WindowFunc *wfunc, deparse_context *context) |
9368 | { |
9369 | StringInfo buf = context->buf; |
9370 | Oid argtypes[FUNC_MAX_ARGS]; |
9371 | int nargs; |
9372 | List *argnames; |
9373 | ListCell *l; |
9374 | |
9375 | if (list_length(wfunc->args) > FUNC_MAX_ARGS) |
9376 | ereport(ERROR, |
9377 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
9378 | errmsg("too many arguments" ))); |
9379 | nargs = 0; |
9380 | argnames = NIL; |
9381 | foreach(l, wfunc->args) |
9382 | { |
9383 | Node *arg = (Node *) lfirst(l); |
9384 | |
9385 | if (IsA(arg, NamedArgExpr)) |
9386 | argnames = lappend(argnames, ((NamedArgExpr *) arg)->name); |
9387 | argtypes[nargs] = exprType(arg); |
9388 | nargs++; |
9389 | } |
9390 | |
9391 | appendStringInfo(buf, "%s(" , |
9392 | generate_function_name(wfunc->winfnoid, nargs, |
9393 | argnames, argtypes, |
9394 | false, NULL, |
9395 | context->special_exprkind)); |
9396 | /* winstar can be set only in zero-argument aggregates */ |
9397 | if (wfunc->winstar) |
9398 | appendStringInfoChar(buf, '*'); |
9399 | else |
9400 | get_rule_expr((Node *) wfunc->args, context, true); |
9401 | |
9402 | if (wfunc->aggfilter != NULL) |
9403 | { |
9404 | appendStringInfoString(buf, ") FILTER (WHERE " ); |
9405 | get_rule_expr((Node *) wfunc->aggfilter, context, false); |
9406 | } |
9407 | |
9408 | appendStringInfoString(buf, ") OVER " ); |
9409 | |
9410 | foreach(l, context->windowClause) |
9411 | { |
9412 | WindowClause *wc = (WindowClause *) lfirst(l); |
9413 | |
9414 | if (wc->winref == wfunc->winref) |
9415 | { |
9416 | if (wc->name) |
9417 | appendStringInfoString(buf, quote_identifier(wc->name)); |
9418 | else |
9419 | get_rule_windowspec(wc, context->windowTList, context); |
9420 | break; |
9421 | } |
9422 | } |
9423 | if (l == NULL) |
9424 | { |
9425 | if (context->windowClause) |
9426 | elog(ERROR, "could not find window clause for winref %u" , |
9427 | wfunc->winref); |
9428 | |
9429 | /* |
9430 | * In EXPLAIN, we don't have window context information available, so |
9431 | * we have to settle for this: |
9432 | */ |
9433 | appendStringInfoString(buf, "(?)" ); |
9434 | } |
9435 | } |
9436 | |
9437 | /* ---------- |
9438 | * get_coercion_expr |
9439 | * |
9440 | * Make a string representation of a value coerced to a specific type |
9441 | * ---------- |
9442 | */ |
9443 | static void |
9444 | get_coercion_expr(Node *arg, deparse_context *context, |
9445 | Oid resulttype, int32 resulttypmod, |
9446 | Node *parentNode) |
9447 | { |
9448 | StringInfo buf = context->buf; |
9449 | |
9450 | /* |
9451 | * Since parse_coerce.c doesn't immediately collapse application of |
9452 | * length-coercion functions to constants, what we'll typically see in |
9453 | * such cases is a Const with typmod -1 and a length-coercion function |
9454 | * right above it. Avoid generating redundant output. However, beware of |
9455 | * suppressing casts when the user actually wrote something like |
9456 | * 'foo'::text::char(3). |
9457 | * |
9458 | * Note: it might seem that we are missing the possibility of needing to |
9459 | * print a COLLATE clause for such a Const. However, a Const could only |
9460 | * have nondefault collation in a post-constant-folding tree, in which the |
9461 | * length coercion would have been folded too. See also the special |
9462 | * handling of CollateExpr in coerce_to_target_type(): any collation |
9463 | * marking will be above the coercion node, not below it. |
9464 | */ |
9465 | if (arg && IsA(arg, Const) && |
9466 | ((Const *) arg)->consttype == resulttype && |
9467 | ((Const *) arg)->consttypmod == -1) |
9468 | { |
9469 | /* Show the constant without normal ::typename decoration */ |
9470 | get_const_expr((Const *) arg, context, -1); |
9471 | } |
9472 | else |
9473 | { |
9474 | if (!PRETTY_PAREN(context)) |
9475 | appendStringInfoChar(buf, '('); |
9476 | get_rule_expr_paren(arg, context, false, parentNode); |
9477 | if (!PRETTY_PAREN(context)) |
9478 | appendStringInfoChar(buf, ')'); |
9479 | } |
9480 | |
9481 | /* |
9482 | * Never emit resulttype(arg) functional notation. A pg_proc entry could |
9483 | * take precedence, and a resulttype in pg_temp would require schema |
9484 | * qualification that format_type_with_typemod() would usually omit. We've |
9485 | * standardized on arg::resulttype, but CAST(arg AS resulttype) notation |
9486 | * would work fine. |
9487 | */ |
9488 | appendStringInfo(buf, "::%s" , |
9489 | format_type_with_typemod(resulttype, resulttypmod)); |
9490 | } |
9491 | |
9492 | /* ---------- |
9493 | * get_const_expr |
9494 | * |
9495 | * Make a string representation of a Const |
9496 | * |
9497 | * showtype can be -1 to never show "::typename" decoration, or +1 to always |
9498 | * show it, or 0 to show it only if the constant wouldn't be assumed to be |
9499 | * the right type by default. |
9500 | * |
9501 | * If the Const's collation isn't default for its type, show that too. |
9502 | * We mustn't do this when showtype is -1 (since that means the caller will |
9503 | * print "::typename", and we can't put a COLLATE clause in between). It's |
9504 | * caller's responsibility that collation isn't missed in such cases. |
9505 | * ---------- |
9506 | */ |
9507 | static void |
9508 | get_const_expr(Const *constval, deparse_context *context, int showtype) |
9509 | { |
9510 | StringInfo buf = context->buf; |
9511 | Oid typoutput; |
9512 | bool typIsVarlena; |
9513 | char *extval; |
9514 | bool needlabel = false; |
9515 | |
9516 | if (constval->constisnull) |
9517 | { |
9518 | /* |
9519 | * Always label the type of a NULL constant to prevent misdecisions |
9520 | * about type when reparsing. |
9521 | */ |
9522 | appendStringInfoString(buf, "NULL" ); |
9523 | if (showtype >= 0) |
9524 | { |
9525 | appendStringInfo(buf, "::%s" , |
9526 | format_type_with_typemod(constval->consttype, |
9527 | constval->consttypmod)); |
9528 | get_const_collation(constval, context); |
9529 | } |
9530 | return; |
9531 | } |
9532 | |
9533 | getTypeOutputInfo(constval->consttype, |
9534 | &typoutput, &typIsVarlena); |
9535 | |
9536 | extval = OidOutputFunctionCall(typoutput, constval->constvalue); |
9537 | |
9538 | switch (constval->consttype) |
9539 | { |
9540 | case INT4OID: |
9541 | |
9542 | /* |
9543 | * INT4 can be printed without any decoration, unless it is |
9544 | * negative; in that case print it as '-nnn'::integer to ensure |
9545 | * that the output will re-parse as a constant, not as a constant |
9546 | * plus operator. In most cases we could get away with printing |
9547 | * (-nnn) instead, because of the way that gram.y handles negative |
9548 | * literals; but that doesn't work for INT_MIN, and it doesn't |
9549 | * seem that much prettier anyway. |
9550 | */ |
9551 | if (extval[0] != '-') |
9552 | appendStringInfoString(buf, extval); |
9553 | else |
9554 | { |
9555 | appendStringInfo(buf, "'%s'" , extval); |
9556 | needlabel = true; /* we must attach a cast */ |
9557 | } |
9558 | break; |
9559 | |
9560 | case NUMERICOID: |
9561 | |
9562 | /* |
9563 | * NUMERIC can be printed without quotes if it looks like a float |
9564 | * constant (not an integer, and not Infinity or NaN) and doesn't |
9565 | * have a leading sign (for the same reason as for INT4). |
9566 | */ |
9567 | if (isdigit((unsigned char) extval[0]) && |
9568 | strcspn(extval, "eE." ) != strlen(extval)) |
9569 | { |
9570 | appendStringInfoString(buf, extval); |
9571 | } |
9572 | else |
9573 | { |
9574 | appendStringInfo(buf, "'%s'" , extval); |
9575 | needlabel = true; /* we must attach a cast */ |
9576 | } |
9577 | break; |
9578 | |
9579 | case BOOLOID: |
9580 | if (strcmp(extval, "t" ) == 0) |
9581 | appendStringInfoString(buf, "true" ); |
9582 | else |
9583 | appendStringInfoString(buf, "false" ); |
9584 | break; |
9585 | |
9586 | default: |
9587 | simple_quote_literal(buf, extval); |
9588 | break; |
9589 | } |
9590 | |
9591 | pfree(extval); |
9592 | |
9593 | if (showtype < 0) |
9594 | return; |
9595 | |
9596 | /* |
9597 | * For showtype == 0, append ::typename unless the constant will be |
9598 | * implicitly typed as the right type when it is read in. |
9599 | * |
9600 | * XXX this code has to be kept in sync with the behavior of the parser, |
9601 | * especially make_const. |
9602 | */ |
9603 | switch (constval->consttype) |
9604 | { |
9605 | case BOOLOID: |
