1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * catcache.c |
4 | * System catalog cache for tuples matching a key. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/utils/cache/catcache.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | #include "postgres.h" |
16 | |
17 | #include "access/genam.h" |
18 | #include "access/relscan.h" |
19 | #include "access/sysattr.h" |
20 | #include "access/table.h" |
21 | #include "access/tuptoaster.h" |
22 | #include "access/valid.h" |
23 | #include "access/xact.h" |
24 | #include "catalog/pg_collation.h" |
25 | #include "catalog/pg_operator.h" |
26 | #include "catalog/pg_type.h" |
27 | #include "miscadmin.h" |
28 | #ifdef CATCACHE_STATS |
29 | #include "storage/ipc.h" /* for on_proc_exit */ |
30 | #endif |
31 | #include "storage/lmgr.h" |
32 | #include "utils/builtins.h" |
33 | #include "utils/datum.h" |
34 | #include "utils/fmgroids.h" |
35 | #include "utils/hashutils.h" |
36 | #include "utils/inval.h" |
37 | #include "utils/memutils.h" |
38 | #include "utils/rel.h" |
39 | #include "utils/resowner_private.h" |
40 | #include "utils/syscache.h" |
41 | |
42 | |
43 | /* #define CACHEDEBUG */ /* turns DEBUG elogs on */ |
44 | |
45 | /* |
46 | * Given a hash value and the size of the hash table, find the bucket |
47 | * in which the hash value belongs. Since the hash table must contain |
48 | * a power-of-2 number of elements, this is a simple bitmask. |
49 | */ |
50 | #define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1))) |
51 | |
52 | |
53 | /* |
54 | * variables, macros and other stuff |
55 | */ |
56 | |
57 | #ifdef CACHEDEBUG |
58 | #define CACHE_elog(...) elog(__VA_ARGS__) |
59 | #else |
60 | #define CACHE_elog(...) |
61 | #endif |
62 | |
63 | /* Cache management header --- pointer is NULL until created */ |
64 | static CatCacheHeader *CacheHdr = NULL; |
65 | |
66 | static inline HeapTuple SearchCatCacheInternal(CatCache *cache, |
67 | int nkeys, |
68 | Datum v1, Datum v2, |
69 | Datum v3, Datum v4); |
70 | |
71 | static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache, |
72 | int nkeys, |
73 | uint32 hashValue, |
74 | Index hashIndex, |
75 | Datum v1, Datum v2, |
76 | Datum v3, Datum v4); |
77 | |
78 | static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys, |
79 | Datum v1, Datum v2, Datum v3, Datum v4); |
80 | static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, |
81 | HeapTuple tuple); |
82 | static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys, |
83 | const Datum *cachekeys, |
84 | const Datum *searchkeys); |
85 | |
86 | #ifdef CATCACHE_STATS |
87 | static void CatCachePrintStats(int code, Datum arg); |
88 | #endif |
89 | static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct); |
90 | static void CatCacheRemoveCList(CatCache *cache, CatCList *cl); |
91 | static void CatalogCacheInitializeCache(CatCache *cache); |
92 | static CatCTup *CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, |
93 | Datum *arguments, |
94 | uint32 hashValue, Index hashIndex, |
95 | bool negative); |
96 | |
97 | static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
98 | Datum *keys); |
99 | static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
100 | Datum *srckeys, Datum *dstkeys); |
101 | |
102 | |
103 | /* |
104 | * internal support functions |
105 | */ |
106 | |
107 | /* |
108 | * Hash and equality functions for system types that are used as cache key |
109 | * fields. In some cases, we just call the regular SQL-callable functions for |
110 | * the appropriate data type, but that tends to be a little slow, and the |
111 | * speed of these functions is performance-critical. Therefore, for data |
112 | * types that frequently occur as catcache keys, we hard-code the logic here. |
113 | * Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and |
114 | * in certain cases (like int4) we can adopt a faster hash algorithm as well. |
115 | */ |
116 | |
117 | static bool |
118 | chareqfast(Datum a, Datum b) |
119 | { |
120 | return DatumGetChar(a) == DatumGetChar(b); |
121 | } |
122 | |
123 | static uint32 |
124 | charhashfast(Datum datum) |
125 | { |
126 | return murmurhash32((int32) DatumGetChar(datum)); |
127 | } |
128 | |
129 | static bool |
130 | nameeqfast(Datum a, Datum b) |
131 | { |
132 | char *ca = NameStr(*DatumGetName(a)); |
133 | char *cb = NameStr(*DatumGetName(b)); |
134 | |
135 | return strncmp(ca, cb, NAMEDATALEN) == 0; |
136 | } |
137 | |
138 | static uint32 |
139 | namehashfast(Datum datum) |
140 | { |
141 | char *key = NameStr(*DatumGetName(datum)); |
142 | |
143 | return hash_any((unsigned char *) key, strlen(key)); |
144 | } |
145 | |
146 | static bool |
147 | int2eqfast(Datum a, Datum b) |
148 | { |
149 | return DatumGetInt16(a) == DatumGetInt16(b); |
150 | } |
151 | |
152 | static uint32 |
153 | int2hashfast(Datum datum) |
154 | { |
155 | return murmurhash32((int32) DatumGetInt16(datum)); |
156 | } |
157 | |
158 | static bool |
159 | int4eqfast(Datum a, Datum b) |
160 | { |
161 | return DatumGetInt32(a) == DatumGetInt32(b); |
162 | } |
163 | |
164 | static uint32 |
165 | int4hashfast(Datum datum) |
166 | { |
167 | return murmurhash32((int32) DatumGetInt32(datum)); |
168 | } |
169 | |
170 | static bool |
171 | texteqfast(Datum a, Datum b) |
172 | { |
173 | /* |
174 | * The use of DEFAULT_COLLATION_OID is fairly arbitrary here. We just |
175 | * want to take the fast "deterministic" path in texteq(). |
176 | */ |
177 | return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b)); |
178 | } |
179 | |
180 | static uint32 |
181 | texthashfast(Datum datum) |
182 | { |
183 | /* analogously here as in texteqfast() */ |
184 | return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum)); |
185 | } |
186 | |
187 | static bool |
188 | oidvectoreqfast(Datum a, Datum b) |
189 | { |
190 | return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b)); |
191 | } |
192 | |
193 | static uint32 |
194 | oidvectorhashfast(Datum datum) |
195 | { |
196 | return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum)); |
197 | } |
198 | |
199 | /* Lookup support functions for a type. */ |
200 | static void |
201 | GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc) |
202 | { |
203 | switch (keytype) |
204 | { |
205 | case BOOLOID: |
206 | *hashfunc = charhashfast; |
207 | *fasteqfunc = chareqfast; |
208 | *eqfunc = F_BOOLEQ; |
209 | break; |
210 | case CHAROID: |
211 | *hashfunc = charhashfast; |
212 | *fasteqfunc = chareqfast; |
213 | *eqfunc = F_CHAREQ; |
214 | break; |
215 | case NAMEOID: |
216 | *hashfunc = namehashfast; |
217 | *fasteqfunc = nameeqfast; |
218 | *eqfunc = F_NAMEEQ; |
219 | break; |
220 | case INT2OID: |
221 | *hashfunc = int2hashfast; |
222 | *fasteqfunc = int2eqfast; |
223 | *eqfunc = F_INT2EQ; |
224 | break; |
225 | case INT4OID: |
226 | *hashfunc = int4hashfast; |
227 | *fasteqfunc = int4eqfast; |
228 | *eqfunc = F_INT4EQ; |
229 | break; |
230 | case TEXTOID: |
231 | *hashfunc = texthashfast; |
232 | *fasteqfunc = texteqfast; |
233 | *eqfunc = F_TEXTEQ; |
234 | break; |
235 | case OIDOID: |
236 | case REGPROCOID: |
237 | case REGPROCEDUREOID: |
238 | case REGOPEROID: |
239 | case REGOPERATOROID: |
240 | case REGCLASSOID: |
241 | case REGTYPEOID: |
242 | case REGCONFIGOID: |
243 | case REGDICTIONARYOID: |
244 | case REGROLEOID: |
245 | case REGNAMESPACEOID: |
246 | *hashfunc = int4hashfast; |
247 | *fasteqfunc = int4eqfast; |
248 | *eqfunc = F_OIDEQ; |
249 | break; |
250 | case OIDVECTOROID: |
251 | *hashfunc = oidvectorhashfast; |
252 | *fasteqfunc = oidvectoreqfast; |
253 | *eqfunc = F_OIDVECTOREQ; |
254 | break; |
255 | default: |
256 | elog(FATAL, "type %u not supported as catcache key" , keytype); |
257 | *hashfunc = NULL; /* keep compiler quiet */ |
258 | |
259 | *eqfunc = InvalidOid; |
260 | break; |
261 | } |
262 | } |
263 | |
264 | /* |
265 | * CatalogCacheComputeHashValue |
266 | * |
267 | * Compute the hash value associated with a given set of lookup keys |
268 | */ |
269 | static uint32 |
270 | CatalogCacheComputeHashValue(CatCache *cache, int nkeys, |
271 | Datum v1, Datum v2, Datum v3, Datum v4) |
272 | { |
273 | uint32 hashValue = 0; |
274 | uint32 oneHash; |
275 | CCHashFN *cc_hashfunc = cache->cc_hashfunc; |
276 | |
277 | CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p" , |
278 | cache->cc_relname, nkeys, cache); |
279 | |
280 | switch (nkeys) |
281 | { |
282 | case 4: |
283 | oneHash = (cc_hashfunc[3]) (v4); |
284 | |
285 | hashValue ^= oneHash << 24; |
286 | hashValue ^= oneHash >> 8; |
