| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * catcache.c |
| 4 | * System catalog cache for tuples matching a key. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/cache/catcache.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "access/genam.h" |
| 18 | #include "access/relscan.h" |
| 19 | #include "access/sysattr.h" |
| 20 | #include "access/table.h" |
| 21 | #include "access/tuptoaster.h" |
| 22 | #include "access/valid.h" |
| 23 | #include "access/xact.h" |
| 24 | #include "catalog/pg_collation.h" |
| 25 | #include "catalog/pg_operator.h" |
| 26 | #include "catalog/pg_type.h" |
| 27 | #include "miscadmin.h" |
| 28 | #ifdef CATCACHE_STATS |
| 29 | #include "storage/ipc.h" /* for on_proc_exit */ |
| 30 | #endif |
| 31 | #include "storage/lmgr.h" |
| 32 | #include "utils/builtins.h" |
| 33 | #include "utils/datum.h" |
| 34 | #include "utils/fmgroids.h" |
| 35 | #include "utils/hashutils.h" |
| 36 | #include "utils/inval.h" |
| 37 | #include "utils/memutils.h" |
| 38 | #include "utils/rel.h" |
| 39 | #include "utils/resowner_private.h" |
| 40 | #include "utils/syscache.h" |
| 41 | |
| 42 | |
| 43 | /* #define CACHEDEBUG */ /* turns DEBUG elogs on */ |
| 44 | |
| 45 | /* |
| 46 | * Given a hash value and the size of the hash table, find the bucket |
| 47 | * in which the hash value belongs. Since the hash table must contain |
| 48 | * a power-of-2 number of elements, this is a simple bitmask. |
| 49 | */ |
| 50 | #define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1))) |
| 51 | |
| 52 | |
| 53 | /* |
| 54 | * variables, macros and other stuff |
| 55 | */ |
| 56 | |
| 57 | #ifdef CACHEDEBUG |
| 58 | #define CACHE_elog(...) elog(__VA_ARGS__) |
| 59 | #else |
| 60 | #define CACHE_elog(...) |
| 61 | #endif |
| 62 | |
| 63 | /* Cache management header --- pointer is NULL until created */ |
| 64 | static CatCacheHeader *CacheHdr = NULL; |
| 65 | |
| 66 | static inline HeapTuple SearchCatCacheInternal(CatCache *cache, |
| 67 | int nkeys, |
| 68 | Datum v1, Datum v2, |
| 69 | Datum v3, Datum v4); |
| 70 | |
| 71 | static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache, |
| 72 | int nkeys, |
| 73 | uint32 hashValue, |
| 74 | Index hashIndex, |
| 75 | Datum v1, Datum v2, |
| 76 | Datum v3, Datum v4); |
| 77 | |
| 78 | static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys, |
| 79 | Datum v1, Datum v2, Datum v3, Datum v4); |
| 80 | static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, |
| 81 | HeapTuple tuple); |
| 82 | static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys, |
| 83 | const Datum *cachekeys, |
| 84 | const Datum *searchkeys); |
| 85 | |
| 86 | #ifdef CATCACHE_STATS |
| 87 | static void CatCachePrintStats(int code, Datum arg); |
| 88 | #endif |
| 89 | static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct); |
| 90 | static void CatCacheRemoveCList(CatCache *cache, CatCList *cl); |
| 91 | static void CatalogCacheInitializeCache(CatCache *cache); |
| 92 | static CatCTup *CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, |
| 93 | Datum *arguments, |
| 94 | uint32 hashValue, Index hashIndex, |
| 95 | bool negative); |
| 96 | |
| 97 | static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
| 98 | Datum *keys); |
| 99 | static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
| 100 | Datum *srckeys, Datum *dstkeys); |
| 101 | |
| 102 | |
| 103 | /* |
| 104 | * internal support functions |
| 105 | */ |
| 106 | |
| 107 | /* |
| 108 | * Hash and equality functions for system types that are used as cache key |
| 109 | * fields. In some cases, we just call the regular SQL-callable functions for |
| 110 | * the appropriate data type, but that tends to be a little slow, and the |
| 111 | * speed of these functions is performance-critical. Therefore, for data |
| 112 | * types that frequently occur as catcache keys, we hard-code the logic here. |
| 113 | * Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and |
| 114 | * in certain cases (like int4) we can adopt a faster hash algorithm as well. |
| 115 | */ |
| 116 | |
| 117 | static bool |
| 118 | chareqfast(Datum a, Datum b) |
| 119 | { |
| 120 | return DatumGetChar(a) == DatumGetChar(b); |
| 121 | } |
| 122 | |
| 123 | static uint32 |
| 124 | charhashfast(Datum datum) |
| 125 | { |
| 126 | return murmurhash32((int32) DatumGetChar(datum)); |
| 127 | } |
| 128 | |
| 129 | static bool |
| 130 | nameeqfast(Datum a, Datum b) |
| 131 | { |
| 132 | char *ca = NameStr(*DatumGetName(a)); |
| 133 | char *cb = NameStr(*DatumGetName(b)); |
| 134 | |
| 135 | return strncmp(ca, cb, NAMEDATALEN) == 0; |
| 136 | } |
| 137 | |
| 138 | static uint32 |
| 139 | namehashfast(Datum datum) |
| 140 | { |
| 141 | char *key = NameStr(*DatumGetName(datum)); |
| 142 | |
| 143 | return hash_any((unsigned char *) key, strlen(key)); |
| 144 | } |
| 145 | |
| 146 | static bool |
| 147 | int2eqfast(Datum a, Datum b) |
| 148 | { |
| 149 | return DatumGetInt16(a) == DatumGetInt16(b); |
| 150 | } |
| 151 | |
| 152 | static uint32 |
| 153 | int2hashfast(Datum datum) |
| 154 | { |
| 155 | return murmurhash32((int32) DatumGetInt16(datum)); |
| 156 | } |
| 157 | |
| 158 | static bool |
| 159 | int4eqfast(Datum a, Datum b) |
| 160 | { |
| 161 | return DatumGetInt32(a) == DatumGetInt32(b); |
| 162 | } |
| 163 | |
| 164 | static uint32 |
| 165 | int4hashfast(Datum datum) |
| 166 | { |
| 167 | return murmurhash32((int32) DatumGetInt32(datum)); |
| 168 | } |
| 169 | |
| 170 | static bool |
| 171 | texteqfast(Datum a, Datum b) |
| 172 | { |
| 173 | /* |
| 174 | * The use of DEFAULT_COLLATION_OID is fairly arbitrary here. We just |
| 175 | * want to take the fast "deterministic" path in texteq(). |
| 176 | */ |
| 177 | return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b)); |
| 178 | } |
| 179 | |
| 180 | static uint32 |