9606 | case UNKNOWNOID: |
9607 | /* These types can be left unlabeled */ |
9608 | needlabel = false; |
9609 | break; |
9610 | case INT4OID: |
9611 | /* We determined above whether a label is needed */ |
9612 | break; |
9613 | case NUMERICOID: |
9614 | |
9615 | /* |
9616 | * Float-looking constants will be typed as numeric, which we |
9617 | * checked above; but if there's a nondefault typmod we need to |
9618 | * show it. |
9619 | */ |
9620 | needlabel |= (constval->consttypmod >= 0); |
9621 | break; |
9622 | default: |
9623 | needlabel = true; |
9624 | break; |
9625 | } |
9626 | if (needlabel || showtype > 0) |
9627 | appendStringInfo(buf, "::%s" , |
9628 | format_type_with_typemod(constval->consttype, |
9629 | constval->consttypmod)); |
9630 | |
9631 | get_const_collation(constval, context); |
9632 | } |
9633 | |
9634 | /* |
9635 | * helper for get_const_expr: append COLLATE if needed |
9636 | */ |
9637 | static void |
9638 | get_const_collation(Const *constval, deparse_context *context) |
9639 | { |
9640 | StringInfo buf = context->buf; |
9641 | |
9642 | if (OidIsValid(constval->constcollid)) |
9643 | { |
9644 | Oid typcollation = get_typcollation(constval->consttype); |
9645 | |
9646 | if (constval->constcollid != typcollation) |
9647 | { |
9648 | appendStringInfo(buf, " COLLATE %s" , |
9649 | generate_collation_name(constval->constcollid)); |
9650 | } |
9651 | } |
9652 | } |
9653 | |
9654 | /* |
9655 | * simple_quote_literal - Format a string as a SQL literal, append to buf |
9656 | */ |
9657 | static void |
9658 | simple_quote_literal(StringInfo buf, const char *val) |
9659 | { |
9660 | const char *valptr; |
9661 | |
9662 | /* |
9663 | * We form the string literal according to the prevailing setting of |
9664 | * standard_conforming_strings; we never use E''. User is responsible for |
9665 | * making sure result is used correctly. |
9666 | */ |
9667 | appendStringInfoChar(buf, '\''); |
9668 | for (valptr = val; *valptr; valptr++) |
9669 | { |
9670 | char ch = *valptr; |
9671 | |
9672 | if (SQL_STR_DOUBLE(ch, !standard_conforming_strings)) |
9673 | appendStringInfoChar(buf, ch); |
9674 | appendStringInfoChar(buf, ch); |
9675 | } |
9676 | appendStringInfoChar(buf, '\''); |
9677 | } |
9678 | |
9679 | |
9680 | /* ---------- |
9681 | * get_sublink_expr - Parse back a sublink |
9682 | * ---------- |
9683 | */ |
9684 | static void |
9685 | get_sublink_expr(SubLink *sublink, deparse_context *context) |
9686 | { |
9687 | StringInfo buf = context->buf; |
9688 | Query *query = (Query *) (sublink->subselect); |
9689 | char *opname = NULL; |
9690 | bool need_paren; |
9691 | |
9692 | if (sublink->subLinkType == ARRAY_SUBLINK) |
9693 | appendStringInfoString(buf, "ARRAY(" ); |
9694 | else |
9695 | appendStringInfoChar(buf, '('); |
9696 | |
9697 | /* |
9698 | * Note that we print the name of only the first operator, when there are |
9699 | * multiple combining operators. This is an approximation that could go |
9700 | * wrong in various scenarios (operators in different schemas, renamed |
9701 | * operators, etc) but there is not a whole lot we can do about it, since |
9702 | * the syntax allows only one operator to be shown. |
9703 | */ |
9704 | if (sublink->testexpr) |
9705 | { |
9706 | if (IsA(sublink->testexpr, OpExpr)) |
9707 | { |
9708 | /* single combining operator */ |
9709 | OpExpr *opexpr = (OpExpr *) sublink->testexpr; |
9710 | |
9711 | get_rule_expr(linitial(opexpr->args), context, true); |
9712 | opname = generate_operator_name(opexpr->opno, |
9713 | exprType(linitial(opexpr->args)), |
9714 | exprType(lsecond(opexpr->args))); |
9715 | } |
9716 | else if (IsA(sublink->testexpr, BoolExpr)) |
9717 | { |
9718 | /* multiple combining operators, = or <> cases */ |
9719 | char *sep; |
9720 | ListCell *l; |
9721 | |
9722 | appendStringInfoChar(buf, '('); |
9723 | sep = "" ; |
9724 | foreach(l, ((BoolExpr *) sublink->testexpr)->args) |
9725 | { |
9726 | OpExpr *opexpr = lfirst_node(OpExpr, l); |
9727 | |
9728 | appendStringInfoString(buf, sep); |
9729 | get_rule_expr(linitial(opexpr->args), context, true); |
9730 | if (!opname) |
9731 | opname = generate_operator_name(opexpr->opno, |
9732 | exprType(linitial(opexpr->args)), |
9733 | exprType(lsecond(opexpr->args))); |
9734 | sep = ", " ; |
9735 | } |
9736 | appendStringInfoChar(buf, ')'); |
9737 | } |
9738 | else if (IsA(sublink->testexpr, RowCompareExpr)) |
9739 | { |
9740 | /* multiple combining operators, < <= > >= cases */ |
9741 | RowCompareExpr *rcexpr = (RowCompareExpr *) sublink->testexpr; |
9742 | |
9743 | appendStringInfoChar(buf, '('); |
9744 | get_rule_expr((Node *) rcexpr->largs, context, true); |
9745 | opname = generate_operator_name(linitial_oid(rcexpr->opnos), |
9746 | exprType(linitial(rcexpr->largs)), |
9747 | exprType(linitial(rcexpr->rargs))); |
9748 | appendStringInfoChar(buf, ')'); |
9749 | } |
9750 | else |
9751 | elog(ERROR, "unrecognized testexpr type: %d" , |
9752 | (int) nodeTag(sublink->testexpr)); |
9753 | } |
9754 | |
9755 | need_paren = true; |
9756 | |
9757 | switch (sublink->subLinkType) |
9758 | { |
9759 | case EXISTS_SUBLINK: |
9760 | appendStringInfoString(buf, "EXISTS " ); |
9761 | break; |
9762 | |
9763 | case ANY_SUBLINK: |
9764 | if (strcmp(opname, "=" ) == 0) /* Represent = ANY as IN */ |
9765 | appendStringInfoString(buf, " IN " ); |
9766 | else |
9767 | appendStringInfo(buf, " %s ANY " , opname); |
9768 | break; |
9769 | |
9770 | case ALL_SUBLINK: |
9771 | appendStringInfo(buf, " %s ALL " , opname); |
9772 | break; |
9773 | |
9774 | case ROWCOMPARE_SUBLINK: |
9775 | appendStringInfo(buf, " %s " , opname); |
9776 | break; |
9777 | |
9778 | case EXPR_SUBLINK: |
9779 | case MULTIEXPR_SUBLINK: |
9780 | case ARRAY_SUBLINK: |
9781 | need_paren = false; |
9782 | break; |
9783 | |
9784 | case CTE_SUBLINK: /* shouldn't occur in a SubLink */ |
9785 | default: |
9786 | elog(ERROR, "unrecognized sublink type: %d" , |
9787 | (int) sublink->subLinkType); |
9788 | break; |
9789 | } |
9790 | |
9791 | if (need_paren) |
9792 | appendStringInfoChar(buf, '('); |
9793 | |
9794 | get_query_def(query, buf, context->namespaces, NULL, |
9795 | context->prettyFlags, context->wrapColumn, |
9796 | context->indentLevel); |
9797 | |
9798 | if (need_paren) |
9799 | appendStringInfoString(buf, "))" ); |
9800 | else |
9801 | appendStringInfoChar(buf, ')'); |
9802 | } |
9803 | |
9804 | |
9805 | /* ---------- |
9806 | * get_tablefunc - Parse back a table function |
9807 | * ---------- |
9808 | */ |
9809 | static void |
9810 | get_tablefunc(TableFunc *tf, deparse_context *context, bool showimplicit) |
9811 | { |
9812 | StringInfo buf = context->buf; |
9813 | |
9814 | /* XMLTABLE is the only existing implementation. */ |
9815 | |
9816 | appendStringInfoString(buf, "XMLTABLE(" ); |
9817 | |
9818 | if (tf->ns_uris != NIL) |
9819 | { |
9820 | ListCell *lc1, |
9821 | *lc2; |
9822 | bool first = true; |
9823 | |
9824 | appendStringInfoString(buf, "XMLNAMESPACES (" ); |
9825 | forboth(lc1, tf->ns_uris, lc2, tf->ns_names) |
9826 | { |
9827 | Node *expr = (Node *) lfirst(lc1); |
9828 | Value *ns_node = (Value *) lfirst(lc2); |
9829 | |
9830 | if (!first) |
9831 | appendStringInfoString(buf, ", " ); |
9832 | else |
9833 | first = false; |
9834 | |
9835 | if (ns_node != NULL) |
9836 | { |
9837 | get_rule_expr(expr, context, showimplicit); |
9838 | appendStringInfo(buf, " AS %s" , strVal(ns_node)); |
9839 | } |
9840 | else |
9841 | { |
9842 | appendStringInfoString(buf, "DEFAULT " ); |
9843 | get_rule_expr(expr, context, showimplicit); |
9844 | } |
9845 | } |
9846 | appendStringInfoString(buf, "), " ); |
9847 | } |
9848 | |
9849 | appendStringInfoChar(buf, '('); |
9850 | get_rule_expr((Node *) tf->rowexpr, context, showimplicit); |
9851 | appendStringInfoString(buf, ") PASSING (" ); |
9852 | get_rule_expr((Node *) tf->docexpr, context, showimplicit); |
9853 | appendStringInfoChar(buf, ')'); |
9854 | |
9855 | if (tf->colexprs != NIL) |
9856 | { |
9857 | ListCell *l1; |
9858 | ListCell *l2; |
9859 | ListCell *l3; |
9860 | ListCell *l4; |
9861 | ListCell *l5; |
9862 | int colnum = 0; |
9863 | |
9864 | appendStringInfoString(buf, " COLUMNS " ); |
9865 | forfive(l1, tf->colnames, l2, tf->coltypes, l3, tf->coltypmods, |
9866 | l4, tf->colexprs, l5, tf->coldefexprs) |
9867 | { |
9868 | char *colname = strVal(lfirst(l1)); |