287 | /* FALLTHROUGH */ |
288 | case 3: |
289 | oneHash = (cc_hashfunc[2]) (v3); |
290 | |
291 | hashValue ^= oneHash << 16; |
292 | hashValue ^= oneHash >> 16; |
293 | /* FALLTHROUGH */ |
294 | case 2: |
295 | oneHash = (cc_hashfunc[1]) (v2); |
296 | |
297 | hashValue ^= oneHash << 8; |
298 | hashValue ^= oneHash >> 24; |
299 | /* FALLTHROUGH */ |
300 | case 1: |
301 | oneHash = (cc_hashfunc[0]) (v1); |
302 | |
303 | hashValue ^= oneHash; |
304 | break; |
305 | default: |
306 | elog(FATAL, "wrong number of hash keys: %d" , nkeys); |
307 | break; |
308 | } |
309 | |
310 | return hashValue; |
311 | } |
312 | |
313 | /* |
314 | * CatalogCacheComputeTupleHashValue |
315 | * |
316 | * Compute the hash value associated with a given tuple to be cached |
317 | */ |
318 | static uint32 |
319 | CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple) |
320 | { |
321 | Datum v1 = 0, |
322 | v2 = 0, |
323 | v3 = 0, |
324 | v4 = 0; |
325 | bool isNull = false; |
326 | int *cc_keyno = cache->cc_keyno; |
327 | TupleDesc cc_tupdesc = cache->cc_tupdesc; |
328 | |
329 | /* Now extract key fields from tuple, insert into scankey */ |
330 | switch (nkeys) |
331 | { |
332 | case 4: |
333 | v4 = fastgetattr(tuple, |
334 | cc_keyno[3], |
335 | cc_tupdesc, |
336 | &isNull); |
337 | Assert(!isNull); |
338 | /* FALLTHROUGH */ |
339 | case 3: |
340 | v3 = fastgetattr(tuple, |
341 | cc_keyno[2], |
342 | cc_tupdesc, |
343 | &isNull); |
344 | Assert(!isNull); |
345 | /* FALLTHROUGH */ |
346 | case 2: |
347 | v2 = fastgetattr(tuple, |
348 | cc_keyno[1], |
349 | cc_tupdesc, |
350 | &isNull); |
351 | Assert(!isNull); |
352 | /* FALLTHROUGH */ |
353 | case 1: |
354 | v1 = fastgetattr(tuple, |
355 | cc_keyno[0], |
356 | cc_tupdesc, |
357 | &isNull); |
358 | Assert(!isNull); |
359 | break; |
360 | default: |
361 | elog(FATAL, "wrong number of hash keys: %d" , nkeys); |
362 | break; |
363 | } |
364 | |
365 | return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
366 | } |
367 | |
368 | /* |
369 | * CatalogCacheCompareTuple |
370 | * |
371 | * Compare a tuple to the passed arguments. |
372 | */ |
373 | static inline bool |
374 | CatalogCacheCompareTuple(const CatCache *cache, int nkeys, |
375 | const Datum *cachekeys, |
376 | const Datum *searchkeys) |
377 | { |
378 | const CCFastEqualFN *cc_fastequal = cache->cc_fastequal; |
379 | int i; |
380 | |
381 | for (i = 0; i < nkeys; i++) |
382 | { |
383 | if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i])) |
384 | return false; |
385 | } |
386 | return true; |
387 | } |
388 | |
389 | |
390 | #ifdef CATCACHE_STATS |
391 | |
392 | static void |
393 | CatCachePrintStats(int code, Datum arg) |
394 | { |
395 | slist_iter iter; |
396 | long cc_searches = 0; |
397 | long cc_hits = 0; |
398 | long cc_neg_hits = 0; |
399 | long cc_newloads = 0; |
400 | long cc_invals = 0; |
401 | long cc_lsearches = 0; |
402 | long cc_lhits = 0; |
403 | |
404 | slist_foreach(iter, &CacheHdr->ch_caches) |
405 | { |
406 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
407 | |
408 | if (cache->cc_ntup == 0 && cache->cc_searches == 0) |
409 | continue; /* don't print unused caches */ |
410 | elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits" , |
411 | cache->cc_relname, |
412 | cache->cc_indexoid, |
413 | cache->cc_ntup, |
414 | cache->cc_searches, |
415 | cache->cc_hits, |
416 | cache->cc_neg_hits, |
417 | cache->cc_hits + cache->cc_neg_hits, |
418 | cache->cc_newloads, |
419 | cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads, |
420 | cache->cc_searches - cache->cc_hits - cache->cc_neg_hits, |
421 | cache->cc_invals, |
422 | cache->cc_lsearches, |
423 | cache->cc_lhits); |
424 | cc_searches += cache->cc_searches; |
425 | cc_hits += cache->cc_hits; |
426 | cc_neg_hits += cache->cc_neg_hits; |
427 | cc_newloads += cache->cc_newloads; |
428 | cc_invals += cache->cc_invals; |
429 | cc_lsearches += cache->cc_lsearches; |
430 | cc_lhits += cache->cc_lhits; |
431 | } |
432 | elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits" , |
433 | CacheHdr->ch_ntup, |
434 | cc_searches, |
435 | cc_hits, |
436 | cc_neg_hits, |
437 | cc_hits + cc_neg_hits, |
438 | cc_newloads, |
439 | cc_searches - cc_hits - cc_neg_hits - cc_newloads, |
440 | cc_searches - cc_hits - cc_neg_hits, |
441 | cc_invals, |
442 | cc_lsearches, |
443 | cc_lhits); |
444 | } |
445 | #endif /* CATCACHE_STATS */ |
446 | |
447 | |
448 | /* |
449 | * CatCacheRemoveCTup |
450 | * |
451 | * Unlink and delete the given cache entry |
452 | * |
453 | * NB: if it is a member of a CatCList, the CatCList is deleted too. |
454 | * Both the cache entry and the list had better have zero refcount. |
455 | */ |
456 | static void |
457 | CatCacheRemoveCTup(CatCache *cache, CatCTup *ct) |
458 | { |
459 | Assert(ct->refcount == 0); |
460 | Assert(ct->my_cache == cache); |
461 | |
462 | if (ct->c_list) |
463 | { |
464 | /* |
465 | * The cleanest way to handle this is to call CatCacheRemoveCList, |
466 | * which will recurse back to me, and the recursive call will do the |
467 | * work. Set the "dead" flag to make sure it does recurse. |
468 | */ |
469 | ct->dead = true; |
470 | CatCacheRemoveCList(cache, ct->c_list); |
471 | return; /* nothing left to do */ |
472 | } |
473 | |
474 | /* delink from linked list */ |
475 | dlist_delete(&ct->cache_elem); |
476 | |
477 | /* |
478 | * Free keys when we're dealing with a negative entry, normal entries just |
479 | * point into tuple, allocated together with the CatCTup. |
480 | */ |
481 | if (ct->negative) |
482 | CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys, |
483 | cache->cc_keyno, ct->keys); |
484 | |
485 | pfree(ct); |
486 | |
487 | --cache->cc_ntup; |
488 | --CacheHdr->ch_ntup; |
489 | } |
490 | |
491 | /* |
492 | * CatCacheRemoveCList |
493 | * |
494 | * Unlink and delete the given cache list entry |
495 | * |
496 | * NB: any dead member entries that become unreferenced are deleted too. |
497 | */ |
498 | static void |
499 | CatCacheRemoveCList(CatCache *cache, CatCList *cl) |
500 | { |
501 | int i; |
502 | |
503 | Assert(cl->refcount == 0); |
504 | Assert(cl->my_cache == cache); |
505 | |
506 | /* delink from member tuples */ |
507 | for (i = cl->n_members; --i >= 0;) |
508 | { |
509 | CatCTup *ct = cl->members[i]; |
510 | |
511 | Assert(ct->c_list == cl); |
512 | ct->c_list = NULL; |
513 | /* if the member is dead and now has no references, remove it */ |
514 | if ( |
515 | #ifndef CATCACHE_FORCE_RELEASE |
516 | ct->dead && |
517 | #endif |
518 | ct->refcount == 0) |
519 | CatCacheRemoveCTup(cache, ct); |
520 | } |
521 | |
522 | /* delink from linked list */ |
523 | dlist_delete(&cl->cache_elem); |
524 | |
525 | /* free associated column data */ |
526 | CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys, |
527 | cache->cc_keyno, cl->keys); |
528 | |
529 | pfree(cl); |
530 | } |
531 | |
532 | |
533 | /* |
534 | * CatCacheInvalidate |
535 | * |
536 | * Invalidate entries in the specified cache, given a hash value. |
537 | * |
538 | * We delete cache entries that match the hash value, whether positive |
539 | * or negative. We don't care whether the invalidation is the result |
540 | * of a tuple insertion or a deletion. |
541 | * |
542 | * We used to try to match positive cache entries by TID, but that is |
543 | * unsafe after a VACUUM FULL on a system catalog: an inval event could |
544 | * be queued before VACUUM FULL, and then processed afterwards, when the |
545 | * target tuple that has to be invalidated has a different TID than it |
546 | * did when the event was created. So now we just compare hash values and |
547 | * accept the small risk of unnecessary invalidations due to false matches. |
548 | * |
549 | * This routine is only quasi-public: it should only be used by inval.c. |
550 | */ |
551 | void |
552 | CatCacheInvalidate(CatCache *cache, uint32 hashValue) |
553 | { |
554 | Index hashIndex; |
555 | dlist_mutable_iter iter; |
556 | |
557 | CACHE_elog(DEBUG2, "CatCacheInvalidate: called" ); |
558 | |
559 | /* |
560 | * We don't bother to check whether the cache has finished initialization |
561 | * yet; if not, there will be no entries in it so no problem. |
562 | */ |
563 | |
564 | /* |
565 | * Invalidate *all* CatCLists in this cache; it's too hard to tell which |
566 | * searches might still be correct, so just zap 'em all. |
567 | */ |
568 | dlist_foreach_modify(iter, &cache->cc_lists) |
569 | { |
570 | CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur); |
571 | |
572 | if (cl->refcount > 0) |