| 181 | texthashfast(Datum datum) |
| 182 | { |
| 183 | /* analogously here as in texteqfast() */ |
| 184 | return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum)); |
| 185 | } |
| 186 | |
| 187 | static bool |
| 188 | oidvectoreqfast(Datum a, Datum b) |
| 189 | { |
| 190 | return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b)); |
| 191 | } |
| 192 | |
| 193 | static uint32 |
| 194 | oidvectorhashfast(Datum datum) |
| 195 | { |
| 196 | return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum)); |
| 197 | } |
| 198 | |
| 199 | /* Lookup support functions for a type. */ |
| 200 | static void |
| 201 | GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc) |
| 202 | { |
| 203 | switch (keytype) |
| 204 | { |
| 205 | case BOOLOID: |
| 206 | *hashfunc = charhashfast; |
| 207 | *fasteqfunc = chareqfast; |
| 208 | *eqfunc = F_BOOLEQ; |
| 209 | break; |
| 210 | case CHAROID: |
| 211 | *hashfunc = charhashfast; |
| 212 | *fasteqfunc = chareqfast; |
| 213 | *eqfunc = F_CHAREQ; |
| 214 | break; |
| 215 | case NAMEOID: |
| 216 | *hashfunc = namehashfast; |
| 217 | *fasteqfunc = nameeqfast; |
| 218 | *eqfunc = F_NAMEEQ; |
| 219 | break; |
| 220 | case INT2OID: |
| 221 | *hashfunc = int2hashfast; |
| 222 | *fasteqfunc = int2eqfast; |
| 223 | *eqfunc = F_INT2EQ; |
| 224 | break; |
| 225 | case INT4OID: |
| 226 | *hashfunc = int4hashfast; |
| 227 | *fasteqfunc = int4eqfast; |
| 228 | *eqfunc = F_INT4EQ; |
| 229 | break; |
| 230 | case TEXTOID: |
| 231 | *hashfunc = texthashfast; |
| 232 | *fasteqfunc = texteqfast; |
| 233 | *eqfunc = F_TEXTEQ; |
| 234 | break; |
| 235 | case OIDOID: |
| 236 | case REGPROCOID: |
| 237 | case REGPROCEDUREOID: |
| 238 | case REGOPEROID: |
| 239 | case REGOPERATOROID: |
| 240 | case REGCLASSOID: |
| 241 | case REGTYPEOID: |
| 242 | case REGCONFIGOID: |
| 243 | case REGDICTIONARYOID: |
| 244 | case REGROLEOID: |
| 245 | case REGNAMESPACEOID: |
| 246 | *hashfunc = int4hashfast; |
| 247 | *fasteqfunc = int4eqfast; |
| 248 | *eqfunc = F_OIDEQ; |
| 249 | break; |
| 250 | case OIDVECTOROID: |
| 251 | *hashfunc = oidvectorhashfast; |
| 252 | *fasteqfunc = oidvectoreqfast; |
| 253 | *eqfunc = F_OIDVECTOREQ; |
| 254 | break; |
| 255 | default: |
| 256 | elog(FATAL, "type %u not supported as catcache key" , keytype); |
| 257 | *hashfunc = NULL; /* keep compiler quiet */ |
| 258 | |
| 259 | *eqfunc = InvalidOid; |
| 260 | break; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * CatalogCacheComputeHashValue |
| 266 | * |
| 267 | * Compute the hash value associated with a given set of lookup keys |
| 268 | */ |
| 269 | static uint32 |
| 270 | CatalogCacheComputeHashValue(CatCache *cache, int nkeys, |
| 271 | Datum v1, Datum v2, Datum v3, Datum v4) |
| 272 | { |
| 273 | uint32 hashValue = 0; |
| 274 | uint32 oneHash; |
| 275 | CCHashFN *cc_hashfunc = cache->cc_hashfunc; |
| 276 | |
| 277 | CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p" , |
| 278 | cache->cc_relname, nkeys, cache); |
| 279 | |
| 280 | switch (nkeys) |
| 281 | { |
| 282 | case 4: |
| 283 | oneHash = (cc_hashfunc[3]) (v4); |
| 284 | |
| 285 | hashValue ^= oneHash << 24; |
| 286 | hashValue ^= oneHash >> 8; |
| 287 | /* FALLTHROUGH */ |
| 288 | case 3: |
| 289 | oneHash = (cc_hashfunc[2]) (v3); |
| 290 | |
| 291 | hashValue ^= oneHash << 16; |
| 292 | hashValue ^= oneHash >> 16; |
| 293 | /* FALLTHROUGH */ |
| 294 | case 2: |
| 295 | oneHash = (cc_hashfunc[1]) (v2); |
| 296 | |
| 297 | hashValue ^= oneHash << 8; |
| 298 | hashValue ^= oneHash >> 24; |
| 299 | /* FALLTHROUGH */ |
| 300 | case 1: |
| 301 | oneHash = (cc_hashfunc[0]) (v1); |
| 302 | |
| 303 | hashValue ^= oneHash; |
| 304 | break; |
| 305 | default: |
| 306 | elog(FATAL, "wrong number of hash keys: %d" , nkeys); |
| 307 | break; |
| 308 | } |
| 309 | |
| 310 | return hashValue; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * CatalogCacheComputeTupleHashValue |
| 315 | * |
| 316 | * Compute the hash value associated with a given tuple to be cached |
| 317 | */ |
| 318 | static uint32 |
| 319 | CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple) |
| 320 | { |
| 321 | Datum v1 = 0, |
| 322 | v2 = 0, |
| 323 | v3 = 0, |
| 324 | v4 = 0; |
| 325 | bool isNull = false; |
| 326 | int *cc_keyno = cache->cc_keyno; |
| 327 | TupleDesc cc_tupdesc = cache->cc_tupdesc; |
| 328 | |
| 329 | /* Now extract key fields from tuple, insert into scankey */ |
| 330 | switch (nkeys) |
| 331 | { |
| 332 | case 4: |
| 333 | v4 = fastgetattr(tuple, |
| 334 | cc_keyno[3], |
| 335 | cc_tupdesc, |
| 336 | &isNull); |
| 337 | Assert(!isNull); |
| 338 | /* FALLTHROUGH */ |
| 339 | case 3: |
| 340 | v3 = fastgetattr(tuple, |
| 341 | cc_keyno[2], |
| 342 | cc_tupdesc, |
| 343 | &isNull); |
| 344 | Assert(!isNull); |
| 345 | /* FALLTHROUGH */ |
| 346 | case 2: |
| 347 | v2 = fastgetattr(tuple, |
| 348 | cc_keyno[1], |
| 349 | cc_tupdesc, |
| 350 | &isNull); |
| 351 | Assert(!isNull); |
| 352 | /* FALLTHROUGH */ |
| 353 | case 1: |
| 354 | v1 = fastgetattr(tuple, |
| 355 | cc_keyno[0], |
| 356 | cc_tupdesc, |
| 357 | &isNull); |
| 358 | Assert(!isNull); |
| 359 | break; |
| 360 | default: |
| 361 | elog(FATAL, "wrong number of hash keys: %d" , nkeys); |
| 362 | break; |
| 363 | } |
| 364 | |
| 365 | return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * CatalogCacheCompareTuple |
| 370 | * |
| 371 | * Compare a tuple to the passed arguments. |
| 372 | */ |
| 373 | static inline bool |
| 374 | CatalogCacheCompareTuple(const CatCache *cache, int nkeys, |
| 375 | const Datum *cachekeys, |
| 376 | const Datum *searchkeys) |
| 377 | { |
| 378 | const CCFastEqualFN *cc_fastequal = cache->cc_fastequal; |
| 379 | int i; |
| 380 | |
| 381 | for (i = 0; i < nkeys; i++) |
| 382 | { |
| 383 | if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i])) |
| 384 | return false; |