9869 | Oid typid = lfirst_oid(l2); |
9870 | int32 typmod = lfirst_int(l3); |
9871 | Node *colexpr = (Node *) lfirst(l4); |
9872 | Node *coldefexpr = (Node *) lfirst(l5); |
9873 | bool ordinality = (tf->ordinalitycol == colnum); |
9874 | bool notnull = bms_is_member(colnum, tf->notnulls); |
9875 | |
9876 | if (colnum > 0) |
9877 | appendStringInfoString(buf, ", " ); |
9878 | colnum++; |
9879 | |
9880 | appendStringInfo(buf, "%s %s" , quote_identifier(colname), |
9881 | ordinality ? "FOR ORDINALITY" : |
9882 | format_type_with_typemod(typid, typmod)); |
9883 | if (ordinality) |
9884 | continue; |
9885 | |
9886 | if (coldefexpr != NULL) |
9887 | { |
9888 | appendStringInfoString(buf, " DEFAULT (" ); |
9889 | get_rule_expr((Node *) coldefexpr, context, showimplicit); |
9890 | appendStringInfoChar(buf, ')'); |
9891 | } |
9892 | if (colexpr != NULL) |
9893 | { |
9894 | appendStringInfoString(buf, " PATH (" ); |
9895 | get_rule_expr((Node *) colexpr, context, showimplicit); |
9896 | appendStringInfoChar(buf, ')'); |
9897 | } |
9898 | if (notnull) |
9899 | appendStringInfoString(buf, " NOT NULL" ); |
9900 | } |
9901 | } |
9902 | |
9903 | appendStringInfoChar(buf, ')'); |
9904 | } |
9905 | |
9906 | /* ---------- |
9907 | * get_from_clause - Parse back a FROM clause |
9908 | * |
9909 | * "prefix" is the keyword that denotes the start of the list of FROM |
9910 | * elements. It is FROM when used to parse back SELECT and UPDATE, but |
9911 | * is USING when parsing back DELETE. |
9912 | * ---------- |
9913 | */ |
9914 | static void |
9915 | get_from_clause(Query *query, const char *prefix, deparse_context *context) |
9916 | { |
9917 | StringInfo buf = context->buf; |
9918 | bool first = true; |
9919 | ListCell *l; |
9920 | |
9921 | /* |
9922 | * We use the query's jointree as a guide to what to print. However, we |
9923 | * must ignore auto-added RTEs that are marked not inFromCl. (These can |
9924 | * only appear at the top level of the jointree, so it's sufficient to |
9925 | * check here.) This check also ensures we ignore the rule pseudo-RTEs |
9926 | * for NEW and OLD. |
9927 | */ |
9928 | foreach(l, query->jointree->fromlist) |
9929 | { |
9930 | Node *jtnode = (Node *) lfirst(l); |
9931 | |
9932 | if (IsA(jtnode, RangeTblRef)) |
9933 | { |
9934 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
9935 | RangeTblEntry *rte = rt_fetch(varno, query->rtable); |
9936 | |
9937 | if (!rte->inFromCl) |
9938 | continue; |
9939 | } |
9940 | |
9941 | if (first) |
9942 | { |
9943 | appendContextKeyword(context, prefix, |
9944 | -PRETTYINDENT_STD, PRETTYINDENT_STD, 2); |
9945 | first = false; |
9946 | |
9947 | get_from_clause_item(jtnode, query, context); |
9948 | } |
9949 | else |
9950 | { |
9951 | StringInfoData itembuf; |
9952 | |
9953 | appendStringInfoString(buf, ", " ); |
9954 | |
9955 | /* |
9956 | * Put the new FROM item's text into itembuf so we can decide |
9957 | * after we've got it whether or not it needs to go on a new line. |
9958 | */ |
9959 | initStringInfo(&itembuf); |
9960 | context->buf = &itembuf; |
9961 | |
9962 | get_from_clause_item(jtnode, query, context); |
9963 | |
9964 | /* Restore context's output buffer */ |
9965 | context->buf = buf; |
9966 | |
9967 | /* Consider line-wrapping if enabled */ |
9968 | if (PRETTY_INDENT(context) && context->wrapColumn >= 0) |
9969 | { |
9970 | /* Does the new item start with a new line? */ |
9971 | if (itembuf.len > 0 && itembuf.data[0] == '\n') |
9972 | { |
9973 | /* If so, we shouldn't add anything */ |
9974 | /* instead, remove any trailing spaces currently in buf */ |
9975 | removeStringInfoSpaces(buf); |
9976 | } |
9977 | else |
9978 | { |
9979 | char *trailing_nl; |
9980 | |
9981 | /* Locate the start of the current line in the buffer */ |
9982 | trailing_nl = strrchr(buf->data, '\n'); |
9983 | if (trailing_nl == NULL) |
9984 | trailing_nl = buf->data; |
9985 | else |
9986 | trailing_nl++; |
9987 | |
9988 | /* |
9989 | * Add a newline, plus some indentation, if the new item |
9990 | * would cause an overflow. |
9991 | */ |
9992 | if (strlen(trailing_nl) + itembuf.len > context->wrapColumn) |
9993 | appendContextKeyword(context, "" , -PRETTYINDENT_STD, |
9994 | PRETTYINDENT_STD, |
9995 | PRETTYINDENT_VAR); |
9996 | } |
9997 | } |
9998 | |
9999 | /* Add the new item */ |
10000 | appendStringInfoString(buf, itembuf.data); |
10001 | |
10002 | /* clean up */ |
10003 | pfree(itembuf.data); |
10004 | } |
10005 | } |
10006 | } |
10007 | |
10008 | static void |
10009 | get_from_clause_item(Node *jtnode, Query *query, deparse_context *context) |
10010 | { |
10011 | StringInfo buf = context->buf; |
10012 | deparse_namespace *dpns = (deparse_namespace *) linitial(context->namespaces); |
10013 | |
10014 | if (IsA(jtnode, RangeTblRef)) |
10015 | { |
10016 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
10017 | RangeTblEntry *rte = rt_fetch(varno, query->rtable); |
10018 | char *refname = get_rtable_name(varno, context); |
10019 | deparse_columns *colinfo = deparse_columns_fetch(varno, dpns); |
10020 | RangeTblFunction *rtfunc1 = NULL; |
10021 | bool printalias; |
10022 | |
10023 | if (rte->lateral) |
10024 | appendStringInfoString(buf, "LATERAL " ); |
10025 | |
10026 | /* Print the FROM item proper */ |
10027 | switch (rte->rtekind) |
10028 | { |
10029 | case RTE_RELATION: |
10030 | /* Normal relation RTE */ |
10031 | appendStringInfo(buf, "%s%s" , |
10032 | only_marker(rte), |
10033 | generate_relation_name(rte->relid, |
10034 | context->namespaces)); |
10035 | break; |
10036 | case RTE_SUBQUERY: |
10037 | /* Subquery RTE */ |
10038 | appendStringInfoChar(buf, '('); |
10039 | get_query_def(rte->subquery, buf, context->namespaces, NULL, |
10040 | context->prettyFlags, context->wrapColumn, |
10041 | context->indentLevel); |
10042 | appendStringInfoChar(buf, ')'); |
10043 | break; |
10044 | case RTE_FUNCTION: |
10045 | /* Function RTE */ |
10046 | rtfunc1 = (RangeTblFunction *) linitial(rte->functions); |
10047 | |
10048 | /* |
10049 | * Omit ROWS FROM() syntax for just one function, unless it |
10050 | * has both a coldeflist and WITH ORDINALITY. If it has both, |
10051 | * we must use ROWS FROM() syntax to avoid ambiguity about |
10052 | * whether the coldeflist includes the ordinality column. |
10053 | */ |
10054 | if (list_length(rte->functions) == 1 && |
10055 | (rtfunc1->funccolnames == NIL || !rte->funcordinality)) |
10056 | { |
10057 | get_rule_expr_funccall(rtfunc1->funcexpr, context, true); |
10058 | /* we'll print the coldeflist below, if it has one */ |
10059 | } |
10060 | else |
10061 | { |
10062 | bool all_unnest; |
10063 | ListCell *lc; |
10064 | |
10065 | /* |
10066 | * If all the function calls in the list are to unnest, |
10067 | * and none need a coldeflist, then collapse the list back |
10068 | * down to UNNEST(args). (If we had more than one |
10069 | * built-in unnest function, this would get more |
10070 | * difficult.) |
10071 | * |
10072 | * XXX This is pretty ugly, since it makes not-terribly- |
10073 | * future-proof assumptions about what the parser would do |
10074 | * with the output; but the alternative is to emit our |
10075 | * nonstandard ROWS FROM() notation for what might have |
10076 | * been a perfectly spec-compliant multi-argument |
10077 | * UNNEST(). |
10078 | */ |
10079 | all_unnest = true; |
10080 | foreach(lc, rte->functions) |
10081 | { |
10082 | RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
10083 | |
10084 | if (!IsA(rtfunc->funcexpr, FuncExpr) || |
10085 | ((FuncExpr *) rtfunc->funcexpr)->funcid != F_ARRAY_UNNEST || |
10086 | rtfunc->funccolnames != NIL) |
10087 | { |
10088 | all_unnest = false; |
10089 | break; |
10090 | } |
10091 | } |
10092 | |
10093 | if (all_unnest) |
10094 | { |
10095 | List *allargs = NIL; |
10096 | |
10097 | foreach(lc, rte->functions) |
10098 | { |
10099 | RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
10100 | List *args = ((FuncExpr *) rtfunc->funcexpr)->args; |
10101 | |
10102 | allargs = list_concat(allargs, list_copy(args)); |
10103 | } |
10104 | |
10105 | appendStringInfoString(buf, "UNNEST(" ); |
10106 | get_rule_expr((Node *) allargs, context, true); |
10107 | appendStringInfoChar(buf, ')'); |
10108 | } |
10109 | else |
10110 | { |
10111 | int funcno = 0; |
10112 | |
10113 | appendStringInfoString(buf, "ROWS FROM(" ); |
10114 | foreach(lc, rte->functions) |
