| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * varlena.c |
| 4 | * Functions for the variable-length built-in types. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/varlena.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <ctype.h> |
| 18 | #include <limits.h> |
| 19 | |
| 20 | #include "access/tuptoaster.h" |
| 21 | #include "catalog/pg_collation.h" |
| 22 | #include "catalog/pg_type.h" |
| 23 | #include "common/int.h" |
| 24 | #include "lib/hyperloglog.h" |
| 25 | #include "libpq/pqformat.h" |
| 26 | #include "miscadmin.h" |
| 27 | #include "parser/scansup.h" |
| 28 | #include "port/pg_bswap.h" |
| 29 | #include "regex/regex.h" |
| 30 | #include "utils/builtins.h" |
| 31 | #include "utils/bytea.h" |
| 32 | #include "utils/hashutils.h" |
| 33 | #include "utils/lsyscache.h" |
| 34 | #include "utils/memutils.h" |
| 35 | #include "utils/pg_locale.h" |
| 36 | #include "utils/sortsupport.h" |
| 37 | #include "utils/varlena.h" |
| 38 | |
| 39 | |
| 40 | /* GUC variable */ |
| 41 | int bytea_output = BYTEA_OUTPUT_HEX; |
| 42 | |
| 43 | typedef struct varlena unknown; |
| 44 | typedef struct varlena VarString; |
| 45 | |
| 46 | /* |
| 47 | * State for text_position_* functions. |
| 48 | */ |
| 49 | typedef struct |
| 50 | { |
| 51 | bool is_multibyte; /* T if multibyte encoding */ |
| 52 | bool is_multibyte_char_in_char; |
| 53 | |
| 54 | char *str1; /* haystack string */ |
| 55 | char *str2; /* needle string */ |
| 56 | int len1; /* string lengths in bytes */ |
| 57 | int len2; |
| 58 | |
| 59 | /* Skip table for Boyer-Moore-Horspool search algorithm: */ |
| 60 | int skiptablemask; /* mask for ANDing with skiptable subscripts */ |
| 61 | int skiptable[256]; /* skip distance for given mismatched char */ |
| 62 | |
| 63 | char *last_match; /* pointer to last match in 'str1' */ |
| 64 | |
| 65 | /* |
| 66 | * Sometimes we need to convert the byte position of a match to a |
| 67 | * character position. These store the last position that was converted, |
| 68 | * so that on the next call, we can continue from that point, rather than |
| 69 | * count characters from the very beginning. |
| 70 | */ |
| 71 | char *refpoint; /* pointer within original haystack string */ |
| 72 | int refpos; /* 0-based character offset of the same point */ |
| 73 | } TextPositionState; |
| 74 | |
| 75 | typedef struct |
| 76 | { |
| 77 | char *buf1; /* 1st string, or abbreviation original string |
| 78 | * buf */ |
| 79 | char *buf2; /* 2nd string, or abbreviation strxfrm() buf */ |
| 80 | int buflen1; |
| 81 | int buflen2; |
| 82 | int last_len1; /* Length of last buf1 string/strxfrm() input */ |
| 83 | int last_len2; /* Length of last buf2 string/strxfrm() blob */ |
| 84 | int last_returned; /* Last comparison result (cache) */ |
| 85 | bool cache_blob; /* Does buf2 contain strxfrm() blob, etc? */ |
| 86 | bool collate_c; |
| 87 | Oid typid; /* Actual datatype (text/bpchar/bytea/name) */ |
| 88 | hyperLogLogState abbr_card; /* Abbreviated key cardinality state */ |
| 89 | hyperLogLogState full_card; /* Full key cardinality state */ |
| 90 | double prop_card; /* Required cardinality proportion */ |
| 91 | pg_locale_t locale; |
| 92 | } VarStringSortSupport; |
| 93 | |
| 94 | /* |
| 95 | * This should be large enough that most strings will fit, but small enough |
| 96 | * that we feel comfortable putting it on the stack |
| 97 | */ |
| 98 | #define TEXTBUFLEN 1024 |
| 99 | |
| 100 | #define DatumGetUnknownP(X) ((unknown *) PG_DETOAST_DATUM(X)) |
| 101 | #define DatumGetUnknownPCopy(X) ((unknown *) PG_DETOAST_DATUM_COPY(X)) |
| 102 | #define PG_GETARG_UNKNOWN_P(n) DatumGetUnknownP(PG_GETARG_DATUM(n)) |
| 103 | #define PG_GETARG_UNKNOWN_P_COPY(n) DatumGetUnknownPCopy(PG_GETARG_DATUM(n)) |
| 104 | #define PG_RETURN_UNKNOWN_P(x) PG_RETURN_POINTER(x) |
| 105 | |
| 106 | #define DatumGetVarStringP(X) ((VarString *) PG_DETOAST_DATUM(X)) |
| 107 | #define DatumGetVarStringPP(X) ((VarString *) PG_DETOAST_DATUM_PACKED(X)) |
| 108 | |
| 109 | static int varstrfastcmp_c(Datum x, Datum y, SortSupport ssup); |
| 110 | static int bpcharfastcmp_c(Datum x, Datum y, SortSupport ssup); |
| 111 | static int namefastcmp_c(Datum x, Datum y, SortSupport ssup); |
| 112 | static int varlenafastcmp_locale(Datum x, Datum y, SortSupport ssup); |
| 113 | static int namefastcmp_locale(Datum x, Datum y, SortSupport ssup); |
| 114 | static int varstrfastcmp_locale(char *a1p, int len1, char *a2p, int len2, SortSupport ssup); |
| 115 | static int varstrcmp_abbrev(Datum x, Datum y, SortSupport ssup); |
| 116 | static Datum varstr_abbrev_convert(Datum original, SortSupport ssup); |
| 117 | static bool varstr_abbrev_abort(int memtupcount, SortSupport ssup); |
| 118 | static int32 text_length(Datum str); |
| 119 | static text *text_catenate(text *t1, text *t2); |
| 120 | static text *text_substring(Datum str, |
| 121 | int32 start, |
| 122 | int32 length, |
| 123 | bool length_not_specified); |
| 124 | static text *text_overlay(text *t1, text *t2, int sp, int sl); |
| 125 | static int text_position(text *t1, text *t2, Oid collid); |
| 126 | static void text_position_setup(text *t1, text *t2, Oid collid, TextPositionState *state); |
| 127 | static bool text_position_next(TextPositionState *state); |
| 128 | static char *text_position_next_internal(char *start_ptr, TextPositionState *state); |
| 129 | static char *text_position_get_match_ptr(TextPositionState *state); |
| 130 | static int text_position_get_match_pos(TextPositionState *state); |
| 131 | static void text_position_cleanup(TextPositionState *state); |
| 132 | static void check_collation_set(Oid collid); |
| 133 | static int text_cmp(text *arg1, text *arg2, Oid collid); |
| 134 | static bytea *bytea_catenate(bytea *t1, bytea *t2); |
| 135 | static bytea *bytea_substring(Datum str, |
| 136 | int S, |
| 137 | int L, |
| 138 | bool length_not_specified); |
| 139 | static bytea *bytea_overlay(bytea *t1, bytea *t2, int sp, int sl); |
| 140 | static void appendStringInfoText(StringInfo str, const text *t); |
| 141 | static Datum text_to_array_internal(PG_FUNCTION_ARGS); |
| 142 | static text *array_to_text_internal(FunctionCallInfo fcinfo, ArrayType *v, |
| 143 | const char *fldsep, const char *null_string); |
| 144 | static StringInfo makeStringAggState(FunctionCallInfo fcinfo); |
| 145 | static bool text_format_parse_digits(const char **ptr, const char *end_ptr, |
| 146 | int *value); |
| 147 | static const char *text_format_parse_format(const char *start_ptr, |
| 148 | const char *end_ptr, |
| 149 | int *argpos, int *widthpos, |
| 150 | int *flags, int *width); |
| 151 | static void text_format_string_conversion(StringInfo buf, char conversion, |
| 152 | FmgrInfo *typOutputInfo, |
| 153 | Datum value, bool isNull, |
| 154 | int flags, int width); |
| 155 | static void text_format_append_string(StringInfo buf, const char *str, |
| 156 | int flags, int width); |
| 157 | |
| 158 | |
| 159 | /***************************************************************************** |
| 160 | * CONVERSION ROUTINES EXPORTED FOR USE BY C CODE * |
| 161 | *****************************************************************************/ |
| 162 | |
| 163 | /* |
| 164 | * cstring_to_text |
| 165 | * |
| 166 | * Create a text value from a null-terminated C string. |
| 167 | * |
| 168 | * The new text value is freshly palloc'd with a full-size VARHDR. |
| 169 | */ |
| 170 | text * |
| 171 | cstring_to_text(const char *s) |
| 172 | { |
| 173 | return cstring_to_text_with_len(s, strlen(s)); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * cstring_to_text_with_len |
| 178 | * |
| 179 | * Same as cstring_to_text except the caller specifies the string length; |
| 180 | * the string need not be null_terminated. |
| 181 | */ |
| 182 | text * |
| 183 | cstring_to_text_with_len(const char *s, int len) |
| 184 | { |
| 185 | text *result = (text *) palloc(len + VARHDRSZ); |
| 186 | |
| 187 | SET_VARSIZE(result, len + VARHDRSZ); |
| 188 | memcpy(VARDATA(result), s, len); |
| 189 | |
| 190 | return result; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * text_to_cstring |
| 195 | * |
| 196 | * Create a palloc'd, null-terminated C string from a text value. |
| 197 | * |
| 198 | * We support being passed a compressed or toasted text value. |
| 199 | * This is a bit bogus since such values shouldn't really be referred to as |
| 200 | * "text *", but it seems useful for robustness. If we didn't handle that |
| 201 | * case here, we'd need another routine that did, anyway. |
| 202 | */ |
| 203 | char * |
| 204 | text_to_cstring(const text *t) |
| 205 | { |
| 206 | /* must cast away the const, unfortunately */ |
| 207 | text *tunpacked = pg_detoast_datum_packed(unconstify(text *, t)); |
| 208 | int len = VARSIZE_ANY_EXHDR(tunpacked); |
| 209 | char *result; |
| 210 | |
| 211 | result = (char *) palloc(len + 1); |
| 212 | memcpy(result, VARDATA_ANY(tunpacked), len); |
| 213 | result[len] = '\0'; |
| 214 | |
| 215 | if (tunpacked != t) |
| 216 | pfree(tunpacked); |
| 217 | |
| 218 | return result; |
| 219 | } |
| 220 | |
| 221 | /* |
| 222 | * text_to_cstring_buffer |
| 223 | * |
| 224 | * Copy a text value into a caller-supplied buffer of size dst_len. |
| 225 | * |
| 226 | * The text string is truncated if necessary to fit. The result is |
| 227 | * guaranteed null-terminated (unless dst_len == 0). |
| 228 | * |
| 229 | * We support being passed a compressed or toasted text value. |
| 230 | * This is a bit bogus since such values shouldn't really be referred to as |
| 231 | * "text *", but it seems useful for robustness. If we didn't handle that |
| 232 | * case here, we'd need another routine that did, anyway. |
| 233 | */ |
| 234 | void |
| 235 | text_to_cstring_buffer(const text *src, char *dst, size_t dst_len) |
| 236 | { |
| 237 | /* must cast away the const, unfortunately */ |
| 238 | text *srcunpacked = pg_detoast_datum_packed(unconstify(text *, src)); |
| 239 | size_t src_len = VARSIZE_ANY_EXHDR(srcunpacked); |
| 240 | |
| 241 | if (dst_len > 0) |
| 242 | { |
| 243 | dst_len--; |
| 244 | if (dst_len >= src_len) |
| 245 | dst_len = src_len; |
| 246 | else /* ensure truncation is encoding-safe */ |
| 247 | dst_len = pg_mbcliplen(VARDATA_ANY(srcunpacked), src_len, dst_len); |
| 248 | memcpy(dst, VARDATA_ANY(srcunpacked), dst_len); |
| 249 | dst[dst_len] = '\0'; |
| 250 | } |
| 251 | |
| 252 | if (srcunpacked != src) |
| 253 | pfree(srcunpacked); |
| 254 | } |
| 255 | |
| 256 | |
| 257 | /***************************************************************************** |
| 258 | * USER I/O ROUTINES * |
| 259 | *****************************************************************************/ |
| 260 | |
| 261 | |
| 262 | #define VAL(CH) ((CH) - '0') |
| 263 | #define DIG(VAL) ((VAL) + '0') |
| 264 | |
| 265 | /* |
| 266 | * byteain - converts from printable representation of byte array |
| 267 | * |
| 268 | * Non-printable characters must be passed as '\nnn' (octal) and are |
| 269 | * converted to internal form. '\' must be passed as '\\'. |
| 270 | * ereport(ERROR, ...) if bad form. |
| 271 | * |
| 272 | * BUGS: |
| 273 | * The input is scanned twice. |
| 274 | * The error checking of input is minimal. |
| 275 | */ |
| 276 | Datum |
| 277 | byteain(PG_FUNCTION_ARGS) |
| 278 | { |
| 279 | char *inputText = PG_GETARG_CSTRING(0); |
| 280 | char *tp; |
| 281 | char *rp; |
| 282 | int bc; |
| 283 | bytea *result; |
| 284 | |
| 285 | /* Recognize hex input */ |
| 286 | if (inputText[0] == '\\' && inputText[1] == 'x') |
| 287 | { |
| 288 | size_t len = strlen(inputText); |
| 289 | |
| 290 | bc = (len - 2) / 2 + VARHDRSZ; /* maximum possible length */ |
| 291 | result = palloc(bc); |
| 292 | bc = hex_decode(inputText + 2, len - 2, VARDATA(result)); |
| 293 | SET_VARSIZE(result, bc + VARHDRSZ); /* actual length */ |
| 294 | |
| 295 | PG_RETURN_BYTEA_P(result); |
| 296 | } |
| 297 | |
| 298 | /* Else, it's the traditional escaped style */ |
| 299 | for (bc = 0, tp = inputText; *tp != '\0'; bc++) |
| 300 | { |
| 301 | if (tp[0] != '\\') |
| 302 | tp++; |
| 303 | else if ((tp[0] == '\\') && |
| 304 | (tp[1] >= '0' && tp[1] <= '3') && |
| 305 | (tp[2] >= '0' && tp[2] <= '7') && |
| 306 | (tp[3] >= '0' && tp[3] <= '7')) |
| 307 | tp += 4; |
| 308 | else if ((tp[0] == '\\') && |
| 309 | (tp[1] == '\\')) |
| 310 | tp += 2; |
| 311 | else |
| 312 | { |
| 313 | /* |
| 314 | * one backslash, not followed by another or ### valid octal |
| 315 | */ |
| 316 | ereport(ERROR, |
| 317 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 318 | errmsg("invalid input syntax for type %s" , "bytea" ))); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | bc += VARHDRSZ; |
| 323 | |
| 324 | result = (bytea *) palloc(bc); |
| 325 | SET_VARSIZE(result, bc); |
| 326 | |
| 327 | tp = inputText; |
| 328 | rp = VARDATA(result); |
| 329 | while (*tp != '\0') |
| 330 | { |
| 331 | if (tp[0] != '\\') |
| 332 | *rp++ = *tp++; |
| 333 | else if ((tp[0] == '\\') && |
| 334 | (tp[1] >= '0' && tp[1] <= '3') && |
| 335 | (tp[2] >= '0' && tp[2] <= '7') && |
| 336 | (tp[3] >= '0' && tp[3] <= '7')) |
| 337 | { |
| 338 | bc = VAL(tp[1]); |
| 339 | bc <<= 3; |
| 340 | bc += VAL(tp[2]); |
| 341 | bc <<= 3; |
| 342 | *rp++ = bc + VAL(tp[3]); |
| 343 | |
| 344 | tp += 4; |
| 345 | } |
| 346 | else if ((tp[0] == '\\') && |
| 347 | (tp[1] == '\\')) |
| 348 | { |
| 349 | *rp++ = '\\'; |
| 350 | tp += 2; |
| 351 | } |
| 352 | else |
| 353 | { |
| 354 | /* |
| 355 | * We should never get here. The first pass should not allow it. |
| 356 | */ |
| 357 | ereport(ERROR, |
| 358 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 359 | errmsg("invalid input syntax for type %s" , "bytea" ))); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | PG_RETURN_BYTEA_P(result); |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * byteaout - converts to printable representation of byte array |
| 368 | * |
| 369 | * In the traditional escaped format, non-printable characters are |
| 370 | * printed as '\nnn' (octal) and '\' as '\\'. |
| 371 | */ |
| 372 | Datum |
| 373 | byteaout(PG_FUNCTION_ARGS) |
| 374 | { |
| 375 | bytea *vlena = PG_GETARG_BYTEA_PP(0); |
| 376 | char *result; |
| 377 | char *rp; |
| 378 | |
| 379 | if (bytea_output == BYTEA_OUTPUT_HEX) |
| 380 | { |
| 381 | /* Print hex format */ |
| 382 | rp = result = palloc(VARSIZE_ANY_EXHDR(vlena) * 2 + 2 + 1); |
| 383 | *rp++ = '\\'; |
| 384 | *rp++ = 'x'; |
| 385 | rp += hex_encode(VARDATA_ANY(vlena), VARSIZE_ANY_EXHDR(vlena), rp); |
| 386 | } |
| 387 | else if (bytea_output == BYTEA_OUTPUT_ESCAPE) |
| 388 | { |
| 389 | /* Print traditional escaped format */ |
| 390 | char *vp; |
| 391 | int len; |
| 392 | int i; |
| 393 | |
| 394 | len = 1; /* empty string has 1 char */ |
| 395 | vp = VARDATA_ANY(vlena); |
| 396 | for (i = VARSIZE_ANY_EXHDR(vlena); i != 0; i--, vp++) |
| 397 | { |
| 398 | if (*vp == '\\') |
| 399 | len += 2; |
| 400 | else if ((unsigned char) *vp < 0x20 || (unsigned char) *vp > 0x7e) |
| 401 | len += 4; |
| 402 | else |
| 403 | len++; |
| 404 | } |
| 405 | rp = result = (char *) palloc(len); |
| 406 | vp = VARDATA_ANY(vlena); |
| 407 | for (i = VARSIZE_ANY_EXHDR(vlena); i != 0; i--, vp++) |
| 408 | { |
| 409 | if (*vp == '\\') |
| 410 | { |
| 411 | *rp++ = '\\'; |
| 412 | *rp++ = '\\'; |
| 413 | } |
| 414 | else if ((unsigned char) *vp < 0x20 || (unsigned char) *vp > 0x7e) |
| 415 | { |
| 416 | int val; /* holds unprintable chars */ |
| 417 | |
| 418 | val = *vp; |
| 419 | rp[0] = '\\'; |
| 420 | rp[3] = DIG(val & 07); |
| 421 | val >>= 3; |
| 422 | rp[2] = DIG(val & 07); |
| 423 | val >>= 3; |
| 424 | rp[1] = DIG(val & 03); |
| 425 | rp += 4; |
| 426 | } |
| 427 | else |
| 428 | *rp++ = *vp; |
| 429 | } |
| 430 | } |
| 431 | else |
| 432 | { |
| 433 | elog(ERROR, "unrecognized bytea_output setting: %d" , |
| 434 | bytea_output); |
| 435 | rp = result = NULL; /* keep compiler quiet */ |
| 436 | } |
| 437 | *rp = '\0'; |
| 438 | PG_RETURN_CSTRING(result); |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * bytearecv - converts external binary format to bytea |
| 443 | */ |
| 444 | Datum |
| 445 | bytearecv(PG_FUNCTION_ARGS) |
| 446 | { |
| 447 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 448 | bytea *result; |
| 449 | int nbytes; |
| 450 | |
| 451 | nbytes = buf->len - buf->cursor; |
| 452 | result = (bytea *) palloc(nbytes + VARHDRSZ); |
| 453 | SET_VARSIZE(result, nbytes + VARHDRSZ); |
| 454 | pq_copymsgbytes(buf, VARDATA(result), nbytes); |
| 455 | PG_RETURN_BYTEA_P(result); |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * byteasend - converts bytea to binary format |
| 460 | * |
| 461 | * This is a special case: just copy the input... |
| 462 | */ |
| 463 | Datum |
| 464 | byteasend(PG_FUNCTION_ARGS) |
| 465 | { |
| 466 | bytea *vlena = PG_GETARG_BYTEA_P_COPY(0); |
| 467 | |
| 468 | PG_RETURN_BYTEA_P(vlena); |
| 469 | } |
| 470 | |
| 471 | Datum |
| 472 | bytea_string_agg_transfn(PG_FUNCTION_ARGS) |
| 473 | { |
| 474 | StringInfo state; |
| 475 | |
| 476 | state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0); |
| 477 | |
| 478 | /* Append the value unless null. */ |
| 479 | if (!PG_ARGISNULL(1)) |
| 480 | { |
| 481 | bytea *value = PG_GETARG_BYTEA_PP(1); |
| 482 | |
| 483 | /* On the first time through, we ignore the delimiter. */ |
| 484 | if (state == NULL) |
| 485 | state = makeStringAggState(fcinfo); |
| 486 | else if (!PG_ARGISNULL(2)) |
| 487 | { |
| 488 | bytea *delim = PG_GETARG_BYTEA_PP(2); |
| 489 | |
| 490 | appendBinaryStringInfo(state, VARDATA_ANY(delim), VARSIZE_ANY_EXHDR(delim)); |
| 491 | } |
| 492 | |
| 493 | appendBinaryStringInfo(state, VARDATA_ANY(value), VARSIZE_ANY_EXHDR(value)); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * The transition type for string_agg() is declared to be "internal", |
| 498 | * which is a pass-by-value type the same size as a pointer. |
| 499 | */ |
| 500 | PG_RETURN_POINTER(state); |
| 501 | } |
| 502 | |
| 503 | Datum |
| 504 | bytea_string_agg_finalfn(PG_FUNCTION_ARGS) |
| 505 | { |
| 506 | StringInfo state; |
| 507 | |
| 508 | /* cannot be called directly because of internal-type argument */ |
| 509 | Assert(AggCheckCallContext(fcinfo, NULL)); |
| 510 | |
| 511 | state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0); |
| 512 | |
| 513 | if (state != NULL) |
| 514 | { |
| 515 | bytea *result; |
| 516 | |
| 517 | result = (bytea *) palloc(state->len + VARHDRSZ); |
| 518 | SET_VARSIZE(result, state->len + VARHDRSZ); |
| 519 | memcpy(VARDATA(result), state->data, state->len); |
| 520 | PG_RETURN_BYTEA_P(result); |
| 521 | } |
| 522 | else |
| 523 | PG_RETURN_NULL(); |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * textin - converts "..." to internal representation |
| 528 | */ |
| 529 | Datum |
| 530 | textin(PG_FUNCTION_ARGS) |
| 531 | { |
| 532 | char *inputText = PG_GETARG_CSTRING(0); |
| 533 | |
| 534 | PG_RETURN_TEXT_P(cstring_to_text(inputText)); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * textout - converts internal representation to "..." |
| 539 | */ |
| 540 | Datum |
| 541 | textout(PG_FUNCTION_ARGS) |
| 542 | { |
| 543 | Datum txt = PG_GETARG_DATUM(0); |
| 544 | |
| 545 | PG_RETURN_CSTRING(TextDatumGetCString(txt)); |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * textrecv - converts external binary format to text |
| 550 | */ |
| 551 | Datum |
| 552 | textrecv(PG_FUNCTION_ARGS) |
| 553 | { |
| 554 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 555 | text *result; |
| 556 | char *str; |
| 557 | int nbytes; |
| 558 | |
| 559 | str = pq_getmsgtext(buf, buf->len - buf->cursor, &nbytes); |
| 560 | |
| 561 | result = cstring_to_text_with_len(str, nbytes); |
| 562 | pfree(str); |
| 563 | PG_RETURN_TEXT_P(result); |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * textsend - converts text to binary format |
| 568 | */ |
| 569 | Datum |
| 570 | textsend(PG_FUNCTION_ARGS) |
| 571 | { |
| 572 | text *t = PG_GETARG_TEXT_PP(0); |
| 573 | StringInfoData buf; |
| 574 | |
| 575 | pq_begintypsend(&buf); |
| 576 | pq_sendtext(&buf, VARDATA_ANY(t), VARSIZE_ANY_EXHDR(t)); |
| 577 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 578 | } |
| 579 | |
| 580 | |
| 581 | /* |
| 582 | * unknownin - converts "..." to internal representation |
| 583 | */ |
| 584 | Datum |
| 585 | unknownin(PG_FUNCTION_ARGS) |
| 586 | { |
| 587 | char *str = PG_GETARG_CSTRING(0); |
| 588 | |
| 589 | /* representation is same as cstring */ |
| 590 | PG_RETURN_CSTRING(pstrdup(str)); |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * unknownout - converts internal representation to "..." |
| 595 | */ |
| 596 | Datum |
| 597 | unknownout(PG_FUNCTION_ARGS) |
| 598 | { |
| 599 | /* representation is same as cstring */ |
| 600 | char *str = PG_GETARG_CSTRING(0); |
| 601 | |
| 602 | PG_RETURN_CSTRING(pstrdup(str)); |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * unknownrecv - converts external binary format to unknown |
| 607 | */ |
| 608 | Datum |
| 609 | unknownrecv(PG_FUNCTION_ARGS) |
| 610 | { |
| 611 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 612 | char *str; |
| 613 | int nbytes; |
| 614 | |
| 615 | str = pq_getmsgtext(buf, buf->len - buf->cursor, &nbytes); |
| 616 | /* representation is same as cstring */ |
| 617 | PG_RETURN_CSTRING(str); |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * unknownsend - converts unknown to binary format |
| 622 | */ |
| 623 | Datum |
| 624 | unknownsend(PG_FUNCTION_ARGS) |
| 625 | { |
| 626 | /* representation is same as cstring */ |
| 627 | char *str = PG_GETARG_CSTRING(0); |
| 628 | StringInfoData buf; |
| 629 | |
| 630 | pq_begintypsend(&buf); |
| 631 | pq_sendtext(&buf, str, strlen(str)); |
| 632 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 633 | } |
| 634 | |
| 635 | |
| 636 | /* ========== PUBLIC ROUTINES ========== */ |
| 637 | |
| 638 | /* |
| 639 | * textlen - |
| 640 | * returns the logical length of a text* |
| 641 | * (which is less than the VARSIZE of the text*) |
| 642 | */ |
| 643 | Datum |
| 644 | textlen(PG_FUNCTION_ARGS) |
| 645 | { |
| 646 | Datum str = PG_GETARG_DATUM(0); |
| 647 | |
| 648 | /* try to avoid decompressing argument */ |
| 649 | PG_RETURN_INT32(text_length(str)); |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * text_length - |
| 654 | * Does the real work for textlen() |
| 655 | * |
| 656 | * This is broken out so it can be called directly by other string processing |
| 657 | * functions. Note that the argument is passed as a Datum, to indicate that |
| 658 | * it may still be in compressed form. We can avoid decompressing it at all |
| 659 | * in some cases. |
| 660 | */ |
| 661 | static int32 |
| 662 | text_length(Datum str) |
| 663 | { |
| 664 | /* fastpath when max encoding length is one */ |
| 665 | if (pg_database_encoding_max_length() == 1) |
| 666 | PG_RETURN_INT32(toast_raw_datum_size(str) - VARHDRSZ); |
| 667 | else |
| 668 | { |
| 669 | text *t = DatumGetTextPP(str); |
| 670 | |
| 671 | PG_RETURN_INT32(pg_mbstrlen_with_len(VARDATA_ANY(t), |
| 672 | VARSIZE_ANY_EXHDR(t))); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * textoctetlen - |
| 678 | * returns the physical length of a text* |
| 679 | * (which is less than the VARSIZE of the text*) |
| 680 | */ |
| 681 | Datum |
| 682 | textoctetlen(PG_FUNCTION_ARGS) |
| 683 | { |
| 684 | Datum str = PG_GETARG_DATUM(0); |
| 685 | |
| 686 | /* We need not detoast the input at all */ |
| 687 | PG_RETURN_INT32(toast_raw_datum_size(str) - VARHDRSZ); |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * textcat - |
| 692 | * takes two text* and returns a text* that is the concatenation of |
| 693 | * the two. |
| 694 | * |
| 695 | * Rewritten by Sapa, sapa@hq.icb.chel.su. 8-Jul-96. |
| 696 | * Updated by Thomas, Thomas.Lockhart@jpl.nasa.gov 1997-07-10. |
| 697 | * Allocate space for output in all cases. |
| 698 | * XXX - thomas 1997-07-10 |
| 699 | */ |
| 700 | Datum |
| 701 | textcat(PG_FUNCTION_ARGS) |
| 702 | { |
| 703 | text *t1 = PG_GETARG_TEXT_PP(0); |
| 704 | text *t2 = PG_GETARG_TEXT_PP(1); |
| 705 | |
| 706 | PG_RETURN_TEXT_P(text_catenate(t1, t2)); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * text_catenate |
| 711 | * Guts of textcat(), broken out so it can be used by other functions |
| 712 | * |
| 713 | * Arguments can be in short-header form, but not compressed or out-of-line |
| 714 | */ |
| 715 | static text * |
| 716 | text_catenate(text *t1, text *t2) |
| 717 | { |
| 718 | text *result; |
| 719 | int len1, |
| 720 | len2, |
| 721 | len; |
| 722 | char *ptr; |
| 723 | |
| 724 | len1 = VARSIZE_ANY_EXHDR(t1); |
| 725 | len2 = VARSIZE_ANY_EXHDR(t2); |
| 726 | |
| 727 | /* paranoia ... probably should throw error instead? */ |
| 728 | if (len1 < 0) |
| 729 | len1 = 0; |
| 730 | if (len2 < 0) |
| 731 | len2 = 0; |
| 732 | |
| 733 | len = len1 + len2 + VARHDRSZ; |
| 734 | result = (text *) palloc(len); |
| 735 | |
| 736 | /* Set size of result string... */ |
| 737 | SET_VARSIZE(result, len); |
| 738 | |
| 739 | /* Fill data field of result string... */ |
| 740 | ptr = VARDATA(result); |
| 741 | if (len1 > 0) |
| 742 | memcpy(ptr, VARDATA_ANY(t1), len1); |
| 743 | if (len2 > 0) |
| 744 | memcpy(ptr + len1, VARDATA_ANY(t2), len2); |
| 745 | |
| 746 | return result; |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * charlen_to_bytelen() |
| 751 | * Compute the number of bytes occupied by n characters starting at *p |
| 752 | * |
| 753 | * It is caller's responsibility that there actually are n characters; |
| 754 | * the string need not be null-terminated. |
| 755 | */ |
| 756 | static int |
| 757 | charlen_to_bytelen(const char *p, int n) |
| 758 | { |
| 759 | if (pg_database_encoding_max_length() == 1) |