| 385 | } |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | |
| 390 | #ifdef CATCACHE_STATS |
| 391 | |
| 392 | static void |
| 393 | CatCachePrintStats(int code, Datum arg) |
| 394 | { |
| 395 | slist_iter iter; |
| 396 | long cc_searches = 0; |
| 397 | long cc_hits = 0; |
| 398 | long cc_neg_hits = 0; |
| 399 | long cc_newloads = 0; |
| 400 | long cc_invals = 0; |
| 401 | long cc_lsearches = 0; |
| 402 | long cc_lhits = 0; |
| 403 | |
| 404 | slist_foreach(iter, &CacheHdr->ch_caches) |
| 405 | { |
| 406 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
| 407 | |
| 408 | if (cache->cc_ntup == 0 && cache->cc_searches == 0) |
| 409 | continue; /* don't print unused caches */ |
| 410 | elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits" , |
| 411 | cache->cc_relname, |
| 412 | cache->cc_indexoid, |
| 413 | cache->cc_ntup, |
| 414 | cache->cc_searches, |
| 415 | cache->cc_hits, |
| 416 | cache->cc_neg_hits, |
| 417 | cache->cc_hits + cache->cc_neg_hits, |
| 418 | cache->cc_newloads, |
| 419 | cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads, |
| 420 | cache->cc_searches - cache->cc_hits - cache->cc_neg_hits, |
| 421 | cache->cc_invals, |
| 422 | cache->cc_lsearches, |
| 423 | cache->cc_lhits); |
| 424 | cc_searches += cache->cc_searches; |
| 425 | cc_hits += cache->cc_hits; |
| 426 | cc_neg_hits += cache->cc_neg_hits; |
| 427 | cc_newloads += cache->cc_newloads; |
| 428 | cc_invals += cache->cc_invals; |
| 429 | cc_lsearches += cache->cc_lsearches; |
| 430 | cc_lhits += cache->cc_lhits; |
| 431 | } |
| 432 | elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits" , |
| 433 | CacheHdr->ch_ntup, |
| 434 | cc_searches, |
| 435 | cc_hits, |
| 436 | cc_neg_hits, |
| 437 | cc_hits + cc_neg_hits, |
| 438 | cc_newloads, |
| 439 | cc_searches - cc_hits - cc_neg_hits - cc_newloads, |
| 440 | cc_searches - cc_hits - cc_neg_hits, |
| 441 | cc_invals, |
| 442 | cc_lsearches, |
| 443 | cc_lhits); |
| 444 | } |
| 445 | #endif /* CATCACHE_STATS */ |
| 446 | |
| 447 | |
| 448 | /* |
| 449 | * CatCacheRemoveCTup |
| 450 | * |
| 451 | * Unlink and delete the given cache entry |
| 452 | * |
| 453 | * NB: if it is a member of a CatCList, the CatCList is deleted too. |
| 454 | * Both the cache entry and the list had better have zero refcount. |
| 455 | */ |
| 456 | static void |
| 457 | CatCacheRemoveCTup(CatCache *cache, CatCTup *ct) |
| 458 | { |
| 459 | Assert(ct->refcount == 0); |
| 460 | Assert(ct->my_cache == cache); |
| 461 | |
| 462 | if (ct->c_list) |
| 463 | { |
| 464 | /* |
| 465 | * The cleanest way to handle this is to call CatCacheRemoveCList, |
| 466 | * which will recurse back to me, and the recursive call will do the |
| 467 | * work. Set the "dead" flag to make sure it does recurse. |
| 468 | */ |
| 469 | ct->dead = true; |
| 470 | CatCacheRemoveCList(cache, ct->c_list); |
| 471 | return; /* nothing left to do */ |
| 472 | } |
| 473 | |
| 474 | /* delink from linked list */ |
| 475 | dlist_delete(&ct->cache_elem); |
| 476 | |
| 477 | /* |
| 478 | * Free keys when we're dealing with a negative entry, normal entries just |
| 479 | * point into tuple, allocated together with the CatCTup. |
| 480 | */ |
| 481 | if (ct->negative) |
| 482 | CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys, |
| 483 | cache->cc_keyno, ct->keys); |
| 484 | |
| 485 | pfree(ct); |
| 486 | |
| 487 | --cache->cc_ntup; |
| 488 | --CacheHdr->ch_ntup; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * CatCacheRemoveCList |
| 493 | * |
| 494 | * Unlink and delete the given cache list entry |
| 495 | * |
| 496 | * NB: any dead member entries that become unreferenced are deleted too. |
| 497 | */ |
| 498 | static void |
| 499 | CatCacheRemoveCList(CatCache *cache, CatCList *cl) |
| 500 | { |
| 501 | int i; |
| 502 | |
| 503 | Assert(cl->refcount == 0); |
| 504 | Assert(cl->my_cache == cache); |
| 505 | |
| 506 | /* delink from member tuples */ |
| 507 | for (i = cl->n_members; --i >= 0;) |
| 508 | { |
| 509 | CatCTup *ct = cl->members[i]; |
| 510 | |
| 511 | Assert(ct->c_list == cl); |
| 512 | ct->c_list = NULL; |
| 513 | /* if the member is dead and now has no references, remove it */ |
| 514 | if ( |
| 515 | #ifndef CATCACHE_FORCE_RELEASE |
| 516 | ct->dead && |
| 517 | #endif |
| 518 | ct->refcount == 0) |
| 519 | CatCacheRemoveCTup(cache, ct); |
| 520 | } |
| 521 | |
| 522 | /* delink from linked list */ |
| 523 | dlist_delete(&cl->cache_elem); |
| 524 | |
| 525 | /* free associated column data */ |
| 526 | CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys, |
| 527 | cache->cc_keyno, cl->keys); |
| 528 | |
| 529 | pfree(cl); |
| 530 | } |
| 531 | |
| 532 | |
| 533 | /* |
| 534 | * CatCacheInvalidate |
| 535 | * |
| 536 | * Invalidate entries in the specified cache, given a hash value. |
| 537 | * |
| 538 | * We delete cache entries that match the hash value, whether positive |
| 539 | * or negative. We don't care whether the invalidation is the result |
| 540 | * of a tuple insertion or a deletion. |
| 541 | * |
| 542 | * We used to try to match positive cache entries by TID, but that is |
| 543 | * unsafe after a VACUUM FULL on a system catalog: an inval event could |
| 544 | * be queued before VACUUM FULL, and then processed afterwards, when the |
| 545 | * target tuple that has to be invalidated has a different TID than it |
| 546 | * did when the event was created. So now we just compare hash values and |
| 547 | * accept the small risk of unnecessary invalidations due to false matches. |
| 548 | * |
| 549 | * This routine is only quasi-public: it should only be used by inval.c. |
| 550 | */ |
| 551 | void |
| 552 | CatCacheInvalidate(CatCache *cache, uint32 hashValue) |
| 553 | { |
| 554 | Index hashIndex; |
| 555 | dlist_mutable_iter iter; |
| 556 | |
| 557 | CACHE_elog(DEBUG2, "CatCacheInvalidate: called" ); |