10115 | { |
10116 | RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
10117 | |
10118 | if (funcno > 0) |
10119 | appendStringInfoString(buf, ", " ); |
10120 | get_rule_expr_funccall(rtfunc->funcexpr, context, true); |
10121 | if (rtfunc->funccolnames != NIL) |
10122 | { |
10123 | /* Reconstruct the column definition list */ |
10124 | appendStringInfoString(buf, " AS " ); |
10125 | get_from_clause_coldeflist(rtfunc, |
10126 | NULL, |
10127 | context); |
10128 | } |
10129 | funcno++; |
10130 | } |
10131 | appendStringInfoChar(buf, ')'); |
10132 | } |
10133 | /* prevent printing duplicate coldeflist below */ |
10134 | rtfunc1 = NULL; |
10135 | } |
10136 | if (rte->funcordinality) |
10137 | appendStringInfoString(buf, " WITH ORDINALITY" ); |
10138 | break; |
10139 | case RTE_TABLEFUNC: |
10140 | get_tablefunc(rte->tablefunc, context, true); |
10141 | break; |
10142 | case RTE_VALUES: |
10143 | /* Values list RTE */ |
10144 | appendStringInfoChar(buf, '('); |
10145 | get_values_def(rte->values_lists, context); |
10146 | appendStringInfoChar(buf, ')'); |
10147 | break; |
10148 | case RTE_CTE: |
10149 | appendStringInfoString(buf, quote_identifier(rte->ctename)); |
10150 | break; |
10151 | default: |
10152 | elog(ERROR, "unrecognized RTE kind: %d" , (int) rte->rtekind); |
10153 | break; |
10154 | } |
10155 | |
10156 | /* Print the relation alias, if needed */ |
10157 | printalias = false; |
10158 | if (rte->alias != NULL) |
10159 | { |
10160 | /* Always print alias if user provided one */ |
10161 | printalias = true; |
10162 | } |
10163 | else if (colinfo->printaliases) |
10164 | { |
10165 | /* Always print alias if we need to print column aliases */ |
10166 | printalias = true; |
10167 | } |
10168 | else if (rte->rtekind == RTE_RELATION) |
10169 | { |
10170 | /* |
10171 | * No need to print alias if it's same as relation name (this |
10172 | * would normally be the case, but not if set_rtable_names had to |
10173 | * resolve a conflict). |
10174 | */ |
10175 | if (strcmp(refname, get_relation_name(rte->relid)) != 0) |
10176 | printalias = true; |
10177 | } |
10178 | else if (rte->rtekind == RTE_FUNCTION) |
10179 | { |
10180 | /* |
10181 | * For a function RTE, always print alias. This covers possible |
10182 | * renaming of the function and/or instability of the |
10183 | * FigureColname rules for things that aren't simple functions. |
10184 | * Note we'd need to force it anyway for the columndef list case. |
10185 | */ |
10186 | printalias = true; |
10187 | } |
10188 | else if (rte->rtekind == RTE_VALUES) |
10189 | { |
10190 | /* Alias is syntactically required for VALUES */ |
10191 | printalias = true; |
10192 | } |
10193 | else if (rte->rtekind == RTE_CTE) |
10194 | { |
10195 | /* |
10196 | * No need to print alias if it's same as CTE name (this would |
10197 | * normally be the case, but not if set_rtable_names had to |
10198 | * resolve a conflict). |
10199 | */ |
10200 | if (strcmp(refname, rte->ctename) != 0) |
10201 | printalias = true; |
10202 | } |
10203 | if (printalias) |
10204 | appendStringInfo(buf, " %s" , quote_identifier(refname)); |
10205 | |
10206 | /* Print the column definitions or aliases, if needed */ |
10207 | if (rtfunc1 && rtfunc1->funccolnames != NIL) |
10208 | { |
10209 | /* Reconstruct the columndef list, which is also the aliases */ |
10210 | get_from_clause_coldeflist(rtfunc1, colinfo, context); |
10211 | } |
10212 | else |
10213 | { |
10214 | /* Else print column aliases as needed */ |
10215 | get_column_alias_list(colinfo, context); |
10216 | } |
10217 | |
10218 | /* Tablesample clause must go after any alias */ |
10219 | if (rte->rtekind == RTE_RELATION && rte->tablesample) |
10220 | get_tablesample_def(rte->tablesample, context); |
10221 | } |
10222 | else if (IsA(jtnode, JoinExpr)) |
10223 | { |
10224 | JoinExpr *j = (JoinExpr *) jtnode; |
10225 | deparse_columns *colinfo = deparse_columns_fetch(j->rtindex, dpns); |
10226 | bool need_paren_on_right; |
10227 | |
10228 | need_paren_on_right = PRETTY_PAREN(context) && |
10229 | !IsA(j->rarg, RangeTblRef) && |
10230 | !(IsA(j->rarg, JoinExpr) &&((JoinExpr *) j->rarg)->alias != NULL); |
10231 | |
10232 | if (!PRETTY_PAREN(context) || j->alias != NULL) |
10233 | appendStringInfoChar(buf, '('); |
10234 | |
10235 | get_from_clause_item(j->larg, query, context); |
10236 | |
10237 | switch (j->jointype) |
10238 | { |
10239 | case JOIN_INNER: |
10240 | if (j->quals) |
10241 | appendContextKeyword(context, " JOIN " , |
10242 | -PRETTYINDENT_STD, |
10243 | PRETTYINDENT_STD, |
10244 | PRETTYINDENT_JOIN); |
10245 | else |
10246 | appendContextKeyword(context, " CROSS JOIN " , |
10247 | -PRETTYINDENT_STD, |
10248 | PRETTYINDENT_STD, |
10249 | PRETTYINDENT_JOIN); |
10250 | break; |
10251 | case JOIN_LEFT: |
10252 | appendContextKeyword(context, " LEFT JOIN " , |
10253 | -PRETTYINDENT_STD, |
10254 | PRETTYINDENT_STD, |
10255 | PRETTYINDENT_JOIN); |
10256 | break; |
10257 | case JOIN_FULL: |
10258 | appendContextKeyword(context, " FULL JOIN " , |
10259 | -PRETTYINDENT_STD, |
10260 | PRETTYINDENT_STD, |
10261 | PRETTYINDENT_JOIN); |
10262 | break; |
10263 | case JOIN_RIGHT: |
10264 | appendContextKeyword(context, " RIGHT JOIN " , |
10265 | -PRETTYINDENT_STD, |
10266 | PRETTYINDENT_STD, |
10267 | PRETTYINDENT_JOIN); |
10268 | break; |
10269 | default: |
10270 | elog(ERROR, "unrecognized join type: %d" , |
10271 | (int) j->jointype); |
10272 | } |
10273 | |
10274 | if (need_paren_on_right) |
10275 | appendStringInfoChar(buf, '('); |
10276 | get_from_clause_item(j->rarg, query, context); |
10277 | if (need_paren_on_right) |
10278 | appendStringInfoChar(buf, ')'); |
10279 | |
10280 | if (j->usingClause) |
10281 | { |
10282 | ListCell *lc; |
10283 | bool first = true; |
10284 | |
10285 | appendStringInfoString(buf, " USING (" ); |
10286 | /* Use the assigned names, not what's in usingClause */ |
10287 | foreach(lc, colinfo->usingNames) |
10288 | { |
10289 | char *colname = (char *) lfirst(lc); |
10290 | |
10291 | if (first) |
10292 | first = false; |
10293 | else |
10294 | appendStringInfoString(buf, ", " ); |
10295 | appendStringInfoString(buf, quote_identifier(colname)); |
10296 | } |
10297 | appendStringInfoChar(buf, ')'); |
10298 | } |
10299 | else if (j->quals) |
10300 | { |
10301 | appendStringInfoString(buf, " ON " ); |
10302 | if (!PRETTY_PAREN(context)) |
10303 | appendStringInfoChar(buf, '('); |
10304 | get_rule_expr(j->quals, context, false); |
10305 | if (!PRETTY_PAREN(context)) |
10306 | appendStringInfoChar(buf, ')'); |
10307 | } |
10308 | else if (j->jointype != JOIN_INNER) |
10309 | { |
10310 | /* If we didn't say CROSS JOIN above, we must provide an ON */ |
10311 | appendStringInfoString(buf, " ON TRUE" ); |
10312 | } |
10313 | |
10314 | if (!PRETTY_PAREN(context) || j->alias != NULL) |
10315 | appendStringInfoChar(buf, ')'); |
10316 | |
10317 | /* Yes, it's correct to put alias after the right paren ... */ |
10318 | if (j->alias != NULL) |
10319 | { |
10320 | /* |
10321 | * Note that it's correct to emit an alias clause if and only if |
10322 | * there was one originally. Otherwise we'd be converting a named |
10323 | * join to unnamed or vice versa, which creates semantic |
10324 | * subtleties we don't want. However, we might print a different |
10325 | * alias name than was there originally. |
10326 | */ |
10327 | appendStringInfo(buf, " %s" , |
10328 | quote_identifier(get_rtable_name(j->rtindex, |
10329 | context))); |
10330 | get_column_alias_list(colinfo, context); |
10331 | } |
10332 | } |
10333 | else |
10334 | elog(ERROR, "unrecognized node type: %d" , |
10335 | (int) nodeTag(jtnode)); |
10336 | } |
10337 | |
10338 | /* |
10339 | * get_column_alias_list - print column alias list for an RTE |
10340 | * |
10341 | * Caller must already have printed the relation's alias name. |
10342 | */ |
10343 | static void |
10344 | get_column_alias_list(deparse_columns *colinfo, deparse_context *context) |
10345 | { |
10346 | StringInfo buf = context->buf; |
10347 | int i; |
10348 | bool first = true; |
10349 | |
10350 | /* Don't print aliases if not needed */ |
10351 | if (!colinfo->printaliases) |
10352 | return; |
10353 | |
10354 | for (i = 0; i < colinfo->num_new_cols; i++) |
10355 | { |
10356 | char *colname = colinfo->new_colnames[i]; |
10357 | |
10358 | if (first) |