| 760 | { |
| 761 | /* Optimization for single-byte encodings */ |
| 762 | return n; |
| 763 | } |
| 764 | else |
| 765 | { |
| 766 | const char *s; |
| 767 | |
| 768 | for (s = p; n > 0; n--) |
| 769 | s += pg_mblen(s); |
| 770 | |
| 771 | return s - p; |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | /* |
| 776 | * text_substr() |
| 777 | * Return a substring starting at the specified position. |
| 778 | * - thomas 1997-12-31 |
| 779 | * |
| 780 | * Input: |
| 781 | * - string |
| 782 | * - starting position (is one-based) |
| 783 | * - string length |
| 784 | * |
| 785 | * If the starting position is zero or less, then return from the start of the string |
| 786 | * adjusting the length to be consistent with the "negative start" per SQL. |
| 787 | * If the length is less than zero, return the remaining string. |
| 788 | * |
| 789 | * Added multibyte support. |
| 790 | * - Tatsuo Ishii 1998-4-21 |
| 791 | * Changed behavior if starting position is less than one to conform to SQL behavior. |
| 792 | * Formerly returned the entire string; now returns a portion. |
| 793 | * - Thomas Lockhart 1998-12-10 |
| 794 | * Now uses faster TOAST-slicing interface |
| 795 | * - John Gray 2002-02-22 |
| 796 | * Remove "#ifdef MULTIBYTE" and test for encoding_max_length instead. Change |
| 797 | * behaviors conflicting with SQL to meet SQL (if E = S + L < S throw |
| 798 | * error; if E < 1, return '', not entire string). Fixed MB related bug when |
| 799 | * S > LC and < LC + 4 sometimes garbage characters are returned. |
| 800 | * - Joe Conway 2002-08-10 |
| 801 | */ |
| 802 | Datum |
| 803 | text_substr(PG_FUNCTION_ARGS) |
| 804 | { |
| 805 | PG_RETURN_TEXT_P(text_substring(PG_GETARG_DATUM(0), |
| 806 | PG_GETARG_INT32(1), |
| 807 | PG_GETARG_INT32(2), |
| 808 | false)); |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * text_substr_no_len - |
| 813 | * Wrapper to avoid opr_sanity failure due to |
| 814 | * one function accepting a different number of args. |
| 815 | */ |
| 816 | Datum |
| 817 | text_substr_no_len(PG_FUNCTION_ARGS) |
| 818 | { |
| 819 | PG_RETURN_TEXT_P(text_substring(PG_GETARG_DATUM(0), |
| 820 | PG_GETARG_INT32(1), |
| 821 | -1, true)); |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * text_substring - |
| 826 | * Does the real work for text_substr() and text_substr_no_len() |
| 827 | * |
| 828 | * This is broken out so it can be called directly by other string processing |
| 829 | * functions. Note that the argument is passed as a Datum, to indicate that |
| 830 | * it may still be in compressed/toasted form. We can avoid detoasting all |
| 831 | * of it in some cases. |
| 832 | * |
| 833 | * The result is always a freshly palloc'd datum. |
| 834 | */ |
| 835 | static text * |
| 836 | text_substring(Datum str, int32 start, int32 length, bool length_not_specified) |
| 837 | { |
| 838 | int32 eml = pg_database_encoding_max_length(); |
| 839 | int32 S = start; /* start position */ |
| 840 | int32 S1; /* adjusted start position */ |
| 841 | int32 L1; /* adjusted substring length */ |
| 842 | |
| 843 | /* life is easy if the encoding max length is 1 */ |
| 844 | if (eml == 1) |
| 845 | { |
| 846 | S1 = Max(S, 1); |
| 847 | |
| 848 | if (length_not_specified) /* special case - get length to end of |
| 849 | * string */ |
| 850 | L1 = -1; |
| 851 | else |
| 852 | { |
| 853 | /* end position */ |
| 854 | int E = S + length; |
| 855 | |
| 856 | /* |
| 857 | * A negative value for L is the only way for the end position to |
| 858 | * be before the start. SQL99 says to throw an error. |
| 859 | */ |
| 860 | if (E < S) |
| 861 | ereport(ERROR, |
| 862 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 863 | errmsg("negative substring length not allowed" ))); |
| 864 | |
| 865 | /* |
| 866 | * A zero or negative value for the end position can happen if the |
| 867 | * start was negative or one. SQL99 says to return a zero-length |
| 868 | * string. |
| 869 | */ |
| 870 | if (E < 1) |
| 871 | return cstring_to_text("" ); |
| 872 | |
| 873 | L1 = E - S1; |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * If the start position is past the end of the string, SQL99 says to |
| 878 | * return a zero-length string -- PG_GETARG_TEXT_P_SLICE() will do |
| 879 | * that for us. Convert to zero-based starting position |
| 880 | */ |
| 881 | return DatumGetTextPSlice(str, S1 - 1, L1); |
| 882 | } |
| 883 | else if (eml > 1) |
| 884 | { |
| 885 | /* |
| 886 | * When encoding max length is > 1, we can't get LC without |
| 887 | * detoasting, so we'll grab a conservatively large slice now and go |
| 888 | * back later to do the right thing |
| 889 | */ |
| 890 | int32 slice_start; |
| 891 | int32 slice_size; |
| 892 | int32 slice_strlen; |
| 893 | text *slice; |
| 894 | int32 E1; |
| 895 | int32 i; |
| 896 | char *p; |
| 897 | char *s; |
| 898 | text *ret; |
| 899 | |
| 900 | /* |
| 901 | * if S is past the end of the string, the tuple toaster will return a |
| 902 | * zero-length string to us |
| 903 | */ |
| 904 | S1 = Max(S, 1); |
| 905 | |
| 906 | /* |
| 907 | * We need to start at position zero because there is no way to know |
| 908 | * in advance which byte offset corresponds to the supplied start |
| 909 | * position. |
| 910 | */ |
| 911 | slice_start = 0; |
| 912 | |
| 913 | if (length_not_specified) /* special case - get length to end of |
| 914 | * string */ |
| 915 | slice_size = L1 = -1; |
| 916 | else |
| 917 | { |
| 918 | int E = S + length; |
| 919 | |
| 920 | /* |
| 921 | * A negative value for L is the only way for the end position to |
| 922 | * be before the start. SQL99 says to throw an error. |
| 923 | */ |
| 924 | if (E < S) |
| 925 | ereport(ERROR, |
| 926 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 927 | errmsg("negative substring length not allowed" ))); |
| 928 | |
| 929 | /* |
| 930 | * A zero or negative value for the end position can happen if the |
| 931 | * start was negative or one. SQL99 says to return a zero-length |
| 932 | * string. |
| 933 | */ |
| 934 | if (E < 1) |
| 935 | return cstring_to_text("" ); |
| 936 | |
| 937 | /* |
| 938 | * if E is past the end of the string, the tuple toaster will |
| 939 | * truncate the length for us |
| 940 | */ |
| 941 | L1 = E - S1; |
| 942 | |
| 943 | /* |
| 944 | * Total slice size in bytes can't be any longer than the start |
| 945 | * position plus substring length times the encoding max length. |
| 946 | */ |
| 947 | slice_size = (S1 + L1) * eml; |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * If we're working with an untoasted source, no need to do an extra |
| 952 | * copying step. |
| 953 | */ |
| 954 | if (VARATT_IS_COMPRESSED(DatumGetPointer(str)) || |
| 955 | VARATT_IS_EXTERNAL(DatumGetPointer(str))) |
| 956 | slice = DatumGetTextPSlice(str, slice_start, slice_size); |
| 957 | else |
| 958 | slice = (text *) DatumGetPointer(str); |
| 959 | |
| 960 | /* see if we got back an empty string */ |
| 961 | if (VARSIZE_ANY_EXHDR(slice) == 0) |
| 962 | { |
| 963 | if (slice != (text *) DatumGetPointer(str)) |
| 964 | pfree(slice); |
| 965 | return cstring_to_text("" ); |
| 966 | } |
| 967 | |
| 968 | /* Now we can get the actual length of the slice in MB characters */ |
| 969 | slice_strlen = pg_mbstrlen_with_len(VARDATA_ANY(slice), |
| 970 | VARSIZE_ANY_EXHDR(slice)); |
| 971 | |
| 972 | /* |
| 973 | * Check that the start position wasn't > slice_strlen. If so, SQL99 |
| 974 | * says to return a zero-length string. |
| 975 | */ |
| 976 | if (S1 > slice_strlen) |
| 977 | { |
| 978 | if (slice != (text *) DatumGetPointer(str)) |
| 979 | pfree(slice); |
| 980 | return cstring_to_text("" ); |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * Adjust L1 and E1 now that we know the slice string length. Again |
| 985 | * remember that S1 is one based, and slice_start is zero based. |
| 986 | */ |
| 987 | if (L1 > -1) |
| 988 | E1 = Min(S1 + L1, slice_start + 1 + slice_strlen); |
| 989 | else |
| 990 | E1 = slice_start + 1 + slice_strlen; |
| 991 | |
| 992 | /* |
| 993 | * Find the start position in the slice; remember S1 is not zero based |
| 994 | */ |
| 995 | p = VARDATA_ANY(slice); |
| 996 | for (i = 0; i < S1 - 1; i++) |
| 997 | p += pg_mblen(p); |
| 998 | |
| 999 | /* hang onto a pointer to our start position */ |
| 1000 | s = p; |
| 1001 | |
| 1002 | /* |
| 1003 | * Count the actual bytes used by the substring of the requested |
| 1004 | * length. |
| 1005 | */ |
| 1006 | for (i = S1; i < E1; i++) |
| 1007 | p += pg_mblen(p); |
| 1008 | |
| 1009 | ret = (text *) palloc(VARHDRSZ + (p - s)); |
| 1010 | SET_VARSIZE(ret, VARHDRSZ + (p - s)); |
| 1011 | memcpy(VARDATA(ret), s, (p - s)); |
| 1012 | |
| 1013 | if (slice != (text *) DatumGetPointer(str)) |
| 1014 | pfree(slice); |
| 1015 | |
| 1016 | return ret; |
| 1017 | } |
| 1018 | else |
| 1019 | elog(ERROR, "invalid backend encoding: encoding max length < 1" ); |
| 1020 | |
| 1021 | /* not reached: suppress compiler warning */ |
| 1022 | return NULL; |
| 1023 | } |
| 1024 | |
| 1025 | /* |
| 1026 | * textoverlay |
| 1027 | * Replace specified substring of first string with second |
| 1028 | * |
| 1029 | * The SQL standard defines OVERLAY() in terms of substring and concatenation. |
| 1030 | * This code is a direct implementation of what the standard says. |
| 1031 | */ |
| 1032 | Datum |
| 1033 | textoverlay(PG_FUNCTION_ARGS) |
| 1034 | { |
| 1035 | text *t1 = PG_GETARG_TEXT_PP(0); |
| 1036 | text *t2 = PG_GETARG_TEXT_PP(1); |
| 1037 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 1038 | int sl = PG_GETARG_INT32(3); /* substring length */ |
| 1039 | |
| 1040 | PG_RETURN_TEXT_P(text_overlay(t1, t2, sp, sl)); |
| 1041 | } |
| 1042 | |
| 1043 | Datum |
| 1044 | textoverlay_no_len(PG_FUNCTION_ARGS) |
| 1045 | { |
| 1046 | text *t1 = PG_GETARG_TEXT_PP(0); |
| 1047 | text *t2 = PG_GETARG_TEXT_PP(1); |
| 1048 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 1049 | int sl; |
| 1050 | |
| 1051 | sl = text_length(PointerGetDatum(t2)); /* defaults to length(t2) */ |
| 1052 | PG_RETURN_TEXT_P(text_overlay(t1, t2, sp, sl)); |
| 1053 | } |
| 1054 | |
| 1055 | static text * |
| 1056 | text_overlay(text *t1, text *t2, int sp, int sl) |
| 1057 | { |
| 1058 | text *result; |
| 1059 | text *s1; |
| 1060 | text *s2; |
| 1061 | int sp_pl_sl; |
| 1062 | |
| 1063 | /* |
| 1064 | * Check for possible integer-overflow cases. For negative sp, throw a |
| 1065 | * "substring length" error because that's what should be expected |
| 1066 | * according to the spec's definition of OVERLAY(). |
| 1067 | */ |
| 1068 | if (sp <= 0) |
| 1069 | ereport(ERROR, |
| 1070 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 1071 | errmsg("negative substring length not allowed" ))); |
| 1072 | if (pg_add_s32_overflow(sp, sl, &sp_pl_sl)) |
| 1073 | ereport(ERROR, |
| 1074 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1075 | errmsg("integer out of range" ))); |
| 1076 | |
| 1077 | s1 = text_substring(PointerGetDatum(t1), 1, sp - 1, false); |
| 1078 | s2 = text_substring(PointerGetDatum(t1), sp_pl_sl, -1, true); |
| 1079 | result = text_catenate(s1, t2); |
| 1080 | result = text_catenate(result, s2); |
| 1081 | |
| 1082 | return result; |
| 1083 | } |
| 1084 | |
| 1085 | /* |
| 1086 | * textpos - |
| 1087 | * Return the position of the specified substring. |
| 1088 | * Implements the SQL POSITION() function. |
| 1089 | * Ref: A Guide To The SQL Standard, Date & Darwen, 1997 |
| 1090 | * - thomas 1997-07-27 |
| 1091 | */ |
| 1092 | Datum |
| 1093 | textpos(PG_FUNCTION_ARGS) |
| 1094 | { |
| 1095 | text *str = PG_GETARG_TEXT_PP(0); |
| 1096 | text *search_str = PG_GETARG_TEXT_PP(1); |
| 1097 | |
| 1098 | PG_RETURN_INT32((int32) text_position(str, search_str, PG_GET_COLLATION())); |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * text_position - |
| 1103 | * Does the real work for textpos() |
| 1104 | * |
| 1105 | * Inputs: |
| 1106 | * t1 - string to be searched |
| 1107 | * t2 - pattern to match within t1 |
| 1108 | * Result: |
| 1109 | * Character index of the first matched char, starting from 1, |
| 1110 | * or 0 if no match. |
| 1111 | * |
| 1112 | * This is broken out so it can be called directly by other string processing |
| 1113 | * functions. |
| 1114 | */ |
| 1115 | static int |
| 1116 | text_position(text *t1, text *t2, Oid collid) |
| 1117 | { |
| 1118 | TextPositionState state; |
| 1119 | int result; |
| 1120 | |
| 1121 | if (VARSIZE_ANY_EXHDR(t1) < 1 || VARSIZE_ANY_EXHDR(t2) < 1) |
| 1122 | return 0; |
| 1123 | |
| 1124 | text_position_setup(t1, t2, collid, &state); |
| 1125 | if (!text_position_next(&state)) |
| 1126 | result = 0; |
| 1127 | else |
| 1128 | result = text_position_get_match_pos(&state); |
| 1129 | text_position_cleanup(&state); |
| 1130 | return result; |
| 1131 | } |
| 1132 | |
| 1133 | |
| 1134 | /* |
| 1135 | * text_position_setup, text_position_next, text_position_cleanup - |
| 1136 | * Component steps of text_position() |
| 1137 | * |
| 1138 | * These are broken out so that a string can be efficiently searched for |
| 1139 | * multiple occurrences of the same pattern. text_position_next may be |
| 1140 | * called multiple times, and it advances to the next match on each call. |
| 1141 | * text_position_get_match_ptr() and text_position_get_match_pos() return |
| 1142 | * a pointer or 1-based character position of the last match, respectively. |
| 1143 | * |
| 1144 | * The "state" variable is normally just a local variable in the caller. |
| 1145 | * |
| 1146 | * NOTE: text_position_next skips over the matched portion. For example, |
| 1147 | * searching for "xx" in "xxx" returns only one match, not two. |
| 1148 | */ |
| 1149 | |
| 1150 | static void |
| 1151 | text_position_setup(text *t1, text *t2, Oid collid, TextPositionState *state) |
| 1152 | { |
| 1153 | int len1 = VARSIZE_ANY_EXHDR(t1); |
| 1154 | int len2 = VARSIZE_ANY_EXHDR(t2); |
| 1155 | pg_locale_t mylocale = 0; |
| 1156 | |
| 1157 | check_collation_set(collid); |
| 1158 | |
| 1159 | if (!lc_collate_is_c(collid) && collid != DEFAULT_COLLATION_OID) |
| 1160 | mylocale = pg_newlocale_from_collation(collid); |
| 1161 | |
| 1162 | if (mylocale && !mylocale->deterministic) |
| 1163 | ereport(ERROR, |
| 1164 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1165 | errmsg("nondeterministic collations are not supported for substring searches" ))); |
| 1166 | |
| 1167 | Assert(len1 > 0); |
| 1168 | Assert(len2 > 0); |
| 1169 | |
| 1170 | /* |
| 1171 | * Even with a multi-byte encoding, we perform the search using the raw |
| 1172 | * byte sequence, ignoring multibyte issues. For UTF-8, that works fine, |
| 1173 | * because in UTF-8 the byte sequence of one character cannot contain |
| 1174 | * another character. For other multi-byte encodings, we do the search |
| 1175 | * initially as a simple byte search, ignoring multibyte issues, but |
| 1176 | * verify afterwards that the match we found is at a character boundary, |
| 1177 | * and continue the search if it was a false match. |
| 1178 | */ |
| 1179 | if (pg_database_encoding_max_length() == 1) |
| 1180 | { |
| 1181 | state->is_multibyte = false; |
| 1182 | state->is_multibyte_char_in_char = false; |
| 1183 | } |
| 1184 | else if (GetDatabaseEncoding() == PG_UTF8) |
| 1185 | { |
| 1186 | state->is_multibyte = true; |
| 1187 | state->is_multibyte_char_in_char = false; |
| 1188 | } |
| 1189 | else |
| 1190 | { |
| 1191 | state->is_multibyte = true; |
| 1192 | state->is_multibyte_char_in_char = true; |
| 1193 | } |
| 1194 | |
| 1195 | state->str1 = VARDATA_ANY(t1); |
| 1196 | state->str2 = VARDATA_ANY(t2); |
| 1197 | state->len1 = len1; |
| 1198 | state->len2 = len2; |
| 1199 | state->last_match = NULL; |
| 1200 | state->refpoint = state->str1; |
| 1201 | state->refpos = 0; |
| 1202 | |
| 1203 | /* |
| 1204 | * Prepare the skip table for Boyer-Moore-Horspool searching. In these |
| 1205 | * notes we use the terminology that the "haystack" is the string to be |
| 1206 | * searched (t1) and the "needle" is the pattern being sought (t2). |
| 1207 | * |
| 1208 | * If the needle is empty or bigger than the haystack then there is no |
| 1209 | * point in wasting cycles initializing the table. We also choose not to |
| 1210 | * use B-M-H for needles of length 1, since the skip table can't possibly |
| 1211 | * save anything in that case. |
| 1212 | */ |
| 1213 | if (len1 >= len2 && len2 > 1) |
| 1214 | { |
| 1215 | int searchlength = len1 - len2; |
| 1216 | int skiptablemask; |
| 1217 | int last; |
| 1218 | int i; |
| 1219 | const char *str2 = state->str2; |
| 1220 | |
| 1221 | /* |
| 1222 | * First we must determine how much of the skip table to use. The |
| 1223 | * declaration of TextPositionState allows up to 256 elements, but for |
| 1224 | * short search problems we don't really want to have to initialize so |
| 1225 | * many elements --- it would take too long in comparison to the |
| 1226 | * actual search time. So we choose a useful skip table size based on |
| 1227 | * the haystack length minus the needle length. The closer the needle |
| 1228 | * length is to the haystack length the less useful skipping becomes. |
| 1229 | * |
| 1230 | * Note: since we use bit-masking to select table elements, the skip |
| 1231 | * table size MUST be a power of 2, and so the mask must be 2^N-1. |
| 1232 | */ |
| 1233 | if (searchlength < 16) |
| 1234 | skiptablemask = 3; |
| 1235 | else if (searchlength < 64) |
| 1236 | skiptablemask = 7; |
| 1237 | else if (searchlength < 128) |
| 1238 | skiptablemask = 15; |
| 1239 | else if (searchlength < 512) |
| 1240 | skiptablemask = 31; |
| 1241 | else if (searchlength < 2048) |
| 1242 | skiptablemask = 63; |
| 1243 | else if (searchlength < 4096) |
| 1244 | skiptablemask = 127; |
| 1245 | else |
| 1246 | skiptablemask = 255; |
| 1247 | state->skiptablemask = skiptablemask; |
| 1248 | |
| 1249 | /* |
| 1250 | * Initialize the skip table. We set all elements to the needle |
| 1251 | * length, since this is the correct skip distance for any character |
| 1252 | * not found in the needle. |
| 1253 | */ |
| 1254 | for (i = 0; i <= skiptablemask; i++) |
| 1255 | state->skiptable[i] = len2; |
| 1256 | |
| 1257 | /* |
| 1258 | * Now examine the needle. For each character except the last one, |
| 1259 | * set the corresponding table element to the appropriate skip |
| 1260 | * distance. Note that when two characters share the same skip table |
| 1261 | * entry, the one later in the needle must determine the skip |
| 1262 | * distance. |
| 1263 | */ |
| 1264 | last = len2 - 1; |
| 1265 | |
| 1266 | for (i = 0; i < last; i++) |
| 1267 | state->skiptable[(unsigned char) str2[i] & skiptablemask] = last - i; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | /* |
| 1272 | * Advance to the next match, starting from the end of the previous match |
| 1273 | * (or the beginning of the string, on first call). Returns true if a match |
| 1274 | * is found. |
| 1275 | */ |
| 1276 | static bool |
| 1277 | text_position_next(TextPositionState *state) |
| 1278 | { |
| 1279 | int needle_len = state->len2; |
| 1280 | char *start_ptr; |
| 1281 | char *matchptr; |
| 1282 | |
| 1283 | if (needle_len <= 0) |
| 1284 | return false; /* result for empty pattern */ |
| 1285 | |
| 1286 | /* Start from the point right after the previous match. */ |
| 1287 | if (state->last_match) |
| 1288 | start_ptr = state->last_match + needle_len; |
| 1289 | else |
| 1290 | start_ptr = state->str1; |
| 1291 | |
| 1292 | retry: |
| 1293 | matchptr = text_position_next_internal(start_ptr, state); |
| 1294 | |
| 1295 | if (!matchptr) |
| 1296 | return false; |
| 1297 | |
| 1298 | /* |
| 1299 | * Found a match for the byte sequence. If this is a multibyte encoding, |
| 1300 | * where one character's byte sequence can appear inside a longer |
| 1301 | * multi-byte character, we need to verify that the match was at a |
| 1302 | * character boundary, not in the middle of a multi-byte character. |
| 1303 | */ |
| 1304 | if (state->is_multibyte_char_in_char) |
| 1305 | { |
| 1306 | /* Walk one character at a time, until we reach the match. */ |
| 1307 | |
| 1308 | /* the search should never move backwards. */ |
| 1309 | Assert(state->refpoint <= matchptr); |
| 1310 | |
| 1311 | while (state->refpoint < matchptr) |
| 1312 | { |
| 1313 | /* step to next character. */ |
| 1314 | state->refpoint += pg_mblen(state->refpoint); |
| 1315 | state->refpos++; |
| 1316 | |
| 1317 | /* |
| 1318 | * If we stepped over the match's start position, then it was a |
| 1319 | * false positive, where the byte sequence appeared in the middle |
| 1320 | * of a multi-byte character. Skip it, and continue the search at |
| 1321 | * the next character boundary. |
| 1322 | */ |
| 1323 | if (state->refpoint > matchptr) |
| 1324 | { |
| 1325 | start_ptr = state->refpoint; |
| 1326 | goto retry; |
| 1327 | } |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | state->last_match = matchptr; |
| 1332 | return true; |
| 1333 | } |
| 1334 | |
| 1335 | /* |
| 1336 | * Subroutine of text_position_next(). This searches for the raw byte |
| 1337 | * sequence, ignoring any multi-byte encoding issues. Returns the first |
| 1338 | * match starting at 'start_ptr', or NULL if no match is found. |
| 1339 | */ |
| 1340 | static char * |
| 1341 | text_position_next_internal(char *start_ptr, TextPositionState *state) |
| 1342 | { |
| 1343 | int haystack_len = state->len1; |
| 1344 | int needle_len = state->len2; |
| 1345 | int skiptablemask = state->skiptablemask; |
| 1346 | const char *haystack = state->str1; |
| 1347 | const char *needle = state->str2; |
| 1348 | const char *haystack_end = &haystack[haystack_len]; |
| 1349 | const char *hptr; |
| 1350 | |
| 1351 | Assert(start_ptr >= haystack && start_ptr <= haystack_end); |
| 1352 | |
| 1353 | if (needle_len == 1) |
| 1354 | { |
| 1355 | /* No point in using B-M-H for a one-character needle */ |
| 1356 | char nchar = *needle; |
| 1357 | |
| 1358 | hptr = start_ptr; |
| 1359 | while (hptr < haystack_end) |
| 1360 | { |
| 1361 | if (*hptr == nchar) |
| 1362 | return (char *) hptr; |
| 1363 | hptr++; |
| 1364 | } |
| 1365 | } |
| 1366 | else |
| 1367 | { |
| 1368 | const char *needle_last = &needle[needle_len - 1]; |
| 1369 | |
| 1370 | /* Start at startpos plus the length of the needle */ |
| 1371 | hptr = start_ptr + needle_len - 1; |
| 1372 | while (hptr < haystack_end) |
| 1373 | { |
| 1374 | /* Match the needle scanning *backward* */ |
| 1375 | const char *nptr; |
| 1376 | const char *p; |
| 1377 | |
| 1378 | nptr = needle_last; |
| 1379 | p = hptr; |
| 1380 | while (*nptr == *p) |
| 1381 | { |
| 1382 | /* Matched it all? If so, return 1-based position */ |
| 1383 | if (nptr == needle) |
| 1384 | return (char *) p; |
| 1385 | nptr--, p--; |
| 1386 | } |
| 1387 | |
| 1388 | /* |
| 1389 | * No match, so use the haystack char at hptr to decide how far to |
| 1390 | * advance. If the needle had any occurrence of that character |
| 1391 | * (or more precisely, one sharing the same skiptable entry) |
| 1392 | * before its last character, then we advance far enough to align |
| 1393 | * the last such needle character with that haystack position. |
| 1394 | * Otherwise we can advance by the whole needle length. |
| 1395 | */ |
| 1396 | hptr += state->skiptable[(unsigned char) *hptr & skiptablemask]; |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | return 0; /* not found */ |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Return a pointer to the current match. |
| 1405 | * |
| 1406 | * The returned pointer points into correct position in the original |
| 1407 | * the haystack string. |
| 1408 | */ |
| 1409 | static char * |
| 1410 | text_position_get_match_ptr(TextPositionState *state) |
| 1411 | { |
| 1412 | return state->last_match; |
| 1413 | } |
| 1414 | |
| 1415 | /* |
| 1416 | * Return the offset of the current match. |
| 1417 | * |
| 1418 | * The offset is in characters, 1-based. |
| 1419 | */ |
| 1420 | static int |
| 1421 | text_position_get_match_pos(TextPositionState *state) |
| 1422 | { |
| 1423 | if (!state->is_multibyte) |
| 1424 | return state->last_match - state->str1 + 1; |
| 1425 | else |
| 1426 | { |
| 1427 | /* Convert the byte position to char position. */ |
| 1428 | while (state->refpoint < state->last_match) |
| 1429 | { |
| 1430 | state->refpoint += pg_mblen(state->refpoint); |
| 1431 | state->refpos++; |
| 1432 | } |
| 1433 | Assert(state->refpoint == state->last_match); |
| 1434 | return state->refpos + 1; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | static void |
| 1439 | text_position_cleanup(TextPositionState *state) |
| 1440 | { |
| 1441 | /* no cleanup needed */ |
| 1442 | } |
| 1443 | |
| 1444 | static void |
| 1445 | check_collation_set(Oid collid) |
| 1446 | { |
| 1447 | if (!OidIsValid(collid)) |
| 1448 | { |
| 1449 | /* |
| 1450 | * This typically means that the parser could not resolve a conflict |
| 1451 | * of implicit collations, so report it that way. |
| 1452 | */ |
| 1453 | ereport(ERROR, |
| 1454 | (errcode(ERRCODE_INDETERMINATE_COLLATION), |
| 1455 | errmsg("could not determine which collation to use for string comparison" ), |
| 1456 | errhint("Use the COLLATE clause to set the collation explicitly." ))); |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | /* varstr_cmp() |
| 1461 | * Comparison function for text strings with given lengths. |
| 1462 | * Includes locale support, but must copy strings to temporary memory |
| 1463 | * to allow null-termination for inputs to strcoll(). |
| 1464 | * Returns an integer less than, equal to, or greater than zero, indicating |
| 1465 | * whether arg1 is less than, equal to, or greater than arg2. |
| 1466 | * |