| 558 | |
| 559 | /* |
| 560 | * We don't bother to check whether the cache has finished initialization |
| 561 | * yet; if not, there will be no entries in it so no problem. |
| 562 | */ |
| 563 | |
| 564 | /* |
| 565 | * Invalidate *all* CatCLists in this cache; it's too hard to tell which |
| 566 | * searches might still be correct, so just zap 'em all. |
| 567 | */ |
| 568 | dlist_foreach_modify(iter, &cache->cc_lists) |
| 569 | { |
| 570 | CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur); |
| 571 | |
| 572 | if (cl->refcount > 0) |
| 573 | cl->dead = true; |
| 574 | else |
| 575 | CatCacheRemoveCList(cache, cl); |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * inspect the proper hash bucket for tuple matches |
| 580 | */ |
| 581 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
| 582 | dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex]) |
| 583 | { |
| 584 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
| 585 | |
| 586 | if (hashValue == ct->hash_value) |
| 587 | { |
| 588 | if (ct->refcount > 0 || |
| 589 | (ct->c_list && ct->c_list->refcount > 0)) |
| 590 | { |
| 591 | ct->dead = true; |
| 592 | /* list, if any, was marked dead above */ |
| 593 | Assert(ct->c_list == NULL || ct->c_list->dead); |
| 594 | } |
| 595 | else |
| 596 | CatCacheRemoveCTup(cache, ct); |
| 597 | CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated" ); |
| 598 | #ifdef CATCACHE_STATS |
| 599 | cache->cc_invals++; |
| 600 | #endif |
| 601 | /* could be multiple matches, so keep looking! */ |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | /* ---------------------------------------------------------------- |
| 607 | * public functions |
| 608 | * ---------------------------------------------------------------- |
| 609 | */ |
| 610 | |
| 611 | |
| 612 | /* |
| 613 | * Standard routine for creating cache context if it doesn't exist yet |
| 614 | * |
| 615 | * There are a lot of places (probably far more than necessary) that check |
| 616 | * whether CacheMemoryContext exists yet and want to create it if not. |
| 617 | * We centralize knowledge of exactly how to create it here. |
| 618 | */ |
| 619 | void |
| 620 | CreateCacheMemoryContext(void) |
| 621 | { |
| 622 | /* |
| 623 | * Purely for paranoia, check that context doesn't exist; caller probably |
| 624 | * did so already. |
| 625 | */ |
| 626 | if (!CacheMemoryContext) |
| 627 | CacheMemoryContext = AllocSetContextCreate(TopMemoryContext, |
| 628 | "CacheMemoryContext" , |
| 629 | ALLOCSET_DEFAULT_SIZES); |
| 630 | } |
| 631 | |
| 632 | |
| 633 | /* |
| 634 | * ResetCatalogCache |
| 635 | * |
| 636 | * Reset one catalog cache to empty. |
| 637 | * |
| 638 | * This is not very efficient if the target cache is nearly empty. |
| 639 | * However, it shouldn't need to be efficient; we don't invoke it often. |
| 640 | */ |
| 641 | static void |
| 642 | ResetCatalogCache(CatCache *cache) |
| 643 | { |
| 644 | dlist_mutable_iter iter; |
| 645 | int i; |
| 646 | |
| 647 | /* Remove each list in this cache, or at least mark it dead */ |
| 648 | dlist_foreach_modify(iter, &cache->cc_lists) |
| 649 | { |
| 650 | CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur); |
| 651 | |
| 652 | if (cl->refcount > 0) |
| 653 | cl->dead = true; |
| 654 | else |
| 655 | CatCacheRemoveCList(cache, cl); |
| 656 | } |
| 657 | |
| 658 | /* Remove each tuple in this cache, or at least mark it dead */ |
| 659 | for (i = 0; i < cache->cc_nbuckets; i++) |
| 660 | { |
| 661 | dlist_head *bucket = &cache->cc_bucket[i]; |
| 662 | |
| 663 | dlist_foreach_modify(iter, bucket) |
| 664 | { |
| 665 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
| 666 | |
| 667 | if (ct->refcount > 0 || |
| 668 | (ct->c_list && ct->c_list->refcount > 0)) |
| 669 | { |
| 670 | ct->dead = true; |
| 671 | /* list, if any, was marked dead above */ |
| 672 | Assert(ct->c_list == NULL || ct->c_list->dead); |
| 673 | } |
| 674 | else |
| 675 | CatCacheRemoveCTup(cache, ct); |
| 676 | #ifdef CATCACHE_STATS |
| 677 | cache->cc_invals++; |
| 678 | #endif |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * ResetCatalogCaches |
| 685 | * |
| 686 | * Reset all caches when a shared cache inval event forces it |
| 687 | */ |
| 688 | void |
| 689 | ResetCatalogCaches(void) |
| 690 | { |
| 691 | slist_iter iter; |
| 692 | |
| 693 | CACHE_elog(DEBUG2, "ResetCatalogCaches called" ); |
| 694 | |
| 695 | slist_foreach(iter, &CacheHdr->ch_caches) |
| 696 | { |
| 697 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
| 698 | |
| 699 | ResetCatalogCache(cache); |
| 700 | } |
| 701 | |
| 702 | CACHE_elog(DEBUG2, "end of ResetCatalogCaches call" ); |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * CatalogCacheFlushCatalog |
| 707 | * |
| 708 | * Flush all catcache entries that came from the specified system catalog. |
| 709 | * This is needed after VACUUM FULL/CLUSTER on the catalog, since the |
| 710 | * tuples very likely now have different TIDs than before. (At one point |
| 711 | * we also tried to force re-execution of CatalogCacheInitializeCache for |
| 712 | * the cache(s) on that catalog. This is a bad idea since it leads to all |
| 713 | * kinds of trouble if a cache flush occurs while loading cache entries. |
| 714 | * We now avoid the need to do it by copying cc_tupdesc out of the relcache, |
| 715 | * rather than relying on the relcache to keep a tupdesc for us. Of course |
| 716 | * this assumes the tupdesc of a cachable system table will not change...) |
| 717 | */ |
| 718 | void |
| 719 | CatalogCacheFlushCatalog(Oid catId) |
| 720 | { |
| 721 | slist_iter iter; |
| 722 | |
| 723 | CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u" , catId); |
| 724 | |
| 725 | slist_foreach(iter, &CacheHdr->ch_caches) |
| 726 | { |