573 | cl->dead = true; |
574 | else |
575 | CatCacheRemoveCList(cache, cl); |
576 | } |
577 | |
578 | /* |
579 | * inspect the proper hash bucket for tuple matches |
580 | */ |
581 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
582 | dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex]) |
583 | { |
584 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
585 | |
586 | if (hashValue == ct->hash_value) |
587 | { |
588 | if (ct->refcount > 0 || |
589 | (ct->c_list && ct->c_list->refcount > 0)) |
590 | { |
591 | ct->dead = true; |
592 | /* list, if any, was marked dead above */ |
593 | Assert(ct->c_list == NULL || ct->c_list->dead); |
594 | } |
595 | else |
596 | CatCacheRemoveCTup(cache, ct); |
597 | CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated" ); |
598 | #ifdef CATCACHE_STATS |
599 | cache->cc_invals++; |
600 | #endif |
601 | /* could be multiple matches, so keep looking! */ |
602 | } |
603 | } |
604 | } |
605 | |
606 | /* ---------------------------------------------------------------- |
607 | * public functions |
608 | * ---------------------------------------------------------------- |
609 | */ |
610 | |
611 | |
612 | /* |
613 | * Standard routine for creating cache context if it doesn't exist yet |
614 | * |
615 | * There are a lot of places (probably far more than necessary) that check |
616 | * whether CacheMemoryContext exists yet and want to create it if not. |
617 | * We centralize knowledge of exactly how to create it here. |
618 | */ |
619 | void |
620 | CreateCacheMemoryContext(void) |
621 | { |
622 | /* |
623 | * Purely for paranoia, check that context doesn't exist; caller probably |
624 | * did so already. |
625 | */ |
626 | if (!CacheMemoryContext) |
627 | CacheMemoryContext = AllocSetContextCreate(TopMemoryContext, |
628 | "CacheMemoryContext" , |
629 | ALLOCSET_DEFAULT_SIZES); |
630 | } |
631 | |
632 | |
633 | /* |
634 | * ResetCatalogCache |
635 | * |
636 | * Reset one catalog cache to empty. |
637 | * |
638 | * This is not very efficient if the target cache is nearly empty. |
639 | * However, it shouldn't need to be efficient; we don't invoke it often. |
640 | */ |
641 | static void |
642 | ResetCatalogCache(CatCache *cache) |
643 | { |
644 | dlist_mutable_iter iter; |
645 | int i; |
646 | |
647 | /* Remove each list in this cache, or at least mark it dead */ |
648 | dlist_foreach_modify(iter, &cache->cc_lists) |
649 | { |
650 | CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur); |
651 | |
652 | if (cl->refcount > 0) |
653 | cl->dead = true; |
654 | else |
655 | CatCacheRemoveCList(cache, cl); |
656 | } |
657 | |
658 | /* Remove each tuple in this cache, or at least mark it dead */ |
659 | for (i = 0; i < cache->cc_nbuckets; i++) |
660 | { |
661 | dlist_head *bucket = &cache->cc_bucket[i]; |
662 | |
663 | dlist_foreach_modify(iter, bucket) |
664 | { |
665 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
666 | |
667 | if (ct->refcount > 0 || |
668 | (ct->c_list && ct->c_list->refcount > 0)) |
669 | { |
670 | ct->dead = true; |
671 | /* list, if any, was marked dead above */ |
672 | Assert(ct->c_list == NULL || ct->c_list->dead); |
673 | } |
674 | else |
675 | CatCacheRemoveCTup(cache, ct); |
676 | #ifdef CATCACHE_STATS |
677 | cache->cc_invals++; |
678 | #endif |
679 | } |
680 | } |
681 | } |
682 | |
683 | /* |
684 | * ResetCatalogCaches |
685 | * |
686 | * Reset all caches when a shared cache inval event forces it |
687 | */ |
688 | void |
689 | ResetCatalogCaches(void) |
690 | { |
691 | slist_iter iter; |
692 | |
693 | CACHE_elog(DEBUG2, "ResetCatalogCaches called" ); |
694 | |
695 | slist_foreach(iter, &CacheHdr->ch_caches) |
696 | { |
697 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
698 | |
699 | ResetCatalogCache(cache); |
700 | } |
701 | |
702 | CACHE_elog(DEBUG2, "end of ResetCatalogCaches call" ); |
703 | } |
704 | |
705 | /* |
706 | * CatalogCacheFlushCatalog |
707 | * |
708 | * Flush all catcache entries that came from the specified system catalog. |
709 | * This is needed after VACUUM FULL/CLUSTER on the catalog, since the |
710 | * tuples very likely now have different TIDs than before. (At one point |
711 | * we also tried to force re-execution of CatalogCacheInitializeCache for |
712 | * the cache(s) on that catalog. This is a bad idea since it leads to all |
713 | * kinds of trouble if a cache flush occurs while loading cache entries. |
714 | * We now avoid the need to do it by copying cc_tupdesc out of the relcache, |
715 | * rather than relying on the relcache to keep a tupdesc for us. Of course |
716 | * this assumes the tupdesc of a cachable system table will not change...) |
717 | */ |
718 | void |
719 | CatalogCacheFlushCatalog(Oid catId) |
720 | { |
721 | slist_iter iter; |
722 | |
723 | CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u" , catId); |
724 | |
725 | slist_foreach(iter, &CacheHdr->ch_caches) |
726 | { |
727 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
728 | |
729 | /* Does this cache store tuples of the target catalog? */ |
730 | if (cache->cc_reloid == catId) |
731 | { |
732 | /* Yes, so flush all its contents */ |
733 | ResetCatalogCache(cache); |
734 | |
735 | /* Tell inval.c to call syscache callbacks for this cache */ |
736 | CallSyscacheCallbacks(cache->id, 0); |
737 | } |
738 | } |
739 | |
740 | CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call" ); |
741 | } |
742 | |
743 | /* |
744 | * InitCatCache |
745 | * |
746 | * This allocates and initializes a cache for a system catalog relation. |
747 | * Actually, the cache is only partially initialized to avoid opening the |
748 | * relation. The relation will be opened and the rest of the cache |
749 | * structure initialized on the first access. |
750 | */ |
751 | #ifdef CACHEDEBUG |
752 | #define InitCatCache_DEBUG2 \ |
753 | do { \ |
754 | elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \ |
755 | cp->cc_reloid, cp->cc_indexoid, cp->id, \ |
756 | cp->cc_nkeys, cp->cc_nbuckets); \ |
757 | } while(0) |
758 | #else |
759 | #define InitCatCache_DEBUG2 |
760 | #endif |
761 | |
762 | CatCache * |
763 | InitCatCache(int id, |
764 | Oid reloid, |
765 | Oid indexoid, |
766 | int nkeys, |
767 | const int *key, |
768 | int nbuckets) |
769 | { |
770 | CatCache *cp; |
771 | MemoryContext oldcxt; |
772 | size_t sz; |
773 | int i; |
774 | |
775 | /* |
776 | * nbuckets is the initial number of hash buckets to use in this catcache. |
777 | * It will be enlarged later if it becomes too full. |
778 | * |
779 | * nbuckets must be a power of two. We check this via Assert rather than |
780 | * a full runtime check because the values will be coming from constant |
781 | * tables. |
782 | * |
783 | * If you're confused by the power-of-two check, see comments in |
784 | * bitmapset.c for an explanation. |
785 | */ |
786 | Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets); |
787 | |
788 | /* |
789 | * first switch to the cache context so our allocations do not vanish at |
790 | * the end of a transaction |
791 | */ |
792 | if (!CacheMemoryContext) |
793 | CreateCacheMemoryContext(); |
794 | |
795 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
796 | |
797 | /* |
798 | * if first time through, initialize the cache group header |
799 | */ |
800 | if (CacheHdr == NULL) |
801 | { |
802 | CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader)); |
803 | slist_init(&CacheHdr->ch_caches); |
804 | CacheHdr->ch_ntup = 0; |
805 | #ifdef CATCACHE_STATS |
806 | /* set up to dump stats at backend exit */ |
807 | on_proc_exit(CatCachePrintStats, 0); |
808 | #endif |
809 | } |
810 | |
811 | /* |
812 | * Allocate a new cache structure, aligning to a cacheline boundary |
813 | * |
814 | * Note: we rely on zeroing to initialize all the dlist headers correctly |
815 | */ |
816 | sz = sizeof(CatCache) + PG_CACHE_LINE_SIZE; |
817 | cp = (CatCache *) CACHELINEALIGN(palloc0(sz)); |
818 | cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head)); |
819 | |
820 | /* |
821 | * initialize the cache's relation information for the relation |
822 | * corresponding to this cache, and initialize some of the new cache's |
823 | * other internal fields. But don't open the relation yet. |
824 | */ |
825 | cp->id = id; |
826 | cp->cc_relname = "(not known yet)" ; |
827 | cp->cc_reloid = reloid; |
828 | cp->cc_indexoid = indexoid; |
829 | cp->cc_relisshared = false; /* temporary */ |
830 | cp->cc_tupdesc = (TupleDesc) NULL; |
831 | cp->cc_ntup = 0; |
832 | cp->cc_nbuckets = nbuckets; |
833 | cp->cc_nkeys = nkeys; |