| 1467 | * Note: many functions that depend on this are marked leakproof; therefore, |
| 1468 | * avoid reporting the actual contents of the input when throwing errors. |
| 1469 | * All errors herein should be things that can't happen except on corrupt |
| 1470 | * data, anyway; otherwise we will have trouble with indexing strings that |
| 1471 | * would cause them. |
| 1472 | */ |
| 1473 | int |
| 1474 | varstr_cmp(const char *arg1, int len1, const char *arg2, int len2, Oid collid) |
| 1475 | { |
| 1476 | int result; |
| 1477 | |
| 1478 | check_collation_set(collid); |
| 1479 | |
| 1480 | /* |
| 1481 | * Unfortunately, there is no strncoll(), so in the non-C locale case we |
| 1482 | * have to do some memory copying. This turns out to be significantly |
| 1483 | * slower, so we optimize the case where LC_COLLATE is C. We also try to |
| 1484 | * optimize relatively-short strings by avoiding palloc/pfree overhead. |
| 1485 | */ |
| 1486 | if (lc_collate_is_c(collid)) |
| 1487 | { |
| 1488 | result = memcmp(arg1, arg2, Min(len1, len2)); |
| 1489 | if ((result == 0) && (len1 != len2)) |
| 1490 | result = (len1 < len2) ? -1 : 1; |
| 1491 | } |
| 1492 | else |
| 1493 | { |
| 1494 | char a1buf[TEXTBUFLEN]; |
| 1495 | char a2buf[TEXTBUFLEN]; |
| 1496 | char *a1p, |
| 1497 | *a2p; |
| 1498 | pg_locale_t mylocale = 0; |
| 1499 | |
| 1500 | if (collid != DEFAULT_COLLATION_OID) |
| 1501 | mylocale = pg_newlocale_from_collation(collid); |
| 1502 | |
| 1503 | /* |
| 1504 | * memcmp() can't tell us which of two unequal strings sorts first, |
| 1505 | * but it's a cheap way to tell if they're equal. Testing shows that |
| 1506 | * memcmp() followed by strcoll() is only trivially slower than |
| 1507 | * strcoll() by itself, so we don't lose much if this doesn't work out |
| 1508 | * very often, and if it does - for example, because there are many |
| 1509 | * equal strings in the input - then we win big by avoiding expensive |
| 1510 | * collation-aware comparisons. |
| 1511 | */ |
| 1512 | if (len1 == len2 && memcmp(arg1, arg2, len1) == 0) |
| 1513 | return 0; |
| 1514 | |
| 1515 | #ifdef WIN32 |
| 1516 | /* Win32 does not have UTF-8, so we need to map to UTF-16 */ |
| 1517 | if (GetDatabaseEncoding() == PG_UTF8 |
| 1518 | && (!mylocale || mylocale->provider == COLLPROVIDER_LIBC)) |
| 1519 | { |
| 1520 | int a1len; |
| 1521 | int a2len; |
| 1522 | int r; |
| 1523 | |
| 1524 | if (len1 >= TEXTBUFLEN / 2) |
| 1525 | { |
| 1526 | a1len = len1 * 2 + 2; |
| 1527 | a1p = palloc(a1len); |
| 1528 | } |
| 1529 | else |
| 1530 | { |
| 1531 | a1len = TEXTBUFLEN; |
| 1532 | a1p = a1buf; |
| 1533 | } |
| 1534 | if (len2 >= TEXTBUFLEN / 2) |
| 1535 | { |
| 1536 | a2len = len2 * 2 + 2; |
| 1537 | a2p = palloc(a2len); |
| 1538 | } |
| 1539 | else |
| 1540 | { |
| 1541 | a2len = TEXTBUFLEN; |
| 1542 | a2p = a2buf; |
| 1543 | } |
| 1544 | |
| 1545 | /* stupid Microsloth API does not work for zero-length input */ |
| 1546 | if (len1 == 0) |
| 1547 | r = 0; |
| 1548 | else |
| 1549 | { |
| 1550 | r = MultiByteToWideChar(CP_UTF8, 0, arg1, len1, |
| 1551 | (LPWSTR) a1p, a1len / 2); |
| 1552 | if (!r) |
| 1553 | ereport(ERROR, |
| 1554 | (errmsg("could not convert string to UTF-16: error code %lu" , |
| 1555 | GetLastError()))); |
| 1556 | } |
| 1557 | ((LPWSTR) a1p)[r] = 0; |
| 1558 | |
| 1559 | if (len2 == 0) |
| 1560 | r = 0; |
| 1561 | else |
| 1562 | { |
| 1563 | r = MultiByteToWideChar(CP_UTF8, 0, arg2, len2, |
| 1564 | (LPWSTR) a2p, a2len / 2); |
| 1565 | if (!r) |
| 1566 | ereport(ERROR, |
| 1567 | (errmsg("could not convert string to UTF-16: error code %lu" , |
| 1568 | GetLastError()))); |
| 1569 | } |
| 1570 | ((LPWSTR) a2p)[r] = 0; |
| 1571 | |
| 1572 | errno = 0; |
| 1573 | #ifdef HAVE_LOCALE_T |
| 1574 | if (mylocale) |
| 1575 | result = wcscoll_l((LPWSTR) a1p, (LPWSTR) a2p, mylocale->info.lt); |
| 1576 | else |
| 1577 | #endif |
| 1578 | result = wcscoll((LPWSTR) a1p, (LPWSTR) a2p); |
| 1579 | if (result == 2147483647) /* _NLSCMPERROR; missing from mingw |
| 1580 | * headers */ |
| 1581 | ereport(ERROR, |
| 1582 | (errmsg("could not compare Unicode strings: %m" ))); |
| 1583 | |
| 1584 | /* Break tie if necessary. */ |
| 1585 | if (result == 0 && |
| 1586 | (!mylocale || mylocale->deterministic)) |
| 1587 | { |
| 1588 | result = memcmp(arg1, arg2, Min(len1, len2)); |
| 1589 | if ((result == 0) && (len1 != len2)) |
| 1590 | result = (len1 < len2) ? -1 : 1; |
| 1591 | } |
| 1592 | |
| 1593 | if (a1p != a1buf) |
| 1594 | pfree(a1p); |
| 1595 | if (a2p != a2buf) |
| 1596 | pfree(a2p); |
| 1597 | |
| 1598 | return result; |
| 1599 | } |
| 1600 | #endif /* WIN32 */ |
| 1601 | |
| 1602 | if (len1 >= TEXTBUFLEN) |
| 1603 | a1p = (char *) palloc(len1 + 1); |
| 1604 | else |
| 1605 | a1p = a1buf; |
| 1606 | if (len2 >= TEXTBUFLEN) |
| 1607 | a2p = (char *) palloc(len2 + 1); |
| 1608 | else |
| 1609 | a2p = a2buf; |
| 1610 | |
| 1611 | memcpy(a1p, arg1, len1); |
| 1612 | a1p[len1] = '\0'; |
| 1613 | memcpy(a2p, arg2, len2); |
| 1614 | a2p[len2] = '\0'; |
| 1615 | |
| 1616 | if (mylocale) |
| 1617 | { |
| 1618 | if (mylocale->provider == COLLPROVIDER_ICU) |
| 1619 | { |
| 1620 | #ifdef USE_ICU |
| 1621 | #ifdef HAVE_UCOL_STRCOLLUTF8 |
| 1622 | if (GetDatabaseEncoding() == PG_UTF8) |
| 1623 | { |
| 1624 | UErrorCode status; |
| 1625 | |
| 1626 | status = U_ZERO_ERROR; |
| 1627 | result = ucol_strcollUTF8(mylocale->info.icu.ucol, |
| 1628 | arg1, len1, |
| 1629 | arg2, len2, |
| 1630 | &status); |
| 1631 | if (U_FAILURE(status)) |
| 1632 | ereport(ERROR, |
| 1633 | (errmsg("collation failed: %s" , u_errorName(status)))); |
| 1634 | } |
| 1635 | else |
| 1636 | #endif |
| 1637 | { |
| 1638 | int32_t ulen1, |
| 1639 | ulen2; |
| 1640 | UChar *uchar1, |
| 1641 | *uchar2; |
| 1642 | |
| 1643 | ulen1 = icu_to_uchar(&uchar1, arg1, len1); |
| 1644 | ulen2 = icu_to_uchar(&uchar2, arg2, len2); |
| 1645 | |
| 1646 | result = ucol_strcoll(mylocale->info.icu.ucol, |
| 1647 | uchar1, ulen1, |
| 1648 | uchar2, ulen2); |
| 1649 | |
| 1650 | pfree(uchar1); |
| 1651 | pfree(uchar2); |
| 1652 | } |
| 1653 | #else /* not USE_ICU */ |
| 1654 | /* shouldn't happen */ |
| 1655 | elog(ERROR, "unsupported collprovider: %c" , mylocale->provider); |
| 1656 | #endif /* not USE_ICU */ |
| 1657 | } |
| 1658 | else |
| 1659 | { |
| 1660 | #ifdef HAVE_LOCALE_T |
| 1661 | result = strcoll_l(a1p, a2p, mylocale->info.lt); |
| 1662 | #else |
| 1663 | /* shouldn't happen */ |
| 1664 | elog(ERROR, "unsupported collprovider: %c" , mylocale->provider); |
| 1665 | #endif |
| 1666 | } |
| 1667 | } |
| 1668 | else |
| 1669 | result = strcoll(a1p, a2p); |
| 1670 | |
| 1671 | /* Break tie if necessary. */ |
| 1672 | if (result == 0 && |
| 1673 | (!mylocale || mylocale->deterministic)) |
| 1674 | result = strcmp(a1p, a2p); |
| 1675 | |
| 1676 | if (a1p != a1buf) |
| 1677 | pfree(a1p); |
| 1678 | if (a2p != a2buf) |
| 1679 | pfree(a2p); |
| 1680 | } |
| 1681 | |
| 1682 | return result; |
| 1683 | } |
| 1684 | |
| 1685 | /* text_cmp() |
| 1686 | * Internal comparison function for text strings. |
| 1687 | * Returns -1, 0 or 1 |
| 1688 | */ |
| 1689 | static int |
| 1690 | text_cmp(text *arg1, text *arg2, Oid collid) |
| 1691 | { |
| 1692 | char *a1p, |
| 1693 | *a2p; |
| 1694 | int len1, |
| 1695 | len2; |
| 1696 | |
| 1697 | a1p = VARDATA_ANY(arg1); |
| 1698 | a2p = VARDATA_ANY(arg2); |
| 1699 | |
| 1700 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 1701 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 1702 | |
| 1703 | return varstr_cmp(a1p, len1, a2p, len2, collid); |
| 1704 | } |
| 1705 | |
| 1706 | /* |
| 1707 | * Comparison functions for text strings. |
| 1708 | * |
| 1709 | * Note: btree indexes need these routines not to leak memory; therefore, |
| 1710 | * be careful to free working copies of toasted datums. Most places don't |
| 1711 | * need to be so careful. |
| 1712 | */ |
| 1713 | |
| 1714 | Datum |
| 1715 | texteq(PG_FUNCTION_ARGS) |
| 1716 | { |
| 1717 | Oid collid = PG_GET_COLLATION(); |
| 1718 | bool result; |
| 1719 | |
| 1720 | check_collation_set(collid); |
| 1721 | |
| 1722 | if (lc_collate_is_c(collid) || |
| 1723 | collid == DEFAULT_COLLATION_OID || |
| 1724 | pg_newlocale_from_collation(collid)->deterministic) |
| 1725 | { |
| 1726 | Datum arg1 = PG_GETARG_DATUM(0); |
| 1727 | Datum arg2 = PG_GETARG_DATUM(1); |
| 1728 | Size len1, |
| 1729 | len2; |
| 1730 | |
| 1731 | /* |
| 1732 | * Since we only care about equality or not-equality, we can avoid all |
| 1733 | * the expense of strcoll() here, and just do bitwise comparison. In |
| 1734 | * fact, we don't even have to do a bitwise comparison if we can show |
| 1735 | * the lengths of the strings are unequal; which might save us from |
| 1736 | * having to detoast one or both values. |
| 1737 | */ |
| 1738 | len1 = toast_raw_datum_size(arg1); |
| 1739 | len2 = toast_raw_datum_size(arg2); |
| 1740 | if (len1 != len2) |
| 1741 | result = false; |
| 1742 | else |
| 1743 | { |
| 1744 | text *targ1 = DatumGetTextPP(arg1); |
| 1745 | text *targ2 = DatumGetTextPP(arg2); |
| 1746 | |
| 1747 | result = (memcmp(VARDATA_ANY(targ1), VARDATA_ANY(targ2), |
| 1748 | len1 - VARHDRSZ) == 0); |
| 1749 | |
| 1750 | PG_FREE_IF_COPY(targ1, 0); |
| 1751 | PG_FREE_IF_COPY(targ2, 1); |
| 1752 | } |
| 1753 | } |
| 1754 | else |
| 1755 | { |
| 1756 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1757 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1758 | |
| 1759 | result = (text_cmp(arg1, arg2, collid) == 0); |
| 1760 | |
| 1761 | PG_FREE_IF_COPY(arg1, 0); |
| 1762 | PG_FREE_IF_COPY(arg2, 1); |
| 1763 | } |
| 1764 | |
| 1765 | PG_RETURN_BOOL(result); |
| 1766 | } |
| 1767 | |
| 1768 | Datum |
| 1769 | textne(PG_FUNCTION_ARGS) |
| 1770 | { |
| 1771 | Oid collid = PG_GET_COLLATION(); |
| 1772 | bool result; |
| 1773 | |
| 1774 | check_collation_set(collid); |
| 1775 | |
| 1776 | if (lc_collate_is_c(collid) || |
| 1777 | collid == DEFAULT_COLLATION_OID || |
| 1778 | pg_newlocale_from_collation(collid)->deterministic) |
| 1779 | { |
| 1780 | Datum arg1 = PG_GETARG_DATUM(0); |
| 1781 | Datum arg2 = PG_GETARG_DATUM(1); |
| 1782 | Size len1, |
| 1783 | len2; |
| 1784 | |
| 1785 | /* See comment in texteq() */ |
| 1786 | len1 = toast_raw_datum_size(arg1); |
| 1787 | len2 = toast_raw_datum_size(arg2); |
| 1788 | if (len1 != len2) |
| 1789 | result = true; |
| 1790 | else |
| 1791 | { |
| 1792 | text *targ1 = DatumGetTextPP(arg1); |
| 1793 | text *targ2 = DatumGetTextPP(arg2); |
| 1794 | |
| 1795 | result = (memcmp(VARDATA_ANY(targ1), VARDATA_ANY(targ2), |
| 1796 | len1 - VARHDRSZ) != 0); |
| 1797 | |
| 1798 | PG_FREE_IF_COPY(targ1, 0); |
| 1799 | PG_FREE_IF_COPY(targ2, 1); |
| 1800 | } |
| 1801 | } |
| 1802 | else |
| 1803 | { |
| 1804 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1805 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1806 | |
| 1807 | result = (text_cmp(arg1, arg2, collid) != 0); |
| 1808 | |
| 1809 | PG_FREE_IF_COPY(arg1, 0); |
| 1810 | PG_FREE_IF_COPY(arg2, 1); |
| 1811 | } |
| 1812 | |
| 1813 | PG_RETURN_BOOL(result); |
| 1814 | } |
| 1815 | |
| 1816 | Datum |
| 1817 | text_lt(PG_FUNCTION_ARGS) |
| 1818 | { |
| 1819 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1820 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1821 | bool result; |
| 1822 | |
| 1823 | result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) < 0); |
| 1824 | |
| 1825 | PG_FREE_IF_COPY(arg1, 0); |
| 1826 | PG_FREE_IF_COPY(arg2, 1); |
| 1827 | |
| 1828 | PG_RETURN_BOOL(result); |
| 1829 | } |
| 1830 | |
| 1831 | Datum |
| 1832 | text_le(PG_FUNCTION_ARGS) |
| 1833 | { |
| 1834 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1835 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1836 | bool result; |
| 1837 | |
| 1838 | result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) <= 0); |
| 1839 | |
| 1840 | PG_FREE_IF_COPY(arg1, 0); |
| 1841 | PG_FREE_IF_COPY(arg2, 1); |
| 1842 | |
| 1843 | PG_RETURN_BOOL(result); |
| 1844 | } |
| 1845 | |
| 1846 | Datum |
| 1847 | text_gt(PG_FUNCTION_ARGS) |
| 1848 | { |
| 1849 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1850 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1851 | bool result; |
| 1852 | |
| 1853 | result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) > 0); |
| 1854 | |
| 1855 | PG_FREE_IF_COPY(arg1, 0); |
| 1856 | PG_FREE_IF_COPY(arg2, 1); |
| 1857 | |
| 1858 | PG_RETURN_BOOL(result); |
| 1859 | } |
| 1860 | |
| 1861 | Datum |
| 1862 | text_ge(PG_FUNCTION_ARGS) |
| 1863 | { |
| 1864 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1865 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1866 | bool result; |
| 1867 | |
| 1868 | result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) >= 0); |
| 1869 | |
| 1870 | PG_FREE_IF_COPY(arg1, 0); |
| 1871 | PG_FREE_IF_COPY(arg2, 1); |
| 1872 | |
| 1873 | PG_RETURN_BOOL(result); |
| 1874 | } |
| 1875 | |
| 1876 | Datum |
| 1877 | text_starts_with(PG_FUNCTION_ARGS) |
| 1878 | { |
| 1879 | Datum arg1 = PG_GETARG_DATUM(0); |
| 1880 | Datum arg2 = PG_GETARG_DATUM(1); |
| 1881 | Oid collid = PG_GET_COLLATION(); |
| 1882 | pg_locale_t mylocale = 0; |
| 1883 | bool result; |
| 1884 | Size len1, |
| 1885 | len2; |
| 1886 | |
| 1887 | check_collation_set(collid); |
| 1888 | |
| 1889 | if (!lc_collate_is_c(collid) && collid != DEFAULT_COLLATION_OID) |
| 1890 | mylocale = pg_newlocale_from_collation(collid); |
| 1891 | |
| 1892 | if (mylocale && !mylocale->deterministic) |
| 1893 | ereport(ERROR, |
| 1894 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1895 | errmsg("nondeterministic collations are not supported for substring searches" ))); |
| 1896 | |
| 1897 | len1 = toast_raw_datum_size(arg1); |
| 1898 | len2 = toast_raw_datum_size(arg2); |
| 1899 | if (len2 > len1) |
| 1900 | result = false; |
| 1901 | else |
| 1902 | { |
| 1903 | text *targ1 = text_substring(arg1, 1, len2, false); |
| 1904 | text *targ2 = DatumGetTextPP(arg2); |
| 1905 | |
| 1906 | result = (memcmp(VARDATA_ANY(targ1), VARDATA_ANY(targ2), |
| 1907 | VARSIZE_ANY_EXHDR(targ2)) == 0); |
| 1908 | |
| 1909 | PG_FREE_IF_COPY(targ1, 0); |
| 1910 | PG_FREE_IF_COPY(targ2, 1); |
| 1911 | } |
| 1912 | |
| 1913 | PG_RETURN_BOOL(result); |
| 1914 | } |
| 1915 | |
| 1916 | Datum |
| 1917 | bttextcmp(PG_FUNCTION_ARGS) |
| 1918 | { |
| 1919 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 1920 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 1921 | int32 result; |
| 1922 | |
| 1923 | result = text_cmp(arg1, arg2, PG_GET_COLLATION()); |
| 1924 | |
| 1925 | PG_FREE_IF_COPY(arg1, 0); |
| 1926 | PG_FREE_IF_COPY(arg2, 1); |
| 1927 | |
| 1928 | PG_RETURN_INT32(result); |
| 1929 | } |
| 1930 | |
| 1931 | Datum |
| 1932 | bttextsortsupport(PG_FUNCTION_ARGS) |
| 1933 | { |
| 1934 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 1935 | Oid collid = ssup->ssup_collation; |
| 1936 | MemoryContext oldcontext; |
| 1937 | |
| 1938 | oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt); |
| 1939 | |
| 1940 | /* Use generic string SortSupport */ |
| 1941 | varstr_sortsupport(ssup, TEXTOID, collid); |
| 1942 | |
| 1943 | MemoryContextSwitchTo(oldcontext); |
| 1944 | |
| 1945 | PG_RETURN_VOID(); |
| 1946 | } |
| 1947 | |
| 1948 | /* |
| 1949 | * Generic sortsupport interface for character type's operator classes. |
| 1950 | * Includes locale support, and support for BpChar semantics (i.e. removing |
| 1951 | * trailing spaces before comparison). |
| 1952 | * |
| 1953 | * Relies on the assumption that text, VarChar, BpChar, and bytea all have the |
| 1954 | * same representation. Callers that always use the C collation (e.g. |
| 1955 | * non-collatable type callers like bytea) may have NUL bytes in their strings; |
| 1956 | * this will not work with any other collation, though. |
| 1957 | */ |
| 1958 | void |
| 1959 | varstr_sortsupport(SortSupport ssup, Oid typid, Oid collid) |
| 1960 | { |
| 1961 | bool abbreviate = ssup->abbreviate; |
| 1962 | bool collate_c = false; |
| 1963 | VarStringSortSupport *sss; |
| 1964 | pg_locale_t locale = 0; |
| 1965 | |
| 1966 | check_collation_set(collid); |
| 1967 | |
| 1968 | /* |
| 1969 | * If possible, set ssup->comparator to a function which can be used to |
| 1970 | * directly compare two datums. If we can do this, we'll avoid the |
| 1971 | * overhead of a trip through the fmgr layer for every comparison, which |
| 1972 | * can be substantial. |
| 1973 | * |
| 1974 | * Most typically, we'll set the comparator to varlenafastcmp_locale, |
| 1975 | * which uses strcoll() to perform comparisons. We use that for the |
| 1976 | * BpChar case too, but type NAME uses namefastcmp_locale. However, if |
| 1977 | * LC_COLLATE = C, we can make things quite a bit faster with |
| 1978 | * varstrfastcmp_c, bpcharfastcmp_c, or namefastcmp_c, all of which use |
| 1979 | * memcmp() rather than strcoll(). |
| 1980 | */ |
| 1981 | if (lc_collate_is_c(collid)) |
| 1982 | { |
| 1983 | if (typid == BPCHAROID) |
| 1984 | ssup->comparator = bpcharfastcmp_c; |
| 1985 | else if (typid == NAMEOID) |
| 1986 | { |
| 1987 | ssup->comparator = namefastcmp_c; |
| 1988 | /* Not supporting abbreviation with type NAME, for now */ |
| 1989 | abbreviate = false; |
| 1990 | } |
| 1991 | else |
| 1992 | ssup->comparator = varstrfastcmp_c; |
| 1993 | |
| 1994 | collate_c = true; |
| 1995 | } |
| 1996 | else |
| 1997 | { |
| 1998 | /* |
| 1999 | * We need a collation-sensitive comparison. To make things faster, |
| 2000 | * we'll figure out the collation based on the locale id and cache the |
| 2001 | * result. |
| 2002 | */ |
| 2003 | if (collid != DEFAULT_COLLATION_OID) |
| 2004 | locale = pg_newlocale_from_collation(collid); |
| 2005 | |
| 2006 | /* |
| 2007 | * There is a further exception on Windows. When the database |
| 2008 | * encoding is UTF-8 and we are not using the C collation, complex |
| 2009 | * hacks are required. We don't currently have a comparator that |
| 2010 | * handles that case, so we fall back on the slow method of having the |
| 2011 | * sort code invoke bttextcmp() (in the case of text) via the fmgr |
| 2012 | * trampoline. ICU locales work just the same on Windows, however. |
| 2013 | */ |
| 2014 | #ifdef WIN32 |
| 2015 | if (GetDatabaseEncoding() == PG_UTF8 && |
| 2016 | !(locale && locale->provider == COLLPROVIDER_ICU)) |
| 2017 | return; |
| 2018 | #endif |
| 2019 | |
| 2020 | /* |
| 2021 | * We use varlenafastcmp_locale except for type NAME. |
| 2022 | */ |
| 2023 | if (typid == NAMEOID) |
| 2024 | { |
| 2025 | ssup->comparator = namefastcmp_locale; |
| 2026 | /* Not supporting abbreviation with type NAME, for now */ |
| 2027 | abbreviate = false; |
| 2028 | } |
| 2029 | else |
| 2030 | ssup->comparator = varlenafastcmp_locale; |
| 2031 | } |
| 2032 | |
| 2033 | /* |
| 2034 | * Unfortunately, it seems that abbreviation for non-C collations is |
| 2035 | * broken on many common platforms; testing of multiple versions of glibc |
| 2036 | * reveals that, for many locales, strcoll() and strxfrm() do not return |
| 2037 | * consistent results, which is fatal to this optimization. While no |
| 2038 | * other libc other than Cygwin has so far been shown to have a problem, |
| 2039 | * we take the conservative course of action for right now and disable |
| 2040 | * this categorically. (Users who are certain this isn't a problem on |
| 2041 | * their system can define TRUST_STRXFRM.) |
| 2042 | * |
| 2043 | * Even apart from the risk of broken locales, it's possible that there |
| 2044 | * are platforms where the use of abbreviated keys should be disabled at |
| 2045 | * compile time. Having only 4 byte datums could make worst-case |
| 2046 | * performance drastically more likely, for example. Moreover, macOS's |
| 2047 | * strxfrm() implementation is known to not effectively concentrate a |
| 2048 | * significant amount of entropy from the original string in earlier |
| 2049 | * transformed blobs. It's possible that other supported platforms are |
| 2050 | * similarly encumbered. So, if we ever get past disabling this |
| 2051 | * categorically, we may still want or need to disable it for particular |
| 2052 | * platforms. |
| 2053 | */ |
| 2054 | #ifndef TRUST_STRXFRM |
| 2055 | if (!collate_c && !(locale && locale->provider == COLLPROVIDER_ICU)) |
| 2056 | abbreviate = false; |
| 2057 | #endif |
| 2058 | |
| 2059 | /* |
| 2060 | * If we're using abbreviated keys, or if we're using a locale-aware |
| 2061 | * comparison, we need to initialize a StringSortSupport object. Both |
| 2062 | * cases will make use of the temporary buffers we initialize here for |
| 2063 | * scratch space (and to detect requirement for BpChar semantics from |
| 2064 | * caller), and the abbreviation case requires additional state. |
| 2065 | */ |
| 2066 | if (abbreviate || !collate_c) |
| 2067 | { |
| 2068 | sss = palloc(sizeof(VarStringSortSupport)); |
| 2069 | sss->buf1 = palloc(TEXTBUFLEN); |
| 2070 | sss->buflen1 = TEXTBUFLEN; |
| 2071 | sss->buf2 = palloc(TEXTBUFLEN); |
| 2072 | sss->buflen2 = TEXTBUFLEN; |
| 2073 | /* Start with invalid values */ |
| 2074 | sss->last_len1 = -1; |
| 2075 | sss->last_len2 = -1; |
| 2076 | /* Initialize */ |
| 2077 | sss->last_returned = 0; |
| 2078 | sss->locale = locale; |
| 2079 | |
| 2080 | /* |
| 2081 | * To avoid somehow confusing a strxfrm() blob and an original string, |
| 2082 | * constantly keep track of the variety of data that buf1 and buf2 |
| 2083 | * currently contain. |
| 2084 | * |
| 2085 | * Comparisons may be interleaved with conversion calls. Frequently, |
| 2086 | * conversions and comparisons are batched into two distinct phases, |
| 2087 | * but the correctness of caching cannot hinge upon this. For |
| 2088 | * comparison caching, buffer state is only trusted if cache_blob is |
| 2089 | * found set to false, whereas strxfrm() caching only trusts the state |
| 2090 | * when cache_blob is found set to true. |
| 2091 | * |
| 2092 | * Arbitrarily initialize cache_blob to true. |
| 2093 | */ |
| 2094 | sss->cache_blob = true; |
| 2095 | sss->collate_c = collate_c; |
| 2096 | sss->typid = typid; |
| 2097 | ssup->ssup_extra = sss; |
| 2098 | |
| 2099 | /* |
| 2100 | * If possible, plan to use the abbreviated keys optimization. The |
| 2101 | * core code may switch back to authoritative comparator should |
| 2102 | * abbreviation be aborted. |
| 2103 | */ |
| 2104 | if (abbreviate) |
| 2105 | { |
| 2106 | sss->prop_card = 0.20; |
| 2107 | initHyperLogLog(&sss->abbr_card, 10); |
| 2108 | initHyperLogLog(&sss->full_card, 10); |
| 2109 | ssup->abbrev_full_comparator = ssup->comparator; |
| 2110 | ssup->comparator = varstrcmp_abbrev; |
| 2111 | ssup->abbrev_converter = varstr_abbrev_convert; |
| 2112 | ssup->abbrev_abort = varstr_abbrev_abort; |
| 2113 | } |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | /* |
| 2118 | * sortsupport comparison func (for C locale case) |
| 2119 | */ |
| 2120 | static int |
| 2121 | varstrfastcmp_c(Datum x, Datum y, SortSupport ssup) |
| 2122 | { |
| 2123 | VarString *arg1 = DatumGetVarStringPP(x); |
| 2124 | VarString *arg2 = DatumGetVarStringPP(y); |
| 2125 | char *a1p, |
| 2126 | *a2p; |
| 2127 | int len1, |
| 2128 | len2, |
| 2129 | result; |
| 2130 | |
| 2131 | a1p = VARDATA_ANY(arg1); |
| 2132 | a2p = VARDATA_ANY(arg2); |
| 2133 | |
| 2134 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 2135 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 2136 | |
| 2137 | result = memcmp(a1p, a2p, Min(len1, len2)); |
| 2138 | if ((result == 0) && (len1 != len2)) |
| 2139 | result = (len1 < len2) ? -1 : 1; |
| 2140 | |
| 2141 | /* We can't afford to leak memory here. */ |
| 2142 | if (PointerGetDatum(arg1) != x) |
| 2143 | pfree(arg1); |
| 2144 | if (PointerGetDatum(arg2) != y) |
| 2145 | pfree(arg2); |
| 2146 | |
| 2147 | return result; |
| 2148 | } |
| 2149 | |
| 2150 | /* |
| 2151 | * sortsupport comparison func (for BpChar C locale case) |
| 2152 | * |
| 2153 | * BpChar outsources its sortsupport to this module. Specialization for the |
| 2154 | * varstr_sortsupport BpChar case, modeled on |
| 2155 | * internal_bpchar_pattern_compare(). |
| 2156 | */ |
| 2157 | static int |
| 2158 | bpcharfastcmp_c(Datum x, Datum y, SortSupport ssup) |
| 2159 | { |
| 2160 | BpChar *arg1 = DatumGetBpCharPP(x); |
| 2161 | BpChar *arg2 = DatumGetBpCharPP(y); |
| 2162 | char *a1p, |
| 2163 | *a2p; |
| 2164 | int len1, |
| 2165 | len2, |
| 2166 | result; |
| 2167 | |
| 2168 | a1p = VARDATA_ANY(arg1); |
| 2169 | a2p = VARDATA_ANY(arg2); |
| 2170 | |
| 2171 | len1 = bpchartruelen(a1p, VARSIZE_ANY_EXHDR(arg1)); |
| 2172 | len2 = bpchartruelen(a2p, VARSIZE_ANY_EXHDR(arg2)); |
| 2173 | |
| 2174 | result = memcmp(a1p, a2p, Min(len1, len2)); |
| 2175 | if ((result == 0) && (len1 != len2)) |
| 2176 | result = (len1 < len2) ? -1 : 1; |
| 2177 | |
| 2178 | /* We can't afford to leak memory here. */ |
| 2179 | if (PointerGetDatum(arg1) != x) |
| 2180 | pfree(arg1); |
| 2181 | if (PointerGetDatum(arg2) != y) |
| 2182 | pfree(arg2); |
| 2183 | |
| 2184 | return result; |
| 2185 | } |
| 2186 | |
| 2187 | /* |
| 2188 | * sortsupport comparison func (for NAME C locale case) |
| 2189 | */ |
| 2190 | static int |
| 2191 | namefastcmp_c(Datum x, Datum y, SortSupport ssup) |
| 2192 | { |
| 2193 | Name arg1 = DatumGetName(x); |
| 2194 | Name arg2 = DatumGetName(y); |
| 2195 | |
| 2196 | return strncmp(NameStr(*arg1), NameStr(*arg2), NAMEDATALEN); |
| 2197 | } |
| 2198 | |
| 2199 | /* |
| 2200 | * sortsupport comparison func (for locale case with all varlena types) |
| 2201 | */ |
| 2202 | static int |
| 2203 | varlenafastcmp_locale(Datum x, Datum y, SortSupport ssup) |
| 2204 | { |
| 2205 | VarString *arg1 = DatumGetVarStringPP(x); |
| 2206 | VarString *arg2 = DatumGetVarStringPP(y); |