10359 | { |
10360 | appendStringInfoChar(buf, '('); |
10361 | first = false; |
10362 | } |
10363 | else |
10364 | appendStringInfoString(buf, ", " ); |
10365 | appendStringInfoString(buf, quote_identifier(colname)); |
10366 | } |
10367 | if (!first) |
10368 | appendStringInfoChar(buf, ')'); |
10369 | } |
10370 | |
10371 | /* |
10372 | * get_from_clause_coldeflist - reproduce FROM clause coldeflist |
10373 | * |
10374 | * When printing a top-level coldeflist (which is syntactically also the |
10375 | * relation's column alias list), use column names from colinfo. But when |
10376 | * printing a coldeflist embedded inside ROWS FROM(), we prefer to use the |
10377 | * original coldeflist's names, which are available in rtfunc->funccolnames. |
10378 | * Pass NULL for colinfo to select the latter behavior. |
10379 | * |
10380 | * The coldeflist is appended immediately (no space) to buf. Caller is |
10381 | * responsible for ensuring that an alias or AS is present before it. |
10382 | */ |
10383 | static void |
10384 | get_from_clause_coldeflist(RangeTblFunction *rtfunc, |
10385 | deparse_columns *colinfo, |
10386 | deparse_context *context) |
10387 | { |
10388 | StringInfo buf = context->buf; |
10389 | ListCell *l1; |
10390 | ListCell *l2; |
10391 | ListCell *l3; |
10392 | ListCell *l4; |
10393 | int i; |
10394 | |
10395 | appendStringInfoChar(buf, '('); |
10396 | |
10397 | i = 0; |
10398 | forfour(l1, rtfunc->funccoltypes, |
10399 | l2, rtfunc->funccoltypmods, |
10400 | l3, rtfunc->funccolcollations, |
10401 | l4, rtfunc->funccolnames) |
10402 | { |
10403 | Oid atttypid = lfirst_oid(l1); |
10404 | int32 atttypmod = lfirst_int(l2); |
10405 | Oid attcollation = lfirst_oid(l3); |
10406 | char *attname; |
10407 | |
10408 | if (colinfo) |
10409 | attname = colinfo->colnames[i]; |
10410 | else |
10411 | attname = strVal(lfirst(l4)); |
10412 | |
10413 | Assert(attname); /* shouldn't be any dropped columns here */ |
10414 | |
10415 | if (i > 0) |
10416 | appendStringInfoString(buf, ", " ); |
10417 | appendStringInfo(buf, "%s %s" , |
10418 | quote_identifier(attname), |
10419 | format_type_with_typemod(atttypid, atttypmod)); |
10420 | if (OidIsValid(attcollation) && |
10421 | attcollation != get_typcollation(atttypid)) |
10422 | appendStringInfo(buf, " COLLATE %s" , |
10423 | generate_collation_name(attcollation)); |
10424 | |
10425 | i++; |
10426 | } |
10427 | |
10428 | appendStringInfoChar(buf, ')'); |
10429 | } |
10430 | |
10431 | /* |
10432 | * get_tablesample_def - print a TableSampleClause |
10433 | */ |
10434 | static void |
10435 | get_tablesample_def(TableSampleClause *tablesample, deparse_context *context) |
10436 | { |
10437 | StringInfo buf = context->buf; |
10438 | Oid argtypes[1]; |
10439 | int nargs; |
10440 | ListCell *l; |
10441 | |
10442 | /* |
10443 | * We should qualify the handler's function name if it wouldn't be |
10444 | * resolved by lookup in the current search path. |
10445 | */ |
10446 | argtypes[0] = INTERNALOID; |
10447 | appendStringInfo(buf, " TABLESAMPLE %s (" , |
10448 | generate_function_name(tablesample->tsmhandler, 1, |
10449 | NIL, argtypes, |
10450 | false, NULL, EXPR_KIND_NONE)); |
10451 | |
10452 | nargs = 0; |
10453 | foreach(l, tablesample->args) |
10454 | { |
10455 | if (nargs++ > 0) |
10456 | appendStringInfoString(buf, ", " ); |
10457 | get_rule_expr((Node *) lfirst(l), context, false); |
10458 | } |
10459 | appendStringInfoChar(buf, ')'); |
10460 | |
10461 | if (tablesample->repeatable != NULL) |
10462 | { |
10463 | appendStringInfoString(buf, " REPEATABLE (" ); |
10464 | get_rule_expr((Node *) tablesample->repeatable, context, false); |
10465 | appendStringInfoChar(buf, ')'); |
10466 | } |
10467 | } |
10468 | |
10469 | /* |
10470 | * get_opclass_name - fetch name of an index operator class |
10471 | * |
10472 | * The opclass name is appended (after a space) to buf. |
10473 | * |
10474 | * Output is suppressed if the opclass is the default for the given |
10475 | * actual_datatype. (If you don't want this behavior, just pass |
10476 | * InvalidOid for actual_datatype.) |
10477 | */ |
10478 | static void |
10479 | get_opclass_name(Oid opclass, Oid actual_datatype, |
10480 | StringInfo buf) |
10481 | { |
10482 | HeapTuple ht_opc; |
10483 | Form_pg_opclass opcrec; |
10484 | char *opcname; |
10485 | char *nspname; |
10486 | |
10487 | ht_opc = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass)); |
10488 | if (!HeapTupleIsValid(ht_opc)) |
10489 | elog(ERROR, "cache lookup failed for opclass %u" , opclass); |
10490 | opcrec = (Form_pg_opclass) GETSTRUCT(ht_opc); |
10491 | |
10492 | if (!OidIsValid(actual_datatype) || |
10493 | GetDefaultOpClass(actual_datatype, opcrec->opcmethod) != opclass) |
10494 | { |
10495 | /* Okay, we need the opclass name. Do we need to qualify it? */ |
10496 | opcname = NameStr(opcrec->opcname); |
10497 | if (OpclassIsVisible(opclass)) |
10498 | appendStringInfo(buf, " %s" , quote_identifier(opcname)); |
10499 | else |
10500 | { |
10501 | nspname = get_namespace_name(opcrec->opcnamespace); |
10502 | appendStringInfo(buf, " %s.%s" , |
10503 | quote_identifier(nspname), |
10504 | quote_identifier(opcname)); |
10505 | } |
10506 | } |
10507 | ReleaseSysCache(ht_opc); |
10508 | } |
10509 | |
10510 | /* |
10511 | * processIndirection - take care of array and subfield assignment |
10512 | * |
10513 | * We strip any top-level FieldStore or assignment SubscriptingRef nodes that |
10514 | * appear in the input, printing them as decoration for the base column |
10515 | * name (which we assume the caller just printed). We might also need to |
10516 | * strip CoerceToDomain nodes, but only ones that appear above assignment |
10517 | * nodes. |
10518 | * |
10519 | * Returns the subexpression that's to be assigned. |
10520 | */ |
10521 | static Node * |
10522 | processIndirection(Node *node, deparse_context *context) |
10523 | { |
10524 | StringInfo buf = context->buf; |
10525 | CoerceToDomain *cdomain = NULL; |
10526 | |
10527 | for (;;) |
10528 | { |
10529 | if (node == NULL) |
10530 | break; |
10531 | if (IsA(node, FieldStore)) |
10532 | { |
10533 | FieldStore *fstore = (FieldStore *) node; |
10534 | Oid typrelid; |
10535 | char *fieldname; |
10536 | |
10537 | /* lookup tuple type */ |
10538 | typrelid = get_typ_typrelid(fstore->resulttype); |
10539 | if (!OidIsValid(typrelid)) |
10540 | elog(ERROR, "argument type %s of FieldStore is not a tuple type" , |
10541 | format_type_be(fstore->resulttype)); |
10542 | |
10543 | /* |
10544 | * Print the field name. There should only be one target field in |
10545 | * stored rules. There could be more than that in executable |
10546 | * target lists, but this function cannot be used for that case. |
10547 | */ |
10548 | Assert(list_length(fstore->fieldnums) == 1); |
10549 | fieldname = get_attname(typrelid, |
10550 | linitial_int(fstore->fieldnums), false); |
10551 | appendStringInfo(buf, ".%s" , quote_identifier(fieldname)); |
10552 | |
10553 | /* |
10554 | * We ignore arg since it should be an uninteresting reference to |
10555 | * the target column or subcolumn. |
10556 | */ |
10557 | node = (Node *) linitial(fstore->newvals); |
10558 | } |
10559 | else if (IsA(node, SubscriptingRef)) |
10560 | { |
10561 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
10562 | |
10563 | if (sbsref->refassgnexpr == NULL) |
10564 | break; |
10565 | |
10566 | printSubscripts(sbsref, context); |
10567 | |
10568 | /* |
10569 | * We ignore refexpr since it should be an uninteresting reference |
10570 | * to the target column or subcolumn. |
10571 | */ |
10572 | node = (Node *) sbsref->refassgnexpr; |
10573 | } |
10574 | else if (IsA(node, CoerceToDomain)) |
10575 | { |
10576 | cdomain = (CoerceToDomain *) node; |
10577 | /* If it's an explicit domain coercion, we're done */ |
10578 | if (cdomain->coercionformat != COERCE_IMPLICIT_CAST) |
10579 | break; |
10580 | /* Tentatively descend past the CoerceToDomain */ |
10581 | node = (Node *) cdomain->arg; |
10582 | } |
10583 | else |
10584 | break; |
10585 | } |
10586 | |
10587 | /* |
10588 | * If we descended past a CoerceToDomain whose argument turned out not to |
10589 | * be a FieldStore or array assignment, back up to the CoerceToDomain. |
10590 | * (This is not enough to be fully correct if there are nested implicit |