834 | for (i = 0; i < nkeys; ++i) |
835 | cp->cc_keyno[i] = key[i]; |
836 | |
837 | /* |
838 | * new cache is initialized as far as we can go for now. print some |
839 | * debugging information, if appropriate. |
840 | */ |
841 | InitCatCache_DEBUG2; |
842 | |
843 | /* |
844 | * add completed cache to top of group header's list |
845 | */ |
846 | slist_push_head(&CacheHdr->ch_caches, &cp->cc_next); |
847 | |
848 | /* |
849 | * back to the old context before we return... |
850 | */ |
851 | MemoryContextSwitchTo(oldcxt); |
852 | |
853 | return cp; |
854 | } |
855 | |
856 | /* |
857 | * Enlarge a catcache, doubling the number of buckets. |
858 | */ |
859 | static void |
860 | RehashCatCache(CatCache *cp) |
861 | { |
862 | dlist_head *newbucket; |
863 | int newnbuckets; |
864 | int i; |
865 | |
866 | elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets" , |
867 | cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets); |
868 | |
869 | /* Allocate a new, larger, hash table. */ |
870 | newnbuckets = cp->cc_nbuckets * 2; |
871 | newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head)); |
872 | |
873 | /* Move all entries from old hash table to new. */ |
874 | for (i = 0; i < cp->cc_nbuckets; i++) |
875 | { |
876 | dlist_mutable_iter iter; |
877 | |
878 | dlist_foreach_modify(iter, &cp->cc_bucket[i]) |
879 | { |
880 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
881 | int hashIndex = HASH_INDEX(ct->hash_value, newnbuckets); |
882 | |
883 | dlist_delete(iter.cur); |
884 | dlist_push_head(&newbucket[hashIndex], &ct->cache_elem); |
885 | } |
886 | } |
887 | |
888 | /* Switch to the new array. */ |
889 | pfree(cp->cc_bucket); |
890 | cp->cc_nbuckets = newnbuckets; |
891 | cp->cc_bucket = newbucket; |
892 | } |
893 | |
894 | /* |
895 | * CatalogCacheInitializeCache |
896 | * |
897 | * This function does final initialization of a catcache: obtain the tuple |
898 | * descriptor and set up the hash and equality function links. We assume |
899 | * that the relcache entry can be opened at this point! |
900 | */ |
901 | #ifdef CACHEDEBUG |
902 | #define CatalogCacheInitializeCache_DEBUG1 \ |
903 | elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \ |
904 | cache->cc_reloid) |
905 | |
906 | #define CatalogCacheInitializeCache_DEBUG2 \ |
907 | do { \ |
908 | if (cache->cc_keyno[i] > 0) { \ |
909 | elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \ |
910 | i+1, cache->cc_nkeys, cache->cc_keyno[i], \ |
911 | TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \ |
912 | } else { \ |
913 | elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \ |
914 | i+1, cache->cc_nkeys, cache->cc_keyno[i]); \ |
915 | } \ |
916 | } while(0) |
917 | #else |
918 | #define CatalogCacheInitializeCache_DEBUG1 |
919 | #define CatalogCacheInitializeCache_DEBUG2 |
920 | #endif |
921 | |
922 | static void |
923 | CatalogCacheInitializeCache(CatCache *cache) |
924 | { |
925 | Relation relation; |
926 | MemoryContext oldcxt; |
927 | TupleDesc tupdesc; |
928 | int i; |
929 | |
930 | CatalogCacheInitializeCache_DEBUG1; |
931 | |
932 | relation = table_open(cache->cc_reloid, AccessShareLock); |
933 | |
934 | /* |
935 | * switch to the cache context so our allocations do not vanish at the end |
936 | * of a transaction |
937 | */ |
938 | Assert(CacheMemoryContext != NULL); |
939 | |
940 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
941 | |
942 | /* |
943 | * copy the relcache's tuple descriptor to permanent cache storage |
944 | */ |
945 | tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation)); |
946 | |
947 | /* |
948 | * save the relation's name and relisshared flag, too (cc_relname is used |
949 | * only for debugging purposes) |
950 | */ |
951 | cache->cc_relname = pstrdup(RelationGetRelationName(relation)); |
952 | cache->cc_relisshared = RelationGetForm(relation)->relisshared; |
953 | |
954 | /* |
955 | * return to the caller's memory context and close the rel |
956 | */ |
957 | MemoryContextSwitchTo(oldcxt); |
958 | |
959 | table_close(relation, AccessShareLock); |
960 | |
961 | CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys" , |
962 | cache->cc_relname, cache->cc_nkeys); |
963 | |
964 | /* |
965 | * initialize cache's key information |
966 | */ |
967 | for (i = 0; i < cache->cc_nkeys; ++i) |
968 | { |
969 | Oid keytype; |
970 | RegProcedure eqfunc; |
971 | |
972 | CatalogCacheInitializeCache_DEBUG2; |
973 | |
974 | if (cache->cc_keyno[i] > 0) |
975 | { |
976 | Form_pg_attribute attr = TupleDescAttr(tupdesc, |
977 | cache->cc_keyno[i] - 1); |
978 | |
979 | keytype = attr->atttypid; |
980 | /* cache key columns should always be NOT NULL */ |
981 | Assert(attr->attnotnull); |
982 | } |
983 | else |
984 | { |
985 | if (cache->cc_keyno[i] < 0) |
986 | elog(FATAL, "sys attributes are not supported in caches" ); |
987 | keytype = OIDOID; |
988 | } |
989 | |
990 | GetCCHashEqFuncs(keytype, |
991 | &cache->cc_hashfunc[i], |
992 | &eqfunc, |
993 | &cache->cc_fastequal[i]); |
994 | |
995 | /* |
996 | * Do equality-function lookup (we assume this won't need a catalog |
997 | * lookup for any supported type) |
998 | */ |
999 | fmgr_info_cxt(eqfunc, |
1000 | &cache->cc_skey[i].sk_func, |
1001 | CacheMemoryContext); |
1002 | |
1003 | /* Initialize sk_attno suitably for HeapKeyTest() and heap scans */ |
1004 | cache->cc_skey[i].sk_attno = cache->cc_keyno[i]; |
1005 | |
1006 | /* Fill in sk_strategy as well --- always standard equality */ |
1007 | cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber; |
1008 | cache->cc_skey[i].sk_subtype = InvalidOid; |
1009 | /* If a catcache key requires a collation, it must be C collation */ |
1010 | cache->cc_skey[i].sk_collation = C_COLLATION_OID; |
1011 | |
1012 | CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p" , |
1013 | cache->cc_relname, i, cache); |
1014 | } |
1015 | |
1016 | /* |
1017 | * mark this cache fully initialized |
1018 | */ |
1019 | cache->cc_tupdesc = tupdesc; |
1020 | } |
1021 | |
1022 | /* |
1023 | * InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache |
1024 | * |
1025 | * One reason to call this routine is to ensure that the relcache has |
1026 | * created entries for all the catalogs and indexes referenced by catcaches. |
1027 | * Therefore, provide an option to open the index as well as fixing the |
1028 | * cache itself. An exception is the indexes on pg_am, which we don't use |
1029 | * (cf. IndexScanOK). |
1030 | */ |
1031 | void |
1032 | InitCatCachePhase2(CatCache *cache, bool touch_index) |
1033 | { |
1034 | if (cache->cc_tupdesc == NULL) |
1035 | CatalogCacheInitializeCache(cache); |
1036 | |
1037 | if (touch_index && |
1038 | cache->id != AMOID && |
1039 | cache->id != AMNAME) |
1040 | { |
1041 | Relation idesc; |
1042 | |
1043 | /* |
1044 | * We must lock the underlying catalog before opening the index to |
1045 | * avoid deadlock, since index_open could possibly result in reading |
1046 | * this same catalog, and if anyone else is exclusive-locking this |
1047 | * catalog and index they'll be doing it in that order. |
1048 | */ |
1049 | LockRelationOid(cache->cc_reloid, AccessShareLock); |
1050 | idesc = index_open(cache->cc_indexoid, AccessShareLock); |
1051 | |
1052 | /* |
1053 | * While we've got the index open, let's check that it's unique (and |
1054 | * not just deferrable-unique, thank you very much). This is just to |
1055 | * catch thinkos in definitions of new catcaches, so we don't worry |
1056 | * about the pg_am indexes not getting tested. |
1057 | */ |
1058 | Assert(idesc->rd_index->indisunique && |
1059 | idesc->rd_index->indimmediate); |
1060 | |
1061 | index_close(idesc, AccessShareLock); |
1062 | UnlockRelationOid(cache->cc_reloid, AccessShareLock); |
1063 | } |
1064 | } |
1065 | |
1066 | |
1067 | /* |
1068 | * IndexScanOK |
1069 | * |
1070 | * This function checks for tuples that will be fetched by |
1071 | * IndexSupportInitialize() during relcache initialization for |
1072 | * certain system indexes that support critical syscaches. |
1073 | * We can't use an indexscan to fetch these, else we'll get into |
1074 | * infinite recursion. A plain heap scan will work, however. |
1075 | * Once we have completed relcache initialization (signaled by |
1076 | * criticalRelcachesBuilt), we don't have to worry anymore. |
1077 | * |
1078 | * Similarly, during backend startup we have to be able to use the |
1079 | * pg_authid and pg_auth_members syscaches for authentication even if |
1080 | * we don't yet have relcache entries for those catalogs' indexes. |