| 2207 | char *a1p, |
| 2208 | *a2p; |
| 2209 | int len1, |
| 2210 | len2, |
| 2211 | result; |
| 2212 | |
| 2213 | a1p = VARDATA_ANY(arg1); |
| 2214 | a2p = VARDATA_ANY(arg2); |
| 2215 | |
| 2216 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 2217 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 2218 | |
| 2219 | result = varstrfastcmp_locale(a1p, len1, a2p, len2, ssup); |
| 2220 | |
| 2221 | /* We can't afford to leak memory here. */ |
| 2222 | if (PointerGetDatum(arg1) != x) |
| 2223 | pfree(arg1); |
| 2224 | if (PointerGetDatum(arg2) != y) |
| 2225 | pfree(arg2); |
| 2226 | |
| 2227 | return result; |
| 2228 | } |
| 2229 | |
| 2230 | /* |
| 2231 | * sortsupport comparison func (for locale case with NAME type) |
| 2232 | */ |
| 2233 | static int |
| 2234 | namefastcmp_locale(Datum x, Datum y, SortSupport ssup) |
| 2235 | { |
| 2236 | Name arg1 = DatumGetName(x); |
| 2237 | Name arg2 = DatumGetName(y); |
| 2238 | |
| 2239 | return varstrfastcmp_locale(NameStr(*arg1), strlen(NameStr(*arg1)), |
| 2240 | NameStr(*arg2), strlen(NameStr(*arg2)), |
| 2241 | ssup); |
| 2242 | } |
| 2243 | |
| 2244 | /* |
| 2245 | * sortsupport comparison func for locale cases |
| 2246 | */ |
| 2247 | static int |
| 2248 | varstrfastcmp_locale(char *a1p, int len1, char *a2p, int len2, SortSupport ssup) |
| 2249 | { |
| 2250 | VarStringSortSupport *sss = (VarStringSortSupport *) ssup->ssup_extra; |
| 2251 | int result; |
| 2252 | bool arg1_match; |
| 2253 | |
| 2254 | /* Fast pre-check for equality, as discussed in varstr_cmp() */ |
| 2255 | if (len1 == len2 && memcmp(a1p, a2p, len1) == 0) |
| 2256 | { |
| 2257 | /* |
| 2258 | * No change in buf1 or buf2 contents, so avoid changing last_len1 or |
| 2259 | * last_len2. Existing contents of buffers might still be used by |
| 2260 | * next call. |
| 2261 | * |
| 2262 | * It's fine to allow the comparison of BpChar padding bytes here, |
| 2263 | * even though that implies that the memcmp() will usually be |
| 2264 | * performed for BpChar callers (though multibyte characters could |
| 2265 | * still prevent that from occurring). The memcmp() is still very |
| 2266 | * cheap, and BpChar's funny semantics have us remove trailing spaces |
| 2267 | * (not limited to padding), so we need make no distinction between |
| 2268 | * padding space characters and "real" space characters. |
| 2269 | */ |
| 2270 | return 0; |
| 2271 | } |
| 2272 | |
| 2273 | if (sss->typid == BPCHAROID) |
| 2274 | { |
| 2275 | /* Get true number of bytes, ignoring trailing spaces */ |
| 2276 | len1 = bpchartruelen(a1p, len1); |
| 2277 | len2 = bpchartruelen(a2p, len2); |
| 2278 | } |
| 2279 | |
| 2280 | if (len1 >= sss->buflen1) |
| 2281 | { |
| 2282 | pfree(sss->buf1); |
| 2283 | sss->buflen1 = Max(len1 + 1, Min(sss->buflen1 * 2, MaxAllocSize)); |
| 2284 | sss->buf1 = MemoryContextAlloc(ssup->ssup_cxt, sss->buflen1); |
| 2285 | } |
| 2286 | if (len2 >= sss->buflen2) |
| 2287 | { |
| 2288 | pfree(sss->buf2); |
| 2289 | sss->buflen2 = Max(len2 + 1, Min(sss->buflen2 * 2, MaxAllocSize)); |
| 2290 | sss->buf2 = MemoryContextAlloc(ssup->ssup_cxt, sss->buflen2); |
| 2291 | } |
| 2292 | |
| 2293 | /* |
| 2294 | * We're likely to be asked to compare the same strings repeatedly, and |
| 2295 | * memcmp() is so much cheaper than strcoll() that it pays to try to cache |
| 2296 | * comparisons, even though in general there is no reason to think that |
| 2297 | * that will work out (every string datum may be unique). Caching does |
| 2298 | * not slow things down measurably when it doesn't work out, and can speed |
| 2299 | * things up by rather a lot when it does. In part, this is because the |
| 2300 | * memcmp() compares data from cachelines that are needed in L1 cache even |
| 2301 | * when the last comparison's result cannot be reused. |
| 2302 | */ |
| 2303 | arg1_match = true; |
| 2304 | if (len1 != sss->last_len1 || memcmp(sss->buf1, a1p, len1) != 0) |
| 2305 | { |
| 2306 | arg1_match = false; |
| 2307 | memcpy(sss->buf1, a1p, len1); |
| 2308 | sss->buf1[len1] = '\0'; |
| 2309 | sss->last_len1 = len1; |
| 2310 | } |
| 2311 | |
| 2312 | /* |
| 2313 | * If we're comparing the same two strings as last time, we can return the |
| 2314 | * same answer without calling strcoll() again. This is more likely than |
| 2315 | * it seems (at least with moderate to low cardinality sets), because |
| 2316 | * quicksort compares the same pivot against many values. |
| 2317 | */ |
| 2318 | if (len2 != sss->last_len2 || memcmp(sss->buf2, a2p, len2) != 0) |
| 2319 | { |
| 2320 | memcpy(sss->buf2, a2p, len2); |
| 2321 | sss->buf2[len2] = '\0'; |
| 2322 | sss->last_len2 = len2; |
| 2323 | } |
| 2324 | else if (arg1_match && !sss->cache_blob) |
| 2325 | { |
| 2326 | /* Use result cached following last actual strcoll() call */ |
| 2327 | return sss->last_returned; |
| 2328 | } |
| 2329 | |
| 2330 | if (sss->locale) |
| 2331 | { |
| 2332 | if (sss->locale->provider == COLLPROVIDER_ICU) |
| 2333 | { |
| 2334 | #ifdef USE_ICU |
| 2335 | #ifdef HAVE_UCOL_STRCOLLUTF8 |
| 2336 | if (GetDatabaseEncoding() == PG_UTF8) |
| 2337 | { |
| 2338 | UErrorCode status; |
| 2339 | |
| 2340 | status = U_ZERO_ERROR; |
| 2341 | result = ucol_strcollUTF8(sss->locale->info.icu.ucol, |
| 2342 | a1p, len1, |
| 2343 | a2p, len2, |
| 2344 | &status); |
| 2345 | if (U_FAILURE(status)) |
| 2346 | ereport(ERROR, |
| 2347 | (errmsg("collation failed: %s" , u_errorName(status)))); |
| 2348 | } |
| 2349 | else |
| 2350 | #endif |
| 2351 | { |
| 2352 | int32_t ulen1, |
| 2353 | ulen2; |
| 2354 | UChar *uchar1, |
| 2355 | *uchar2; |
| 2356 | |
| 2357 | ulen1 = icu_to_uchar(&uchar1, a1p, len1); |
| 2358 | ulen2 = icu_to_uchar(&uchar2, a2p, len2); |
| 2359 | |
| 2360 | result = ucol_strcoll(sss->locale->info.icu.ucol, |
| 2361 | uchar1, ulen1, |
| 2362 | uchar2, ulen2); |
| 2363 | |
| 2364 | pfree(uchar1); |
| 2365 | pfree(uchar2); |
| 2366 | } |
| 2367 | #else /* not USE_ICU */ |
| 2368 | /* shouldn't happen */ |
| 2369 | elog(ERROR, "unsupported collprovider: %c" , sss->locale->provider); |
| 2370 | #endif /* not USE_ICU */ |
| 2371 | } |
| 2372 | else |
| 2373 | { |
| 2374 | #ifdef HAVE_LOCALE_T |
| 2375 | result = strcoll_l(sss->buf1, sss->buf2, sss->locale->info.lt); |
| 2376 | #else |
| 2377 | /* shouldn't happen */ |
| 2378 | elog(ERROR, "unsupported collprovider: %c" , sss->locale->provider); |
| 2379 | #endif |
| 2380 | } |
| 2381 | } |
| 2382 | else |
| 2383 | result = strcoll(sss->buf1, sss->buf2); |
| 2384 | |
| 2385 | /* Break tie if necessary. */ |
| 2386 | if (result == 0 && |
| 2387 | (!sss->locale || sss->locale->deterministic)) |
| 2388 | result = strcmp(sss->buf1, sss->buf2); |
| 2389 | |
| 2390 | /* Cache result, perhaps saving an expensive strcoll() call next time */ |
| 2391 | sss->cache_blob = false; |
| 2392 | sss->last_returned = result; |
| 2393 | return result; |
| 2394 | } |
| 2395 | |
| 2396 | /* |
| 2397 | * Abbreviated key comparison func |
| 2398 | */ |
| 2399 | static int |
| 2400 | varstrcmp_abbrev(Datum x, Datum y, SortSupport ssup) |
| 2401 | { |
| 2402 | /* |
| 2403 | * When 0 is returned, the core system will call varstrfastcmp_c() |
| 2404 | * (bpcharfastcmp_c() in BpChar case) or varlenafastcmp_locale(). Even a |
| 2405 | * strcmp() on two non-truncated strxfrm() blobs cannot indicate *equality* |
| 2406 | * authoritatively, for the same reason that there is a strcoll() |
| 2407 | * tie-breaker call to strcmp() in varstr_cmp(). |
| 2408 | */ |
| 2409 | if (x > y) |
| 2410 | return 1; |
| 2411 | else if (x == y) |
| 2412 | return 0; |
| 2413 | else |
| 2414 | return -1; |
| 2415 | } |
| 2416 | |
| 2417 | /* |
| 2418 | * Conversion routine for sortsupport. Converts original to abbreviated key |
| 2419 | * representation. Our encoding strategy is simple -- pack the first 8 bytes |
| 2420 | * of a strxfrm() blob into a Datum (on little-endian machines, the 8 bytes are |
| 2421 | * stored in reverse order), and treat it as an unsigned integer. When the "C" |
| 2422 | * locale is used, or in case of bytea, just memcpy() from original instead. |
| 2423 | */ |
| 2424 | static Datum |
| 2425 | varstr_abbrev_convert(Datum original, SortSupport ssup) |
| 2426 | { |
| 2427 | VarStringSortSupport *sss = (VarStringSortSupport *) ssup->ssup_extra; |
| 2428 | VarString *authoritative = DatumGetVarStringPP(original); |
| 2429 | char *authoritative_data = VARDATA_ANY(authoritative); |
| 2430 | |
| 2431 | /* working state */ |
| 2432 | Datum res; |
| 2433 | char *pres; |
| 2434 | int len; |
| 2435 | uint32 hash; |
| 2436 | |
| 2437 | pres = (char *) &res; |
| 2438 | /* memset(), so any non-overwritten bytes are NUL */ |
| 2439 | memset(pres, 0, sizeof(Datum)); |
| 2440 | len = VARSIZE_ANY_EXHDR(authoritative); |
| 2441 | |
| 2442 | /* Get number of bytes, ignoring trailing spaces */ |
| 2443 | if (sss->typid == BPCHAROID) |
| 2444 | len = bpchartruelen(authoritative_data, len); |
| 2445 | |
| 2446 | /* |
| 2447 | * If we're using the C collation, use memcpy(), rather than strxfrm(), to |
| 2448 | * abbreviate keys. The full comparator for the C locale is always |
| 2449 | * memcmp(). It would be incorrect to allow bytea callers (callers that |
| 2450 | * always force the C collation -- bytea isn't a collatable type, but this |
| 2451 | * approach is convenient) to use strxfrm(). This is because bytea |
| 2452 | * strings may contain NUL bytes. Besides, this should be faster, too. |
| 2453 | * |
| 2454 | * More generally, it's okay that bytea callers can have NUL bytes in |
| 2455 | * strings because varstrcmp_abbrev() need not make a distinction between |
| 2456 | * terminating NUL bytes, and NUL bytes representing actual NULs in the |
| 2457 | * authoritative representation. Hopefully a comparison at or past one |
| 2458 | * abbreviated key's terminating NUL byte will resolve the comparison |
| 2459 | * without consulting the authoritative representation; specifically, some |
| 2460 | * later non-NUL byte in the longer string can resolve the comparison |
| 2461 | * against a subsequent terminating NUL in the shorter string. There will |
| 2462 | * usually be what is effectively a "length-wise" resolution there and |
| 2463 | * then. |
| 2464 | * |
| 2465 | * If that doesn't work out -- if all bytes in the longer string |
| 2466 | * positioned at or past the offset of the smaller string's (first) |
| 2467 | * terminating NUL are actually representative of NUL bytes in the |
| 2468 | * authoritative binary string (perhaps with some *terminating* NUL bytes |
| 2469 | * towards the end of the longer string iff it happens to still be small) |
| 2470 | * -- then an authoritative tie-breaker will happen, and do the right |
| 2471 | * thing: explicitly consider string length. |
| 2472 | */ |
| 2473 | if (sss->collate_c) |
| 2474 | memcpy(pres, authoritative_data, Min(len, sizeof(Datum))); |
| 2475 | else |
| 2476 | { |
| 2477 | Size bsize; |
| 2478 | #ifdef USE_ICU |
| 2479 | int32_t ulen = -1; |
| 2480 | UChar *uchar = NULL; |
| 2481 | #endif |
| 2482 | |
| 2483 | /* |
| 2484 | * We're not using the C collation, so fall back on strxfrm or ICU |
| 2485 | * analogs. |
| 2486 | */ |
| 2487 | |
| 2488 | /* By convention, we use buffer 1 to store and NUL-terminate */ |
| 2489 | if (len >= sss->buflen1) |
| 2490 | { |
| 2491 | pfree(sss->buf1); |
| 2492 | sss->buflen1 = Max(len + 1, Min(sss->buflen1 * 2, MaxAllocSize)); |
| 2493 | sss->buf1 = palloc(sss->buflen1); |
| 2494 | } |
| 2495 | |
| 2496 | /* Might be able to reuse strxfrm() blob from last call */ |
| 2497 | if (sss->last_len1 == len && sss->cache_blob && |
| 2498 | memcmp(sss->buf1, authoritative_data, len) == 0) |
| 2499 | { |
| 2500 | memcpy(pres, sss->buf2, Min(sizeof(Datum), sss->last_len2)); |
| 2501 | /* No change affecting cardinality, so no hashing required */ |
| 2502 | goto done; |
| 2503 | } |
| 2504 | |
| 2505 | memcpy(sss->buf1, authoritative_data, len); |
| 2506 | |
| 2507 | /* |
| 2508 | * Just like strcoll(), strxfrm() expects a NUL-terminated string. Not |
| 2509 | * necessary for ICU, but doesn't hurt. |
| 2510 | */ |
| 2511 | sss->buf1[len] = '\0'; |
| 2512 | sss->last_len1 = len; |
| 2513 | |
| 2514 | #ifdef USE_ICU |
| 2515 | /* When using ICU and not UTF8, convert string to UChar. */ |
| 2516 | if (sss->locale && sss->locale->provider == COLLPROVIDER_ICU && |
| 2517 | GetDatabaseEncoding() != PG_UTF8) |
| 2518 | ulen = icu_to_uchar(&uchar, sss->buf1, len); |
| 2519 | #endif |
| 2520 | |
| 2521 | /* |
| 2522 | * Loop: Call strxfrm() or ucol_getSortKey(), possibly enlarge buffer, |
| 2523 | * and try again. Both of these functions have the result buffer |
| 2524 | * content undefined if the result did not fit, so we need to retry |
| 2525 | * until everything fits, even though we only need the first few bytes |
| 2526 | * in the end. When using ucol_nextSortKeyPart(), however, we only |
| 2527 | * ask for as many bytes as we actually need. |
| 2528 | */ |
| 2529 | for (;;) |
| 2530 | { |
| 2531 | #ifdef USE_ICU |
| 2532 | if (sss->locale && sss->locale->provider == COLLPROVIDER_ICU) |
| 2533 | { |
| 2534 | /* |
| 2535 | * When using UTF8, use the iteration interface so we only |
| 2536 | * need to produce as many bytes as we actually need. |
| 2537 | */ |
| 2538 | if (GetDatabaseEncoding() == PG_UTF8) |
| 2539 | { |
| 2540 | UCharIterator iter; |
| 2541 | uint32_t state[2]; |
| 2542 | UErrorCode status; |
| 2543 | |
| 2544 | uiter_setUTF8(&iter, sss->buf1, len); |
| 2545 | state[0] = state[1] = 0; /* won't need that again */ |
| 2546 | status = U_ZERO_ERROR; |
| 2547 | bsize = ucol_nextSortKeyPart(sss->locale->info.icu.ucol, |
| 2548 | &iter, |
| 2549 | state, |
| 2550 | (uint8_t *) sss->buf2, |
| 2551 | Min(sizeof(Datum), sss->buflen2), |
| 2552 | &status); |
| 2553 | if (U_FAILURE(status)) |
| 2554 | ereport(ERROR, |
| 2555 | (errmsg("sort key generation failed: %s" , |
| 2556 | u_errorName(status)))); |
| 2557 | } |
| 2558 | else |
| 2559 | bsize = ucol_getSortKey(sss->locale->info.icu.ucol, |
| 2560 | uchar, ulen, |
| 2561 | (uint8_t *) sss->buf2, sss->buflen2); |
| 2562 | } |
| 2563 | else |
| 2564 | #endif |
| 2565 | #ifdef HAVE_LOCALE_T |
| 2566 | if (sss->locale && sss->locale->provider == COLLPROVIDER_LIBC) |
| 2567 | bsize = strxfrm_l(sss->buf2, sss->buf1, |
| 2568 | sss->buflen2, sss->locale->info.lt); |
| 2569 | else |
| 2570 | #endif |
| 2571 | bsize = strxfrm(sss->buf2, sss->buf1, sss->buflen2); |
| 2572 | |
| 2573 | sss->last_len2 = bsize; |
| 2574 | if (bsize < sss->buflen2) |
| 2575 | break; |
| 2576 | |
| 2577 | /* |
| 2578 | * Grow buffer and retry. |
| 2579 | */ |
| 2580 | pfree(sss->buf2); |
| 2581 | sss->buflen2 = Max(bsize + 1, |
| 2582 | Min(sss->buflen2 * 2, MaxAllocSize)); |
| 2583 | sss->buf2 = palloc(sss->buflen2); |
| 2584 | } |
| 2585 | |
| 2586 | /* |
| 2587 | * Every Datum byte is always compared. This is safe because the |
| 2588 | * strxfrm() blob is itself NUL terminated, leaving no danger of |
| 2589 | * misinterpreting any NUL bytes not intended to be interpreted as |
| 2590 | * logically representing termination. |
| 2591 | * |
| 2592 | * (Actually, even if there were NUL bytes in the blob it would be |
| 2593 | * okay. See remarks on bytea case above.) |
| 2594 | */ |
| 2595 | memcpy(pres, sss->buf2, Min(sizeof(Datum), bsize)); |
| 2596 | |
| 2597 | #ifdef USE_ICU |
| 2598 | if (uchar) |
| 2599 | pfree(uchar); |
| 2600 | #endif |
| 2601 | } |
| 2602 | |
| 2603 | /* |
| 2604 | * Maintain approximate cardinality of both abbreviated keys and original, |
| 2605 | * authoritative keys using HyperLogLog. Used as cheap insurance against |
| 2606 | * the worst case, where we do many string transformations for no saving |
| 2607 | * in full strcoll()-based comparisons. These statistics are used by |
| 2608 | * varstr_abbrev_abort(). |
| 2609 | * |
| 2610 | * First, Hash key proper, or a significant fraction of it. Mix in length |
| 2611 | * in order to compensate for cases where differences are past |
| 2612 | * PG_CACHE_LINE_SIZE bytes, so as to limit the overhead of hashing. |
| 2613 | */ |
| 2614 | hash = DatumGetUInt32(hash_any((unsigned char *) authoritative_data, |
| 2615 | Min(len, PG_CACHE_LINE_SIZE))); |
| 2616 | |
| 2617 | if (len > PG_CACHE_LINE_SIZE) |
| 2618 | hash ^= DatumGetUInt32(hash_uint32((uint32) len)); |
| 2619 | |
| 2620 | addHyperLogLog(&sss->full_card, hash); |
| 2621 | |
| 2622 | /* Hash abbreviated key */ |
| 2623 | #if SIZEOF_DATUM == 8 |
| 2624 | { |
| 2625 | uint32 lohalf, |
| 2626 | hihalf; |
| 2627 | |
| 2628 | lohalf = (uint32) res; |
| 2629 | hihalf = (uint32) (res >> 32); |
| 2630 | hash = DatumGetUInt32(hash_uint32(lohalf ^ hihalf)); |
| 2631 | } |
| 2632 | #else /* SIZEOF_DATUM != 8 */ |
| 2633 | hash = DatumGetUInt32(hash_uint32((uint32) res)); |
| 2634 | #endif |
| 2635 | |
| 2636 | addHyperLogLog(&sss->abbr_card, hash); |
| 2637 | |
| 2638 | /* Cache result, perhaps saving an expensive strxfrm() call next time */ |
| 2639 | sss->cache_blob = true; |
| 2640 | done: |
| 2641 | |
| 2642 | /* |
| 2643 | * Byteswap on little-endian machines. |
| 2644 | * |
| 2645 | * This is needed so that varstrcmp_abbrev() (an unsigned integer 3-way |
| 2646 | * comparator) works correctly on all platforms. If we didn't do this, |
| 2647 | * the comparator would have to call memcmp() with a pair of pointers to |
| 2648 | * the first byte of each abbreviated key, which is slower. |
| 2649 | */ |
| 2650 | res = DatumBigEndianToNative(res); |
| 2651 | |
| 2652 | /* Don't leak memory here */ |
| 2653 | if (PointerGetDatum(authoritative) != original) |
| 2654 | pfree(authoritative); |
| 2655 | |
| 2656 | return res; |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * Callback for estimating effectiveness of abbreviated key optimization, using |
| 2661 | * heuristic rules. Returns value indicating if the abbreviation optimization |
| 2662 | * should be aborted, based on its projected effectiveness. |
| 2663 | */ |
| 2664 | static bool |
| 2665 | varstr_abbrev_abort(int memtupcount, SortSupport ssup) |
| 2666 | { |
| 2667 | VarStringSortSupport *sss = (VarStringSortSupport *) ssup->ssup_extra; |
| 2668 | double abbrev_distinct, |
| 2669 | key_distinct; |
| 2670 | |
| 2671 | Assert(ssup->abbreviate); |
| 2672 | |
| 2673 | /* Have a little patience */ |
| 2674 | if (memtupcount < 100) |
| 2675 | return false; |
| 2676 | |
| 2677 | abbrev_distinct = estimateHyperLogLog(&sss->abbr_card); |
| 2678 | key_distinct = estimateHyperLogLog(&sss->full_card); |
| 2679 | |
| 2680 | /* |
| 2681 | * Clamp cardinality estimates to at least one distinct value. While |
| 2682 | * NULLs are generally disregarded, if only NULL values were seen so far, |
| 2683 | * that might misrepresent costs if we failed to clamp. |
| 2684 | */ |
| 2685 | if (abbrev_distinct <= 1.0) |
| 2686 | abbrev_distinct = 1.0; |
| 2687 | |
| 2688 | if (key_distinct <= 1.0) |
| 2689 | key_distinct = 1.0; |
| 2690 | |
| 2691 | /* |
| 2692 | * In the worst case all abbreviated keys are identical, while at the same |
| 2693 | * time there are differences within full key strings not captured in |
| 2694 | * abbreviations. |
| 2695 | */ |
| 2696 | #ifdef TRACE_SORT |
| 2697 | if (trace_sort) |
| 2698 | { |
| 2699 | double norm_abbrev_card = abbrev_distinct / (double) memtupcount; |
| 2700 | |
| 2701 | elog(LOG, "varstr_abbrev: abbrev_distinct after %d: %f " |
| 2702 | "(key_distinct: %f, norm_abbrev_card: %f, prop_card: %f)" , |
| 2703 | memtupcount, abbrev_distinct, key_distinct, norm_abbrev_card, |
| 2704 | sss->prop_card); |
| 2705 | } |
| 2706 | #endif |
| 2707 | |
| 2708 | /* |
| 2709 | * If the number of distinct abbreviated keys approximately matches the |
| 2710 | * number of distinct authoritative original keys, that's reason enough to |
| 2711 | * proceed. We can win even with a very low cardinality set if most |
| 2712 | * tie-breakers only memcmp(). This is by far the most important |
| 2713 | * consideration. |
| 2714 | * |
| 2715 | * While comparisons that are resolved at the abbreviated key level are |
| 2716 | * considerably cheaper than tie-breakers resolved with memcmp(), both of |
| 2717 | * those two outcomes are so much cheaper than a full strcoll() once |
| 2718 | * sorting is underway that it doesn't seem worth it to weigh abbreviated |
| 2719 | * cardinality against the overall size of the set in order to more |
| 2720 | * accurately model costs. Assume that an abbreviated comparison, and an |
| 2721 | * abbreviated comparison with a cheap memcmp()-based authoritative |
| 2722 | * resolution are equivalent. |
| 2723 | */ |
| 2724 | if (abbrev_distinct > key_distinct * sss->prop_card) |
| 2725 | { |
| 2726 | /* |
| 2727 | * When we have exceeded 10,000 tuples, decay required cardinality |
| 2728 | * aggressively for next call. |
| 2729 | * |
| 2730 | * This is useful because the number of comparisons required on |
| 2731 | * average increases at a linearithmic rate, and at roughly 10,000 |
| 2732 | * tuples that factor will start to dominate over the linear costs of |
| 2733 | * string transformation (this is a conservative estimate). The decay |
| 2734 | * rate is chosen to be a little less aggressive than halving -- which |
| 2735 | * (since we're called at points at which memtupcount has doubled) |
| 2736 | * would never see the cost model actually abort past the first call |
| 2737 | * following a decay. This decay rate is mostly a precaution against |
| 2738 | * a sudden, violent swing in how well abbreviated cardinality tracks |
| 2739 | * full key cardinality. The decay also serves to prevent a marginal |
| 2740 | * case from being aborted too late, when too much has already been |
| 2741 | * invested in string transformation. |
| 2742 | * |
| 2743 | * It's possible for sets of several million distinct strings with |
| 2744 | * mere tens of thousands of distinct abbreviated keys to still |
| 2745 | * benefit very significantly. This will generally occur provided |
| 2746 | * each abbreviated key is a proxy for a roughly uniform number of the |
| 2747 | * set's full keys. If it isn't so, we hope to catch that early and |
| 2748 | * abort. If it isn't caught early, by the time the problem is |
| 2749 | * apparent it's probably not worth aborting. |
| 2750 | */ |
| 2751 | if (memtupcount > 10000) |
| 2752 | sss->prop_card *= 0.65; |
| 2753 | |
| 2754 | return false; |
| 2755 | } |
| 2756 | |
| 2757 | /* |
| 2758 | * Abort abbreviation strategy. |
| 2759 | * |
| 2760 | * The worst case, where all abbreviated keys are identical while all |
| 2761 | * original strings differ will typically only see a regression of about |
| 2762 | * 10% in execution time for small to medium sized lists of strings. |
| 2763 | * Whereas on modern CPUs where cache stalls are the dominant cost, we can |
| 2764 | * often expect very large improvements, particularly with sets of strings |
| 2765 | * of moderately high to high abbreviated cardinality. There is little to |
| 2766 | * lose but much to gain, which our strategy reflects. |
| 2767 | */ |
| 2768 | #ifdef TRACE_SORT |
| 2769 | if (trace_sort) |
| 2770 | elog(LOG, "varstr_abbrev: aborted abbreviation at %d " |
| 2771 | "(abbrev_distinct: %f, key_distinct: %f, prop_card: %f)" , |
| 2772 | memtupcount, abbrev_distinct, key_distinct, sss->prop_card); |
| 2773 | #endif |
| 2774 | |
| 2775 | return true; |
| 2776 | } |
| 2777 | |
| 2778 | Datum |
| 2779 | text_larger(PG_FUNCTION_ARGS) |
| 2780 | { |
| 2781 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 2782 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 2783 | text *result; |
| 2784 | |
| 2785 | result = ((text_cmp(arg1, arg2, PG_GET_COLLATION()) > 0) ? arg1 : arg2); |
| 2786 | |
| 2787 | PG_RETURN_TEXT_P(result); |
| 2788 | } |
| 2789 | |
| 2790 | Datum |
| 2791 | text_smaller(PG_FUNCTION_ARGS) |
| 2792 | { |
| 2793 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 2794 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 2795 | text *result; |
| 2796 | |
| 2797 | result = ((text_cmp(arg1, arg2, PG_GET_COLLATION()) < 0) ? arg1 : arg2); |
| 2798 | |
| 2799 | PG_RETURN_TEXT_P(result); |
| 2800 | } |
| 2801 | |
| 2802 | |
| 2803 | /* |
| 2804 | * Cross-type comparison functions for types text and name. |
| 2805 | */ |
| 2806 | |
| 2807 | Datum |
| 2808 | nameeqtext(PG_FUNCTION_ARGS) |
| 2809 | { |
| 2810 | Name arg1 = PG_GETARG_NAME(0); |
| 2811 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 2812 | size_t len1 = strlen(NameStr(*arg1)); |
| 2813 | size_t len2 = VARSIZE_ANY_EXHDR(arg2); |
| 2814 | Oid collid = PG_GET_COLLATION(); |
| 2815 | bool result; |
| 2816 | |
| 2817 | check_collation_set(collid); |
| 2818 | |
| 2819 | if (collid == C_COLLATION_OID) |
| 2820 | result = (len1 == len2 && |
| 2821 | memcmp(NameStr(*arg1), VARDATA_ANY(arg2), len1) == 0); |
| 2822 | else |
| 2823 | result = (varstr_cmp(NameStr(*arg1), len1, |
| 2824 | VARDATA_ANY(arg2), len2, |
| 2825 | collid) == 0); |
| 2826 | |
| 2827 | PG_FREE_IF_COPY(arg2, 1); |
| 2828 | |
| 2829 | PG_RETURN_BOOL(result); |
| 2830 | } |
| 2831 | |
| 2832 | Datum |
| 2833 | texteqname(PG_FUNCTION_ARGS) |
| 2834 | { |
| 2835 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 2836 | Name arg2 = PG_GETARG_NAME(1); |
| 2837 | size_t len1 = VARSIZE_ANY_EXHDR(arg1); |
| 2838 | size_t len2 = strlen(NameStr(*arg2)); |
| 2839 | Oid collid = PG_GET_COLLATION(); |
| 2840 | bool result; |
| 2841 | |
| 2842 | check_collation_set(collid); |
| 2843 | |
| 2844 | if (collid == C_COLLATION_OID) |
| 2845 | result = (len1 == len2 && |
| 2846 | memcmp(VARDATA_ANY(arg1), NameStr(*arg2), len1) == 0); |
| 2847 | else |
| 2848 | result = (varstr_cmp(VARDATA_ANY(arg1), len1, |