10591 | * CoerceToDomains, but such cases shouldn't ever occur.) |
10592 | */ |
10593 | if (cdomain && node == (Node *) cdomain->arg) |
10594 | node = (Node *) cdomain; |
10595 | |
10596 | return node; |
10597 | } |
10598 | |
10599 | static void |
10600 | printSubscripts(SubscriptingRef *sbsref, deparse_context *context) |
10601 | { |
10602 | StringInfo buf = context->buf; |
10603 | ListCell *lowlist_item; |
10604 | ListCell *uplist_item; |
10605 | |
10606 | lowlist_item = list_head(sbsref->reflowerindexpr); /* could be NULL */ |
10607 | foreach(uplist_item, sbsref->refupperindexpr) |
10608 | { |
10609 | appendStringInfoChar(buf, '['); |
10610 | if (lowlist_item) |
10611 | { |
10612 | /* If subexpression is NULL, get_rule_expr prints nothing */ |
10613 | get_rule_expr((Node *) lfirst(lowlist_item), context, false); |
10614 | appendStringInfoChar(buf, ':'); |
10615 | lowlist_item = lnext(lowlist_item); |
10616 | } |
10617 | /* If subexpression is NULL, get_rule_expr prints nothing */ |
10618 | get_rule_expr((Node *) lfirst(uplist_item), context, false); |
10619 | appendStringInfoChar(buf, ']'); |
10620 | } |
10621 | } |
10622 | |
10623 | /* |
10624 | * quote_identifier - Quote an identifier only if needed |
10625 | * |
10626 | * When quotes are needed, we palloc the required space; slightly |
10627 | * space-wasteful but well worth it for notational simplicity. |
10628 | */ |
10629 | const char * |
10630 | quote_identifier(const char *ident) |
10631 | { |
10632 | /* |
10633 | * Can avoid quoting if ident starts with a lowercase letter or underscore |
10634 | * and contains only lowercase letters, digits, and underscores, *and* is |
10635 | * not any SQL keyword. Otherwise, supply quotes. |
10636 | */ |
10637 | int nquotes = 0; |
10638 | bool safe; |
10639 | const char *ptr; |
10640 | char *result; |
10641 | char *optr; |
10642 | |
10643 | /* |
10644 | * would like to use <ctype.h> macros here, but they might yield unwanted |
10645 | * locale-specific results... |
10646 | */ |
10647 | safe = ((ident[0] >= 'a' && ident[0] <= 'z') || ident[0] == '_'); |
10648 | |
10649 | for (ptr = ident; *ptr; ptr++) |
10650 | { |
10651 | char ch = *ptr; |
10652 | |
10653 | if ((ch >= 'a' && ch <= 'z') || |
10654 | (ch >= '0' && ch <= '9') || |
10655 | (ch == '_')) |
10656 | { |
10657 | /* okay */ |
10658 | } |
10659 | else |
10660 | { |
10661 | safe = false; |
10662 | if (ch == '"') |
10663 | nquotes++; |
10664 | } |
10665 | } |
10666 | |
10667 | if (quote_all_identifiers) |
10668 | safe = false; |
10669 | |
10670 | if (safe) |
10671 | { |
10672 | /* |
10673 | * Check for keyword. We quote keywords except for unreserved ones. |
10674 | * (In some cases we could avoid quoting a col_name or type_func_name |
10675 | * keyword, but it seems much harder than it's worth to tell that.) |
10676 | * |
10677 | * Note: ScanKeywordLookup() does case-insensitive comparison, but |
10678 | * that's fine, since we already know we have all-lower-case. |
10679 | */ |
10680 | int kwnum = ScanKeywordLookup(ident, &ScanKeywords); |
10681 | |
10682 | if (kwnum >= 0 && ScanKeywordCategories[kwnum] != UNRESERVED_KEYWORD) |
10683 | safe = false; |
10684 | } |
10685 | |
10686 | if (safe) |
10687 | return ident; /* no change needed */ |
10688 | |
10689 | result = (char *) palloc(strlen(ident) + nquotes + 2 + 1); |
10690 | |
10691 | optr = result; |
10692 | *optr++ = '"'; |
10693 | for (ptr = ident; *ptr; ptr++) |
10694 | { |
10695 | char ch = *ptr; |
10696 | |
10697 | if (ch == '"') |
10698 | *optr++ = '"'; |
10699 | *optr++ = ch; |
10700 | } |
10701 | *optr++ = '"'; |
10702 | *optr = '\0'; |
10703 | |
10704 | return result; |
10705 | } |
10706 | |
10707 | /* |
10708 | * quote_qualified_identifier - Quote a possibly-qualified identifier |
10709 | * |
10710 | * Return a name of the form qualifier.ident, or just ident if qualifier |
10711 | * is NULL, quoting each component if necessary. The result is palloc'd. |
10712 | */ |
10713 | char * |
10714 | quote_qualified_identifier(const char *qualifier, |
10715 | const char *ident) |
10716 | { |
10717 | StringInfoData buf; |
10718 | |
10719 | initStringInfo(&buf); |
10720 | if (qualifier) |
10721 | appendStringInfo(&buf, "%s." , quote_identifier(qualifier)); |
10722 | appendStringInfoString(&buf, quote_identifier(ident)); |
10723 | return buf.data; |
10724 | } |
10725 | |
10726 | /* |
10727 | * get_relation_name |
10728 | * Get the unqualified name of a relation specified by OID |
10729 | * |
10730 | * This differs from the underlying get_rel_name() function in that it will |
10731 | * throw error instead of silently returning NULL if the OID is bad. |
10732 | */ |
10733 | static char * |
10734 | get_relation_name(Oid relid) |
10735 | { |
10736 | char *relname = get_rel_name(relid); |
10737 | |
10738 | if (!relname) |
10739 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
10740 | return relname; |
10741 | } |
10742 | |
10743 | /* |
10744 | * generate_relation_name |
10745 | * Compute the name to display for a relation specified by OID |
10746 | * |
10747 | * The result includes all necessary quoting and schema-prefixing. |
10748 | * |
10749 | * If namespaces isn't NIL, it must be a list of deparse_namespace nodes. |
10750 | * We will forcibly qualify the relation name if it equals any CTE name |
10751 | * visible in the namespace list. |
10752 | */ |
10753 | static char * |
10754 | generate_relation_name(Oid relid, List *namespaces) |
10755 | { |
10756 | HeapTuple tp; |
10757 | Form_pg_class reltup; |
10758 | bool need_qual; |
10759 | ListCell *nslist; |
10760 | char *relname; |
10761 | char *nspname; |
10762 | char *result; |
10763 | |
10764 | tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
10765 | if (!HeapTupleIsValid(tp)) |
10766 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
10767 | reltup = (Form_pg_class) GETSTRUCT(tp); |
10768 | relname = NameStr(reltup->relname); |
10769 | |
10770 | /* Check for conflicting CTE name */ |
10771 | need_qual = false; |
10772 | foreach(nslist, namespaces) |
10773 | { |
10774 | deparse_namespace *dpns = (deparse_namespace *) lfirst(nslist); |
10775 | ListCell *ctlist; |
10776 | |
10777 | foreach(ctlist, dpns->ctes) |
10778 | { |
10779 | CommonTableExpr *cte = (CommonTableExpr *) lfirst(ctlist); |
10780 | |
10781 | if (strcmp(cte->ctename, relname) == 0) |
10782 | { |
10783 | need_qual = true; |
10784 | break; |
10785 | } |
10786 | } |
10787 | if (need_qual) |
10788 | break; |
10789 | } |
10790 | |
10791 | /* Otherwise, qualify the name if not visible in search path */ |
10792 | if (!need_qual) |
10793 | need_qual = !RelationIsVisible(relid); |
10794 | |
10795 | if (need_qual) |
10796 | nspname = get_namespace_name(reltup->relnamespace); |
10797 | else |
10798 | nspname = NULL; |
10799 | |
10800 | result = quote_qualified_identifier(nspname, relname); |
10801 | |
10802 | ReleaseSysCache(tp); |
10803 | |
10804 | return result; |
10805 | } |
10806 | |
10807 | /* |
10808 | * generate_qualified_relation_name |
10809 | * Compute the name to display for a relation specified by OID |
10810 | * |
10811 | * As above, but unconditionally schema-qualify the name. |
10812 | */ |
10813 | static char * |
10814 | generate_qualified_relation_name(Oid relid) |
10815 | { |
10816 | HeapTuple tp; |
10817 | Form_pg_class reltup; |
10818 | char *relname; |
10819 | char *nspname; |
10820 | char *result; |
10821 | |
10822 | tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
10823 | if (!HeapTupleIsValid(tp)) |
10824 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
10825 | reltup = (Form_pg_class) GETSTRUCT(tp); |
10826 | relname = NameStr(reltup->relname); |
10827 | |
10828 | nspname = get_namespace_name(reltup->relnamespace); |
10829 | if (!nspname) |
10830 | elog(ERROR, "cache lookup failed for namespace %u" , |
10831 | reltup->relnamespace); |
10832 | |
10833 | result = quote_qualified_identifier(nspname, relname); |
10834 | |
10835 | ReleaseSysCache(tp); |
10836 | |
10837 | return result; |
10838 | } |
10839 | |
10840 | /* |
10841 | * generate_function_name |
10842 | * Compute the name to display for a function specified by OID, |
10843 | * given that it is being called with the specified actual arg names and |
10844 | * types. (Those matter because of ambiguous-function resolution rules.) |
10845 | * |
10846 | * If we're dealing with a potentially variadic function (in practice, this |