1081 | */ |
1082 | static bool |
1083 | IndexScanOK(CatCache *cache, ScanKey cur_skey) |
1084 | { |
1085 | switch (cache->id) |
1086 | { |
1087 | case INDEXRELID: |
1088 | |
1089 | /* |
1090 | * Rather than tracking exactly which indexes have to be loaded |
1091 | * before we can use indexscans (which changes from time to time), |
1092 | * just force all pg_index searches to be heap scans until we've |
1093 | * built the critical relcaches. |
1094 | */ |
1095 | if (!criticalRelcachesBuilt) |
1096 | return false; |
1097 | break; |
1098 | |
1099 | case AMOID: |
1100 | case AMNAME: |
1101 | |
1102 | /* |
1103 | * Always do heap scans in pg_am, because it's so small there's |
1104 | * not much point in an indexscan anyway. We *must* do this when |
1105 | * initially building critical relcache entries, but we might as |
1106 | * well just always do it. |
1107 | */ |
1108 | return false; |
1109 | |
1110 | case AUTHNAME: |
1111 | case AUTHOID: |
1112 | case AUTHMEMMEMROLE: |
1113 | |
1114 | /* |
1115 | * Protect authentication lookups occurring before relcache has |
1116 | * collected entries for shared indexes. |
1117 | */ |
1118 | if (!criticalSharedRelcachesBuilt) |
1119 | return false; |
1120 | break; |
1121 | |
1122 | default: |
1123 | break; |
1124 | } |
1125 | |
1126 | /* Normal case, allow index scan */ |
1127 | return true; |
1128 | } |
1129 | |
1130 | /* |
1131 | * SearchCatCacheInternal |
1132 | * |
1133 | * This call searches a system cache for a tuple, opening the relation |
1134 | * if necessary (on the first access to a particular cache). |
1135 | * |
1136 | * The result is NULL if not found, or a pointer to a HeapTuple in |
1137 | * the cache. The caller must not modify the tuple, and must call |
1138 | * ReleaseCatCache() when done with it. |
1139 | * |
1140 | * The search key values should be expressed as Datums of the key columns' |
1141 | * datatype(s). (Pass zeroes for any unused parameters.) As a special |
1142 | * exception, the passed-in key for a NAME column can be just a C string; |
1143 | * the caller need not go to the trouble of converting it to a fully |
1144 | * null-padded NAME. |
1145 | */ |
1146 | HeapTuple |
1147 | SearchCatCache(CatCache *cache, |
1148 | Datum v1, |
1149 | Datum v2, |
1150 | Datum v3, |
1151 | Datum v4) |
1152 | { |
1153 | return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4); |
1154 | } |
1155 | |
1156 | |
1157 | /* |
1158 | * SearchCatCacheN() are SearchCatCache() versions for a specific number of |
1159 | * arguments. The compiler can inline the body and unroll loops, making them a |
1160 | * bit faster than SearchCatCache(). |
1161 | */ |
1162 | |
1163 | HeapTuple |
1164 | SearchCatCache1(CatCache *cache, |
1165 | Datum v1) |
1166 | { |
1167 | return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0); |
1168 | } |
1169 | |
1170 | |
1171 | HeapTuple |
1172 | SearchCatCache2(CatCache *cache, |
1173 | Datum v1, Datum v2) |
1174 | { |
1175 | return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0); |
1176 | } |
1177 | |
1178 | |
1179 | HeapTuple |
1180 | SearchCatCache3(CatCache *cache, |
1181 | Datum v1, Datum v2, Datum v3) |
1182 | { |
1183 | return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0); |
1184 | } |
1185 | |
1186 | |
1187 | HeapTuple |
1188 | SearchCatCache4(CatCache *cache, |
1189 | Datum v1, Datum v2, Datum v3, Datum v4) |
1190 | { |
1191 | return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4); |
1192 | } |
1193 | |
1194 | /* |
1195 | * Work-horse for SearchCatCache/SearchCatCacheN. |
1196 | */ |
1197 | static inline HeapTuple |
1198 | SearchCatCacheInternal(CatCache *cache, |
1199 | int nkeys, |
1200 | Datum v1, |
1201 | Datum v2, |
1202 | Datum v3, |
1203 | Datum v4) |
1204 | { |
1205 | Datum arguments[CATCACHE_MAXKEYS]; |
1206 | uint32 hashValue; |
1207 | Index hashIndex; |
1208 | dlist_iter iter; |
1209 | dlist_head *bucket; |
1210 | CatCTup *ct; |
1211 | |
1212 | /* Make sure we're in an xact, even if this ends up being a cache hit */ |
1213 | Assert(IsTransactionState()); |
1214 | |
1215 | Assert(cache->cc_nkeys == nkeys); |
1216 | |
1217 | /* |
1218 | * one-time startup overhead for each cache |
1219 | */ |
1220 | if (unlikely(cache->cc_tupdesc == NULL)) |
1221 | CatalogCacheInitializeCache(cache); |
1222 | |
1223 | #ifdef CATCACHE_STATS |
1224 | cache->cc_searches++; |
1225 | #endif |
1226 | |
1227 | /* Initialize local parameter array */ |
1228 | arguments[0] = v1; |
1229 | arguments[1] = v2; |
1230 | arguments[2] = v3; |
1231 | arguments[3] = v4; |
1232 | |
1233 | /* |
1234 | * find the hash bucket in which to look for the tuple |
1235 | */ |
1236 | hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
1237 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
1238 | |
1239 | /* |
1240 | * scan the hash bucket until we find a match or exhaust our tuples |
1241 | * |
1242 | * Note: it's okay to use dlist_foreach here, even though we modify the |
1243 | * dlist within the loop, because we don't continue the loop afterwards. |
1244 | */ |
1245 | bucket = &cache->cc_bucket[hashIndex]; |
1246 | dlist_foreach(iter, bucket) |
1247 | { |
1248 | ct = dlist_container(CatCTup, cache_elem, iter.cur); |
1249 | |
1250 | if (ct->dead) |
1251 | continue; /* ignore dead entries */ |
1252 | |
1253 | if (ct->hash_value != hashValue) |
1254 | continue; /* quickly skip entry if wrong hash val */ |
1255 | |
1256 | if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments)) |
1257 | continue; |
1258 | |
1259 | /* |
1260 | * We found a match in the cache. Move it to the front of the list |
1261 | * for its hashbucket, in order to speed subsequent searches. (The |
1262 | * most frequently accessed elements in any hashbucket will tend to be |
1263 | * near the front of the hashbucket's list.) |
1264 | */ |
1265 | dlist_move_head(bucket, &ct->cache_elem); |
1266 | |
1267 | /* |
1268 | * If it's a positive entry, bump its refcount and return it. If it's |
1269 | * negative, we can report failure to the caller. |
1270 | */ |
1271 | if (!ct->negative) |
1272 | { |
1273 | ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner); |
1274 | ct->refcount++; |
1275 | ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple); |
1276 | |
1277 | CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d" , |
1278 | cache->cc_relname, hashIndex); |
1279 | |
1280 | #ifdef CATCACHE_STATS |
1281 | cache->cc_hits++; |
1282 | #endif |
1283 | |
1284 | return &ct->tuple; |
1285 | } |
1286 | else |
1287 | { |
1288 | CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d" , |
1289 | cache->cc_relname, hashIndex); |
1290 | |
1291 | #ifdef CATCACHE_STATS |
1292 | cache->cc_neg_hits++; |
1293 | #endif |
1294 | |
1295 | return NULL; |
1296 | } |
1297 | } |
1298 | |
1299 | return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4); |
1300 | } |
1301 | |
1302 | /* |
1303 | * Search the actual catalogs, rather than the cache. |
1304 | * |
1305 | * This is kept separate from SearchCatCacheInternal() to keep the fast-path |
1306 | * as small as possible. To avoid that effort being undone by a helpful |
1307 | * compiler, try to explicitly forbid inlining. |
1308 | */ |
1309 | static pg_noinline HeapTuple |
1310 | SearchCatCacheMiss(CatCache *cache, |
1311 | int nkeys, |
1312 | uint32 hashValue, |
1313 | Index hashIndex, |
1314 | Datum v1, |
1315 | Datum v2, |
1316 | Datum v3, |
1317 | Datum v4) |
1318 | { |
1319 | ScanKeyData cur_skey[CATCACHE_MAXKEYS]; |
1320 | Relation relation; |
1321 | SysScanDesc scandesc; |
1322 | HeapTuple ntp; |
1323 | CatCTup *ct; |
1324 | Datum arguments[CATCACHE_MAXKEYS]; |
1325 | |
1326 | /* Initialize local parameter array */ |
1327 | arguments[0] = v1; |
1328 | arguments[1] = v2; |
1329 | arguments[2] = v3; |
1330 | arguments[3] = v4; |
1331 | |
1332 | /* |
1333 | * Ok, need to make a lookup in the relation, copy the scankey and fill |
1334 | * out any per-call fields. |
1335 | */ |
1336 | memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys); |
1337 | cur_skey[0].sk_argument = v1; |
1338 | cur_skey[1].sk_argument = v2; |
1339 | cur_skey[2].sk_argument = v3; |
1340 | cur_skey[3].sk_argument = v4; |
1341 | |
1342 | /* |
1343 | * Tuple was not found in cache, so we have to try to retrieve it directly |
1344 | * from the relation. If found, we will add it to the cache; if not |
1345 | * found, we will add a negative cache entry instead. |
1346 | * |
1347 | * NOTE: it is possible for recursive cache lookups to occur while reading |