| 727 | CatCache *cache = slist_container(CatCache, cc_next, iter.cur); |
| 728 | |
| 729 | /* Does this cache store tuples of the target catalog? */ |
| 730 | if (cache->cc_reloid == catId) |
| 731 | { |
| 732 | /* Yes, so flush all its contents */ |
| 733 | ResetCatalogCache(cache); |
| 734 | |
| 735 | /* Tell inval.c to call syscache callbacks for this cache */ |
| 736 | CallSyscacheCallbacks(cache->id, 0); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call" ); |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * InitCatCache |
| 745 | * |
| 746 | * This allocates and initializes a cache for a system catalog relation. |
| 747 | * Actually, the cache is only partially initialized to avoid opening the |
| 748 | * relation. The relation will be opened and the rest of the cache |
| 749 | * structure initialized on the first access. |
| 750 | */ |
| 751 | #ifdef CACHEDEBUG |
| 752 | #define InitCatCache_DEBUG2 \ |
| 753 | do { \ |
| 754 | elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \ |
| 755 | cp->cc_reloid, cp->cc_indexoid, cp->id, \ |
| 756 | cp->cc_nkeys, cp->cc_nbuckets); \ |
| 757 | } while(0) |
| 758 | #else |
| 759 | #define InitCatCache_DEBUG2 |
| 760 | #endif |
| 761 | |
| 762 | CatCache * |
| 763 | InitCatCache(int id, |
| 764 | Oid reloid, |
| 765 | Oid indexoid, |
| 766 | int nkeys, |
| 767 | const int *key, |
| 768 | int nbuckets) |
| 769 | { |
| 770 | CatCache *cp; |
| 771 | MemoryContext oldcxt; |
| 772 | size_t sz; |
| 773 | int i; |
| 774 | |
| 775 | /* |
| 776 | * nbuckets is the initial number of hash buckets to use in this catcache. |
| 777 | * It will be enlarged later if it becomes too full. |
| 778 | * |
| 779 | * nbuckets must be a power of two. We check this via Assert rather than |
| 780 | * a full runtime check because the values will be coming from constant |
| 781 | * tables. |
| 782 | * |
| 783 | * If you're confused by the power-of-two check, see comments in |
| 784 | * bitmapset.c for an explanation. |
| 785 | */ |
| 786 | Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets); |
| 787 | |
| 788 | /* |
| 789 | * first switch to the cache context so our allocations do not vanish at |
| 790 | * the end of a transaction |
| 791 | */ |
| 792 | if (!CacheMemoryContext) |
| 793 | CreateCacheMemoryContext(); |
| 794 | |
| 795 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 796 | |
| 797 | /* |
| 798 | * if first time through, initialize the cache group header |
| 799 | */ |
| 800 | if (CacheHdr == NULL) |
| 801 | { |
| 802 | CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader)); |
| 803 | slist_init(&CacheHdr->ch_caches); |
| 804 | CacheHdr->ch_ntup = 0; |
| 805 | #ifdef CATCACHE_STATS |
| 806 | /* set up to dump stats at backend exit */ |
| 807 | on_proc_exit(CatCachePrintStats, 0); |
| 808 | #endif |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * Allocate a new cache structure, aligning to a cacheline boundary |
| 813 | * |
| 814 | * Note: we rely on zeroing to initialize all the dlist headers correctly |
| 815 | */ |
| 816 | sz = sizeof(CatCache) + PG_CACHE_LINE_SIZE; |
| 817 | cp = (CatCache *) CACHELINEALIGN(palloc0(sz)); |
| 818 | cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head)); |
| 819 | |
| 820 | /* |
| 821 | * initialize the cache's relation information for the relation |
| 822 | * corresponding to this cache, and initialize some of the new cache's |
| 823 | * other internal fields. But don't open the relation yet. |
| 824 | */ |
| 825 | cp->id = id; |
| 826 | cp->cc_relname = "(not known yet)" ; |
| 827 | cp->cc_reloid = reloid; |
| 828 | cp->cc_indexoid = indexoid; |
| 829 | cp->cc_relisshared = false; /* temporary */ |
| 830 | cp->cc_tupdesc = (TupleDesc) NULL; |
| 831 | cp->cc_ntup = 0; |
| 832 | cp->cc_nbuckets = nbuckets; |
| 833 | cp->cc_nkeys = nkeys; |
| 834 | for (i = 0; i < nkeys; ++i) |
| 835 | cp->cc_keyno[i] = key[i]; |
| 836 | |
| 837 | /* |
| 838 | * new cache is initialized as far as we can go for now. print some |
| 839 | * debugging information, if appropriate. |
| 840 | */ |
| 841 | InitCatCache_DEBUG2; |
| 842 | |
| 843 | /* |
| 844 | * add completed cache to top of group header's list |
| 845 | */ |
| 846 | slist_push_head(&CacheHdr->ch_caches, &cp->cc_next); |
| 847 | |
| 848 | /* |
| 849 | * back to the old context before we return... |
| 850 | */ |
| 851 | MemoryContextSwitchTo(oldcxt); |
| 852 | |
| 853 | return cp; |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * Enlarge a catcache, doubling the number of buckets. |
| 858 | */ |
| 859 | static void |
| 860 | RehashCatCache(CatCache *cp) |
| 861 | { |
| 862 | dlist_head *newbucket; |
| 863 | int newnbuckets; |
| 864 | int i; |
| 865 | |
| 866 | elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets" , |
| 867 | cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets); |
| 868 | |
| 869 | /* Allocate a new, larger, hash table. */ |
| 870 | newnbuckets = cp->cc_nbuckets * 2; |
| 871 | newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head)); |
| 872 | |
| 873 | /* Move all entries from old hash table to new. */ |
| 874 | for (i = 0; i < cp->cc_nbuckets; i++) |
| 875 | { |
| 876 | dlist_mutable_iter iter; |
| 877 | |
| 878 | dlist_foreach_modify(iter, &cp->cc_bucket[i]) |
| 879 | { |
| 880 | CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur); |
| 881 | int hashIndex = HASH_INDEX(ct->hash_value, newnbuckets); |
| 882 | |
| 883 | dlist_delete(iter.cur); |
| 884 | dlist_push_head(&newbucket[hashIndex], &ct->cache_elem); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /* Switch to the new array. */ |
| 889 | pfree(cp->cc_bucket); |
| 890 | cp->cc_nbuckets = newnbuckets; |
| 891 | cp->cc_bucket = newbucket; |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * CatalogCacheInitializeCache |
| 896 | * |