| 2849 | NameStr(*arg2), len2, |
| 2850 | collid) == 0); |
| 2851 | |
| 2852 | PG_FREE_IF_COPY(arg1, 0); |
| 2853 | |
| 2854 | PG_RETURN_BOOL(result); |
| 2855 | } |
| 2856 | |
| 2857 | Datum |
| 2858 | namenetext(PG_FUNCTION_ARGS) |
| 2859 | { |
| 2860 | Name arg1 = PG_GETARG_NAME(0); |
| 2861 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 2862 | size_t len1 = strlen(NameStr(*arg1)); |
| 2863 | size_t len2 = VARSIZE_ANY_EXHDR(arg2); |
| 2864 | Oid collid = PG_GET_COLLATION(); |
| 2865 | bool result; |
| 2866 | |
| 2867 | check_collation_set(collid); |
| 2868 | |
| 2869 | if (collid == C_COLLATION_OID) |
| 2870 | result = !(len1 == len2 && |
| 2871 | memcmp(NameStr(*arg1), VARDATA_ANY(arg2), len1) == 0); |
| 2872 | else |
| 2873 | result = !(varstr_cmp(NameStr(*arg1), len1, |
| 2874 | VARDATA_ANY(arg2), len2, |
| 2875 | collid) == 0); |
| 2876 | |
| 2877 | PG_FREE_IF_COPY(arg2, 1); |
| 2878 | |
| 2879 | PG_RETURN_BOOL(result); |
| 2880 | } |
| 2881 | |
| 2882 | Datum |
| 2883 | textnename(PG_FUNCTION_ARGS) |
| 2884 | { |
| 2885 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 2886 | Name arg2 = PG_GETARG_NAME(1); |
| 2887 | size_t len1 = VARSIZE_ANY_EXHDR(arg1); |
| 2888 | size_t len2 = strlen(NameStr(*arg2)); |
| 2889 | Oid collid = PG_GET_COLLATION(); |
| 2890 | bool result; |
| 2891 | |
| 2892 | check_collation_set(collid); |
| 2893 | |
| 2894 | if (collid == C_COLLATION_OID) |
| 2895 | result = !(len1 == len2 && |
| 2896 | memcmp(VARDATA_ANY(arg1), NameStr(*arg2), len1) == 0); |
| 2897 | else |
| 2898 | result = !(varstr_cmp(VARDATA_ANY(arg1), len1, |
| 2899 | NameStr(*arg2), len2, |
| 2900 | collid) == 0); |
| 2901 | |
| 2902 | PG_FREE_IF_COPY(arg1, 0); |
| 2903 | |
| 2904 | PG_RETURN_BOOL(result); |
| 2905 | } |
| 2906 | |
| 2907 | Datum |
| 2908 | btnametextcmp(PG_FUNCTION_ARGS) |
| 2909 | { |
| 2910 | Name arg1 = PG_GETARG_NAME(0); |
| 2911 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 2912 | int32 result; |
| 2913 | |
| 2914 | result = varstr_cmp(NameStr(*arg1), strlen(NameStr(*arg1)), |
| 2915 | VARDATA_ANY(arg2), VARSIZE_ANY_EXHDR(arg2), |
| 2916 | PG_GET_COLLATION()); |
| 2917 | |
| 2918 | PG_FREE_IF_COPY(arg2, 1); |
| 2919 | |
| 2920 | PG_RETURN_INT32(result); |
| 2921 | } |
| 2922 | |
| 2923 | Datum |
| 2924 | bttextnamecmp(PG_FUNCTION_ARGS) |
| 2925 | { |
| 2926 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 2927 | Name arg2 = PG_GETARG_NAME(1); |
| 2928 | int32 result; |
| 2929 | |
| 2930 | result = varstr_cmp(VARDATA_ANY(arg1), VARSIZE_ANY_EXHDR(arg1), |
| 2931 | NameStr(*arg2), strlen(NameStr(*arg2)), |
| 2932 | PG_GET_COLLATION()); |
| 2933 | |
| 2934 | PG_FREE_IF_COPY(arg1, 0); |
| 2935 | |
| 2936 | PG_RETURN_INT32(result); |
| 2937 | } |
| 2938 | |
| 2939 | #define CmpCall(cmpfunc) \ |
| 2940 | DatumGetInt32(DirectFunctionCall2Coll(cmpfunc, \ |
| 2941 | PG_GET_COLLATION(), \ |
| 2942 | PG_GETARG_DATUM(0), \ |
| 2943 | PG_GETARG_DATUM(1))) |
| 2944 | |
| 2945 | Datum |
| 2946 | namelttext(PG_FUNCTION_ARGS) |
| 2947 | { |
| 2948 | PG_RETURN_BOOL(CmpCall(btnametextcmp) < 0); |
| 2949 | } |
| 2950 | |
| 2951 | Datum |
| 2952 | nameletext(PG_FUNCTION_ARGS) |
| 2953 | { |
| 2954 | PG_RETURN_BOOL(CmpCall(btnametextcmp) <= 0); |
| 2955 | } |
| 2956 | |
| 2957 | Datum |
| 2958 | namegttext(PG_FUNCTION_ARGS) |
| 2959 | { |
| 2960 | PG_RETURN_BOOL(CmpCall(btnametextcmp) > 0); |
| 2961 | } |
| 2962 | |
| 2963 | Datum |
| 2964 | namegetext(PG_FUNCTION_ARGS) |
| 2965 | { |
| 2966 | PG_RETURN_BOOL(CmpCall(btnametextcmp) >= 0); |
| 2967 | } |
| 2968 | |
| 2969 | Datum |
| 2970 | textltname(PG_FUNCTION_ARGS) |
| 2971 | { |
| 2972 | PG_RETURN_BOOL(CmpCall(bttextnamecmp) < 0); |
| 2973 | } |
| 2974 | |
| 2975 | Datum |
| 2976 | textlename(PG_FUNCTION_ARGS) |
| 2977 | { |
| 2978 | PG_RETURN_BOOL(CmpCall(bttextnamecmp) <= 0); |
| 2979 | } |
| 2980 | |
| 2981 | Datum |
| 2982 | textgtname(PG_FUNCTION_ARGS) |
| 2983 | { |
| 2984 | PG_RETURN_BOOL(CmpCall(bttextnamecmp) > 0); |
| 2985 | } |
| 2986 | |
| 2987 | Datum |
| 2988 | textgename(PG_FUNCTION_ARGS) |
| 2989 | { |
| 2990 | PG_RETURN_BOOL(CmpCall(bttextnamecmp) >= 0); |
| 2991 | } |
| 2992 | |
| 2993 | #undef CmpCall |
| 2994 | |
| 2995 | |
| 2996 | /* |
| 2997 | * The following operators support character-by-character comparison |
| 2998 | * of text datums, to allow building indexes suitable for LIKE clauses. |
| 2999 | * Note that the regular texteq/textne comparison operators, and regular |
| 3000 | * support functions 1 and 2 with "C" collation are assumed to be |
| 3001 | * compatible with these! |
| 3002 | */ |
| 3003 | |
| 3004 | static int |
| 3005 | internal_text_pattern_compare(text *arg1, text *arg2) |
| 3006 | { |
| 3007 | int result; |
| 3008 | int len1, |
| 3009 | len2; |
| 3010 | |
| 3011 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 3012 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 3013 | |
| 3014 | result = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 3015 | if (result != 0) |
| 3016 | return result; |
| 3017 | else if (len1 < len2) |
| 3018 | return -1; |
| 3019 | else if (len1 > len2) |
| 3020 | return 1; |
| 3021 | else |
| 3022 | return 0; |
| 3023 | } |
| 3024 | |
| 3025 | |
| 3026 | Datum |
| 3027 | text_pattern_lt(PG_FUNCTION_ARGS) |
| 3028 | { |
| 3029 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 3030 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 3031 | int result; |
| 3032 | |
| 3033 | result = internal_text_pattern_compare(arg1, arg2); |
| 3034 | |
| 3035 | PG_FREE_IF_COPY(arg1, 0); |
| 3036 | PG_FREE_IF_COPY(arg2, 1); |
| 3037 | |
| 3038 | PG_RETURN_BOOL(result < 0); |
| 3039 | } |
| 3040 | |
| 3041 | |
| 3042 | Datum |
| 3043 | text_pattern_le(PG_FUNCTION_ARGS) |
| 3044 | { |
| 3045 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 3046 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 3047 | int result; |
| 3048 | |
| 3049 | result = internal_text_pattern_compare(arg1, arg2); |
| 3050 | |
| 3051 | PG_FREE_IF_COPY(arg1, 0); |
| 3052 | PG_FREE_IF_COPY(arg2, 1); |
| 3053 | |
| 3054 | PG_RETURN_BOOL(result <= 0); |
| 3055 | } |
| 3056 | |
| 3057 | |
| 3058 | Datum |
| 3059 | text_pattern_ge(PG_FUNCTION_ARGS) |
| 3060 | { |
| 3061 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 3062 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 3063 | int result; |
| 3064 | |
| 3065 | result = internal_text_pattern_compare(arg1, arg2); |
| 3066 | |
| 3067 | PG_FREE_IF_COPY(arg1, 0); |
| 3068 | PG_FREE_IF_COPY(arg2, 1); |
| 3069 | |
| 3070 | PG_RETURN_BOOL(result >= 0); |
| 3071 | } |
| 3072 | |
| 3073 | |
| 3074 | Datum |
| 3075 | text_pattern_gt(PG_FUNCTION_ARGS) |
| 3076 | { |
| 3077 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 3078 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 3079 | int result; |
| 3080 | |
| 3081 | result = internal_text_pattern_compare(arg1, arg2); |
| 3082 | |
| 3083 | PG_FREE_IF_COPY(arg1, 0); |
| 3084 | PG_FREE_IF_COPY(arg2, 1); |
| 3085 | |
| 3086 | PG_RETURN_BOOL(result > 0); |
| 3087 | } |
| 3088 | |
| 3089 | |
| 3090 | Datum |
| 3091 | bttext_pattern_cmp(PG_FUNCTION_ARGS) |
| 3092 | { |
| 3093 | text *arg1 = PG_GETARG_TEXT_PP(0); |
| 3094 | text *arg2 = PG_GETARG_TEXT_PP(1); |
| 3095 | int result; |
| 3096 | |
| 3097 | result = internal_text_pattern_compare(arg1, arg2); |
| 3098 | |
| 3099 | PG_FREE_IF_COPY(arg1, 0); |
| 3100 | PG_FREE_IF_COPY(arg2, 1); |
| 3101 | |
| 3102 | PG_RETURN_INT32(result); |
| 3103 | } |
| 3104 | |
| 3105 | |
| 3106 | Datum |
| 3107 | bttext_pattern_sortsupport(PG_FUNCTION_ARGS) |
| 3108 | { |
| 3109 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 3110 | MemoryContext oldcontext; |
| 3111 | |
| 3112 | oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt); |
| 3113 | |
| 3114 | /* Use generic string SortSupport, forcing "C" collation */ |
| 3115 | varstr_sortsupport(ssup, TEXTOID, C_COLLATION_OID); |
| 3116 | |
| 3117 | MemoryContextSwitchTo(oldcontext); |
| 3118 | |
| 3119 | PG_RETURN_VOID(); |
| 3120 | } |
| 3121 | |
| 3122 | |
| 3123 | /*------------------------------------------------------------- |
| 3124 | * byteaoctetlen |
| 3125 | * |
| 3126 | * get the number of bytes contained in an instance of type 'bytea' |
| 3127 | *------------------------------------------------------------- |
| 3128 | */ |
| 3129 | Datum |
| 3130 | byteaoctetlen(PG_FUNCTION_ARGS) |
| 3131 | { |
| 3132 | Datum str = PG_GETARG_DATUM(0); |
| 3133 | |
| 3134 | /* We need not detoast the input at all */ |
| 3135 | PG_RETURN_INT32(toast_raw_datum_size(str) - VARHDRSZ); |
| 3136 | } |
| 3137 | |
| 3138 | /* |
| 3139 | * byteacat - |
| 3140 | * takes two bytea* and returns a bytea* that is the concatenation of |
| 3141 | * the two. |
| 3142 | * |
| 3143 | * Cloned from textcat and modified as required. |
| 3144 | */ |
| 3145 | Datum |
| 3146 | byteacat(PG_FUNCTION_ARGS) |
| 3147 | { |
| 3148 | bytea *t1 = PG_GETARG_BYTEA_PP(0); |
| 3149 | bytea *t2 = PG_GETARG_BYTEA_PP(1); |
| 3150 | |
| 3151 | PG_RETURN_BYTEA_P(bytea_catenate(t1, t2)); |
| 3152 | } |
| 3153 | |
| 3154 | /* |
| 3155 | * bytea_catenate |
| 3156 | * Guts of byteacat(), broken out so it can be used by other functions |
| 3157 | * |
| 3158 | * Arguments can be in short-header form, but not compressed or out-of-line |
| 3159 | */ |
| 3160 | static bytea * |
| 3161 | bytea_catenate(bytea *t1, bytea *t2) |
| 3162 | { |
| 3163 | bytea *result; |
| 3164 | int len1, |
| 3165 | len2, |
| 3166 | len; |
| 3167 | char *ptr; |
| 3168 | |
| 3169 | len1 = VARSIZE_ANY_EXHDR(t1); |
| 3170 | len2 = VARSIZE_ANY_EXHDR(t2); |
| 3171 | |
| 3172 | /* paranoia ... probably should throw error instead? */ |
| 3173 | if (len1 < 0) |
| 3174 | len1 = 0; |
| 3175 | if (len2 < 0) |
| 3176 | len2 = 0; |
| 3177 | |
| 3178 | len = len1 + len2 + VARHDRSZ; |
| 3179 | result = (bytea *) palloc(len); |
| 3180 | |
| 3181 | /* Set size of result string... */ |
| 3182 | SET_VARSIZE(result, len); |
| 3183 | |
| 3184 | /* Fill data field of result string... */ |
| 3185 | ptr = VARDATA(result); |
| 3186 | if (len1 > 0) |
| 3187 | memcpy(ptr, VARDATA_ANY(t1), len1); |
| 3188 | if (len2 > 0) |
| 3189 | memcpy(ptr + len1, VARDATA_ANY(t2), len2); |
| 3190 | |
| 3191 | return result; |
| 3192 | } |
| 3193 | |
| 3194 | #define PG_STR_GET_BYTEA(str_) \ |
| 3195 | DatumGetByteaPP(DirectFunctionCall1(byteain, CStringGetDatum(str_))) |
| 3196 | |
| 3197 | /* |
| 3198 | * bytea_substr() |
| 3199 | * Return a substring starting at the specified position. |
| 3200 | * Cloned from text_substr and modified as required. |
| 3201 | * |
| 3202 | * Input: |
| 3203 | * - string |
| 3204 | * - starting position (is one-based) |
| 3205 | * - string length (optional) |
| 3206 | * |
| 3207 | * If the starting position is zero or less, then return from the start of the string |
| 3208 | * adjusting the length to be consistent with the "negative start" per SQL. |
| 3209 | * If the length is less than zero, an ERROR is thrown. If no third argument |
| 3210 | * (length) is provided, the length to the end of the string is assumed. |
| 3211 | */ |
| 3212 | Datum |
| 3213 | bytea_substr(PG_FUNCTION_ARGS) |
| 3214 | { |
| 3215 | PG_RETURN_BYTEA_P(bytea_substring(PG_GETARG_DATUM(0), |
| 3216 | PG_GETARG_INT32(1), |
| 3217 | PG_GETARG_INT32(2), |
| 3218 | false)); |
| 3219 | } |
| 3220 | |
| 3221 | /* |
| 3222 | * bytea_substr_no_len - |
| 3223 | * Wrapper to avoid opr_sanity failure due to |
| 3224 | * one function accepting a different number of args. |
| 3225 | */ |
| 3226 | Datum |
| 3227 | bytea_substr_no_len(PG_FUNCTION_ARGS) |
| 3228 | { |
| 3229 | PG_RETURN_BYTEA_P(bytea_substring(PG_GETARG_DATUM(0), |
| 3230 | PG_GETARG_INT32(1), |
| 3231 | -1, |
| 3232 | true)); |
| 3233 | } |
| 3234 | |
| 3235 | static bytea * |
| 3236 | bytea_substring(Datum str, |
| 3237 | int S, |
| 3238 | int L, |
| 3239 | bool length_not_specified) |
| 3240 | { |
| 3241 | int S1; /* adjusted start position */ |
| 3242 | int L1; /* adjusted substring length */ |
| 3243 | |
| 3244 | S1 = Max(S, 1); |
| 3245 | |
| 3246 | if (length_not_specified) |
| 3247 | { |
| 3248 | /* |
| 3249 | * Not passed a length - DatumGetByteaPSlice() grabs everything to the |
| 3250 | * end of the string if we pass it a negative value for length. |
| 3251 | */ |
| 3252 | L1 = -1; |
| 3253 | } |
| 3254 | else |
| 3255 | { |
| 3256 | /* end position */ |
| 3257 | int E = S + L; |
| 3258 | |
| 3259 | /* |
| 3260 | * A negative value for L is the only way for the end position to be |
| 3261 | * before the start. SQL99 says to throw an error. |
| 3262 | */ |
| 3263 | if (E < S) |
| 3264 | ereport(ERROR, |
| 3265 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 3266 | errmsg("negative substring length not allowed" ))); |
| 3267 | |
| 3268 | /* |
| 3269 | * A zero or negative value for the end position can happen if the |
| 3270 | * start was negative or one. SQL99 says to return a zero-length |
| 3271 | * string. |
| 3272 | */ |
| 3273 | if (E < 1) |
| 3274 | return PG_STR_GET_BYTEA("" ); |
| 3275 | |
| 3276 | L1 = E - S1; |
| 3277 | } |
| 3278 | |
| 3279 | /* |
| 3280 | * If the start position is past the end of the string, SQL99 says to |
| 3281 | * return a zero-length string -- DatumGetByteaPSlice() will do that for |
| 3282 | * us. Convert to zero-based starting position |
| 3283 | */ |
| 3284 | return DatumGetByteaPSlice(str, S1 - 1, L1); |
| 3285 | } |
| 3286 | |
| 3287 | /* |
| 3288 | * byteaoverlay |
| 3289 | * Replace specified substring of first string with second |
| 3290 | * |
| 3291 | * The SQL standard defines OVERLAY() in terms of substring and concatenation. |
| 3292 | * This code is a direct implementation of what the standard says. |
| 3293 | */ |
| 3294 | Datum |
| 3295 | byteaoverlay(PG_FUNCTION_ARGS) |
| 3296 | { |
| 3297 | bytea *t1 = PG_GETARG_BYTEA_PP(0); |
| 3298 | bytea *t2 = PG_GETARG_BYTEA_PP(1); |
| 3299 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 3300 | int sl = PG_GETARG_INT32(3); /* substring length */ |
| 3301 | |
| 3302 | PG_RETURN_BYTEA_P(bytea_overlay(t1, t2, sp, sl)); |
| 3303 | } |
| 3304 | |
| 3305 | Datum |
| 3306 | byteaoverlay_no_len(PG_FUNCTION_ARGS) |
| 3307 | { |
| 3308 | bytea *t1 = PG_GETARG_BYTEA_PP(0); |
| 3309 | bytea *t2 = PG_GETARG_BYTEA_PP(1); |
| 3310 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 3311 | int sl; |
| 3312 | |
| 3313 | sl = VARSIZE_ANY_EXHDR(t2); /* defaults to length(t2) */ |
| 3314 | PG_RETURN_BYTEA_P(bytea_overlay(t1, t2, sp, sl)); |
| 3315 | } |
| 3316 | |
| 3317 | static bytea * |
| 3318 | bytea_overlay(bytea *t1, bytea *t2, int sp, int sl) |
| 3319 | { |
| 3320 | bytea *result; |
| 3321 | bytea *s1; |
| 3322 | bytea *s2; |
| 3323 | int sp_pl_sl; |
| 3324 | |
| 3325 | /* |
| 3326 | * Check for possible integer-overflow cases. For negative sp, throw a |
| 3327 | * "substring length" error because that's what should be expected |
| 3328 | * according to the spec's definition of OVERLAY(). |
| 3329 | */ |
| 3330 | if (sp <= 0) |
| 3331 | ereport(ERROR, |
| 3332 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 3333 | errmsg("negative substring length not allowed" ))); |
| 3334 | if (pg_add_s32_overflow(sp, sl, &sp_pl_sl)) |
| 3335 | ereport(ERROR, |
| 3336 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3337 | errmsg("integer out of range" ))); |
| 3338 | |
| 3339 | s1 = bytea_substring(PointerGetDatum(t1), 1, sp - 1, false); |
| 3340 | s2 = bytea_substring(PointerGetDatum(t1), sp_pl_sl, -1, true); |
| 3341 | result = bytea_catenate(s1, t2); |
| 3342 | result = bytea_catenate(result, s2); |
| 3343 | |
| 3344 | return result; |
| 3345 | } |
| 3346 | |
| 3347 | /* |
| 3348 | * byteapos - |
| 3349 | * Return the position of the specified substring. |
| 3350 | * Implements the SQL POSITION() function. |
| 3351 | * Cloned from textpos and modified as required. |
| 3352 | */ |
| 3353 | Datum |
| 3354 | byteapos(PG_FUNCTION_ARGS) |
| 3355 | { |
| 3356 | bytea *t1 = PG_GETARG_BYTEA_PP(0); |
| 3357 | bytea *t2 = PG_GETARG_BYTEA_PP(1); |
| 3358 | int pos; |
| 3359 | int px, |
| 3360 | p; |
| 3361 | int len1, |
| 3362 | len2; |
| 3363 | char *p1, |
| 3364 | *p2; |
| 3365 | |
| 3366 | len1 = VARSIZE_ANY_EXHDR(t1); |
| 3367 | len2 = VARSIZE_ANY_EXHDR(t2); |
| 3368 | |
| 3369 | if (len2 <= 0) |
| 3370 | PG_RETURN_INT32(1); /* result for empty pattern */ |
| 3371 | |
| 3372 | p1 = VARDATA_ANY(t1); |
| 3373 | p2 = VARDATA_ANY(t2); |
| 3374 | |
| 3375 | pos = 0; |
| 3376 | px = (len1 - len2); |
| 3377 | for (p = 0; p <= px; p++) |
| 3378 | { |
| 3379 | if ((*p2 == *p1) && (memcmp(p1, p2, len2) == 0)) |
| 3380 | { |
| 3381 | pos = p + 1; |
| 3382 | break; |
| 3383 | }; |
| 3384 | p1++; |
| 3385 | }; |
| 3386 | |
| 3387 | PG_RETURN_INT32(pos); |
| 3388 | } |
| 3389 | |
| 3390 | /*------------------------------------------------------------- |
| 3391 | * byteaGetByte |
| 3392 | * |
| 3393 | * this routine treats "bytea" as an array of bytes. |
| 3394 | * It returns the Nth byte (a number between 0 and 255). |
| 3395 | *------------------------------------------------------------- |
| 3396 | */ |
| 3397 | Datum |
| 3398 | byteaGetByte(PG_FUNCTION_ARGS) |
| 3399 | { |
| 3400 | bytea *v = PG_GETARG_BYTEA_PP(0); |
| 3401 | int32 n = PG_GETARG_INT32(1); |
| 3402 | int len; |
| 3403 | int byte; |
| 3404 | |
| 3405 | len = VARSIZE_ANY_EXHDR(v); |
| 3406 | |
| 3407 | if (n < 0 || n >= len) |
| 3408 | ereport(ERROR, |
| 3409 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 3410 | errmsg("index %d out of valid range, 0..%d" , |
| 3411 | n, len - 1))); |
| 3412 | |
| 3413 | byte = ((unsigned char *) VARDATA_ANY(v))[n]; |
| 3414 | |
| 3415 | PG_RETURN_INT32(byte); |
| 3416 | } |
| 3417 | |
| 3418 | /*------------------------------------------------------------- |
| 3419 | * byteaGetBit |
| 3420 | * |
| 3421 | * This routine treats a "bytea" type like an array of bits. |
| 3422 | * It returns the value of the Nth bit (0 or 1). |
| 3423 | * |
| 3424 | *------------------------------------------------------------- |
| 3425 | */ |
| 3426 | Datum |
| 3427 | byteaGetBit(PG_FUNCTION_ARGS) |
| 3428 | { |
| 3429 | bytea *v = PG_GETARG_BYTEA_PP(0); |
| 3430 | int32 n = PG_GETARG_INT32(1); |
| 3431 | int byteNo, |
| 3432 | bitNo; |
| 3433 | int len; |
| 3434 | int byte; |
| 3435 | |
| 3436 | len = VARSIZE_ANY_EXHDR(v); |
| 3437 | |
| 3438 | if (n < 0 || n >= len * 8) |
| 3439 | ereport(ERROR, |
| 3440 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 3441 | errmsg("index %d out of valid range, 0..%d" , |
| 3442 | n, len * 8 - 1))); |
| 3443 | |
| 3444 | byteNo = n / 8; |
| 3445 | bitNo = n % 8; |
| 3446 | |
| 3447 | byte = ((unsigned char *) VARDATA_ANY(v))[byteNo]; |
| 3448 | |
| 3449 | if (byte & (1 << bitNo)) |
| 3450 | PG_RETURN_INT32(1); |
| 3451 | else |
| 3452 | PG_RETURN_INT32(0); |
| 3453 | } |
| 3454 | |
| 3455 | /*------------------------------------------------------------- |
| 3456 | * byteaSetByte |
| 3457 | * |
| 3458 | * Given an instance of type 'bytea' creates a new one with |
| 3459 | * the Nth byte set to the given value. |
| 3460 | * |
| 3461 | *------------------------------------------------------------- |
| 3462 | */ |
| 3463 | Datum |
| 3464 | byteaSetByte(PG_FUNCTION_ARGS) |
| 3465 | { |
| 3466 | bytea *res = PG_GETARG_BYTEA_P_COPY(0); |
| 3467 | int32 n = PG_GETARG_INT32(1); |
| 3468 | int32 newByte = PG_GETARG_INT32(2); |
| 3469 | int len; |
| 3470 | |
| 3471 | len = VARSIZE(res) - VARHDRSZ; |
| 3472 | |
| 3473 | if (n < 0 || n >= len) |
| 3474 | ereport(ERROR, |
| 3475 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 3476 | errmsg("index %d out of valid range, 0..%d" , |
| 3477 | n, len - 1))); |
| 3478 | |
| 3479 | /* |
| 3480 | * Now set the byte. |
| 3481 | */ |
| 3482 | ((unsigned char *) VARDATA(res))[n] = newByte; |
| 3483 | |
| 3484 | PG_RETURN_BYTEA_P(res); |
| 3485 | } |
| 3486 | |
| 3487 | /*------------------------------------------------------------- |
| 3488 | * byteaSetBit |
| 3489 | * |
| 3490 | * Given an instance of type 'bytea' creates a new one with |
| 3491 | * the Nth bit set to the given value. |
| 3492 | * |
| 3493 | *------------------------------------------------------------- |
| 3494 | */ |
| 3495 | Datum |
| 3496 | byteaSetBit(PG_FUNCTION_ARGS) |
| 3497 | { |
| 3498 | bytea *res = PG_GETARG_BYTEA_P_COPY(0); |
| 3499 | int32 n = PG_GETARG_INT32(1); |
| 3500 | int32 newBit = PG_GETARG_INT32(2); |
| 3501 | int len; |
| 3502 | int oldByte, |
| 3503 | newByte; |
| 3504 | int byteNo, |
| 3505 | bitNo; |
| 3506 | |
| 3507 | len = VARSIZE(res) - VARHDRSZ; |
| 3508 | |
| 3509 | if (n < 0 || n >= len * 8) |
| 3510 | ereport(ERROR, |
| 3511 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 3512 | errmsg("index %d out of valid range, 0..%d" , |
| 3513 | n, len * 8 - 1))); |
| 3514 | |
| 3515 | byteNo = n / 8; |
| 3516 | bitNo = n % 8; |
| 3517 | |
| 3518 | /* |
| 3519 | * sanity check! |
| 3520 | */ |
| 3521 | if (newBit != 0 && newBit != 1) |
| 3522 | ereport(ERROR, |
| 3523 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 3524 | errmsg("new bit must be 0 or 1" ))); |
| 3525 | |
| 3526 | /* |
| 3527 | * Update the byte. |
| 3528 | */ |
| 3529 | oldByte = ((unsigned char *) VARDATA(res))[byteNo]; |
| 3530 | |
| 3531 | if (newBit == 0) |
| 3532 | newByte = oldByte & (~(1 << bitNo)); |
| 3533 | else |
| 3534 | newByte = oldByte | (1 << bitNo); |
| 3535 | |
| 3536 | ((unsigned char *) VARDATA(res))[byteNo] = newByte; |
| 3537 | |
| 3538 | PG_RETURN_BYTEA_P(res); |
| 3539 | } |
| 3540 | |
| 3541 | |
| 3542 | /* text_name() |
| 3543 | * Converts a text type to a Name type. |
| 3544 | */ |
| 3545 | Datum |
| 3546 | text_name(PG_FUNCTION_ARGS) |
| 3547 | { |
| 3548 | text *s = PG_GETARG_TEXT_PP(0); |
| 3549 | Name result; |
| 3550 | int len; |
| 3551 | |
| 3552 | len = VARSIZE_ANY_EXHDR(s); |
| 3553 | |
| 3554 | /* Truncate oversize input */ |
| 3555 | if (len >= NAMEDATALEN) |
| 3556 | len = pg_mbcliplen(VARDATA_ANY(s), len, NAMEDATALEN - 1); |
| 3557 | |
| 3558 | /* We use palloc0 here to ensure result is zero-padded */ |
| 3559 | result = (Name) palloc0(NAMEDATALEN); |
| 3560 | memcpy(NameStr(*result), VARDATA_ANY(s), len); |
| 3561 | |
| 3562 | PG_RETURN_NAME(result); |
| 3563 | } |
| 3564 | |
| 3565 | /* name_text() |
| 3566 | * Converts a Name type to a text type. |
| 3567 | */ |
| 3568 | Datum |
| 3569 | name_text(PG_FUNCTION_ARGS) |
| 3570 | { |
| 3571 | Name s = PG_GETARG_NAME(0); |
| 3572 | |
| 3573 | PG_RETURN_TEXT_P(cstring_to_text(NameStr(*s))); |
| 3574 | } |
| 3575 | |
| 3576 | |
| 3577 | /* |
| 3578 | * textToQualifiedNameList - convert a text object to list of names |
| 3579 | * |
| 3580 | * This implements the input parsing needed by nextval() and other |
| 3581 | * functions that take a text parameter representing a qualified name. |
| 3582 | * We split the name at dots, downcase if not double-quoted, and |
| 3583 | * truncate names if they're too long. |
| 3584 | */ |
| 3585 | List * |
| 3586 | textToQualifiedNameList(text *textval) |
| 3587 | { |
| 3588 | char *rawname; |
| 3589 | List *result = NIL; |
| 3590 | List *namelist; |
| 3591 | ListCell *l; |
| 3592 | |
| 3593 | /* Convert to C string (handles possible detoasting). */ |
| 3594 | /* Note we rely on being able to modify rawname below. */ |
| 3595 | rawname = text_to_cstring(textval); |
| 3596 | |
| 3597 | if (!SplitIdentifierString(rawname, '.', &namelist)) |
| 3598 | ereport(ERROR, |
| 3599 | (errcode(ERRCODE_INVALID_NAME), |
| 3600 | errmsg("invalid name syntax" ))); |
| 3601 | |
| 3602 | if (namelist == NIL) |
| 3603 | ereport(ERROR, |
| 3604 | (errcode(ERRCODE_INVALID_NAME), |
| 3605 | errmsg("invalid name syntax" ))); |
| 3606 | |
| 3607 | foreach(l, namelist) |
| 3608 | { |
| 3609 | char *curname = (char *) lfirst(l); |
| 3610 | |
| 3611 | result = lappend(result, makeString(pstrdup(curname))); |
| 3612 | } |
| 3613 | |
| 3614 | pfree(rawname); |
| 3615 | list_free(namelist); |
| 3616 | |
| 3617 | return result; |
| 3618 | } |
| 3619 | |
| 3620 | /* |
| 3621 | * SplitIdentifierString --- parse a string containing identifiers |
| 3622 | * |
| 3623 | * This is the guts of textToQualifiedNameList, and is exported for use in |
| 3624 | * other situations such as parsing GUC variables. In the GUC case, it's |
| 3625 | * important to avoid memory leaks, so the API is designed to minimize the |
| 3626 | * amount of stuff that needs to be allocated and freed. |
| 3627 | * |
| 3628 | * Inputs: |
| 3629 | * rawstring: the input string; must be overwritable! On return, it's |
| 3630 | * been modified to contain the separated identifiers. |
| 3631 | * separator: the separator punctuation expected between identifiers |
| 3632 | * (typically '.' or ','). Whitespace may also appear around |
| 3633 | * identifiers. |
| 3634 | * Outputs: |
| 3635 | * namelist: filled with a palloc'd list of pointers to identifiers within |
| 3636 | * rawstring. Caller should list_free() this even on error return. |
| 3637 | * |
| 3638 | * Returns true if okay, false if there is a syntax error in the string. |
| 3639 | * |
| 3640 | * Note that an empty string is considered okay here, though not in |
| 3641 | * textToQualifiedNameList. |
| 3642 | */ |
| 3643 | bool |
| 3644 | SplitIdentifierString(char *rawstring, char separator, |
| 3645 | List **namelist) |
| 3646 | { |
| 3647 | char *nextp = rawstring; |
| 3648 | bool done = false; |
| 3649 | |
| 3650 | *namelist = NIL; |
| 3651 | |
| 3652 | while (scanner_isspace(*nextp)) |
| 3653 | nextp++; /* skip leading whitespace */ |
| 3654 | |
| 3655 | if (*nextp == '\0') |
| 3656 | return true; /* allow empty string */ |
| 3657 | |
| 3658 | /* At the top of the loop, we are at start of a new identifier. */ |