1348 | * the relation --- for example, due to shared-cache-inval messages being |
1349 | * processed during table_open(). This is OK. It's even possible for one |
1350 | * of those lookups to find and enter the very same tuple we are trying to |
1351 | * fetch here. If that happens, we will enter a second copy of the tuple |
1352 | * into the cache. The first copy will never be referenced again, and |
1353 | * will eventually age out of the cache, so there's no functional problem. |
1354 | * This case is rare enough that it's not worth expending extra cycles to |
1355 | * detect. |
1356 | */ |
1357 | relation = table_open(cache->cc_reloid, AccessShareLock); |
1358 | |
1359 | scandesc = systable_beginscan(relation, |
1360 | cache->cc_indexoid, |
1361 | IndexScanOK(cache, cur_skey), |
1362 | NULL, |
1363 | nkeys, |
1364 | cur_skey); |
1365 | |
1366 | ct = NULL; |
1367 | |
1368 | while (HeapTupleIsValid(ntp = systable_getnext(scandesc))) |
1369 | { |
1370 | ct = CatalogCacheCreateEntry(cache, ntp, arguments, |
1371 | hashValue, hashIndex, |
1372 | false); |
1373 | /* immediately set the refcount to 1 */ |
1374 | ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner); |
1375 | ct->refcount++; |
1376 | ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple); |
1377 | break; /* assume only one match */ |
1378 | } |
1379 | |
1380 | systable_endscan(scandesc); |
1381 | |
1382 | table_close(relation, AccessShareLock); |
1383 | |
1384 | /* |
1385 | * If tuple was not found, we need to build a negative cache entry |
1386 | * containing a fake tuple. The fake tuple has the correct key columns, |
1387 | * but nulls everywhere else. |
1388 | * |
1389 | * In bootstrap mode, we don't build negative entries, because the cache |
1390 | * invalidation mechanism isn't alive and can't clear them if the tuple |
1391 | * gets created later. (Bootstrap doesn't do UPDATEs, so it doesn't need |
1392 | * cache inval for that.) |
1393 | */ |
1394 | if (ct == NULL) |
1395 | { |
1396 | if (IsBootstrapProcessingMode()) |
1397 | return NULL; |
1398 | |
1399 | ct = CatalogCacheCreateEntry(cache, NULL, arguments, |
1400 | hashValue, hashIndex, |
1401 | true); |
1402 | |
1403 | CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples" , |
1404 | cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup); |
1405 | CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d" , |
1406 | cache->cc_relname, hashIndex); |
1407 | |
1408 | /* |
1409 | * We are not returning the negative entry to the caller, so leave its |
1410 | * refcount zero. |
1411 | */ |
1412 | |
1413 | return NULL; |
1414 | } |
1415 | |
1416 | CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples" , |
1417 | cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup); |
1418 | CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d" , |
1419 | cache->cc_relname, hashIndex); |
1420 | |
1421 | #ifdef CATCACHE_STATS |
1422 | cache->cc_newloads++; |
1423 | #endif |
1424 | |
1425 | return &ct->tuple; |
1426 | } |
1427 | |
1428 | /* |
1429 | * ReleaseCatCache |
1430 | * |
1431 | * Decrement the reference count of a catcache entry (releasing the |
1432 | * hold grabbed by a successful SearchCatCache). |
1433 | * |
1434 | * NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries |
1435 | * will be freed as soon as their refcount goes to zero. In combination |
1436 | * with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test |
1437 | * to catch references to already-released catcache entries. |
1438 | */ |
1439 | void |
1440 | ReleaseCatCache(HeapTuple tuple) |
1441 | { |
1442 | CatCTup *ct = (CatCTup *) (((char *) tuple) - |
1443 | offsetof(CatCTup, tuple)); |
1444 | |
1445 | /* Safety checks to ensure we were handed a cache entry */ |
1446 | Assert(ct->ct_magic == CT_MAGIC); |
1447 | Assert(ct->refcount > 0); |
1448 | |
1449 | ct->refcount--; |
1450 | ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple); |
1451 | |
1452 | if ( |
1453 | #ifndef CATCACHE_FORCE_RELEASE |
1454 | ct->dead && |
1455 | #endif |
1456 | ct->refcount == 0 && |
1457 | (ct->c_list == NULL || ct->c_list->refcount == 0)) |
1458 | CatCacheRemoveCTup(ct->my_cache, ct); |
1459 | } |
1460 | |
1461 | |
1462 | /* |
1463 | * GetCatCacheHashValue |
1464 | * |
1465 | * Compute the hash value for a given set of search keys. |
1466 | * |
1467 | * The reason for exposing this as part of the API is that the hash value is |
1468 | * exposed in cache invalidation operations, so there are places outside the |
1469 | * catcache code that need to be able to compute the hash values. |
1470 | */ |
1471 | uint32 |
1472 | GetCatCacheHashValue(CatCache *cache, |
1473 | Datum v1, |
1474 | Datum v2, |
1475 | Datum v3, |
1476 | Datum v4) |
1477 | { |
1478 | /* |
1479 | * one-time startup overhead for each cache |
1480 | */ |
1481 | if (cache->cc_tupdesc == NULL) |
1482 | CatalogCacheInitializeCache(cache); |
1483 | |
1484 | /* |
1485 | * calculate the hash value |
1486 | */ |
1487 | return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4); |
1488 | } |
1489 | |
1490 | |
1491 | /* |
1492 | * SearchCatCacheList |
1493 | * |
1494 | * Generate a list of all tuples matching a partial key (that is, |
1495 | * a key specifying just the first K of the cache's N key columns). |
1496 | * |
1497 | * It doesn't make any sense to specify all of the cache's key columns |
1498 | * here: since the key is unique, there could be at most one match, so |
1499 | * you ought to use SearchCatCache() instead. Hence this function takes |
1500 | * one less Datum argument than SearchCatCache() does. |
1501 | * |
1502 | * The caller must not modify the list object or the pointed-to tuples, |
1503 | * and must call ReleaseCatCacheList() when done with the list. |
1504 | */ |
1505 | CatCList * |
1506 | SearchCatCacheList(CatCache *cache, |
1507 | int nkeys, |
1508 | Datum v1, |
1509 | Datum v2, |
1510 | Datum v3) |
1511 | { |
1512 | Datum v4 = 0; /* dummy last-column value */ |
1513 | Datum arguments[CATCACHE_MAXKEYS]; |
1514 | uint32 lHashValue; |
1515 | dlist_iter iter; |
1516 | CatCList *cl; |
1517 | CatCTup *ct; |
1518 | List *volatile ctlist; |
1519 | ListCell *ctlist_item; |
1520 | int nmembers; |
1521 | bool ordered; |
1522 | HeapTuple ntp; |
1523 | MemoryContext oldcxt; |
1524 | int i; |
1525 | |
1526 | /* |
1527 | * one-time startup overhead for each cache |
1528 | */ |
1529 | if (cache->cc_tupdesc == NULL) |
1530 | CatalogCacheInitializeCache(cache); |
1531 | |
1532 | Assert(nkeys > 0 && nkeys < cache->cc_nkeys); |
1533 | |
1534 | #ifdef CATCACHE_STATS |
1535 | cache->cc_lsearches++; |
1536 | #endif |
1537 | |
1538 | /* Initialize local parameter array */ |
1539 | arguments[0] = v1; |
1540 | arguments[1] = v2; |
1541 | arguments[2] = v3; |
1542 | arguments[3] = v4; |
1543 | |
1544 | /* |
1545 | * compute a hash value of the given keys for faster search. We don't |
1546 | * presently divide the CatCList items into buckets, but this still lets |
1547 | * us skip non-matching items quickly most of the time. |
1548 | */ |
1549 | lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
1550 | |
1551 | /* |
1552 | * scan the items until we find a match or exhaust our list |
1553 | * |
1554 | * Note: it's okay to use dlist_foreach here, even though we modify the |
1555 | * dlist within the loop, because we don't continue the loop afterwards. |
1556 | */ |
1557 | dlist_foreach(iter, &cache->cc_lists) |
1558 | { |
1559 | cl = dlist_container(CatCList, cache_elem, iter.cur); |
1560 | |
1561 | if (cl->dead) |
1562 | continue; /* ignore dead entries */ |
1563 | |
1564 | if (cl->hash_value != lHashValue) |
1565 | continue; /* quickly skip entry if wrong hash val */ |
1566 | |
1567 | /* |
1568 | * see if the cached list matches our key. |
1569 | */ |
1570 | if (cl->nkeys != nkeys) |
1571 | continue; |
1572 | |
1573 | if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments)) |
1574 | continue; |
1575 | |
1576 | /* |
1577 | * We found a matching list. Move the list to the front of the |
1578 | * cache's list-of-lists, to speed subsequent searches. (We do not |
1579 | * move the members to the fronts of their hashbucket lists, however, |
1580 | * since there's no point in that unless they are searched for |
1581 | * individually.) |
1582 | */ |
1583 | dlist_move_head(&cache->cc_lists, &cl->cache_elem); |
1584 | |
1585 | /* Bump the list's refcount and return it */ |
1586 | ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner); |
1587 | cl->refcount++; |
1588 | ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl); |