| 897 | * This function does final initialization of a catcache: obtain the tuple |
| 898 | * descriptor and set up the hash and equality function links. We assume |
| 899 | * that the relcache entry can be opened at this point! |
| 900 | */ |
| 901 | #ifdef CACHEDEBUG |
| 902 | #define CatalogCacheInitializeCache_DEBUG1 \ |
| 903 | elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \ |
| 904 | cache->cc_reloid) |
| 905 | |
| 906 | #define CatalogCacheInitializeCache_DEBUG2 \ |
| 907 | do { \ |
| 908 | if (cache->cc_keyno[i] > 0) { \ |
| 909 | elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \ |
| 910 | i+1, cache->cc_nkeys, cache->cc_keyno[i], \ |
| 911 | TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \ |
| 912 | } else { \ |
| 913 | elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \ |
| 914 | i+1, cache->cc_nkeys, cache->cc_keyno[i]); \ |
| 915 | } \ |
| 916 | } while(0) |
| 917 | #else |
| 918 | #define CatalogCacheInitializeCache_DEBUG1 |
| 919 | #define CatalogCacheInitializeCache_DEBUG2 |
| 920 | #endif |
| 921 | |
| 922 | static void |
| 923 | CatalogCacheInitializeCache(CatCache *cache) |
| 924 | { |
| 925 | Relation relation; |
| 926 | MemoryContext oldcxt; |
| 927 | TupleDesc tupdesc; |
| 928 | int i; |
| 929 | |
| 930 | CatalogCacheInitializeCache_DEBUG1; |
| 931 | |
| 932 | relation = table_open(cache->cc_reloid, AccessShareLock); |
| 933 | |
| 934 | /* |
| 935 | * switch to the cache context so our allocations do not vanish at the end |
| 936 | * of a transaction |
| 937 | */ |
| 938 | Assert(CacheMemoryContext != NULL); |
| 939 | |
| 940 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 941 | |
| 942 | /* |
| 943 | * copy the relcache's tuple descriptor to permanent cache storage |
| 944 | */ |
| 945 | tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation)); |
| 946 | |
| 947 | /* |
| 948 | * save the relation's name and relisshared flag, too (cc_relname is used |
| 949 | * only for debugging purposes) |
| 950 | */ |
| 951 | cache->cc_relname = pstrdup(RelationGetRelationName(relation)); |
| 952 | cache->cc_relisshared = RelationGetForm(relation)->relisshared; |
| 953 | |
| 954 | /* |
| 955 | * return to the caller's memory context and close the rel |
| 956 | */ |
| 957 | MemoryContextSwitchTo(oldcxt); |
| 958 | |
| 959 | table_close(relation, AccessShareLock); |
| 960 | |
| 961 | CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys" , |
| 962 | cache->cc_relname, cache->cc_nkeys); |
| 963 | |
| 964 | /* |
| 965 | * initialize cache's key information |
| 966 | */ |
| 967 | for (i = 0; i < cache->cc_nkeys; ++i) |
| 968 | { |
| 969 | Oid keytype; |
| 970 | RegProcedure eqfunc; |
| 971 | |
| 972 | CatalogCacheInitializeCache_DEBUG2; |
| 973 | |
| 974 | if (cache->cc_keyno[i] > 0) |
| 975 | { |
| 976 | Form_pg_attribute attr = TupleDescAttr(tupdesc, |
| 977 | cache->cc_keyno[i] - 1); |
| 978 | |
| 979 | keytype = attr->atttypid; |
| 980 | /* cache key columns should always be NOT NULL */ |
| 981 | Assert(attr->attnotnull); |
| 982 | } |
| 983 | else |
| 984 | { |
| 985 | if (cache->cc_keyno[i] < 0) |
| 986 | elog(FATAL, "sys attributes are not supported in caches" ); |
| 987 | keytype = OIDOID; |
| 988 | } |
| 989 | |
| 990 | GetCCHashEqFuncs(keytype, |
| 991 | &cache->cc_hashfunc[i], |
| 992 | &eqfunc, |
| 993 | &cache->cc_fastequal[i]); |
| 994 | |
| 995 | /* |
| 996 | * Do equality-function lookup (we assume this won't need a catalog |
| 997 | * lookup for any supported type) |
| 998 | */ |
| 999 | fmgr_info_cxt(eqfunc, |
| 1000 | &cache->cc_skey[i].sk_func, |
| 1001 | CacheMemoryContext); |
| 1002 | |
| 1003 | /* Initialize sk_attno suitably for HeapKeyTest() and heap scans */ |
| 1004 | cache->cc_skey[i].sk_attno = cache->cc_keyno[i]; |
| 1005 | |
| 1006 | /* Fill in sk_strategy as well --- always standard equality */ |
| 1007 | cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber; |
| 1008 | cache->cc_skey[i].sk_subtype = InvalidOid; |
| 1009 | /* If a catcache key requires a collation, it must be C collation */ |
| 1010 | cache->cc_skey[i].sk_collation = C_COLLATION_OID; |
| 1011 | |
| 1012 | CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p" , |
| 1013 | cache->cc_relname, i, cache); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * mark this cache fully initialized |
| 1018 | */ |
| 1019 | cache->cc_tupdesc = tupdesc; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache |
| 1024 | * |
| 1025 | * One reason to call this routine is to ensure that the relcache has |
| 1026 | * created entries for all the catalogs and indexes referenced by catcaches. |
| 1027 | * Therefore, provide an option to open the index as well as fixing the |
| 1028 | * cache itself. An exception is the indexes on pg_am, which we don't use |
| 1029 | * (cf. IndexScanOK). |
| 1030 | */ |
| 1031 | void |
| 1032 | InitCatCachePhase2(CatCache *cache, bool touch_index) |
| 1033 | { |
| 1034 | if (cache->cc_tupdesc == NULL) |
| 1035 | CatalogCacheInitializeCache(cache); |
| 1036 | |
| 1037 | if (touch_index && |
| 1038 | cache->id != AMOID && |
| 1039 | cache->id != AMNAME) |
| 1040 | { |
| 1041 | Relation idesc; |
| 1042 | |
| 1043 | /* |
| 1044 | * We must lock the underlying catalog before opening the index to |
| 1045 | * avoid deadlock, since index_open could possibly result in reading |
| 1046 | * this same catalog, and if anyone else is exclusive-locking this |
| 1047 | * catalog and index they'll be doing it in that order. |
| 1048 | */ |
| 1049 | LockRelationOid(cache->cc_reloid, AccessShareLock); |
| 1050 | idesc = index_open(cache->cc_indexoid, AccessShareLock); |
| 1051 | |
| 1052 | /* |
| 1053 | * While we've got the index open, let's check that it's unique (and |
| 1054 | * not just deferrable-unique, thank you very much). This is just to |
| 1055 | * catch thinkos in definitions of new catcaches, so we don't worry |