| 3659 | do |
| 3660 | { |
| 3661 | char *curname; |
| 3662 | char *endp; |
| 3663 | |
| 3664 | if (*nextp == '"') |
| 3665 | { |
| 3666 | /* Quoted name --- collapse quote-quote pairs, no downcasing */ |
| 3667 | curname = nextp + 1; |
| 3668 | for (;;) |
| 3669 | { |
| 3670 | endp = strchr(nextp + 1, '"'); |
| 3671 | if (endp == NULL) |
| 3672 | return false; /* mismatched quotes */ |
| 3673 | if (endp[1] != '"') |
| 3674 | break; /* found end of quoted name */ |
| 3675 | /* Collapse adjacent quotes into one quote, and look again */ |
| 3676 | memmove(endp, endp + 1, strlen(endp)); |
| 3677 | nextp = endp; |
| 3678 | } |
| 3679 | /* endp now points at the terminating quote */ |
| 3680 | nextp = endp + 1; |
| 3681 | } |
| 3682 | else |
| 3683 | { |
| 3684 | /* Unquoted name --- extends to separator or whitespace */ |
| 3685 | char *downname; |
| 3686 | int len; |
| 3687 | |
| 3688 | curname = nextp; |
| 3689 | while (*nextp && *nextp != separator && |
| 3690 | !scanner_isspace(*nextp)) |
| 3691 | nextp++; |
| 3692 | endp = nextp; |
| 3693 | if (curname == nextp) |
| 3694 | return false; /* empty unquoted name not allowed */ |
| 3695 | |
| 3696 | /* |
| 3697 | * Downcase the identifier, using same code as main lexer does. |
| 3698 | * |
| 3699 | * XXX because we want to overwrite the input in-place, we cannot |
| 3700 | * support a downcasing transformation that increases the string |
| 3701 | * length. This is not a problem given the current implementation |
| 3702 | * of downcase_truncate_identifier, but we'll probably have to do |
| 3703 | * something about this someday. |
| 3704 | */ |
| 3705 | len = endp - curname; |
| 3706 | downname = downcase_truncate_identifier(curname, len, false); |
| 3707 | Assert(strlen(downname) <= len); |
| 3708 | strncpy(curname, downname, len); /* strncpy is required here */ |
| 3709 | pfree(downname); |
| 3710 | } |
| 3711 | |
| 3712 | while (scanner_isspace(*nextp)) |
| 3713 | nextp++; /* skip trailing whitespace */ |
| 3714 | |
| 3715 | if (*nextp == separator) |
| 3716 | { |
| 3717 | nextp++; |
| 3718 | while (scanner_isspace(*nextp)) |
| 3719 | nextp++; /* skip leading whitespace for next */ |
| 3720 | /* we expect another name, so done remains false */ |
| 3721 | } |
| 3722 | else if (*nextp == '\0') |
| 3723 | done = true; |
| 3724 | else |
| 3725 | return false; /* invalid syntax */ |
| 3726 | |
| 3727 | /* Now safe to overwrite separator with a null */ |
| 3728 | *endp = '\0'; |
| 3729 | |
| 3730 | /* Truncate name if it's overlength */ |
| 3731 | truncate_identifier(curname, strlen(curname), false); |
| 3732 | |
| 3733 | /* |
| 3734 | * Finished isolating current name --- add it to list |
| 3735 | */ |
| 3736 | *namelist = lappend(*namelist, curname); |
| 3737 | |
| 3738 | /* Loop back if we didn't reach end of string */ |
| 3739 | } while (!done); |
| 3740 | |
| 3741 | return true; |
| 3742 | } |
| 3743 | |
| 3744 | |
| 3745 | /* |
| 3746 | * SplitDirectoriesString --- parse a string containing file/directory names |
| 3747 | * |
| 3748 | * This works fine on file names too; the function name is historical. |
| 3749 | * |
| 3750 | * This is similar to SplitIdentifierString, except that the parsing |
| 3751 | * rules are meant to handle pathnames instead of identifiers: there is |
| 3752 | * no downcasing, embedded spaces are allowed, the max length is MAXPGPATH-1, |
| 3753 | * and we apply canonicalize_path() to each extracted string. Because of the |
| 3754 | * last, the returned strings are separately palloc'd rather than being |
| 3755 | * pointers into rawstring --- but we still scribble on rawstring. |
| 3756 | * |
| 3757 | * Inputs: |
| 3758 | * rawstring: the input string; must be modifiable! |
| 3759 | * separator: the separator punctuation expected between directories |
| 3760 | * (typically ',' or ';'). Whitespace may also appear around |
| 3761 | * directories. |
| 3762 | * Outputs: |
| 3763 | * namelist: filled with a palloc'd list of directory names. |
| 3764 | * Caller should list_free_deep() this even on error return. |
| 3765 | * |
| 3766 | * Returns true if okay, false if there is a syntax error in the string. |
| 3767 | * |
| 3768 | * Note that an empty string is considered okay here. |
| 3769 | */ |
| 3770 | bool |
| 3771 | SplitDirectoriesString(char *rawstring, char separator, |
| 3772 | List **namelist) |
| 3773 | { |
| 3774 | char *nextp = rawstring; |
| 3775 | bool done = false; |
| 3776 | |
| 3777 | *namelist = NIL; |
| 3778 | |
| 3779 | while (scanner_isspace(*nextp)) |
| 3780 | nextp++; /* skip leading whitespace */ |
| 3781 | |
| 3782 | if (*nextp == '\0') |
| 3783 | return true; /* allow empty string */ |
| 3784 | |
| 3785 | /* At the top of the loop, we are at start of a new directory. */ |
| 3786 | do |
| 3787 | { |
| 3788 | char *curname; |
| 3789 | char *endp; |
| 3790 | |
| 3791 | if (*nextp == '"') |
| 3792 | { |
| 3793 | /* Quoted name --- collapse quote-quote pairs */ |
| 3794 | curname = nextp + 1; |
| 3795 | for (;;) |
| 3796 | { |
| 3797 | endp = strchr(nextp + 1, '"'); |
| 3798 | if (endp == NULL) |
| 3799 | return false; /* mismatched quotes */ |
| 3800 | if (endp[1] != '"') |
| 3801 | break; /* found end of quoted name */ |
| 3802 | /* Collapse adjacent quotes into one quote, and look again */ |
| 3803 | memmove(endp, endp + 1, strlen(endp)); |
| 3804 | nextp = endp; |
| 3805 | } |
| 3806 | /* endp now points at the terminating quote */ |
| 3807 | nextp = endp + 1; |
| 3808 | } |
| 3809 | else |
| 3810 | { |
| 3811 | /* Unquoted name --- extends to separator or end of string */ |
| 3812 | curname = endp = nextp; |
| 3813 | while (*nextp && *nextp != separator) |
| 3814 | { |
| 3815 | /* trailing whitespace should not be included in name */ |
| 3816 | if (!scanner_isspace(*nextp)) |
| 3817 | endp = nextp + 1; |
| 3818 | nextp++; |
| 3819 | } |
| 3820 | if (curname == endp) |
| 3821 | return false; /* empty unquoted name not allowed */ |
| 3822 | } |
| 3823 | |
| 3824 | while (scanner_isspace(*nextp)) |
| 3825 | nextp++; /* skip trailing whitespace */ |
| 3826 | |
| 3827 | if (*nextp == separator) |
| 3828 | { |
| 3829 | nextp++; |
| 3830 | while (scanner_isspace(*nextp)) |
| 3831 | nextp++; /* skip leading whitespace for next */ |
| 3832 | /* we expect another name, so done remains false */ |
| 3833 | } |
| 3834 | else if (*nextp == '\0') |
| 3835 | done = true; |
| 3836 | else |
| 3837 | return false; /* invalid syntax */ |
| 3838 | |
| 3839 | /* Now safe to overwrite separator with a null */ |
| 3840 | *endp = '\0'; |
| 3841 | |
| 3842 | /* Truncate path if it's overlength */ |
| 3843 | if (strlen(curname) >= MAXPGPATH) |
| 3844 | curname[MAXPGPATH - 1] = '\0'; |
| 3845 | |
| 3846 | /* |
| 3847 | * Finished isolating current name --- add it to list |
| 3848 | */ |
| 3849 | curname = pstrdup(curname); |
| 3850 | canonicalize_path(curname); |
| 3851 | *namelist = lappend(*namelist, curname); |
| 3852 | |
| 3853 | /* Loop back if we didn't reach end of string */ |
| 3854 | } while (!done); |
| 3855 | |
| 3856 | return true; |
| 3857 | } |
| 3858 | |
| 3859 | |
| 3860 | /* |
| 3861 | * SplitGUCList --- parse a string containing identifiers or file names |
| 3862 | * |
| 3863 | * This is used to split the value of a GUC_LIST_QUOTE GUC variable, without |
| 3864 | * presuming whether the elements will be taken as identifiers or file names. |
| 3865 | * We assume the input has already been through flatten_set_variable_args(), |
| 3866 | * so that we need never downcase (if appropriate, that was done already). |
| 3867 | * Nor do we ever truncate, since we don't know the correct max length. |
| 3868 | * We disallow embedded whitespace for simplicity (it shouldn't matter, |
| 3869 | * because any embedded whitespace should have led to double-quoting). |
| 3870 | * Otherwise the API is identical to SplitIdentifierString. |
| 3871 | * |
| 3872 | * XXX it's annoying to have so many copies of this string-splitting logic. |
| 3873 | * However, it's not clear that having one function with a bunch of option |
| 3874 | * flags would be much better. |
| 3875 | * |
| 3876 | * XXX there is a version of this function in src/bin/pg_dump/dumputils.c. |
| 3877 | * Be sure to update that if you have to change this. |
| 3878 | * |
| 3879 | * Inputs: |
| 3880 | * rawstring: the input string; must be overwritable! On return, it's |
| 3881 | * been modified to contain the separated identifiers. |
| 3882 | * separator: the separator punctuation expected between identifiers |
| 3883 | * (typically '.' or ','). Whitespace may also appear around |
| 3884 | * identifiers. |
| 3885 | * Outputs: |
| 3886 | * namelist: filled with a palloc'd list of pointers to identifiers within |
| 3887 | * rawstring. Caller should list_free() this even on error return. |
| 3888 | * |
| 3889 | * Returns true if okay, false if there is a syntax error in the string. |
| 3890 | */ |
| 3891 | bool |
| 3892 | SplitGUCList(char *rawstring, char separator, |
| 3893 | List **namelist) |
| 3894 | { |
| 3895 | char *nextp = rawstring; |
| 3896 | bool done = false; |
| 3897 | |
| 3898 | *namelist = NIL; |
| 3899 | |
| 3900 | while (scanner_isspace(*nextp)) |
| 3901 | nextp++; /* skip leading whitespace */ |
| 3902 | |
| 3903 | if (*nextp == '\0') |
| 3904 | return true; /* allow empty string */ |
| 3905 | |
| 3906 | /* At the top of the loop, we are at start of a new identifier. */ |
| 3907 | do |
| 3908 | { |
| 3909 | char *curname; |
| 3910 | char *endp; |
| 3911 | |
| 3912 | if (*nextp == '"') |
| 3913 | { |
| 3914 | /* Quoted name --- collapse quote-quote pairs */ |
| 3915 | curname = nextp + 1; |
| 3916 | for (;;) |
| 3917 | { |
| 3918 | endp = strchr(nextp + 1, '"'); |
| 3919 | if (endp == NULL) |
| 3920 | return false; /* mismatched quotes */ |
| 3921 | if (endp[1] != '"') |
| 3922 | break; /* found end of quoted name */ |
| 3923 | /* Collapse adjacent quotes into one quote, and look again */ |
| 3924 | memmove(endp, endp + 1, strlen(endp)); |
| 3925 | nextp = endp; |
| 3926 | } |
| 3927 | /* endp now points at the terminating quote */ |
| 3928 | nextp = endp + 1; |
| 3929 | } |
| 3930 | else |
| 3931 | { |
| 3932 | /* Unquoted name --- extends to separator or whitespace */ |
| 3933 | curname = nextp; |
| 3934 | while (*nextp && *nextp != separator && |
| 3935 | !scanner_isspace(*nextp)) |
| 3936 | nextp++; |
| 3937 | endp = nextp; |
| 3938 | if (curname == nextp) |
| 3939 | return false; /* empty unquoted name not allowed */ |
| 3940 | } |
| 3941 | |
| 3942 | while (scanner_isspace(*nextp)) |
| 3943 | nextp++; /* skip trailing whitespace */ |
| 3944 | |
| 3945 | if (*nextp == separator) |
| 3946 | { |
| 3947 | nextp++; |
| 3948 | while (scanner_isspace(*nextp)) |
| 3949 | nextp++; /* skip leading whitespace for next */ |
| 3950 | /* we expect another name, so done remains false */ |
| 3951 | } |
| 3952 | else if (*nextp == '\0') |
| 3953 | done = true; |
| 3954 | else |
| 3955 | return false; /* invalid syntax */ |
| 3956 | |
| 3957 | /* Now safe to overwrite separator with a null */ |
| 3958 | *endp = '\0'; |
| 3959 | |
| 3960 | /* |
| 3961 | * Finished isolating current name --- add it to list |
| 3962 | */ |
| 3963 | *namelist = lappend(*namelist, curname); |
| 3964 | |
| 3965 | /* Loop back if we didn't reach end of string */ |
| 3966 | } while (!done); |
| 3967 | |
| 3968 | return true; |
| 3969 | } |
| 3970 | |
| 3971 | |
| 3972 | /***************************************************************************** |
| 3973 | * Comparison Functions used for bytea |
| 3974 | * |
| 3975 | * Note: btree indexes need these routines not to leak memory; therefore, |
| 3976 | * be careful to free working copies of toasted datums. Most places don't |
| 3977 | * need to be so careful. |
| 3978 | *****************************************************************************/ |
| 3979 | |
| 3980 | Datum |
| 3981 | byteaeq(PG_FUNCTION_ARGS) |
| 3982 | { |
| 3983 | Datum arg1 = PG_GETARG_DATUM(0); |
| 3984 | Datum arg2 = PG_GETARG_DATUM(1); |
| 3985 | bool result; |
| 3986 | Size len1, |
| 3987 | len2; |
| 3988 | |
| 3989 | /* |
| 3990 | * We can use a fast path for unequal lengths, which might save us from |
| 3991 | * having to detoast one or both values. |
| 3992 | */ |
| 3993 | len1 = toast_raw_datum_size(arg1); |
| 3994 | len2 = toast_raw_datum_size(arg2); |
| 3995 | if (len1 != len2) |
| 3996 | result = false; |
| 3997 | else |
| 3998 | { |
| 3999 | bytea *barg1 = DatumGetByteaPP(arg1); |
| 4000 | bytea *barg2 = DatumGetByteaPP(arg2); |
| 4001 | |
| 4002 | result = (memcmp(VARDATA_ANY(barg1), VARDATA_ANY(barg2), |
| 4003 | len1 - VARHDRSZ) == 0); |
| 4004 | |
| 4005 | PG_FREE_IF_COPY(barg1, 0); |
| 4006 | PG_FREE_IF_COPY(barg2, 1); |
| 4007 | } |
| 4008 | |
| 4009 | PG_RETURN_BOOL(result); |
| 4010 | } |
| 4011 | |
| 4012 | Datum |
| 4013 | byteane(PG_FUNCTION_ARGS) |
| 4014 | { |
| 4015 | Datum arg1 = PG_GETARG_DATUM(0); |
| 4016 | Datum arg2 = PG_GETARG_DATUM(1); |
| 4017 | bool result; |
| 4018 | Size len1, |
| 4019 | len2; |
| 4020 | |
| 4021 | /* |
| 4022 | * We can use a fast path for unequal lengths, which might save us from |
| 4023 | * having to detoast one or both values. |
| 4024 | */ |
| 4025 | len1 = toast_raw_datum_size(arg1); |
| 4026 | len2 = toast_raw_datum_size(arg2); |
| 4027 | if (len1 != len2) |
| 4028 | result = true; |
| 4029 | else |
| 4030 | { |
| 4031 | bytea *barg1 = DatumGetByteaPP(arg1); |
| 4032 | bytea *barg2 = DatumGetByteaPP(arg2); |
| 4033 | |
| 4034 | result = (memcmp(VARDATA_ANY(barg1), VARDATA_ANY(barg2), |
| 4035 | len1 - VARHDRSZ) != 0); |
| 4036 | |
| 4037 | PG_FREE_IF_COPY(barg1, 0); |
| 4038 | PG_FREE_IF_COPY(barg2, 1); |
| 4039 | } |
| 4040 | |
| 4041 | PG_RETURN_BOOL(result); |
| 4042 | } |
| 4043 | |
| 4044 | Datum |
| 4045 | bytealt(PG_FUNCTION_ARGS) |
| 4046 | { |
| 4047 | bytea *arg1 = PG_GETARG_BYTEA_PP(0); |
| 4048 | bytea *arg2 = PG_GETARG_BYTEA_PP(1); |
| 4049 | int len1, |
| 4050 | len2; |
| 4051 | int cmp; |
| 4052 | |
| 4053 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 4054 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 4055 | |
| 4056 | cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 4057 | |
| 4058 | PG_FREE_IF_COPY(arg1, 0); |
| 4059 | PG_FREE_IF_COPY(arg2, 1); |
| 4060 | |
| 4061 | PG_RETURN_BOOL((cmp < 0) || ((cmp == 0) && (len1 < len2))); |
| 4062 | } |
| 4063 | |
| 4064 | Datum |
| 4065 | byteale(PG_FUNCTION_ARGS) |
| 4066 | { |
| 4067 | bytea *arg1 = PG_GETARG_BYTEA_PP(0); |
| 4068 | bytea *arg2 = PG_GETARG_BYTEA_PP(1); |
| 4069 | int len1, |
| 4070 | len2; |
| 4071 | int cmp; |
| 4072 | |
| 4073 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 4074 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 4075 | |
| 4076 | cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 4077 | |
| 4078 | PG_FREE_IF_COPY(arg1, 0); |
| 4079 | PG_FREE_IF_COPY(arg2, 1); |
| 4080 | |
| 4081 | PG_RETURN_BOOL((cmp < 0) || ((cmp == 0) && (len1 <= len2))); |
| 4082 | } |
| 4083 | |
| 4084 | Datum |
| 4085 | byteagt(PG_FUNCTION_ARGS) |
| 4086 | { |
| 4087 | bytea *arg1 = PG_GETARG_BYTEA_PP(0); |
| 4088 | bytea *arg2 = PG_GETARG_BYTEA_PP(1); |
| 4089 | int len1, |
| 4090 | len2; |
| 4091 | int cmp; |
| 4092 | |
| 4093 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 4094 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 4095 | |
| 4096 | cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 4097 | |
| 4098 | PG_FREE_IF_COPY(arg1, 0); |
| 4099 | PG_FREE_IF_COPY(arg2, 1); |
| 4100 | |
| 4101 | PG_RETURN_BOOL((cmp > 0) || ((cmp == 0) && (len1 > len2))); |
| 4102 | } |
| 4103 | |
| 4104 | Datum |
| 4105 | byteage(PG_FUNCTION_ARGS) |
| 4106 | { |
| 4107 | bytea *arg1 = PG_GETARG_BYTEA_PP(0); |
| 4108 | bytea *arg2 = PG_GETARG_BYTEA_PP(1); |
| 4109 | int len1, |
| 4110 | len2; |
| 4111 | int cmp; |
| 4112 | |
| 4113 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 4114 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 4115 | |
| 4116 | cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 4117 | |
| 4118 | PG_FREE_IF_COPY(arg1, 0); |
| 4119 | PG_FREE_IF_COPY(arg2, 1); |
| 4120 | |
| 4121 | PG_RETURN_BOOL((cmp > 0) || ((cmp == 0) && (len1 >= len2))); |
| 4122 | } |
| 4123 | |
| 4124 | Datum |
| 4125 | byteacmp(PG_FUNCTION_ARGS) |
| 4126 | { |
| 4127 | bytea *arg1 = PG_GETARG_BYTEA_PP(0); |
| 4128 | bytea *arg2 = PG_GETARG_BYTEA_PP(1); |
| 4129 | int len1, |
| 4130 | len2; |
| 4131 | int cmp; |
| 4132 | |
| 4133 | len1 = VARSIZE_ANY_EXHDR(arg1); |
| 4134 | len2 = VARSIZE_ANY_EXHDR(arg2); |
| 4135 | |
| 4136 | cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2)); |
| 4137 | if ((cmp == 0) && (len1 != len2)) |
| 4138 | cmp = (len1 < len2) ? -1 : 1; |
| 4139 | |
| 4140 | PG_FREE_IF_COPY(arg1, 0); |
| 4141 | PG_FREE_IF_COPY(arg2, 1); |
| 4142 | |
| 4143 | PG_RETURN_INT32(cmp); |
| 4144 | } |
| 4145 | |
| 4146 | Datum |
| 4147 | bytea_sortsupport(PG_FUNCTION_ARGS) |
| 4148 | { |
| 4149 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 4150 | MemoryContext oldcontext; |
| 4151 | |
| 4152 | oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt); |
| 4153 | |
| 4154 | /* Use generic string SortSupport, forcing "C" collation */ |
| 4155 | varstr_sortsupport(ssup, BYTEAOID, C_COLLATION_OID); |
| 4156 | |
| 4157 | MemoryContextSwitchTo(oldcontext); |
| 4158 | |
| 4159 | PG_RETURN_VOID(); |
| 4160 | } |
| 4161 | |
| 4162 | /* |
| 4163 | * appendStringInfoText |
| 4164 | * |
| 4165 | * Append a text to str. |
| 4166 | * Like appendStringInfoString(str, text_to_cstring(t)) but faster. |
| 4167 | */ |
| 4168 | static void |
| 4169 | appendStringInfoText(StringInfo str, const text *t) |
| 4170 | { |
| 4171 | appendBinaryStringInfo(str, VARDATA_ANY(t), VARSIZE_ANY_EXHDR(t)); |
| 4172 | } |
| 4173 | |
| 4174 | /* |
| 4175 | * replace_text |
| 4176 | * replace all occurrences of 'old_sub_str' in 'orig_str' |
| 4177 | * with 'new_sub_str' to form 'new_str' |
| 4178 | * |
| 4179 | * returns 'orig_str' if 'old_sub_str' == '' or 'orig_str' == '' |
| 4180 | * otherwise returns 'new_str' |
| 4181 | */ |
| 4182 | Datum |
| 4183 | replace_text(PG_FUNCTION_ARGS) |
| 4184 | { |
| 4185 | text *src_text = PG_GETARG_TEXT_PP(0); |
| 4186 | text *from_sub_text = PG_GETARG_TEXT_PP(1); |
| 4187 | text *to_sub_text = PG_GETARG_TEXT_PP(2); |
| 4188 | int src_text_len; |
| 4189 | int from_sub_text_len; |
| 4190 | TextPositionState state; |
| 4191 | text *ret_text; |
| 4192 | int chunk_len; |
| 4193 | char *curr_ptr; |
| 4194 | char *start_ptr; |
| 4195 | StringInfoData str; |
| 4196 | bool found; |
| 4197 | |
| 4198 | src_text_len = VARSIZE_ANY_EXHDR(src_text); |
| 4199 | from_sub_text_len = VARSIZE_ANY_EXHDR(from_sub_text); |
| 4200 | |
| 4201 | /* Return unmodified source string if empty source or pattern */ |
| 4202 | if (src_text_len < 1 || from_sub_text_len < 1) |
| 4203 | { |
| 4204 | PG_RETURN_TEXT_P(src_text); |
| 4205 | } |
| 4206 | |
| 4207 | text_position_setup(src_text, from_sub_text, PG_GET_COLLATION(), &state); |
| 4208 | |
| 4209 | found = text_position_next(&state); |
| 4210 | |
| 4211 | /* When the from_sub_text is not found, there is nothing to do. */ |
| 4212 | if (!found) |
| 4213 | { |
| 4214 | text_position_cleanup(&state); |
| 4215 | PG_RETURN_TEXT_P(src_text); |
| 4216 | } |
| 4217 | curr_ptr = text_position_get_match_ptr(&state); |
| 4218 | start_ptr = VARDATA_ANY(src_text); |
| 4219 | |
| 4220 | initStringInfo(&str); |
| 4221 | |
| 4222 | do |
| 4223 | { |
| 4224 | CHECK_FOR_INTERRUPTS(); |
| 4225 | |
| 4226 | /* copy the data skipped over by last text_position_next() */ |
| 4227 | chunk_len = curr_ptr - start_ptr; |
| 4228 | appendBinaryStringInfo(&str, start_ptr, chunk_len); |
| 4229 | |
| 4230 | appendStringInfoText(&str, to_sub_text); |
| 4231 | |
| 4232 | start_ptr = curr_ptr + from_sub_text_len; |
| 4233 | |
| 4234 | found = text_position_next(&state); |
| 4235 | if (found) |
| 4236 | curr_ptr = text_position_get_match_ptr(&state); |
| 4237 | } |
| 4238 | while (found); |
| 4239 | |
| 4240 | /* copy trailing data */ |
| 4241 | chunk_len = ((char *) src_text + VARSIZE_ANY(src_text)) - start_ptr; |
| 4242 | appendBinaryStringInfo(&str, start_ptr, chunk_len); |
| 4243 | |
| 4244 | text_position_cleanup(&state); |
| 4245 | |
| 4246 | ret_text = cstring_to_text_with_len(str.data, str.len); |
| 4247 | pfree(str.data); |
| 4248 | |
| 4249 | PG_RETURN_TEXT_P(ret_text); |
| 4250 | } |
| 4251 | |
| 4252 | /* |
| 4253 | * check_replace_text_has_escape_char |
| 4254 | * |
| 4255 | * check whether replace_text contains escape char. |
| 4256 | */ |
| 4257 | static bool |
| 4258 | check_replace_text_has_escape_char(const text *replace_text) |
| 4259 | { |
| 4260 | const char *p = VARDATA_ANY(replace_text); |
| 4261 | const char *p_end = p + VARSIZE_ANY_EXHDR(replace_text); |
| 4262 | |
| 4263 | if (pg_database_encoding_max_length() == 1) |
| 4264 | { |
| 4265 | for (; p < p_end; p++) |
| 4266 | { |
| 4267 | if (*p == '\\') |
| 4268 | return true; |
| 4269 | } |
| 4270 | } |
| 4271 | else |
| 4272 | { |
| 4273 | for (; p < p_end; p += pg_mblen(p)) |
| 4274 | { |
| 4275 | if (*p == '\\') |
| 4276 | return true; |
| 4277 | } |
| 4278 | } |
| 4279 | |
| 4280 | return false; |
| 4281 | } |
| 4282 | |
| 4283 | /* |
| 4284 | * appendStringInfoRegexpSubstr |
| 4285 | * |
| 4286 | * Append replace_text to str, substituting regexp back references for |
| 4287 | * \n escapes. start_ptr is the start of the match in the source string, |
| 4288 | * at logical character position data_pos. |
| 4289 | */ |
| 4290 | static void |
| 4291 | appendStringInfoRegexpSubstr(StringInfo str, text *replace_text, |
| 4292 | regmatch_t *pmatch, |
| 4293 | char *start_ptr, int data_pos) |
| 4294 | { |
| 4295 | const char *p = VARDATA_ANY(replace_text); |
| 4296 | const char *p_end = p + VARSIZE_ANY_EXHDR(replace_text); |
| 4297 | int eml = pg_database_encoding_max_length(); |
| 4298 | |
| 4299 | for (;;) |
| 4300 | { |
| 4301 | const char *chunk_start = p; |
| 4302 | int so; |
| 4303 | int eo; |
| 4304 | |
| 4305 | /* Find next escape char. */ |
| 4306 | if (eml == 1) |
| 4307 | { |
| 4308 | for (; p < p_end && *p != '\\'; p++) |
| 4309 | /* nothing */ ; |
| 4310 | } |
| 4311 | else |
| 4312 | { |
| 4313 | for (; p < p_end && *p != '\\'; p += pg_mblen(p)) |
| 4314 | /* nothing */ ; |
| 4315 | } |
| 4316 | |
| 4317 | /* Copy the text we just scanned over, if any. */ |
| 4318 | if (p > chunk_start) |
| 4319 | appendBinaryStringInfo(str, chunk_start, p - chunk_start); |
| 4320 | |
| 4321 | /* Done if at end of string, else advance over escape char. */ |
| 4322 | if (p >= p_end) |
| 4323 | break; |
| 4324 | p++; |
| 4325 | |
| 4326 | if (p >= p_end) |
| 4327 | { |
| 4328 | /* Escape at very end of input. Treat same as unexpected char */ |
| 4329 | appendStringInfoChar(str, '\\'); |
| 4330 | break; |
| 4331 | } |
| 4332 | |
| 4333 | if (*p >= '1' && *p <= '9') |
| 4334 | { |
| 4335 | /* Use the back reference of regexp. */ |
| 4336 | int idx = *p - '0'; |
| 4337 | |
| 4338 | so = pmatch[idx].rm_so; |
| 4339 | eo = pmatch[idx].rm_eo; |
| 4340 | p++; |
| 4341 | } |
| 4342 | else if (*p == '&') |
| 4343 | { |
| 4344 | /* Use the entire matched string. */ |
| 4345 | so = pmatch[0].rm_so; |
| 4346 | eo = pmatch[0].rm_eo; |
| 4347 | p++; |
| 4348 | } |
| 4349 | else if (*p == '\\') |
| 4350 | { |
| 4351 | /* \\ means transfer one \ to output. */ |
| 4352 | appendStringInfoChar(str, '\\'); |
| 4353 | p++; |
| 4354 | continue; |
| 4355 | } |
| 4356 | else |
| 4357 | { |
| 4358 | /* |
| 4359 | * If escape char is not followed by any expected char, just treat |
| 4360 | * it as ordinary data to copy. (XXX would it be better to throw |
| 4361 | * an error?) |
| 4362 | */ |
| 4363 | appendStringInfoChar(str, '\\'); |
| 4364 | continue; |
| 4365 | } |
| 4366 | |
| 4367 | if (so != -1 && eo != -1) |
| 4368 | { |
| 4369 | /* |
| 4370 | * Copy the text that is back reference of regexp. Note so and eo |
| 4371 | * are counted in characters not bytes. |
| 4372 | */ |
| 4373 | char *chunk_start; |
| 4374 | int chunk_len; |
| 4375 | |
| 4376 | Assert(so >= data_pos); |
| 4377 | chunk_start = start_ptr; |
| 4378 | chunk_start += charlen_to_bytelen(chunk_start, so - data_pos); |
| 4379 | chunk_len = charlen_to_bytelen(chunk_start, eo - so); |
| 4380 | appendBinaryStringInfo(str, chunk_start, chunk_len); |
| 4381 | } |
| 4382 | } |
| 4383 | } |
| 4384 | |
| 4385 | #define REGEXP_REPLACE_BACKREF_CNT 10 |
| 4386 | |
| 4387 | /* |
| 4388 | * replace_text_regexp |
| 4389 | * |
| 4390 | * replace text that matches to regexp in src_text to replace_text. |
| 4391 | * |
| 4392 | * Note: to avoid having to include regex.h in builtins.h, we declare |
| 4393 | * the regexp argument as void *, but really it's regex_t *. |
| 4394 | */ |
| 4395 | text * |
| 4396 | replace_text_regexp(text *src_text, void *regexp, |
| 4397 | text *replace_text, bool glob) |
| 4398 | { |
| 4399 | text *ret_text; |
| 4400 | regex_t *re = (regex_t *) regexp; |
| 4401 | int src_text_len = VARSIZE_ANY_EXHDR(src_text); |
| 4402 | StringInfoData buf; |
| 4403 | regmatch_t pmatch[REGEXP_REPLACE_BACKREF_CNT]; |
| 4404 | pg_wchar *data; |
| 4405 | size_t data_len; |
| 4406 | int search_start; |
| 4407 | int data_pos; |
| 4408 | char *start_ptr; |
| 4409 | bool have_escape; |
| 4410 | |
| 4411 | initStringInfo(&buf); |
| 4412 | |
| 4413 | /* Convert data string to wide characters. */ |
| 4414 | data = (pg_wchar *) palloc((src_text_len + 1) * sizeof(pg_wchar)); |
| 4415 | data_len = pg_mb2wchar_with_len(VARDATA_ANY(src_text), data, src_text_len); |
| 4416 | |
| 4417 | /* Check whether replace_text has escape char. */ |
| 4418 | have_escape = check_replace_text_has_escape_char(replace_text); |