1589 | |
1590 | CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list" , |
1591 | cache->cc_relname); |
1592 | |
1593 | #ifdef CATCACHE_STATS |
1594 | cache->cc_lhits++; |
1595 | #endif |
1596 | |
1597 | return cl; |
1598 | } |
1599 | |
1600 | /* |
1601 | * List was not found in cache, so we have to build it by reading the |
1602 | * relation. For each matching tuple found in the relation, use an |
1603 | * existing cache entry if possible, else build a new one. |
1604 | * |
1605 | * We have to bump the member refcounts temporarily to ensure they won't |
1606 | * get dropped from the cache while loading other members. We use a PG_TRY |
1607 | * block to ensure we can undo those refcounts if we get an error before |
1608 | * we finish constructing the CatCList. |
1609 | */ |
1610 | ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner); |
1611 | |
1612 | ctlist = NIL; |
1613 | |
1614 | PG_TRY(); |
1615 | { |
1616 | ScanKeyData cur_skey[CATCACHE_MAXKEYS]; |
1617 | Relation relation; |
1618 | SysScanDesc scandesc; |
1619 | |
1620 | /* |
1621 | * Ok, need to make a lookup in the relation, copy the scankey and |
1622 | * fill out any per-call fields. |
1623 | */ |
1624 | memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys); |
1625 | cur_skey[0].sk_argument = v1; |
1626 | cur_skey[1].sk_argument = v2; |
1627 | cur_skey[2].sk_argument = v3; |
1628 | cur_skey[3].sk_argument = v4; |
1629 | |
1630 | relation = table_open(cache->cc_reloid, AccessShareLock); |
1631 | |
1632 | scandesc = systable_beginscan(relation, |
1633 | cache->cc_indexoid, |
1634 | IndexScanOK(cache, cur_skey), |
1635 | NULL, |
1636 | nkeys, |
1637 | cur_skey); |
1638 | |
1639 | /* The list will be ordered iff we are doing an index scan */ |
1640 | ordered = (scandesc->irel != NULL); |
1641 | |
1642 | while (HeapTupleIsValid(ntp = systable_getnext(scandesc))) |
1643 | { |
1644 | uint32 hashValue; |
1645 | Index hashIndex; |
1646 | bool found = false; |
1647 | dlist_head *bucket; |
1648 | |
1649 | /* |
1650 | * See if there's an entry for this tuple already. |
1651 | */ |
1652 | ct = NULL; |
1653 | hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp); |
1654 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
1655 | |
1656 | bucket = &cache->cc_bucket[hashIndex]; |
1657 | dlist_foreach(iter, bucket) |
1658 | { |
1659 | ct = dlist_container(CatCTup, cache_elem, iter.cur); |
1660 | |
1661 | if (ct->dead || ct->negative) |
1662 | continue; /* ignore dead and negative entries */ |
1663 | |
1664 | if (ct->hash_value != hashValue) |
1665 | continue; /* quickly skip entry if wrong hash val */ |
1666 | |
1667 | if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self))) |
1668 | continue; /* not same tuple */ |
1669 | |
1670 | /* |
1671 | * Found a match, but can't use it if it belongs to another |
1672 | * list already |
1673 | */ |
1674 | if (ct->c_list) |
1675 | continue; |
1676 | |
1677 | found = true; |
1678 | break; /* A-OK */ |
1679 | } |
1680 | |
1681 | if (!found) |
1682 | { |
1683 | /* We didn't find a usable entry, so make a new one */ |
1684 | ct = CatalogCacheCreateEntry(cache, ntp, arguments, |
1685 | hashValue, hashIndex, |
1686 | false); |
1687 | } |
1688 | |
1689 | /* Careful here: add entry to ctlist, then bump its refcount */ |
1690 | /* This way leaves state correct if lappend runs out of memory */ |
1691 | ctlist = lappend(ctlist, ct); |
1692 | ct->refcount++; |
1693 | } |
1694 | |
1695 | systable_endscan(scandesc); |
1696 | |
1697 | table_close(relation, AccessShareLock); |
1698 | |
1699 | /* Now we can build the CatCList entry. */ |
1700 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
1701 | nmembers = list_length(ctlist); |
1702 | cl = (CatCList *) |
1703 | palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *)); |
1704 | |
1705 | /* Extract key values */ |
1706 | CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno, |
1707 | arguments, cl->keys); |
1708 | MemoryContextSwitchTo(oldcxt); |
1709 | |
1710 | /* |
1711 | * We are now past the last thing that could trigger an elog before we |
1712 | * have finished building the CatCList and remembering it in the |
1713 | * resource owner. So it's OK to fall out of the PG_TRY, and indeed |
1714 | * we'd better do so before we start marking the members as belonging |
1715 | * to the list. |
1716 | */ |
1717 | |
1718 | } |
1719 | PG_CATCH(); |
1720 | { |
1721 | foreach(ctlist_item, ctlist) |
1722 | { |
1723 | ct = (CatCTup *) lfirst(ctlist_item); |
1724 | Assert(ct->c_list == NULL); |
1725 | Assert(ct->refcount > 0); |
1726 | ct->refcount--; |
1727 | if ( |
1728 | #ifndef CATCACHE_FORCE_RELEASE |
1729 | ct->dead && |
1730 | #endif |
1731 | ct->refcount == 0 && |
1732 | (ct->c_list == NULL || ct->c_list->refcount == 0)) |
1733 | CatCacheRemoveCTup(cache, ct); |
1734 | } |
1735 | |
1736 | PG_RE_THROW(); |
1737 | } |
1738 | PG_END_TRY(); |
1739 | |
1740 | cl->cl_magic = CL_MAGIC; |
1741 | cl->my_cache = cache; |
1742 | cl->refcount = 0; /* for the moment */ |
1743 | cl->dead = false; |
1744 | cl->ordered = ordered; |
1745 | cl->nkeys = nkeys; |
1746 | cl->hash_value = lHashValue; |
1747 | cl->n_members = nmembers; |
1748 | |
1749 | i = 0; |
1750 | foreach(ctlist_item, ctlist) |
1751 | { |
1752 | cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item); |
1753 | Assert(ct->c_list == NULL); |
1754 | ct->c_list = cl; |
1755 | /* release the temporary refcount on the member */ |
1756 | Assert(ct->refcount > 0); |
1757 | ct->refcount--; |
1758 | /* mark list dead if any members already dead */ |
1759 | if (ct->dead) |
1760 | cl->dead = true; |
1761 | } |
1762 | Assert(i == nmembers); |
1763 | |
1764 | dlist_push_head(&cache->cc_lists, &cl->cache_elem); |
1765 | |
1766 | /* Finally, bump the list's refcount and return it */ |
1767 | cl->refcount++; |
1768 | ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl); |
1769 | |
1770 | CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members" , |
1771 | cache->cc_relname, nmembers); |
1772 | |
1773 | return cl; |
1774 | } |
1775 | |
1776 | /* |
1777 | * ReleaseCatCacheList |
1778 | * |
1779 | * Decrement the reference count of a catcache list. |
1780 | */ |
1781 | void |
1782 | ReleaseCatCacheList(CatCList *list) |
1783 | { |
1784 | /* Safety checks to ensure we were handed a cache entry */ |
1785 | Assert(list->cl_magic == CL_MAGIC); |
1786 | Assert(list->refcount > 0); |
1787 | list->refcount--; |
1788 | ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list); |
1789 | |
1790 | if ( |
1791 | #ifndef CATCACHE_FORCE_RELEASE |
1792 | list->dead && |
1793 | #endif |
1794 | list->refcount == 0) |
1795 | CatCacheRemoveCList(list->my_cache, list); |
1796 | } |
1797 | |
1798 | |
1799 | /* |
1800 | * CatalogCacheCreateEntry |
1801 | * Create a new CatCTup entry, copying the given HeapTuple and other |
1802 | * supplied data into it. The new entry initially has refcount 0. |
1803 | */ |
1804 | static CatCTup * |
1805 | CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, Datum *arguments, |
1806 | uint32 hashValue, Index hashIndex, |
1807 | bool negative) |
1808 | { |
1809 | CatCTup *ct; |
1810 | HeapTuple dtp; |
1811 | MemoryContext oldcxt; |
1812 | |
1813 | /* negative entries have no tuple associated */ |
1814 | if (ntp) |
1815 | { |
1816 | int i; |
1817 | |
1818 | Assert(!negative); |
1819 | |
1820 | /* |
1821 | * If there are any out-of-line toasted fields in the tuple, expand |
1822 | * them in-line. This saves cycles during later use of the catcache |
1823 | * entry, and also protects us against the possibility of the toast |
1824 | * tuples being freed before we attempt to fetch them, in case of |
1825 | * something using a slightly stale catcache entry. |
1826 | */ |
1827 | if (HeapTupleHasExternal(ntp)) |
1828 | dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc); |
1829 | else |
1830 | dtp = ntp; |
1831 | |
1832 | /* Allocate memory for CatCTup and the cached tuple in one go */ |
1833 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
1834 | |
1835 | ct = (CatCTup *) palloc(sizeof(CatCTup) + |
1836 | MAXIMUM_ALIGNOF + dtp->t_len); |
1837 | ct->tuple.t_len = dtp->t_len; |
1838 | ct->tuple.t_self = dtp->t_self; |
1839 | ct->tuple.t_tableOid = dtp->t_tableOid; |
1840 | ct->tuple.t_data = (HeapTupleHeader) |
1841 | MAXALIGN(((char *) ct) + sizeof(CatCTup)); |
1842 | /* copy tuple contents */ |
1843 | memcpy((char *) ct->tuple.t_data, |
1844 | (const char *) dtp->t_data, |
1845 | dtp->t_len); |