| 1056 | * about the pg_am indexes not getting tested. |
| 1057 | */ |
| 1058 | Assert(idesc->rd_index->indisunique && |
| 1059 | idesc->rd_index->indimmediate); |
| 1060 | |
| 1061 | index_close(idesc, AccessShareLock); |
| 1062 | UnlockRelationOid(cache->cc_reloid, AccessShareLock); |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | /* |
| 1068 | * IndexScanOK |
| 1069 | * |
| 1070 | * This function checks for tuples that will be fetched by |
| 1071 | * IndexSupportInitialize() during relcache initialization for |
| 1072 | * certain system indexes that support critical syscaches. |
| 1073 | * We can't use an indexscan to fetch these, else we'll get into |
| 1074 | * infinite recursion. A plain heap scan will work, however. |
| 1075 | * Once we have completed relcache initialization (signaled by |
| 1076 | * criticalRelcachesBuilt), we don't have to worry anymore. |
| 1077 | * |
| 1078 | * Similarly, during backend startup we have to be able to use the |
| 1079 | * pg_authid and pg_auth_members syscaches for authentication even if |
| 1080 | * we don't yet have relcache entries for those catalogs' indexes. |
| 1081 | */ |
| 1082 | static bool |
| 1083 | IndexScanOK(CatCache *cache, ScanKey cur_skey) |
| 1084 | { |
| 1085 | switch (cache->id) |
| 1086 | { |
| 1087 | case INDEXRELID: |
| 1088 | |
| 1089 | /* |
| 1090 | * Rather than tracking exactly which indexes have to be loaded |
| 1091 | * before we can use indexscans (which changes from time to time), |
| 1092 | * just force all pg_index searches to be heap scans until we've |
| 1093 | * built the critical relcaches. |
| 1094 | */ |
| 1095 | if (!criticalRelcachesBuilt) |
| 1096 | return false; |
| 1097 | break; |
| 1098 | |
| 1099 | case AMOID: |
| 1100 | case AMNAME: |
| 1101 | |
| 1102 | /* |
| 1103 | * Always do heap scans in pg_am, because it's so small there's |
| 1104 | * not much point in an indexscan anyway. We *must* do this when |
| 1105 | * initially building critical relcache entries, but we might as |
| 1106 | * well just always do it. |
| 1107 | */ |
| 1108 | return false; |
| 1109 | |
| 1110 | case AUTHNAME: |
| 1111 | case AUTHOID: |
| 1112 | case AUTHMEMMEMROLE: |
| 1113 | |
| 1114 | /* |
| 1115 | * Protect authentication lookups occurring before relcache has |
| 1116 | * collected entries for shared indexes. |
| 1117 | */ |
| 1118 | if (!criticalSharedRelcachesBuilt) |
| 1119 | return false; |
| 1120 | break; |
| 1121 | |
| 1122 | default: |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | /* Normal case, allow index scan */ |
| 1127 | return true; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * SearchCatCacheInternal |
| 1132 | * |
| 1133 | * This call searches a system cache for a tuple, opening the relation |
| 1134 | * if necessary (on the first access to a particular cache). |
| 1135 | * |
| 1136 | * The result is NULL if not found, or a pointer to a HeapTuple in |
| 1137 | * the cache. The caller must not modify the tuple, and must call |
| 1138 | * ReleaseCatCache() when done with it. |
| 1139 | * |
| 1140 | * The search key values should be expressed as Datums of the key columns' |
| 1141 | * datatype(s). (Pass zeroes for any unused parameters.) As a special |
| 1142 | * exception, the passed-in key for a NAME column can be just a C string; |
| 1143 | * the caller need not go to the trouble of converting it to a fully |
| 1144 | * null-padded NAME. |
| 1145 | */ |
| 1146 | HeapTuple |
| 1147 | SearchCatCache(CatCache *cache, |
| 1148 | Datum v1, |
| 1149 | Datum v2, |
| 1150 | Datum v3, |
| 1151 | Datum v4) |
| 1152 | { |
| 1153 | return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4); |
| 1154 | } |
| 1155 | |
| 1156 | |
| 1157 | /* |
| 1158 | * SearchCatCacheN() are SearchCatCache() versions for a specific number of |
| 1159 | * arguments. The compiler can inline the body and unroll loops, making them a |
| 1160 | * bit faster than SearchCatCache(). |
| 1161 | */ |
| 1162 | |
| 1163 | HeapTuple |
| 1164 | SearchCatCache1(CatCache *cache, |
| 1165 | Datum v1) |
| 1166 | { |
| 1167 | return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0); |
| 1168 | } |
| 1169 | |
| 1170 | |
| 1171 | HeapTuple |
| 1172 | SearchCatCache2(CatCache *cache, |
| 1173 | Datum v1, Datum v2) |
| 1174 | { |
| 1175 | return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0); |
| 1176 | } |
| 1177 | |
| 1178 | |
| 1179 | HeapTuple |
| 1180 | SearchCatCache3(CatCache *cache, |
| 1181 | Datum v1, Datum v2, Datum v3) |
| 1182 | { |
| 1183 | return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0); |
| 1184 | } |
| 1185 | |
| 1186 | |
| 1187 | HeapTuple |
| 1188 | SearchCatCache4(CatCache *cache, |
| 1189 | Datum v1, Datum v2, Datum v3, Datum v4) |
| 1190 | { |
| 1191 | return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4); |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Work-horse for SearchCatCache/SearchCatCacheN. |
| 1196 | */ |
| 1197 | static inline HeapTuple |
| 1198 | SearchCatCacheInternal(CatCache *cache, |
| 1199 | int nkeys, |
| 1200 | Datum v1, |
| 1201 | Datum v2, |
| 1202 | Datum v3, |
| 1203 | Datum v4) |
| 1204 | { |
| 1205 | Datum arguments[CATCACHE_MAXKEYS]; |
| 1206 | uint32 hashValue; |
| 1207 | Index hashIndex; |
| 1208 | dlist_iter iter; |
| 1209 | dlist_head *bucket; |
| 1210 | CatCTup *ct; |
| 1211 | |
| 1212 | /* Make sure we're in an xact, even if this ends up being a cache hit */ |
| 1213 | Assert(IsTransactionState()); |
| 1214 | |
| 1215 | Assert(cache->cc_nkeys == nkeys); |
| 1216 | |
| 1217 | /* |
| 1218 | * one-time startup overhead for each cache |
| 1219 | */ |
| 1220 | if (unlikely(cache->cc_tupdesc == NULL)) |
| 1221 | CatalogCacheInitializeCache(cache); |
| 1222 | |
| 1223 | #ifdef CATCACHE_STATS |
| 1224 | cache->cc_searches++; |