| 4419 | |
| 4420 | /* start_ptr points to the data_pos'th character of src_text */ |
| 4421 | start_ptr = (char *) VARDATA_ANY(src_text); |
| 4422 | data_pos = 0; |
| 4423 | |
| 4424 | search_start = 0; |
| 4425 | while (search_start <= data_len) |
| 4426 | { |
| 4427 | int regexec_result; |
| 4428 | |
| 4429 | CHECK_FOR_INTERRUPTS(); |
| 4430 | |
| 4431 | regexec_result = pg_regexec(re, |
| 4432 | data, |
| 4433 | data_len, |
| 4434 | search_start, |
| 4435 | NULL, /* no details */ |
| 4436 | REGEXP_REPLACE_BACKREF_CNT, |
| 4437 | pmatch, |
| 4438 | 0); |
| 4439 | |
| 4440 | if (regexec_result == REG_NOMATCH) |
| 4441 | break; |
| 4442 | |
| 4443 | if (regexec_result != REG_OKAY) |
| 4444 | { |
| 4445 | char errMsg[100]; |
| 4446 | |
| 4447 | CHECK_FOR_INTERRUPTS(); |
| 4448 | pg_regerror(regexec_result, re, errMsg, sizeof(errMsg)); |
| 4449 | ereport(ERROR, |
| 4450 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
| 4451 | errmsg("regular expression failed: %s" , errMsg))); |
| 4452 | } |
| 4453 | |
| 4454 | /* |
| 4455 | * Copy the text to the left of the match position. Note we are given |
| 4456 | * character not byte indexes. |
| 4457 | */ |
| 4458 | if (pmatch[0].rm_so - data_pos > 0) |
| 4459 | { |
| 4460 | int chunk_len; |
| 4461 | |
| 4462 | chunk_len = charlen_to_bytelen(start_ptr, |
| 4463 | pmatch[0].rm_so - data_pos); |
| 4464 | appendBinaryStringInfo(&buf, start_ptr, chunk_len); |
| 4465 | |
| 4466 | /* |
| 4467 | * Advance start_ptr over that text, to avoid multiple rescans of |
| 4468 | * it if the replace_text contains multiple back-references. |
| 4469 | */ |
| 4470 | start_ptr += chunk_len; |
| 4471 | data_pos = pmatch[0].rm_so; |
| 4472 | } |
| 4473 | |
| 4474 | /* |
| 4475 | * Copy the replace_text. Process back references when the |
| 4476 | * replace_text has escape characters. |
| 4477 | */ |
| 4478 | if (have_escape) |
| 4479 | appendStringInfoRegexpSubstr(&buf, replace_text, pmatch, |
| 4480 | start_ptr, data_pos); |
| 4481 | else |
| 4482 | appendStringInfoText(&buf, replace_text); |
| 4483 | |
| 4484 | /* Advance start_ptr and data_pos over the matched text. */ |
| 4485 | start_ptr += charlen_to_bytelen(start_ptr, |
| 4486 | pmatch[0].rm_eo - data_pos); |
| 4487 | data_pos = pmatch[0].rm_eo; |
| 4488 | |
| 4489 | /* |
| 4490 | * When global option is off, replace the first instance only. |
| 4491 | */ |
| 4492 | if (!glob) |
| 4493 | break; |
| 4494 | |
| 4495 | /* |
| 4496 | * Advance search position. Normally we start the next search at the |
| 4497 | * end of the previous match; but if the match was of zero length, we |
| 4498 | * have to advance by one character, or we'd just find the same match |
| 4499 | * again. |
| 4500 | */ |
| 4501 | search_start = data_pos; |
| 4502 | if (pmatch[0].rm_so == pmatch[0].rm_eo) |
| 4503 | search_start++; |
| 4504 | } |
| 4505 | |
| 4506 | /* |
| 4507 | * Copy the text to the right of the last match. |
| 4508 | */ |
| 4509 | if (data_pos < data_len) |
| 4510 | { |
| 4511 | int chunk_len; |
| 4512 | |
| 4513 | chunk_len = ((char *) src_text + VARSIZE_ANY(src_text)) - start_ptr; |
| 4514 | appendBinaryStringInfo(&buf, start_ptr, chunk_len); |
| 4515 | } |
| 4516 | |
| 4517 | ret_text = cstring_to_text_with_len(buf.data, buf.len); |
| 4518 | pfree(buf.data); |
| 4519 | pfree(data); |
| 4520 | |
| 4521 | return ret_text; |
| 4522 | } |
| 4523 | |
| 4524 | /* |
| 4525 | * split_text |
| 4526 | * parse input string |
| 4527 | * return ord item (1 based) |
| 4528 | * based on provided field separator |
| 4529 | */ |
| 4530 | Datum |
| 4531 | split_text(PG_FUNCTION_ARGS) |
| 4532 | { |
| 4533 | text *inputstring = PG_GETARG_TEXT_PP(0); |
| 4534 | text *fldsep = PG_GETARG_TEXT_PP(1); |
| 4535 | int fldnum = PG_GETARG_INT32(2); |
| 4536 | int inputstring_len; |
| 4537 | int fldsep_len; |
| 4538 | TextPositionState state; |
| 4539 | char *start_ptr; |
| 4540 | char *end_ptr; |
| 4541 | text *result_text; |
| 4542 | bool found; |
| 4543 | |
| 4544 | /* field number is 1 based */ |
| 4545 | if (fldnum < 1) |
| 4546 | ereport(ERROR, |
| 4547 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 4548 | errmsg("field position must be greater than zero" ))); |
| 4549 | |
| 4550 | inputstring_len = VARSIZE_ANY_EXHDR(inputstring); |
| 4551 | fldsep_len = VARSIZE_ANY_EXHDR(fldsep); |
| 4552 | |
| 4553 | /* return empty string for empty input string */ |
| 4554 | if (inputstring_len < 1) |
| 4555 | PG_RETURN_TEXT_P(cstring_to_text("" )); |
| 4556 | |
| 4557 | /* empty field separator */ |
| 4558 | if (fldsep_len < 1) |
| 4559 | { |
| 4560 | text_position_cleanup(&state); |
| 4561 | /* if first field, return input string, else empty string */ |
| 4562 | if (fldnum == 1) |
| 4563 | PG_RETURN_TEXT_P(inputstring); |
| 4564 | else |
| 4565 | PG_RETURN_TEXT_P(cstring_to_text("" )); |
| 4566 | } |
| 4567 | |
| 4568 | text_position_setup(inputstring, fldsep, PG_GET_COLLATION(), &state); |
| 4569 | |
| 4570 | /* identify bounds of first field */ |
| 4571 | start_ptr = VARDATA_ANY(inputstring); |
| 4572 | found = text_position_next(&state); |
| 4573 | |
| 4574 | /* special case if fldsep not found at all */ |
| 4575 | if (!found) |
| 4576 | { |
| 4577 | text_position_cleanup(&state); |
| 4578 | /* if field 1 requested, return input string, else empty string */ |
| 4579 | if (fldnum == 1) |
| 4580 | PG_RETURN_TEXT_P(inputstring); |
| 4581 | else |
| 4582 | PG_RETURN_TEXT_P(cstring_to_text("" )); |
| 4583 | } |
| 4584 | end_ptr = text_position_get_match_ptr(&state); |
| 4585 | |
| 4586 | while (found && --fldnum > 0) |
| 4587 | { |
| 4588 | /* identify bounds of next field */ |
| 4589 | start_ptr = end_ptr + fldsep_len; |
| 4590 | found = text_position_next(&state); |
| 4591 | if (found) |
| 4592 | end_ptr = text_position_get_match_ptr(&state); |
| 4593 | } |
| 4594 | |
| 4595 | text_position_cleanup(&state); |
| 4596 | |
| 4597 | if (fldnum > 0) |
| 4598 | { |
| 4599 | /* N'th field separator not found */ |
| 4600 | /* if last field requested, return it, else empty string */ |
| 4601 | if (fldnum == 1) |
| 4602 | { |
| 4603 | int last_len = start_ptr - VARDATA_ANY(inputstring); |
| 4604 | |
| 4605 | result_text = cstring_to_text_with_len(start_ptr, |
| 4606 | inputstring_len - last_len); |
| 4607 | } |
| 4608 | else |
| 4609 | result_text = cstring_to_text("" ); |
| 4610 | } |
| 4611 | else |
| 4612 | { |
| 4613 | /* non-last field requested */ |
| 4614 | result_text = cstring_to_text_with_len(start_ptr, end_ptr - start_ptr); |
| 4615 | } |
| 4616 | |
| 4617 | PG_RETURN_TEXT_P(result_text); |
| 4618 | } |
| 4619 | |
| 4620 | /* |
| 4621 | * Convenience function to return true when two text params are equal. |
| 4622 | */ |
| 4623 | static bool |
| 4624 | text_isequal(text *txt1, text *txt2, Oid collid) |
| 4625 | { |
| 4626 | return DatumGetBool(DirectFunctionCall2Coll(texteq, |
| 4627 | collid, |
| 4628 | PointerGetDatum(txt1), |
| 4629 | PointerGetDatum(txt2))); |
| 4630 | } |
| 4631 | |
| 4632 | /* |
| 4633 | * text_to_array |
| 4634 | * parse input string and return text array of elements, |
| 4635 | * based on provided field separator |
| 4636 | */ |
| 4637 | Datum |
| 4638 | text_to_array(PG_FUNCTION_ARGS) |
| 4639 | { |
| 4640 | return text_to_array_internal(fcinfo); |
| 4641 | } |
| 4642 | |
| 4643 | /* |
| 4644 | * text_to_array_null |
| 4645 | * parse input string and return text array of elements, |
| 4646 | * based on provided field separator and null string |
| 4647 | * |
| 4648 | * This is a separate entry point only to prevent the regression tests from |
| 4649 | * complaining about different argument sets for the same internal function. |
| 4650 | */ |
| 4651 | Datum |
| 4652 | text_to_array_null(PG_FUNCTION_ARGS) |
| 4653 | { |
| 4654 | return text_to_array_internal(fcinfo); |
| 4655 | } |
| 4656 | |
| 4657 | /* |
| 4658 | * common code for text_to_array and text_to_array_null functions |
| 4659 | * |
| 4660 | * These are not strict so we have to test for null inputs explicitly. |
| 4661 | */ |
| 4662 | static Datum |
| 4663 | text_to_array_internal(PG_FUNCTION_ARGS) |
| 4664 | { |
| 4665 | text *inputstring; |
| 4666 | text *fldsep; |
| 4667 | text *null_string; |
| 4668 | int inputstring_len; |
| 4669 | int fldsep_len; |
| 4670 | char *start_ptr; |
| 4671 | text *result_text; |
| 4672 | bool is_null; |
| 4673 | ArrayBuildState *astate = NULL; |
| 4674 | |
| 4675 | /* when input string is NULL, then result is NULL too */ |
| 4676 | if (PG_ARGISNULL(0)) |
| 4677 | PG_RETURN_NULL(); |
| 4678 | |
| 4679 | inputstring = PG_GETARG_TEXT_PP(0); |
| 4680 | |
| 4681 | /* fldsep can be NULL */ |
| 4682 | if (!PG_ARGISNULL(1)) |
| 4683 | fldsep = PG_GETARG_TEXT_PP(1); |
| 4684 | else |
| 4685 | fldsep = NULL; |
| 4686 | |
| 4687 | /* null_string can be NULL or omitted */ |
| 4688 | if (PG_NARGS() > 2 && !PG_ARGISNULL(2)) |
| 4689 | null_string = PG_GETARG_TEXT_PP(2); |
| 4690 | else |
| 4691 | null_string = NULL; |
| 4692 | |
| 4693 | if (fldsep != NULL) |
| 4694 | { |
| 4695 | /* |
| 4696 | * Normal case with non-null fldsep. Use the text_position machinery |
| 4697 | * to search for occurrences of fldsep. |
| 4698 | */ |
| 4699 | TextPositionState state; |
| 4700 | |
| 4701 | inputstring_len = VARSIZE_ANY_EXHDR(inputstring); |
| 4702 | fldsep_len = VARSIZE_ANY_EXHDR(fldsep); |
| 4703 | |
| 4704 | /* return empty array for empty input string */ |
| 4705 | if (inputstring_len < 1) |
| 4706 | PG_RETURN_ARRAYTYPE_P(construct_empty_array(TEXTOID)); |
| 4707 | |
| 4708 | /* |
| 4709 | * empty field separator: return the input string as a one-element |
| 4710 | * array |
| 4711 | */ |
| 4712 | if (fldsep_len < 1) |
| 4713 | { |
| 4714 | Datum elems[1]; |
| 4715 | bool nulls[1]; |
| 4716 | int dims[1]; |
| 4717 | int lbs[1]; |
| 4718 | |
| 4719 | /* single element can be a NULL too */ |
| 4720 | is_null = null_string ? text_isequal(inputstring, null_string, PG_GET_COLLATION()) : false; |
| 4721 | |
| 4722 | elems[0] = PointerGetDatum(inputstring); |
| 4723 | nulls[0] = is_null; |
| 4724 | dims[0] = 1; |
| 4725 | lbs[0] = 1; |
| 4726 | /* XXX: this hardcodes assumptions about the text type */ |
| 4727 | PG_RETURN_ARRAYTYPE_P(construct_md_array(elems, nulls, |
| 4728 | 1, dims, lbs, |
| 4729 | TEXTOID, -1, false, 'i')); |
| 4730 | } |
| 4731 | |
| 4732 | text_position_setup(inputstring, fldsep, PG_GET_COLLATION(), &state); |
| 4733 | |
| 4734 | start_ptr = VARDATA_ANY(inputstring); |
| 4735 | |
| 4736 | for (;;) |
| 4737 | { |
| 4738 | bool found; |
| 4739 | char *end_ptr; |
| 4740 | int chunk_len; |
| 4741 | |
| 4742 | CHECK_FOR_INTERRUPTS(); |
| 4743 | |
| 4744 | found = text_position_next(&state); |
| 4745 | if (!found) |
| 4746 | { |
| 4747 | /* fetch last field */ |
| 4748 | chunk_len = ((char *) inputstring + VARSIZE_ANY(inputstring)) - start_ptr; |
| 4749 | end_ptr = NULL; /* not used, but some compilers complain */ |
| 4750 | } |
| 4751 | else |
| 4752 | { |
| 4753 | /* fetch non-last field */ |
| 4754 | end_ptr = text_position_get_match_ptr(&state); |
| 4755 | chunk_len = end_ptr - start_ptr; |
| 4756 | } |
| 4757 | |
| 4758 | /* must build a temp text datum to pass to accumArrayResult */ |
| 4759 | result_text = cstring_to_text_with_len(start_ptr, chunk_len); |
| 4760 | is_null = null_string ? text_isequal(result_text, null_string, PG_GET_COLLATION()) : false; |
| 4761 | |
| 4762 | /* stash away this field */ |
| 4763 | astate = accumArrayResult(astate, |
| 4764 | PointerGetDatum(result_text), |
| 4765 | is_null, |
| 4766 | TEXTOID, |
| 4767 | CurrentMemoryContext); |
| 4768 | |
| 4769 | pfree(result_text); |
| 4770 | |
| 4771 | if (!found) |
| 4772 | break; |
| 4773 | |
| 4774 | start_ptr = end_ptr + fldsep_len; |
| 4775 | } |
| 4776 | |
| 4777 | text_position_cleanup(&state); |
| 4778 | } |
| 4779 | else |
| 4780 | { |
| 4781 | /* |
| 4782 | * When fldsep is NULL, each character in the inputstring becomes an |
| 4783 | * element in the result array. The separator is effectively the |
| 4784 | * space between characters. |
| 4785 | */ |
| 4786 | inputstring_len = VARSIZE_ANY_EXHDR(inputstring); |
| 4787 | |
| 4788 | /* return empty array for empty input string */ |
| 4789 | if (inputstring_len < 1) |
| 4790 | PG_RETURN_ARRAYTYPE_P(construct_empty_array(TEXTOID)); |
| 4791 | |
| 4792 | start_ptr = VARDATA_ANY(inputstring); |
| 4793 | |
| 4794 | while (inputstring_len > 0) |
| 4795 | { |
| 4796 | int chunk_len = pg_mblen(start_ptr); |
| 4797 | |
| 4798 | CHECK_FOR_INTERRUPTS(); |
| 4799 | |
| 4800 | /* must build a temp text datum to pass to accumArrayResult */ |
| 4801 | result_text = cstring_to_text_with_len(start_ptr, chunk_len); |
| 4802 | is_null = null_string ? text_isequal(result_text, null_string, PG_GET_COLLATION()) : false; |
| 4803 | |
| 4804 | /* stash away this field */ |
| 4805 | astate = accumArrayResult(astate, |
| 4806 | PointerGetDatum(result_text), |
| 4807 | is_null, |
| 4808 | TEXTOID, |
| 4809 | CurrentMemoryContext); |
| 4810 | |
| 4811 | pfree(result_text); |
| 4812 | |
| 4813 | start_ptr += chunk_len; |
| 4814 | inputstring_len -= chunk_len; |
| 4815 | } |
| 4816 | } |
| 4817 | |
| 4818 | PG_RETURN_ARRAYTYPE_P(makeArrayResult(astate, |
| 4819 | CurrentMemoryContext)); |
| 4820 | } |
| 4821 | |
| 4822 | /* |
| 4823 | * array_to_text |
| 4824 | * concatenate Cstring representation of input array elements |
| 4825 | * using provided field separator |
| 4826 | */ |
| 4827 | Datum |
| 4828 | array_to_text(PG_FUNCTION_ARGS) |
| 4829 | { |
| 4830 | ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); |
| 4831 | char *fldsep = text_to_cstring(PG_GETARG_TEXT_PP(1)); |
| 4832 | |
| 4833 | PG_RETURN_TEXT_P(array_to_text_internal(fcinfo, v, fldsep, NULL)); |
| 4834 | } |
| 4835 | |
| 4836 | /* |
| 4837 | * array_to_text_null |
| 4838 | * concatenate Cstring representation of input array elements |
| 4839 | * using provided field separator and null string |
| 4840 | * |
| 4841 | * This version is not strict so we have to test for null inputs explicitly. |
| 4842 | */ |
| 4843 | Datum |
| 4844 | array_to_text_null(PG_FUNCTION_ARGS) |
| 4845 | { |
| 4846 | ArrayType *v; |
| 4847 | char *fldsep; |
| 4848 | char *null_string; |
| 4849 | |
| 4850 | /* returns NULL when first or second parameter is NULL */ |
| 4851 | if (PG_ARGISNULL(0) || PG_ARGISNULL(1)) |
| 4852 | PG_RETURN_NULL(); |
| 4853 | |
| 4854 | v = PG_GETARG_ARRAYTYPE_P(0); |
| 4855 | fldsep = text_to_cstring(PG_GETARG_TEXT_PP(1)); |
| 4856 | |
| 4857 | /* NULL null string is passed through as a null pointer */ |
| 4858 | if (!PG_ARGISNULL(2)) |
| 4859 | null_string = text_to_cstring(PG_GETARG_TEXT_PP(2)); |
| 4860 | else |
| 4861 | null_string = NULL; |
| 4862 | |
| 4863 | PG_RETURN_TEXT_P(array_to_text_internal(fcinfo, v, fldsep, null_string)); |
| 4864 | } |
| 4865 | |
| 4866 | /* |
| 4867 | * common code for array_to_text and array_to_text_null functions |
| 4868 | */ |
| 4869 | static text * |
| 4870 | array_to_text_internal(FunctionCallInfo fcinfo, ArrayType *v, |
| 4871 | const char *fldsep, const char *null_string) |
| 4872 | { |
| 4873 | text *result; |
| 4874 | int nitems, |
| 4875 | *dims, |
| 4876 | ndims; |
| 4877 | Oid element_type; |
| 4878 | int typlen; |
| 4879 | bool typbyval; |
| 4880 | char typalign; |
| 4881 | StringInfoData buf; |
| 4882 | bool printed = false; |
| 4883 | char *p; |
| 4884 | bits8 *bitmap; |
| 4885 | int bitmask; |
| 4886 | int i; |
| 4887 | ArrayMetaState *; |
| 4888 | |
| 4889 | ndims = ARR_NDIM(v); |
| 4890 | dims = ARR_DIMS(v); |
| 4891 | nitems = ArrayGetNItems(ndims, dims); |
| 4892 | |
| 4893 | /* if there are no elements, return an empty string */ |
| 4894 | if (nitems == 0) |
| 4895 | return cstring_to_text_with_len("" , 0); |
| 4896 | |
| 4897 | element_type = ARR_ELEMTYPE(v); |
| 4898 | initStringInfo(&buf); |
| 4899 | |
| 4900 | /* |
| 4901 | * We arrange to look up info about element type, including its output |
| 4902 | * conversion proc, only once per series of calls, assuming the element |
| 4903 | * type doesn't change underneath us. |
| 4904 | */ |
| 4905 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 4906 | if (my_extra == NULL) |
| 4907 | { |
| 4908 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 4909 | sizeof(ArrayMetaState)); |
| 4910 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 4911 | my_extra->element_type = ~element_type; |
| 4912 | } |
| 4913 | |
| 4914 | if (my_extra->element_type != element_type) |
| 4915 | { |
| 4916 | /* |
| 4917 | * Get info about element type, including its output conversion proc |
| 4918 | */ |
| 4919 | get_type_io_data(element_type, IOFunc_output, |
| 4920 | &my_extra->typlen, &my_extra->typbyval, |
| 4921 | &my_extra->typalign, &my_extra->typdelim, |
| 4922 | &my_extra->typioparam, &my_extra->typiofunc); |
| 4923 | fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| 4924 | fcinfo->flinfo->fn_mcxt); |
| 4925 | my_extra->element_type = element_type; |
| 4926 | } |
| 4927 | typlen = my_extra->typlen; |
| 4928 | typbyval = my_extra->typbyval; |
| 4929 | typalign = my_extra->typalign; |
| 4930 | |
| 4931 | p = ARR_DATA_PTR(v); |
| 4932 | bitmap = ARR_NULLBITMAP(v); |
| 4933 | bitmask = 1; |
| 4934 | |
| 4935 | for (i = 0; i < nitems; i++) |
| 4936 | { |
| 4937 | Datum itemvalue; |
| 4938 | char *value; |
| 4939 | |
| 4940 | /* Get source element, checking for NULL */ |
| 4941 | if (bitmap && (*bitmap & bitmask) == 0) |
| 4942 | { |
| 4943 | /* if null_string is NULL, we just ignore null elements */ |
| 4944 | if (null_string != NULL) |
| 4945 | { |
| 4946 | if (printed) |
| 4947 | appendStringInfo(&buf, "%s%s" , fldsep, null_string); |
| 4948 | else |
| 4949 | appendStringInfoString(&buf, null_string); |
| 4950 | printed = true; |
| 4951 | } |
| 4952 | } |
| 4953 | else |
| 4954 | { |
| 4955 | itemvalue = fetch_att(p, typbyval, typlen); |
| 4956 | |
| 4957 | value = OutputFunctionCall(&my_extra->proc, itemvalue); |
| 4958 | |
| 4959 | if (printed) |
| 4960 | appendStringInfo(&buf, "%s%s" , fldsep, value); |
| 4961 | else |
| 4962 | appendStringInfoString(&buf, value); |
| 4963 | printed = true; |
| 4964 | |
| 4965 | p = att_addlength_pointer(p, typlen, p); |
| 4966 | p = (char *) att_align_nominal(p, typalign); |
| 4967 | } |
| 4968 | |
| 4969 | /* advance bitmap pointer if any */ |
| 4970 | if (bitmap) |
| 4971 | { |
| 4972 | bitmask <<= 1; |
| 4973 | if (bitmask == 0x100) |
| 4974 | { |
| 4975 | bitmap++; |
| 4976 | bitmask = 1; |
| 4977 | } |
| 4978 | } |
| 4979 | } |
| 4980 | |
| 4981 | result = cstring_to_text_with_len(buf.data, buf.len); |
| 4982 | pfree(buf.data); |
| 4983 | |
| 4984 | return result; |
| 4985 | } |
| 4986 | |
| 4987 | #define HEXBASE 16 |
| 4988 | /* |
| 4989 | * Convert an int32 to a string containing a base 16 (hex) representation of |
| 4990 | * the number. |
| 4991 | */ |
| 4992 | Datum |
| 4993 | to_hex32(PG_FUNCTION_ARGS) |
| 4994 | { |
| 4995 | uint32 value = (uint32) PG_GETARG_INT32(0); |
| 4996 | char *ptr; |
| 4997 | const char *digits = "0123456789abcdef" ; |
| 4998 | char buf[32]; /* bigger than needed, but reasonable */ |
| 4999 | |
| 5000 | ptr = buf + sizeof(buf) - 1; |
| 5001 | *ptr = '\0'; |
| 5002 | |
| 5003 | do |
| 5004 | { |
| 5005 | *--ptr = digits[value % HEXBASE]; |
| 5006 | value /= HEXBASE; |
| 5007 | } while (ptr > buf && value); |
| 5008 | |
| 5009 | PG_RETURN_TEXT_P(cstring_to_text(ptr)); |
| 5010 | } |
| 5011 | |
| 5012 | /* |
| 5013 | * Convert an int64 to a string containing a base 16 (hex) representation of |
| 5014 | * the number. |
| 5015 | */ |
| 5016 | Datum |
| 5017 | to_hex64(PG_FUNCTION_ARGS) |
| 5018 | { |
| 5019 | uint64 value = (uint64) PG_GETARG_INT64(0); |
| 5020 | char *ptr; |
| 5021 | const char *digits = "0123456789abcdef" ; |
| 5022 | char buf[32]; /* bigger than needed, but reasonable */ |
| 5023 | |
| 5024 | ptr = buf + sizeof(buf) - 1; |
| 5025 | *ptr = '\0'; |
| 5026 | |
| 5027 | do |
| 5028 | { |
| 5029 | *--ptr = digits[value % HEXBASE]; |
| 5030 | value /= HEXBASE; |
| 5031 | } while (ptr > buf && value); |
| 5032 | |
| 5033 | PG_RETURN_TEXT_P(cstring_to_text(ptr)); |
| 5034 | } |
| 5035 | |
| 5036 | /* |
| 5037 | * Return the size of a datum, possibly compressed |
| 5038 | * |
| 5039 | * Works on any data type |
| 5040 | */ |
| 5041 | Datum |
| 5042 | pg_column_size(PG_FUNCTION_ARGS) |
| 5043 | { |
| 5044 | Datum value = PG_GETARG_DATUM(0); |
| 5045 | int32 result; |
| 5046 | int typlen; |
| 5047 | |
| 5048 | /* On first call, get the input type's typlen, and save at *fn_extra */ |
| 5049 | if (fcinfo->flinfo->fn_extra == NULL) |
| 5050 | { |
| 5051 | /* Lookup the datatype of the supplied argument */ |
| 5052 | Oid argtypeid = get_fn_expr_argtype(fcinfo->flinfo, 0); |
| 5053 | |
| 5054 | typlen = get_typlen(argtypeid); |
| 5055 | if (typlen == 0) /* should not happen */ |
| 5056 | elog(ERROR, "cache lookup failed for type %u" , argtypeid); |
| 5057 | |
| 5058 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 5059 | sizeof(int)); |
| 5060 | *((int *) fcinfo->flinfo->fn_extra) = typlen; |
| 5061 | } |
| 5062 | else |
| 5063 | typlen = *((int *) fcinfo->flinfo->fn_extra); |
| 5064 | |
| 5065 | if (typlen == -1) |
| 5066 | { |
| 5067 | /* varlena type, possibly toasted */ |
| 5068 | result = toast_datum_size(value); |
| 5069 | } |
| 5070 | else if (typlen == -2) |
| 5071 | { |
| 5072 | /* cstring */ |
| 5073 | result = strlen(DatumGetCString(value)) + 1; |
| 5074 | } |
| 5075 | else |
| 5076 | { |
| 5077 | /* ordinary fixed-width type */ |
| 5078 | result = typlen; |
| 5079 | } |
| 5080 | |
| 5081 | PG_RETURN_INT32(result); |
| 5082 | } |
| 5083 | |
| 5084 | /* |
| 5085 | * string_agg - Concatenates values and returns string. |
| 5086 | * |
| 5087 | * Syntax: string_agg(value text, delimiter text) RETURNS text |
| 5088 | * |
| 5089 | * Note: Any NULL values are ignored. The first-call delimiter isn't |
| 5090 | * actually used at all, and on subsequent calls the delimiter precedes |
| 5091 | * the associated value. |
| 5092 | */ |
| 5093 | |
| 5094 | /* subroutine to initialize state */ |
| 5095 | static StringInfo |
| 5096 | makeStringAggState(FunctionCallInfo fcinfo) |
| 5097 | { |
| 5098 | StringInfo state; |
| 5099 | MemoryContext aggcontext; |
| 5100 | MemoryContext oldcontext; |
| 5101 | |
| 5102 | if (!AggCheckCallContext(fcinfo, &aggcontext)) |
| 5103 | { |
| 5104 | /* cannot be called directly because of internal-type argument */ |
| 5105 | elog(ERROR, "string_agg_transfn called in non-aggregate context" ); |
| 5106 | } |
| 5107 | |
| 5108 | /* |
| 5109 | * Create state in aggregate context. It'll stay there across subsequent |
| 5110 | * calls. |
| 5111 | */ |
| 5112 | oldcontext = MemoryContextSwitchTo(aggcontext); |
| 5113 | state = makeStringInfo(); |
| 5114 | MemoryContextSwitchTo(oldcontext); |
| 5115 | |
| 5116 | return state; |
| 5117 | } |
| 5118 | |
| 5119 | Datum |
| 5120 | string_agg_transfn(PG_FUNCTION_ARGS) |
| 5121 | { |
| 5122 | StringInfo state; |
| 5123 | |
| 5124 | state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0); |
| 5125 | |
| 5126 | /* Append the value unless null. */ |
| 5127 | if (!PG_ARGISNULL(1)) |
| 5128 | { |
| 5129 | /* On the first time through, we ignore the delimiter. */ |
| 5130 | if (state == NULL) |
| 5131 | state = makeStringAggState(fcinfo); |
| 5132 | else if (!PG_ARGISNULL(2)) |
| 5133 | appendStringInfoText(state, PG_GETARG_TEXT_PP(2)); /* delimiter */ |
| 5134 | |
| 5135 | appendStringInfoText(state, PG_GETARG_TEXT_PP(1)); /* value */ |
| 5136 | } |
| 5137 | |
| 5138 | /* |
| 5139 | * The transition type for string_agg() is declared to be "internal", |
| 5140 | * which is a pass-by-value type the same size as a pointer. |
| 5141 | */ |
| 5142 | PG_RETURN_POINTER(state); |
| 5143 | } |
| 5144 | |
| 5145 | Datum |
| 5146 | string_agg_finalfn(PG_FUNCTION_ARGS) |
| 5147 | { |
| 5148 | StringInfo state; |
| 5149 | |
| 5150 | /* cannot be called directly because of internal-type argument */ |
| 5151 | Assert(AggCheckCallContext(fcinfo, NULL)); |
| 5152 | |
| 5153 | state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0); |
| 5154 | |
| 5155 | if (state != NULL) |
| 5156 | PG_RETURN_TEXT_P(cstring_to_text_with_len(state->data, state->len)); |
| 5157 | else |
| 5158 | PG_RETURN_NULL(); |
| 5159 | } |
| 5160 | |
| 5161 | /* |
| 5162 | * Prepare cache with fmgr info for the output functions of the datatypes of |
| 5163 | * the arguments of a concat-like function, beginning with argument "argidx". |
| 5164 | * (Arguments before that will have corresponding slots in the resulting |
| 5165 | * FmgrInfo array, but we don't fill those slots.) |
| 5166 | */ |
| 5167 | static FmgrInfo * |
| 5168 | build_concat_foutcache(FunctionCallInfo fcinfo, int argidx) |
| 5169 | { |
| 5170 | FmgrInfo *foutcache; |
| 5171 | int i; |
| 5172 | |
| 5173 | /* We keep the info in fn_mcxt so it survives across calls */ |
| 5174 | foutcache = (FmgrInfo *) MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 5175 | PG_NARGS() * sizeof(FmgrInfo)); |
| 5176 | |
| 5177 | for (i = argidx; i < PG_NARGS(); i++) |
| 5178 | { |
| 5179 | Oid valtype; |
| 5180 | Oid typOutput; |
| 5181 | bool typIsVarlena; |
| 5182 | |
| 5183 | valtype = get_fn_expr_argtype(fcinfo->flinfo, i); |
| 5184 | if (!OidIsValid(valtype)) |
| 5185 | elog(ERROR, "could not determine data type of concat() input" ); |
| 5186 | |
| 5187 | getTypeOutputInfo(valtype, &typOutput, &typIsVarlena); |
| 5188 | fmgr_info_cxt(typOutput, &foutcache[i], fcinfo->flinfo->fn_mcxt); |
| 5189 | } |
| 5190 | |
| 5191 | fcinfo->flinfo->fn_extra = foutcache; |
| 5192 | |
| 5193 | return foutcache; |
| 5194 | } |
| 5195 | |
| 5196 | /* |
| 5197 | * Implementation of both concat() and concat_ws(). |