10847 | * means a FuncExpr or Aggref, not some other way of calling a function), then |
10848 | * has_variadic must specify whether variadic arguments have been merged, |
10849 | * and *use_variadic_p will be set to indicate whether to print VARIADIC in |
10850 | * the output. For non-FuncExpr cases, has_variadic should be false and |
10851 | * use_variadic_p can be NULL. |
10852 | * |
10853 | * The result includes all necessary quoting and schema-prefixing. |
10854 | */ |
10855 | static char * |
10856 | generate_function_name(Oid funcid, int nargs, List *argnames, Oid *argtypes, |
10857 | bool has_variadic, bool *use_variadic_p, |
10858 | ParseExprKind special_exprkind) |
10859 | { |
10860 | char *result; |
10861 | HeapTuple proctup; |
10862 | Form_pg_proc procform; |
10863 | char *proname; |
10864 | bool use_variadic; |
10865 | char *nspname; |
10866 | FuncDetailCode p_result; |
10867 | Oid p_funcid; |
10868 | Oid p_rettype; |
10869 | bool p_retset; |
10870 | int p_nvargs; |
10871 | Oid p_vatype; |
10872 | Oid *p_true_typeids; |
10873 | bool force_qualify = false; |
10874 | |
10875 | proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); |
10876 | if (!HeapTupleIsValid(proctup)) |
10877 | elog(ERROR, "cache lookup failed for function %u" , funcid); |
10878 | procform = (Form_pg_proc) GETSTRUCT(proctup); |
10879 | proname = NameStr(procform->proname); |
10880 | |
10881 | /* |
10882 | * Due to parser hacks to avoid needing to reserve CUBE, we need to force |
10883 | * qualification in some special cases. |
10884 | */ |
10885 | if (special_exprkind == EXPR_KIND_GROUP_BY) |
10886 | { |
10887 | if (strcmp(proname, "cube" ) == 0 || strcmp(proname, "rollup" ) == 0) |
10888 | force_qualify = true; |
10889 | } |
10890 | |
10891 | /* |
10892 | * Determine whether VARIADIC should be printed. We must do this first |
10893 | * since it affects the lookup rules in func_get_detail(). |
10894 | * |
10895 | * We always print VARIADIC if the function has a merged variadic-array |
10896 | * argument. Note that this is always the case for functions taking a |
10897 | * VARIADIC argument type other than VARIADIC ANY. If we omitted VARIADIC |
10898 | * and printed the array elements as separate arguments, the call could |
10899 | * match a newer non-VARIADIC function. |
10900 | */ |
10901 | if (use_variadic_p) |
10902 | { |
10903 | /* Parser should not have set funcvariadic unless fn is variadic */ |
10904 | Assert(!has_variadic || OidIsValid(procform->provariadic)); |
10905 | use_variadic = has_variadic; |
10906 | *use_variadic_p = use_variadic; |
10907 | } |
10908 | else |
10909 | { |
10910 | Assert(!has_variadic); |
10911 | use_variadic = false; |
10912 | } |
10913 | |
10914 | /* |
10915 | * The idea here is to schema-qualify only if the parser would fail to |
10916 | * resolve the correct function given the unqualified func name with the |
10917 | * specified argtypes and VARIADIC flag. But if we already decided to |
10918 | * force qualification, then we can skip the lookup and pretend we didn't |
10919 | * find it. |
10920 | */ |
10921 | if (!force_qualify) |
10922 | p_result = func_get_detail(list_make1(makeString(proname)), |
10923 | NIL, argnames, nargs, argtypes, |
10924 | !use_variadic, true, |
10925 | &p_funcid, &p_rettype, |
10926 | &p_retset, &p_nvargs, &p_vatype, |
10927 | &p_true_typeids, NULL); |
10928 | else |
10929 | { |
10930 | p_result = FUNCDETAIL_NOTFOUND; |
10931 | p_funcid = InvalidOid; |
10932 | } |
10933 | |
10934 | if ((p_result == FUNCDETAIL_NORMAL || |
10935 | p_result == FUNCDETAIL_AGGREGATE || |
10936 | p_result == FUNCDETAIL_WINDOWFUNC) && |
10937 | p_funcid == funcid) |
10938 | nspname = NULL; |
10939 | else |
10940 | nspname = get_namespace_name(procform->pronamespace); |
10941 | |
10942 | result = quote_qualified_identifier(nspname, proname); |
10943 | |
10944 | ReleaseSysCache(proctup); |
10945 | |
10946 | return result; |
10947 | } |
10948 | |
10949 | /* |
10950 | * generate_operator_name |
10951 | * Compute the name to display for an operator specified by OID, |
10952 | * given that it is being called with the specified actual arg types. |
10953 | * (Arg types matter because of ambiguous-operator resolution rules. |
10954 | * Pass InvalidOid for unused arg of a unary operator.) |
10955 | * |
10956 | * The result includes all necessary quoting and schema-prefixing, |
10957 | * plus the OPERATOR() decoration needed to use a qualified operator name |
10958 | * in an expression. |
10959 | */ |
10960 | static char * |
10961 | generate_operator_name(Oid operid, Oid arg1, Oid arg2) |
10962 | { |
10963 | StringInfoData buf; |
10964 | HeapTuple opertup; |
10965 | Form_pg_operator operform; |
10966 | char *oprname; |
10967 | char *nspname; |
10968 | Operator p_result; |
10969 | |
10970 | initStringInfo(&buf); |
10971 | |
10972 | opertup = SearchSysCache1(OPEROID, ObjectIdGetDatum(operid)); |
10973 | if (!HeapTupleIsValid(opertup)) |
10974 | elog(ERROR, "cache lookup failed for operator %u" , operid); |
10975 | operform = (Form_pg_operator) GETSTRUCT(opertup); |
10976 | oprname = NameStr(operform->oprname); |
10977 | |
10978 | /* |
10979 | * The idea here is to schema-qualify only if the parser would fail to |
10980 | * resolve the correct operator given the unqualified op name with the |
10981 | * specified argtypes. |
10982 | */ |
10983 | switch (operform->oprkind) |
10984 | { |
10985 | case 'b': |
10986 | p_result = oper(NULL, list_make1(makeString(oprname)), arg1, arg2, |
10987 | true, -1); |
10988 | break; |
10989 | case 'l': |
10990 | p_result = left_oper(NULL, list_make1(makeString(oprname)), arg2, |
10991 | true, -1); |
10992 | break; |
10993 | case 'r': |
10994 | p_result = right_oper(NULL, list_make1(makeString(oprname)), arg1, |
10995 | true, -1); |
10996 | break; |
10997 | default: |
10998 | elog(ERROR, "unrecognized oprkind: %d" , operform->oprkind); |
10999 | p_result = NULL; /* keep compiler quiet */ |
11000 | break; |
11001 | } |
11002 | |
11003 | if (p_result != NULL && oprid(p_result) == operid) |
11004 | nspname = NULL; |
11005 | else |
11006 | { |
11007 | nspname = get_namespace_name(operform->oprnamespace); |
11008 | appendStringInfo(&buf, "OPERATOR(%s." , quote_identifier(nspname)); |
11009 | } |
11010 | |
11011 | appendStringInfoString(&buf, oprname); |
11012 | |
11013 | if (nspname) |
11014 | appendStringInfoChar(&buf, ')'); |
11015 | |
11016 | if (p_result != NULL) |
11017 | ReleaseSysCache(p_result); |
11018 | |
11019 | ReleaseSysCache(opertup); |
11020 | |
11021 | return buf.data; |
11022 | } |
11023 | |
11024 | /* |
11025 | * generate_operator_clause --- generate a binary-operator WHERE clause |
11026 | * |
11027 | * This is used for internally-generated-and-executed SQL queries, where |
11028 | * precision is essential and readability is secondary. The basic |
11029 | * requirement is to append "leftop op rightop" to buf, where leftop and |
11030 | * rightop are given as strings and are assumed to yield types leftoptype |
11031 | * and rightoptype; the operator is identified by OID. The complexity |
11032 | * comes from needing to be sure that the parser will select the desired |
11033 | * operator when the query is parsed. We always name the operator using |
11034 | * OPERATOR(schema.op) syntax, so as to avoid search-path uncertainties. |
11035 | * We have to emit casts too, if either input isn't already the input type |
11036 | * of the operator; else we are at the mercy of the parser's heuristics for |
11037 | * ambiguous-operator resolution. The caller must ensure that leftop and |
11038 | * rightop are suitable arguments for a cast operation; it's best to insert |
11039 | * parentheses if they aren't just variables or parameters. |
11040 | */ |
11041 | void |
11042 | generate_operator_clause(StringInfo buf, |
11043 | const char *leftop, Oid leftoptype, |
11044 | Oid opoid, |
11045 | const char *rightop, Oid rightoptype) |
11046 | { |
11047 | HeapTuple opertup; |
11048 | Form_pg_operator operform; |
11049 | char *oprname; |
11050 | char *nspname; |
11051 | |
11052 | opertup = SearchSysCache1(OPEROID, ObjectIdGetDatum(opoid)); |
11053 | if (!HeapTupleIsValid(opertup)) |
11054 | elog(ERROR, "cache lookup failed for operator %u" , opoid); |
11055 | operform = (Form_pg_operator) GETSTRUCT(opertup); |