1846 | MemoryContextSwitchTo(oldcxt); |
1847 | |
1848 | if (dtp != ntp) |
1849 | heap_freetuple(dtp); |
1850 | |
1851 | /* extract keys - they'll point into the tuple if not by-value */ |
1852 | for (i = 0; i < cache->cc_nkeys; i++) |
1853 | { |
1854 | Datum atp; |
1855 | bool isnull; |
1856 | |
1857 | atp = heap_getattr(&ct->tuple, |
1858 | cache->cc_keyno[i], |
1859 | cache->cc_tupdesc, |
1860 | &isnull); |
1861 | Assert(!isnull); |
1862 | ct->keys[i] = atp; |
1863 | } |
1864 | } |
1865 | else |
1866 | { |
1867 | Assert(negative); |
1868 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
1869 | ct = (CatCTup *) palloc(sizeof(CatCTup)); |
1870 | |
1871 | /* |
1872 | * Store keys - they'll point into separately allocated memory if not |
1873 | * by-value. |
1874 | */ |
1875 | CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno, |
1876 | arguments, ct->keys); |
1877 | MemoryContextSwitchTo(oldcxt); |
1878 | } |
1879 | |
1880 | /* |
1881 | * Finish initializing the CatCTup header, and add it to the cache's |
1882 | * linked list and counts. |
1883 | */ |
1884 | ct->ct_magic = CT_MAGIC; |
1885 | ct->my_cache = cache; |
1886 | ct->c_list = NULL; |
1887 | ct->refcount = 0; /* for the moment */ |
1888 | ct->dead = false; |
1889 | ct->negative = negative; |
1890 | ct->hash_value = hashValue; |
1891 | |
1892 | dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem); |
1893 | |
1894 | cache->cc_ntup++; |
1895 | CacheHdr->ch_ntup++; |
1896 | |
1897 | /* |
1898 | * If the hash table has become too full, enlarge the buckets array. Quite |
1899 | * arbitrarily, we enlarge when fill factor > 2. |
1900 | */ |
1901 | if (cache->cc_ntup > cache->cc_nbuckets * 2) |
1902 | RehashCatCache(cache); |
1903 | |
1904 | return ct; |
1905 | } |
1906 | |
1907 | /* |
1908 | * Helper routine that frees keys stored in the keys array. |
1909 | */ |
1910 | static void |
1911 | CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys) |
1912 | { |
1913 | int i; |
1914 | |
1915 | for (i = 0; i < nkeys; i++) |
1916 | { |
1917 | int attnum = attnos[i]; |
1918 | Form_pg_attribute att; |
1919 | |
1920 | /* system attribute are not supported in caches */ |
1921 | Assert(attnum > 0); |
1922 | |
1923 | att = TupleDescAttr(tupdesc, attnum - 1); |
1924 | |
1925 | if (!att->attbyval) |
1926 | pfree(DatumGetPointer(keys[i])); |
1927 | } |
1928 | } |
1929 | |
1930 | /* |
1931 | * Helper routine that copies the keys in the srckeys array into the dstkeys |
1932 | * one, guaranteeing that the datums are fully allocated in the current memory |
1933 | * context. |
1934 | */ |
1935 | static void |
1936 | CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
1937 | Datum *srckeys, Datum *dstkeys) |
1938 | { |
1939 | int i; |
1940 | |
1941 | /* |
1942 | * XXX: memory and lookup performance could possibly be improved by |
1943 | * storing all keys in one allocation. |
1944 | */ |
1945 | |
1946 | for (i = 0; i < nkeys; i++) |
1947 | { |
1948 | int attnum = attnos[i]; |
1949 | Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1); |
1950 | Datum src = srckeys[i]; |
1951 | NameData srcname; |
1952 | |
1953 | /* |
1954 | * Must be careful in case the caller passed a C string where a NAME |
1955 | * is wanted: convert the given argument to a correctly padded NAME. |
1956 | * Otherwise the memcpy() done by datumCopy() could fall off the end |
1957 | * of memory. |
1958 | */ |
1959 | if (att->atttypid == NAMEOID) |
1960 | { |
1961 | namestrcpy(&srcname, DatumGetCString(src)); |
1962 | src = NameGetDatum(&srcname); |
1963 | } |
1964 | |
1965 | dstkeys[i] = datumCopy(src, |
1966 | att->attbyval, |
1967 | att->attlen); |
1968 | } |
1969 | |
1970 | } |
1971 | |
1972 | /* |
1973 | * PrepareToInvalidateCacheTuple() |
1974 | * |
1975 | * This is part of a rather subtle chain of events, so pay attention: |
1976 | * |
1977 | * When a tuple is inserted or deleted, it cannot be flushed from the |
1978 | * catcaches immediately, for reasons explained at the top of cache/inval.c. |
1979 | * Instead we have to add entry(s) for the tuple to a list of pending tuple |
1980 | * invalidations that will be done at the end of the command or transaction. |
1981 | * |
1982 | * The lists of tuples that need to be flushed are kept by inval.c. This |
1983 | * routine is a helper routine for inval.c. Given a tuple belonging to |
1984 | * the specified relation, find all catcaches it could be in, compute the |
1985 | * correct hash value for each such catcache, and call the specified |
1986 | * function to record the cache id and hash value in inval.c's lists. |
1987 | * SysCacheInvalidate will be called later, if appropriate, |
1988 | * using the recorded information. |
1989 | * |
1990 | * For an insert or delete, tuple is the target tuple and newtuple is NULL. |
1991 | * For an update, we are called just once, with tuple being the old tuple |
1992 | * version and newtuple the new version. We should make two list entries |
1993 | * if the tuple's hash value changed, but only one if it didn't. |
1994 | * |
1995 | * Note that it is irrelevant whether the given tuple is actually loaded |
1996 | * into the catcache at the moment. Even if it's not there now, it might |
1997 | * be by the end of the command, or there might be a matching negative entry |
1998 | * to flush --- or other backends' caches might have such entries --- so |
1999 | * we have to make list entries to flush it later. |
2000 | * |
2001 | * Also note that it's not an error if there are no catcaches for the |
2002 | * specified relation. inval.c doesn't know exactly which rels have |
2003 | * catcaches --- it will call this routine for any tuple that's in a |
2004 | * system relation. |
2005 | */ |
2006 | void |
2007 | PrepareToInvalidateCacheTuple(Relation relation, |
2008 | HeapTuple tuple, |
2009 | HeapTuple newtuple, |
2010 | void (*function) (int, uint32, Oid)) |
2011 | { |
2012 | slist_iter iter; |
2013 | Oid reloid; |
2014 | |
2015 | CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called" ); |
2016 | |
2017 | /* |
2018 | * sanity checks |
2019 | */ |
2020 | Assert(RelationIsValid(relation)); |
2021 | Assert(HeapTupleIsValid(tuple)); |
2022 | Assert(PointerIsValid(function)); |
2023 | Assert(CacheHdr != NULL); |
2024 | |
2025 | reloid = RelationGetRelid(relation); |
2026 | |
2027 | /* ---------------- |
2028 | * for each cache |
2029 | * if the cache contains tuples from the specified relation |
2030 | * compute the tuple's hash value(s) in this cache, |
2031 | * and call the passed function to register the information. |
2032 | * ---------------- |
2033 | */ |
2034 | |
2035 | slist_foreach(iter, &CacheHdr->ch_caches) |
2036 | { |
2037 | CatCache *ccp = slist_container(CatCache, cc_next, iter.cur); |
2038 | uint32 hashvalue; |
2039 | Oid dbid; |
2040 | |
2041 | if (ccp->cc_reloid != reloid) |
2042 | continue; |
2043 | |
2044 | /* Just in case cache hasn't finished initialization yet... */ |
2045 | if (ccp->cc_tupdesc == NULL) |
2046 | CatalogCacheInitializeCache(ccp); |
2047 | |
2048 | hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple); |
2049 | dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId; |
2050 | |
2051 | (*function) (ccp->id, hashvalue, dbid); |
2052 | |
2053 | if (newtuple) |
2054 | { |
2055 | uint32 newhashvalue; |
2056 | |
2057 | newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple); |
2058 | |
2059 | if (newhashvalue != hashvalue) |
2060 | (*function) (ccp->id, newhashvalue, dbid); |
2061 | } |
2062 | } |
2063 | } |
2064 | |
2065 | |
2066 | /* |
2067 | * Subroutines for warning about reference leaks. These are exported so |
2068 | * that resowner.c can call them. |
2069 | */ |
2070 | void |
2071 | PrintCatCacheLeakWarning(HeapTuple tuple) |
2072 | { |
2073 | CatCTup *ct = (CatCTup *) (((char *) tuple) - |
2074 | offsetof(CatCTup, tuple)); |
2075 | |
2076 | /* Safety check to ensure we were handed a cache entry */ |
2077 | Assert(ct->ct_magic == CT_MAGIC); |
2078 | |
2079 | elog(WARNING, "cache reference leak: cache %s (%d), tuple %u/%u has count %d" , |
2080 | ct->my_cache->cc_relname, ct->my_cache->id, |
2081 | ItemPointerGetBlockNumber(&(tuple->t_self)), |
2082 | ItemPointerGetOffsetNumber(&(tuple->t_self)), |
2083 | ct->refcount); |
2084 | } |
2085 | |
2086 | void |
2087 | PrintCatCacheListLeakWarning(CatCList *list) |
2088 | { |
2089 | elog(WARNING, "cache reference leak: cache %s (%d), list %p has count %d" , |
2090 | list->my_cache->cc_relname, list->my_cache->id, |
2091 | list, list->refcount); |
2092 | } |
2093 | |