| 5198 | * |
| 5199 | * sepstr is the separator string to place between values. |
| 5200 | * argidx identifies the first argument to concatenate (counting from zero); |
| 5201 | * note that this must be constant across any one series of calls. |
| 5202 | * |
| 5203 | * Returns NULL if result should be NULL, else text value. |
| 5204 | */ |
| 5205 | static text * |
| 5206 | concat_internal(const char *sepstr, int argidx, |
| 5207 | FunctionCallInfo fcinfo) |
| 5208 | { |
| 5209 | text *result; |
| 5210 | StringInfoData str; |
| 5211 | FmgrInfo *foutcache; |
| 5212 | bool first_arg = true; |
| 5213 | int i; |
| 5214 | |
| 5215 | /* |
| 5216 | * concat(VARIADIC some-array) is essentially equivalent to |
| 5217 | * array_to_text(), ie concat the array elements with the given separator. |
| 5218 | * So we just pass the case off to that code. |
| 5219 | */ |
| 5220 | if (get_fn_expr_variadic(fcinfo->flinfo)) |
| 5221 | { |
| 5222 | ArrayType *arr; |
| 5223 | |
| 5224 | /* Should have just the one argument */ |
| 5225 | Assert(argidx == PG_NARGS() - 1); |
| 5226 | |
| 5227 | /* concat(VARIADIC NULL) is defined as NULL */ |
| 5228 | if (PG_ARGISNULL(argidx)) |
| 5229 | return NULL; |
| 5230 | |
| 5231 | /* |
| 5232 | * Non-null argument had better be an array. We assume that any call |
| 5233 | * context that could let get_fn_expr_variadic return true will have |
| 5234 | * checked that a VARIADIC-labeled parameter actually is an array. So |
| 5235 | * it should be okay to just Assert that it's an array rather than |
| 5236 | * doing a full-fledged error check. |
| 5237 | */ |
| 5238 | Assert(OidIsValid(get_base_element_type(get_fn_expr_argtype(fcinfo->flinfo, argidx)))); |
| 5239 | |
| 5240 | /* OK, safe to fetch the array value */ |
| 5241 | arr = PG_GETARG_ARRAYTYPE_P(argidx); |
| 5242 | |
| 5243 | /* |
| 5244 | * And serialize the array. We tell array_to_text to ignore null |
| 5245 | * elements, which matches the behavior of the loop below. |
| 5246 | */ |
| 5247 | return array_to_text_internal(fcinfo, arr, sepstr, NULL); |
| 5248 | } |
| 5249 | |
| 5250 | /* Normal case without explicit VARIADIC marker */ |
| 5251 | initStringInfo(&str); |
| 5252 | |
| 5253 | /* Get output function info, building it if first time through */ |
| 5254 | foutcache = (FmgrInfo *) fcinfo->flinfo->fn_extra; |
| 5255 | if (foutcache == NULL) |
| 5256 | foutcache = build_concat_foutcache(fcinfo, argidx); |
| 5257 | |
| 5258 | for (i = argidx; i < PG_NARGS(); i++) |
| 5259 | { |
| 5260 | if (!PG_ARGISNULL(i)) |
| 5261 | { |
| 5262 | Datum value = PG_GETARG_DATUM(i); |
| 5263 | |
| 5264 | /* add separator if appropriate */ |
| 5265 | if (first_arg) |
| 5266 | first_arg = false; |
| 5267 | else |
| 5268 | appendStringInfoString(&str, sepstr); |
| 5269 | |
| 5270 | /* call the appropriate type output function, append the result */ |
| 5271 | appendStringInfoString(&str, |
| 5272 | OutputFunctionCall(&foutcache[i], value)); |
| 5273 | } |
| 5274 | } |
| 5275 | |
| 5276 | result = cstring_to_text_with_len(str.data, str.len); |
| 5277 | pfree(str.data); |
| 5278 | |
| 5279 | return result; |
| 5280 | } |
| 5281 | |
| 5282 | /* |
| 5283 | * Concatenate all arguments. NULL arguments are ignored. |
| 5284 | */ |
| 5285 | Datum |
| 5286 | text_concat(PG_FUNCTION_ARGS) |
| 5287 | { |
| 5288 | text *result; |
| 5289 | |
| 5290 | result = concat_internal("" , 0, fcinfo); |
| 5291 | if (result == NULL) |
| 5292 | PG_RETURN_NULL(); |
| 5293 | PG_RETURN_TEXT_P(result); |
| 5294 | } |
| 5295 | |
| 5296 | /* |
| 5297 | * Concatenate all but first argument value with separators. The first |
| 5298 | * parameter is used as the separator. NULL arguments are ignored. |
| 5299 | */ |
| 5300 | Datum |
| 5301 | text_concat_ws(PG_FUNCTION_ARGS) |
| 5302 | { |
| 5303 | char *sep; |
| 5304 | text *result; |
| 5305 | |
| 5306 | /* return NULL when separator is NULL */ |
| 5307 | if (PG_ARGISNULL(0)) |
| 5308 | PG_RETURN_NULL(); |
| 5309 | sep = text_to_cstring(PG_GETARG_TEXT_PP(0)); |
| 5310 | |
| 5311 | result = concat_internal(sep, 1, fcinfo); |
| 5312 | if (result == NULL) |
| 5313 | PG_RETURN_NULL(); |
| 5314 | PG_RETURN_TEXT_P(result); |
| 5315 | } |
| 5316 | |
| 5317 | /* |
| 5318 | * Return first n characters in the string. When n is negative, |
| 5319 | * return all but last |n| characters. |
| 5320 | */ |
| 5321 | Datum |
| 5322 | text_left(PG_FUNCTION_ARGS) |
| 5323 | { |
| 5324 | int n = PG_GETARG_INT32(1); |
| 5325 | |
| 5326 | if (n < 0) |
| 5327 | { |
| 5328 | text *str = PG_GETARG_TEXT_PP(0); |
| 5329 | const char *p = VARDATA_ANY(str); |
| 5330 | int len = VARSIZE_ANY_EXHDR(str); |
| 5331 | int rlen; |
| 5332 | |
| 5333 | n = pg_mbstrlen_with_len(p, len) + n; |
| 5334 | rlen = pg_mbcharcliplen(p, len, n); |
| 5335 | PG_RETURN_TEXT_P(cstring_to_text_with_len(p, rlen)); |
| 5336 | } |
| 5337 | else |
| 5338 | PG_RETURN_TEXT_P(text_substring(PG_GETARG_DATUM(0), 1, n, false)); |
| 5339 | } |
| 5340 | |
| 5341 | /* |
| 5342 | * Return last n characters in the string. When n is negative, |
| 5343 | * return all but first |n| characters. |
| 5344 | */ |
| 5345 | Datum |
| 5346 | text_right(PG_FUNCTION_ARGS) |
| 5347 | { |
| 5348 | text *str = PG_GETARG_TEXT_PP(0); |
| 5349 | const char *p = VARDATA_ANY(str); |
| 5350 | int len = VARSIZE_ANY_EXHDR(str); |
| 5351 | int n = PG_GETARG_INT32(1); |
| 5352 | int off; |
| 5353 | |
| 5354 | if (n < 0) |
| 5355 | n = -n; |
| 5356 | else |
| 5357 | n = pg_mbstrlen_with_len(p, len) - n; |
| 5358 | off = pg_mbcharcliplen(p, len, n); |
| 5359 | |
| 5360 | PG_RETURN_TEXT_P(cstring_to_text_with_len(p + off, len - off)); |
| 5361 | } |
| 5362 | |
| 5363 | /* |
| 5364 | * Return reversed string |
| 5365 | */ |
| 5366 | Datum |
| 5367 | text_reverse(PG_FUNCTION_ARGS) |
| 5368 | { |
| 5369 | text *str = PG_GETARG_TEXT_PP(0); |
| 5370 | const char *p = VARDATA_ANY(str); |
| 5371 | int len = VARSIZE_ANY_EXHDR(str); |
| 5372 | const char *endp = p + len; |
| 5373 | text *result; |
| 5374 | char *dst; |
| 5375 | |
| 5376 | result = palloc(len + VARHDRSZ); |
| 5377 | dst = (char *) VARDATA(result) + len; |
| 5378 | SET_VARSIZE(result, len + VARHDRSZ); |
| 5379 | |
| 5380 | if (pg_database_encoding_max_length() > 1) |
| 5381 | { |
| 5382 | /* multibyte version */ |
| 5383 | while (p < endp) |
| 5384 | { |
| 5385 | int sz; |
| 5386 | |
| 5387 | sz = pg_mblen(p); |
| 5388 | dst -= sz; |
| 5389 | memcpy(dst, p, sz); |
| 5390 | p += sz; |
| 5391 | } |
| 5392 | } |
| 5393 | else |
| 5394 | { |
| 5395 | /* single byte version */ |
| 5396 | while (p < endp) |
| 5397 | *(--dst) = *p++; |
| 5398 | } |
| 5399 | |
| 5400 | PG_RETURN_TEXT_P(result); |
| 5401 | } |
| 5402 | |
| 5403 | |
| 5404 | /* |
| 5405 | * Support macros for text_format() |
| 5406 | */ |
| 5407 | #define TEXT_FORMAT_FLAG_MINUS 0x0001 /* is minus flag present? */ |
| 5408 | |
| 5409 | #define ADVANCE_PARSE_POINTER(ptr,end_ptr) \ |
| 5410 | do { \ |
| 5411 | if (++(ptr) >= (end_ptr)) \ |
| 5412 | ereport(ERROR, \ |
| 5413 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), \ |
| 5414 | errmsg("unterminated format() type specifier"), \ |
| 5415 | errhint("For a single \"%%\" use \"%%%%\"."))); \ |
| 5416 | } while (0) |
| 5417 | |
| 5418 | /* |
| 5419 | * Returns a formatted string |
| 5420 | */ |
| 5421 | Datum |
| 5422 | text_format(PG_FUNCTION_ARGS) |
| 5423 | { |
| 5424 | text *fmt; |
| 5425 | StringInfoData str; |
| 5426 | const char *cp; |
| 5427 | const char *start_ptr; |
| 5428 | const char *end_ptr; |
| 5429 | text *result; |
| 5430 | int arg; |
| 5431 | bool funcvariadic; |
| 5432 | int nargs; |
| 5433 | Datum *elements = NULL; |
| 5434 | bool *nulls = NULL; |
| 5435 | Oid element_type = InvalidOid; |
| 5436 | Oid prev_type = InvalidOid; |
| 5437 | Oid prev_width_type = InvalidOid; |
| 5438 | FmgrInfo typoutputfinfo; |
| 5439 | FmgrInfo typoutputinfo_width; |
| 5440 | |
| 5441 | /* When format string is null, immediately return null */ |
| 5442 | if (PG_ARGISNULL(0)) |
| 5443 | PG_RETURN_NULL(); |
| 5444 | |
| 5445 | /* If argument is marked VARIADIC, expand array into elements */ |
| 5446 | if (get_fn_expr_variadic(fcinfo->flinfo)) |
| 5447 | { |
| 5448 | ArrayType *arr; |
| 5449 | int16 elmlen; |
| 5450 | bool elmbyval; |
| 5451 | char elmalign; |
| 5452 | int nitems; |
| 5453 | |
| 5454 | /* Should have just the one argument */ |
| 5455 | Assert(PG_NARGS() == 2); |
| 5456 | |
| 5457 | /* If argument is NULL, we treat it as zero-length array */ |
| 5458 | if (PG_ARGISNULL(1)) |
| 5459 | nitems = 0; |
| 5460 | else |
| 5461 | { |
| 5462 | /* |
| 5463 | * Non-null argument had better be an array. We assume that any |
| 5464 | * call context that could let get_fn_expr_variadic return true |
| 5465 | * will have checked that a VARIADIC-labeled parameter actually is |
| 5466 | * an array. So it should be okay to just Assert that it's an |
| 5467 | * array rather than doing a full-fledged error check. |
| 5468 | */ |
| 5469 | Assert(OidIsValid(get_base_element_type(get_fn_expr_argtype(fcinfo->flinfo, 1)))); |
| 5470 | |
| 5471 | /* OK, safe to fetch the array value */ |
| 5472 | arr = PG_GETARG_ARRAYTYPE_P(1); |
| 5473 | |
| 5474 | /* Get info about array element type */ |
| 5475 | element_type = ARR_ELEMTYPE(arr); |
| 5476 | get_typlenbyvalalign(element_type, |
| 5477 | &elmlen, &elmbyval, &elmalign); |
| 5478 | |
| 5479 | /* Extract all array elements */ |
| 5480 | deconstruct_array(arr, element_type, elmlen, elmbyval, elmalign, |
| 5481 | &elements, &nulls, &nitems); |
| 5482 | } |
| 5483 | |
| 5484 | nargs = nitems + 1; |
| 5485 | funcvariadic = true; |
| 5486 | } |
| 5487 | else |
| 5488 | { |
| 5489 | /* Non-variadic case, we'll process the arguments individually */ |
| 5490 | nargs = PG_NARGS(); |
| 5491 | funcvariadic = false; |
| 5492 | } |
| 5493 | |
| 5494 | /* Setup for main loop. */ |
| 5495 | fmt = PG_GETARG_TEXT_PP(0); |
| 5496 | start_ptr = VARDATA_ANY(fmt); |
| 5497 | end_ptr = start_ptr + VARSIZE_ANY_EXHDR(fmt); |
| 5498 | initStringInfo(&str); |
| 5499 | arg = 1; /* next argument position to print */ |
| 5500 | |
| 5501 | /* Scan format string, looking for conversion specifiers. */ |
| 5502 | for (cp = start_ptr; cp < end_ptr; cp++) |
| 5503 | { |
| 5504 | int argpos; |
| 5505 | int widthpos; |
| 5506 | int flags; |
| 5507 | int width; |
| 5508 | Datum value; |
| 5509 | bool isNull; |
| 5510 | Oid typid; |
| 5511 | |
| 5512 | /* |
| 5513 | * If it's not the start of a conversion specifier, just copy it to |
| 5514 | * the output buffer. |
| 5515 | */ |
| 5516 | if (*cp != '%') |
| 5517 | { |
| 5518 | appendStringInfoCharMacro(&str, *cp); |
| 5519 | continue; |
| 5520 | } |
| 5521 | |
| 5522 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5523 | |
| 5524 | /* Easy case: %% outputs a single % */ |
| 5525 | if (*cp == '%') |
| 5526 | { |
| 5527 | appendStringInfoCharMacro(&str, *cp); |
| 5528 | continue; |
| 5529 | } |
| 5530 | |
| 5531 | /* Parse the optional portions of the format specifier */ |
| 5532 | cp = text_format_parse_format(cp, end_ptr, |
| 5533 | &argpos, &widthpos, |
| 5534 | &flags, &width); |
| 5535 | |
| 5536 | /* |
| 5537 | * Next we should see the main conversion specifier. Whether or not |
| 5538 | * an argument position was present, it's known that at least one |
| 5539 | * character remains in the string at this point. Experience suggests |
| 5540 | * that it's worth checking that that character is one of the expected |
| 5541 | * ones before we try to fetch arguments, so as to produce the least |
| 5542 | * confusing response to a mis-formatted specifier. |
| 5543 | */ |
| 5544 | if (strchr("sIL" , *cp) == NULL) |
| 5545 | ereport(ERROR, |
| 5546 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5547 | errmsg("unrecognized format() type specifier \"%c\"" , |
| 5548 | *cp), |
| 5549 | errhint("For a single \"%%\" use \"%%%%\"." ))); |
| 5550 | |
| 5551 | /* If indirect width was specified, get its value */ |
| 5552 | if (widthpos >= 0) |
| 5553 | { |
| 5554 | /* Collect the specified or next argument position */ |
| 5555 | if (widthpos > 0) |
| 5556 | arg = widthpos; |
| 5557 | if (arg >= nargs) |
| 5558 | ereport(ERROR, |
| 5559 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5560 | errmsg("too few arguments for format()" ))); |
| 5561 | |
| 5562 | /* Get the value and type of the selected argument */ |
| 5563 | if (!funcvariadic) |
| 5564 | { |
| 5565 | value = PG_GETARG_DATUM(arg); |
| 5566 | isNull = PG_ARGISNULL(arg); |
| 5567 | typid = get_fn_expr_argtype(fcinfo->flinfo, arg); |
| 5568 | } |
| 5569 | else |
| 5570 | { |
| 5571 | value = elements[arg - 1]; |
| 5572 | isNull = nulls[arg - 1]; |
| 5573 | typid = element_type; |
| 5574 | } |
| 5575 | if (!OidIsValid(typid)) |
| 5576 | elog(ERROR, "could not determine data type of format() input" ); |
| 5577 | |
| 5578 | arg++; |
| 5579 | |
| 5580 | /* We can treat NULL width the same as zero */ |
| 5581 | if (isNull) |
| 5582 | width = 0; |
| 5583 | else if (typid == INT4OID) |
| 5584 | width = DatumGetInt32(value); |
| 5585 | else if (typid == INT2OID) |
| 5586 | width = DatumGetInt16(value); |
| 5587 | else |
| 5588 | { |
| 5589 | /* For less-usual datatypes, convert to text then to int */ |
| 5590 | char *str; |
| 5591 | |
| 5592 | if (typid != prev_width_type) |
| 5593 | { |
| 5594 | Oid typoutputfunc; |
| 5595 | bool typIsVarlena; |
| 5596 | |
| 5597 | getTypeOutputInfo(typid, &typoutputfunc, &typIsVarlena); |
| 5598 | fmgr_info(typoutputfunc, &typoutputinfo_width); |
| 5599 | prev_width_type = typid; |
| 5600 | } |
| 5601 | |
| 5602 | str = OutputFunctionCall(&typoutputinfo_width, value); |
| 5603 | |
| 5604 | /* pg_strtoint32 will complain about bad data or overflow */ |
| 5605 | width = pg_strtoint32(str); |
| 5606 | |
| 5607 | pfree(str); |
| 5608 | } |
| 5609 | } |
| 5610 | |
| 5611 | /* Collect the specified or next argument position */ |
| 5612 | if (argpos > 0) |
| 5613 | arg = argpos; |
| 5614 | if (arg >= nargs) |
| 5615 | ereport(ERROR, |
| 5616 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5617 | errmsg("too few arguments for format()" ))); |
| 5618 | |
| 5619 | /* Get the value and type of the selected argument */ |
| 5620 | if (!funcvariadic) |
| 5621 | { |
| 5622 | value = PG_GETARG_DATUM(arg); |
| 5623 | isNull = PG_ARGISNULL(arg); |
| 5624 | typid = get_fn_expr_argtype(fcinfo->flinfo, arg); |
| 5625 | } |
| 5626 | else |
| 5627 | { |
| 5628 | value = elements[arg - 1]; |
| 5629 | isNull = nulls[arg - 1]; |
| 5630 | typid = element_type; |
| 5631 | } |
| 5632 | if (!OidIsValid(typid)) |
| 5633 | elog(ERROR, "could not determine data type of format() input" ); |
| 5634 | |
| 5635 | arg++; |
| 5636 | |
| 5637 | /* |
| 5638 | * Get the appropriate typOutput function, reusing previous one if |
| 5639 | * same type as previous argument. That's particularly useful in the |
| 5640 | * variadic-array case, but often saves work even for ordinary calls. |
| 5641 | */ |
| 5642 | if (typid != prev_type) |
| 5643 | { |
| 5644 | Oid typoutputfunc; |
| 5645 | bool typIsVarlena; |
| 5646 | |
| 5647 | getTypeOutputInfo(typid, &typoutputfunc, &typIsVarlena); |
| 5648 | fmgr_info(typoutputfunc, &typoutputfinfo); |
| 5649 | prev_type = typid; |
| 5650 | } |
| 5651 | |
| 5652 | /* |
| 5653 | * And now we can format the value. |
| 5654 | */ |
| 5655 | switch (*cp) |
| 5656 | { |
| 5657 | case 's': |
| 5658 | case 'I': |
| 5659 | case 'L': |
| 5660 | text_format_string_conversion(&str, *cp, &typoutputfinfo, |
| 5661 | value, isNull, |
| 5662 | flags, width); |
| 5663 | break; |
| 5664 | default: |
| 5665 | /* should not get here, because of previous check */ |
| 5666 | ereport(ERROR, |
| 5667 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5668 | errmsg("unrecognized format() type specifier \"%c\"" , |
| 5669 | *cp), |
| 5670 | errhint("For a single \"%%\" use \"%%%%\"." ))); |
| 5671 | break; |
| 5672 | } |
| 5673 | } |
| 5674 | |
| 5675 | /* Don't need deconstruct_array results anymore. */ |
| 5676 | if (elements != NULL) |
| 5677 | pfree(elements); |
| 5678 | if (nulls != NULL) |
| 5679 | pfree(nulls); |
| 5680 | |
| 5681 | /* Generate results. */ |
| 5682 | result = cstring_to_text_with_len(str.data, str.len); |
| 5683 | pfree(str.data); |
| 5684 | |
| 5685 | PG_RETURN_TEXT_P(result); |
| 5686 | } |
| 5687 | |
| 5688 | /* |
| 5689 | * Parse contiguous digits as a decimal number. |
| 5690 | * |
| 5691 | * Returns true if some digits could be parsed. |
| 5692 | * The value is returned into *value, and *ptr is advanced to the next |
| 5693 | * character to be parsed. |
| 5694 | * |
| 5695 | * Note parsing invariant: at least one character is known available before |
| 5696 | * string end (end_ptr) at entry, and this is still true at exit. |
| 5697 | */ |
| 5698 | static bool |
| 5699 | text_format_parse_digits(const char **ptr, const char *end_ptr, int *value) |
| 5700 | { |
| 5701 | bool found = false; |
| 5702 | const char *cp = *ptr; |
| 5703 | int val = 0; |
| 5704 | |
| 5705 | while (*cp >= '0' && *cp <= '9') |
| 5706 | { |
| 5707 | int8 digit = (*cp - '0'); |
| 5708 | |
| 5709 | if (unlikely(pg_mul_s32_overflow(val, 10, &val)) || |
| 5710 | unlikely(pg_add_s32_overflow(val, digit, &val))) |
| 5711 | ereport(ERROR, |
| 5712 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 5713 | errmsg("number is out of range" ))); |
| 5714 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5715 | found = true; |
| 5716 | } |
| 5717 | |
| 5718 | *ptr = cp; |
| 5719 | *value = val; |
| 5720 | |
| 5721 | return found; |
| 5722 | } |
| 5723 | |
| 5724 | /* |
| 5725 | * Parse a format specifier (generally following the SUS printf spec). |
| 5726 | * |
| 5727 | * We have already advanced over the initial '%', and we are looking for |
| 5728 | * [argpos][flags][width]type (but the type character is not consumed here). |
| 5729 | * |
| 5730 | * Inputs are start_ptr (the position after '%') and end_ptr (string end + 1). |
| 5731 | * Output parameters: |
| 5732 | * argpos: argument position for value to be printed. -1 means unspecified. |
| 5733 | * widthpos: argument position for width. Zero means the argument position |
| 5734 | * was unspecified (ie, take the next arg) and -1 means no width |
| 5735 | * argument (width was omitted or specified as a constant). |
| 5736 | * flags: bitmask of flags. |
| 5737 | * width: directly-specified width value. Zero means the width was omitted |
| 5738 | * (note it's not necessary to distinguish this case from an explicit |
| 5739 | * zero width value). |
| 5740 | * |
| 5741 | * The function result is the next character position to be parsed, ie, the |
| 5742 | * location where the type character is/should be. |
| 5743 | * |
| 5744 | * Note parsing invariant: at least one character is known available before |
| 5745 | * string end (end_ptr) at entry, and this is still true at exit. |
| 5746 | */ |
| 5747 | static const char * |
| 5748 | text_format_parse_format(const char *start_ptr, const char *end_ptr, |
| 5749 | int *argpos, int *widthpos, |
| 5750 | int *flags, int *width) |
| 5751 | { |
| 5752 | const char *cp = start_ptr; |
| 5753 | int n; |
| 5754 | |
| 5755 | /* set defaults for output parameters */ |
| 5756 | *argpos = -1; |
| 5757 | *widthpos = -1; |
| 5758 | *flags = 0; |
| 5759 | *width = 0; |
| 5760 | |
| 5761 | /* try to identify first number */ |
| 5762 | if (text_format_parse_digits(&cp, end_ptr, &n)) |
| 5763 | { |
| 5764 | if (*cp != '$') |
| 5765 | { |
| 5766 | /* Must be just a width and a type, so we're done */ |
| 5767 | *width = n; |
| 5768 | return cp; |
| 5769 | } |
| 5770 | /* The number was argument position */ |
| 5771 | *argpos = n; |
| 5772 | /* Explicit 0 for argument index is immediately refused */ |
| 5773 | if (n == 0) |
| 5774 | ereport(ERROR, |
| 5775 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5776 | errmsg("format specifies argument 0, but arguments are numbered from 1" ))); |
| 5777 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5778 | } |
| 5779 | |
| 5780 | /* Handle flags (only minus is supported now) */ |
| 5781 | while (*cp == '-') |
| 5782 | { |
| 5783 | *flags |= TEXT_FORMAT_FLAG_MINUS; |
| 5784 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5785 | } |
| 5786 | |
| 5787 | if (*cp == '*') |
| 5788 | { |
| 5789 | /* Handle indirect width */ |
| 5790 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5791 | if (text_format_parse_digits(&cp, end_ptr, &n)) |
| 5792 | { |
| 5793 | /* number in this position must be closed by $ */ |
| 5794 | if (*cp != '$') |
| 5795 | ereport(ERROR, |
| 5796 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5797 | errmsg("width argument position must be ended by \"$\"" ))); |
| 5798 | /* The number was width argument position */ |
| 5799 | *widthpos = n; |
| 5800 | /* Explicit 0 for argument index is immediately refused */ |
| 5801 | if (n == 0) |
| 5802 | ereport(ERROR, |
| 5803 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5804 | errmsg("format specifies argument 0, but arguments are numbered from 1" ))); |
| 5805 | ADVANCE_PARSE_POINTER(cp, end_ptr); |
| 5806 | } |
| 5807 | else |
| 5808 | *widthpos = 0; /* width's argument position is unspecified */ |
| 5809 | } |
| 5810 | else |
| 5811 | { |
| 5812 | /* Check for direct width specification */ |
| 5813 | if (text_format_parse_digits(&cp, end_ptr, &n)) |
| 5814 | *width = n; |
| 5815 | } |
| 5816 | |
| 5817 | /* cp should now be pointing at type character */ |
| 5818 | return cp; |
| 5819 | } |
| 5820 | |
| 5821 | /* |
| 5822 | * Format a %s, %I, or %L conversion |
| 5823 | */ |
| 5824 | static void |
| 5825 | text_format_string_conversion(StringInfo buf, char conversion, |
| 5826 | FmgrInfo *typOutputInfo, |
| 5827 | Datum value, bool isNull, |
| 5828 | int flags, int width) |
| 5829 | { |
| 5830 | char *str; |
| 5831 | |
| 5832 | /* Handle NULL arguments before trying to stringify the value. */ |
| 5833 | if (isNull) |
| 5834 | { |
| 5835 | if (conversion == 's') |
| 5836 | text_format_append_string(buf, "" , flags, width); |
| 5837 | else if (conversion == 'L') |
| 5838 | text_format_append_string(buf, "NULL" , flags, width); |
| 5839 | else if (conversion == 'I') |
| 5840 | ereport(ERROR, |
| 5841 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5842 | errmsg("null values cannot be formatted as an SQL identifier" ))); |
| 5843 | return; |
| 5844 | } |
| 5845 | |
| 5846 | /* Stringify. */ |
| 5847 | str = OutputFunctionCall(typOutputInfo, value); |
| 5848 | |
| 5849 | /* Escape. */ |
| 5850 | if (conversion == 'I') |
| 5851 | { |
| 5852 | /* quote_identifier may or may not allocate a new string. */ |
| 5853 | text_format_append_string(buf, quote_identifier(str), flags, width); |
| 5854 | } |
| 5855 | else if (conversion == 'L') |
| 5856 | { |
| 5857 | char *qstr = quote_literal_cstr(str); |
| 5858 | |
| 5859 | text_format_append_string(buf, qstr, flags, width); |
| 5860 | /* quote_literal_cstr() always allocates a new string */ |
| 5861 | pfree(qstr); |
| 5862 | } |
| 5863 | else |
| 5864 | text_format_append_string(buf, str, flags, width); |
| 5865 | |
| 5866 | /* Cleanup. */ |
| 5867 | pfree(str); |
| 5868 | } |
| 5869 | |
| 5870 | /* |
| 5871 | * Append str to buf, padding as directed by flags/width |
| 5872 | */ |
| 5873 | static void |
| 5874 | text_format_append_string(StringInfo buf, const char *str, |
| 5875 | int flags, int width) |
| 5876 | { |
| 5877 | bool align_to_left = false; |
| 5878 | int len; |
| 5879 | |
| 5880 | /* fast path for typical easy case */ |
| 5881 | if (width == 0) |
| 5882 | { |
| 5883 | appendStringInfoString(buf, str); |
| 5884 | return; |
| 5885 | } |
| 5886 | |
| 5887 | if (width < 0) |
| 5888 | { |
| 5889 | /* Negative width: implicit '-' flag, then take absolute value */ |
| 5890 | align_to_left = true; |
| 5891 | /* -INT_MIN is undefined */ |
| 5892 | if (width <= INT_MIN) |
| 5893 | ereport(ERROR, |
| 5894 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 5895 | errmsg("number is out of range" ))); |
| 5896 | width = -width; |
| 5897 | } |
| 5898 | else if (flags & TEXT_FORMAT_FLAG_MINUS) |
| 5899 | align_to_left = true; |
| 5900 | |
| 5901 | len = pg_mbstrlen(str); |
| 5902 | if (align_to_left) |
| 5903 | { |
| 5904 | /* left justify */ |
| 5905 | appendStringInfoString(buf, str); |
| 5906 | if (len < width) |
| 5907 | appendStringInfoSpaces(buf, width - len); |
| 5908 | } |
| 5909 | else |
| 5910 | { |
| 5911 | /* right justify */ |
| 5912 | if (len < width) |
| 5913 | appendStringInfoSpaces(buf, width - len); |
| 5914 | appendStringInfoString(buf, str); |
| 5915 | } |
| 5916 | } |
| 5917 | |
| 5918 | /* |
| 5919 | * text_format_nv - nonvariadic wrapper for text_format function. |
| 5920 | * |
| 5921 | * note: this wrapper is necessary to pass the sanity check in opr_sanity, |
| 5922 | * which checks that all built-in functions that share the implementing C |
| 5923 | * function take the same number of arguments. |
| 5924 | */ |
| 5925 | Datum |
| 5926 | text_format_nv(PG_FUNCTION_ARGS) |
| 5927 | { |
| 5928 | return text_format(fcinfo); |
| 5929 | } |
| 5930 | |
| 5931 | /* |
| 5932 | * Helper function for Levenshtein distance functions. Faster than memcmp(), |
| 5933 | * for this use case. |
| 5934 | */ |
| 5935 | static inline bool |
| 5936 | rest_of_char_same(const char *s1, const char *s2, int len) |
| 5937 | { |
| 5938 | while (len > 0) |
| 5939 | { |
| 5940 | len--; |
| 5941 | if (s1[len] != s2[len]) |
| 5942 | return false; |
| 5943 | } |
| 5944 | return true; |
| 5945 | } |
| 5946 | |
| 5947 | /* Expand each Levenshtein distance variant */ |
| 5948 | #include "levenshtein.c" |
| 5949 | #define LEVENSHTEIN_LESS_EQUAL |
| 5950 | #include "levenshtein.c" |
| 5951 | |