11056 | Assert(operform->oprkind == 'b'); |
11057 | oprname = NameStr(operform->oprname); |
11058 | |
11059 | nspname = get_namespace_name(operform->oprnamespace); |
11060 | |
11061 | appendStringInfoString(buf, leftop); |
11062 | if (leftoptype != operform->oprleft) |
11063 | add_cast_to(buf, operform->oprleft); |
11064 | appendStringInfo(buf, " OPERATOR(%s." , quote_identifier(nspname)); |
11065 | appendStringInfoString(buf, oprname); |
11066 | appendStringInfo(buf, ") %s" , rightop); |
11067 | if (rightoptype != operform->oprright) |
11068 | add_cast_to(buf, operform->oprright); |
11069 | |
11070 | ReleaseSysCache(opertup); |
11071 | } |
11072 | |
11073 | /* |
11074 | * Add a cast specification to buf. We spell out the type name the hard way, |
11075 | * intentionally not using format_type_be(). This is to avoid corner cases |
11076 | * for CHARACTER, BIT, and perhaps other types, where specifying the type |
11077 | * using SQL-standard syntax results in undesirable data truncation. By |
11078 | * doing it this way we can be certain that the cast will have default (-1) |
11079 | * target typmod. |
11080 | */ |
11081 | static void |
11082 | add_cast_to(StringInfo buf, Oid typid) |
11083 | { |
11084 | HeapTuple typetup; |
11085 | Form_pg_type typform; |
11086 | char *typname; |
11087 | char *nspname; |
11088 | |
11089 | typetup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typid)); |
11090 | if (!HeapTupleIsValid(typetup)) |
11091 | elog(ERROR, "cache lookup failed for type %u" , typid); |
11092 | typform = (Form_pg_type) GETSTRUCT(typetup); |
11093 | |
11094 | typname = NameStr(typform->typname); |
11095 | nspname = get_namespace_name(typform->typnamespace); |
11096 | |
11097 | appendStringInfo(buf, "::%s.%s" , |
11098 | quote_identifier(nspname), quote_identifier(typname)); |
11099 | |
11100 | ReleaseSysCache(typetup); |
11101 | } |
11102 | |
11103 | /* |
11104 | * generate_qualified_type_name |
11105 | * Compute the name to display for a type specified by OID |
11106 | * |
11107 | * This is different from format_type_be() in that we unconditionally |
11108 | * schema-qualify the name. That also means no special syntax for |
11109 | * SQL-standard type names ... although in current usage, this should |
11110 | * only get used for domains, so such cases wouldn't occur anyway. |
11111 | */ |
11112 | static char * |
11113 | generate_qualified_type_name(Oid typid) |
11114 | { |
11115 | HeapTuple tp; |
11116 | Form_pg_type typtup; |
11117 | char *typname; |
11118 | char *nspname; |
11119 | char *result; |
11120 | |
11121 | tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typid)); |
11122 | if (!HeapTupleIsValid(tp)) |
11123 | elog(ERROR, "cache lookup failed for type %u" , typid); |
11124 | typtup = (Form_pg_type) GETSTRUCT(tp); |
11125 | typname = NameStr(typtup->typname); |
11126 | |
11127 | nspname = get_namespace_name(typtup->typnamespace); |
11128 | if (!nspname) |
11129 | elog(ERROR, "cache lookup failed for namespace %u" , |
11130 | typtup->typnamespace); |
11131 | |
11132 | result = quote_qualified_identifier(nspname, typname); |
11133 | |
11134 | ReleaseSysCache(tp); |
11135 | |
11136 | return result; |
11137 | } |
11138 | |
11139 | /* |
11140 | * generate_collation_name |
11141 | * Compute the name to display for a collation specified by OID |
11142 | * |
11143 | * The result includes all necessary quoting and schema-prefixing. |
11144 | */ |
11145 | char * |
11146 | generate_collation_name(Oid collid) |
11147 | { |
11148 | HeapTuple tp; |
11149 | Form_pg_collation colltup; |
11150 | char *collname; |
11151 | char *nspname; |
11152 | char *result; |
11153 | |
11154 | tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collid)); |
11155 | if (!HeapTupleIsValid(tp)) |
11156 | elog(ERROR, "cache lookup failed for collation %u" , collid); |
11157 | colltup = (Form_pg_collation) GETSTRUCT(tp); |
11158 | collname = NameStr(colltup->collname); |
11159 | |
11160 | if (!CollationIsVisible(collid)) |
11161 | nspname = get_namespace_name(colltup->collnamespace); |
11162 | else |
11163 | nspname = NULL; |
11164 | |
11165 | result = quote_qualified_identifier(nspname, collname); |
11166 | |
11167 | ReleaseSysCache(tp); |
11168 | |
11169 | return result; |
11170 | } |
11171 | |
11172 | /* |
11173 | * Given a C string, produce a TEXT datum. |
11174 | * |
11175 | * We assume that the input was palloc'd and may be freed. |
11176 | */ |
11177 | static text * |
11178 | string_to_text(char *str) |
11179 | { |
11180 | text *result; |
11181 | |
11182 | result = cstring_to_text(str); |
11183 | pfree(str); |
11184 | return result; |
11185 | } |
11186 | |
11187 | /* |
11188 | * Generate a C string representing a relation's reloptions, or NULL if none. |
11189 | */ |
11190 | static char * |
11191 | flatten_reloptions(Oid relid) |
11192 | { |
11193 | char *result = NULL; |
11194 | HeapTuple tuple; |
11195 | Datum reloptions; |
11196 | bool isnull; |
11197 | |
11198 | tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
11199 | if (!HeapTupleIsValid(tuple)) |
11200 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
11201 | |
11202 | reloptions = SysCacheGetAttr(RELOID, tuple, |
11203 | Anum_pg_class_reloptions, &isnull); |
11204 | if (!isnull) |
11205 | { |
11206 | StringInfoData buf; |
11207 | Datum *options; |
11208 | int noptions; |
11209 | int i; |
11210 | |
11211 | initStringInfo(&buf); |
11212 | |
11213 | deconstruct_array(DatumGetArrayTypeP(reloptions), |
11214 | TEXTOID, -1, false, 'i', |
11215 | &options, NULL, &noptions); |
11216 | |
11217 | for (i = 0; i < noptions; i++) |
11218 | { |
11219 | char *option = TextDatumGetCString(options[i]); |
11220 | char *name; |
11221 | char *separator; |
11222 | char *value; |
11223 | |
11224 | /* |
11225 | * Each array element should have the form name=value. If the "=" |
11226 | * is missing for some reason, treat it like an empty value. |
11227 | */ |
11228 | name = option; |
11229 | separator = strchr(option, '='); |
11230 | if (separator) |
11231 | { |
11232 | *separator = '\0'; |
11233 | value = separator + 1; |
11234 | } |
11235 | else |
11236 | value = "" ; |
11237 | |
11238 | if (i > 0) |
11239 | appendStringInfoString(&buf, ", " ); |
11240 | appendStringInfo(&buf, "%s=" , quote_identifier(name)); |
11241 | |
11242 | /* |
11243 | * In general we need to quote the value; but to avoid unnecessary |
11244 | * clutter, do not quote if it is an identifier that would not |
11245 | * need quoting. (We could also allow numbers, but that is a bit |
11246 | * trickier than it looks --- for example, are leading zeroes |
11247 | * significant? We don't want to assume very much here about what |
11248 | * custom reloptions might mean.) |
11249 | */ |
11250 | if (quote_identifier(value) == value) |
11251 | appendStringInfoString(&buf, value); |
11252 | else |
11253 | simple_quote_literal(&buf, value); |
11254 | |
11255 | pfree(option); |
11256 | } |
11257 | |
11258 | result = buf.data; |
11259 | } |
11260 | |
11261 | ReleaseSysCache(tuple); |
11262 | |
11263 | return result; |
11264 | } |
11265 | |
11266 | /* |
11267 | * get_one_range_partition_bound_string |
11268 | * A C string representation of one range partition bound |
11269 | */ |
11270 | char * |
11271 | get_range_partbound_string(List *bound_datums) |
11272 | { |
11273 | deparse_context context; |
11274 | StringInfo buf = makeStringInfo(); |
11275 | ListCell *cell; |
11276 | char *sep; |
11277 | |
11278 | memset(&context, 0, sizeof(deparse_context)); |
11279 | context.buf = buf; |
11280 | |
11281 | appendStringInfoString(buf, "(" ); |
11282 | sep = "" ; |
11283 | foreach(cell, bound_datums) |
11284 | { |
11285 | PartitionRangeDatum *datum = |
11286 | castNode(PartitionRangeDatum, lfirst(cell)); |
11287 | |
11288 | appendStringInfoString(buf, sep); |
11289 | if (datum->kind == PARTITION_RANGE_DATUM_MINVALUE) |
11290 | appendStringInfoString(buf, "MINVALUE" ); |
11291 | else if (datum->kind == PARTITION_RANGE_DATUM_MAXVALUE) |
11292 | appendStringInfoString(buf, "MAXVALUE" ); |
11293 | else |
11294 | { |
11295 | Const *val = castNode(Const, datum->value); |
11296 | |
11297 | get_const_expr(val, &context, -1); |
11298 | } |
11299 | sep = ", " ; |
11300 | } |
11301 | appendStringInfoChar(buf, ')'); |
11302 | |
11303 | return buf->data; |
11304 | } |
11305 | |