| 1225 | #endif |
| 1226 | |
| 1227 | /* Initialize local parameter array */ |
| 1228 | arguments[0] = v1; |
| 1229 | arguments[1] = v2; |
| 1230 | arguments[2] = v3; |
| 1231 | arguments[3] = v4; |
| 1232 | |
| 1233 | /* |
| 1234 | * find the hash bucket in which to look for the tuple |
| 1235 | */ |
| 1236 | hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
| 1237 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
| 1238 | |
| 1239 | /* |
| 1240 | * scan the hash bucket until we find a match or exhaust our tuples |
| 1241 | * |
| 1242 | * Note: it's okay to use dlist_foreach here, even though we modify the |
| 1243 | * dlist within the loop, because we don't continue the loop afterwards. |
| 1244 | */ |
| 1245 | bucket = &cache->cc_bucket[hashIndex]; |
| 1246 | dlist_foreach(iter, bucket) |
| 1247 | { |
| 1248 | ct = dlist_container(CatCTup, cache_elem, iter.cur); |
| 1249 | |
| 1250 | if (ct->dead) |
| 1251 | continue; /* ignore dead entries */ |
| 1252 | |
| 1253 | if (ct->hash_value != hashValue) |
| 1254 | continue; /* quickly skip entry if wrong hash val */ |
| 1255 | |
| 1256 | if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments)) |
| 1257 | continue; |
| 1258 | |
| 1259 | /* |
| 1260 | * We found a match in the cache. Move it to the front of the list |
| 1261 | * for its hashbucket, in order to speed subsequent searches. (The |
| 1262 | * most frequently accessed elements in any hashbucket will tend to be |
| 1263 | * near the front of the hashbucket's list.) |
| 1264 | */ |
| 1265 | dlist_move_head(bucket, &ct->cache_elem); |
| 1266 | |
| 1267 | /* |
| 1268 | * If it's a positive entry, bump its refcount and return it. If it's |
| 1269 | * negative, we can report failure to the caller. |
| 1270 | */ |
| 1271 | if (!ct->negative) |
| 1272 | { |
| 1273 | ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner); |
| 1274 | ct->refcount++; |
| 1275 | ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple); |
| 1276 | |
| 1277 | CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d" , |
| 1278 | cache->cc_relname, hashIndex); |
| 1279 | |
| 1280 | #ifdef CATCACHE_STATS |
| 1281 | cache->cc_hits++; |
| 1282 | #endif |
| 1283 | |
| 1284 | return &ct->tuple; |
| 1285 | } |
| 1286 | else |
| 1287 | { |
| 1288 | CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d" , |
| 1289 | cache->cc_relname, hashIndex); |
| 1290 | |
| 1291 | #ifdef CATCACHE_STATS |
| 1292 | cache->cc_neg_hits++; |
| 1293 | #endif |
| 1294 | |
| 1295 | return NULL; |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4); |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * Search the actual catalogs, rather than the cache. |
| 1304 | * |
| 1305 | * This is kept separate from SearchCatCacheInternal() to keep the fast-path |
| 1306 | * as small as possible. To avoid that effort being undone by a helpful |
| 1307 | * compiler, try to explicitly forbid inlining. |
| 1308 | */ |
| 1309 | static pg_noinline HeapTuple |
| 1310 | SearchCatCacheMiss(CatCache *cache, |
| 1311 | int nkeys, |
| 1312 | uint32 hashValue, |
| 1313 | Index hashIndex, |
| 1314 | Datum v1, |
| 1315 | Datum v2, |
| 1316 | Datum v3, |
| 1317 | Datum v4) |
| 1318 | { |
| 1319 | ScanKeyData cur_skey[CATCACHE_MAXKEYS]; |
| 1320 | Relation relation; |
| 1321 | SysScanDesc scandesc; |
| 1322 | HeapTuple ntp; |
| 1323 | CatCTup *ct; |
| 1324 | Datum arguments[CATCACHE_MAXKEYS]; |
| 1325 | |
| 1326 | /* Initialize local parameter array */ |
| 1327 | arguments[0] = v1; |
| 1328 | arguments[1] = v2; |
| 1329 | arguments[2] = v3; |
| 1330 | arguments[3] = v4; |
| 1331 | |
| 1332 | /* |
| 1333 | * Ok, need to make a lookup in the relation, copy the scankey and fill |
| 1334 | * out any per-call fields. |
| 1335 | */ |
| 1336 | memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys); |
| 1337 | cur_skey[0].sk_argument = v1; |
| 1338 | cur_skey[1].sk_argument = v2; |
| 1339 | cur_skey[2].sk_argument = v3; |
| 1340 | cur_skey[3].sk_argument = v4; |
| 1341 | |
| 1342 | /* |
| 1343 | * Tuple was not found in cache, so we have to try to retrieve it directly |
| 1344 | * from the relation. If found, we will add it to the cache; if not |
| 1345 | * found, we will add a negative cache entry instead. |
| 1346 | * |
| 1347 | * NOTE: it is possible for recursive cache lookups to occur while reading |
| 1348 | * the relation --- for example, due to shared-cache-inval messages being |
| 1349 | * processed during table_open(). This is OK. It's even possible for one |
| 1350 | * of those lookups to find and enter the very same tuple we are trying to |
| 1351 | * fetch here. If that happens, we will enter a second copy of the tuple |
| 1352 | * into the cache. The first copy will never be referenced again, and |
| 1353 | * will eventually age out of the cache, so there's no functional problem. |
| 1354 | * This case is rare enough that it's not worth expending extra cycles to |
| 1355 | * detect. |
| 1356 | */ |
| 1357 | relation = table_open(cache->cc_reloid, AccessShareLock); |
| 1358 | |
| 1359 | scandesc = systable_beginscan(relation, |
| 1360 | cache->cc_indexoid, |
| 1361 | IndexScanOK(cache, cur_skey), |
| 1362 | NULL, |
| 1363 | nkeys, |
| 1364 | cur_skey); |
| 1365 | |
| 1366 | ct = NULL; |
| 1367 | |
| 1368 | while (HeapTupleIsValid(ntp = systable_getnext(scandesc))) |
| 1369 | { |
| 1370 | ct = CatalogCacheCreateEntry(cache, ntp, arguments, |
| 1371 | hashValue, hashIndex, |
| 1372 | false); |
| 1373 | /* immediately set the refcount to 1 */ |
| 1374 | ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner); |
| 1375 | ct->refcount++; |
| 1376 | ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple); |
| 1377 | break; /* assume only one match */ |
| 1378 | } |
| 1379 | |
| 1380 | systable_endscan(scandesc); |
| 1381 | |
| 1382 | table_close(relation, AccessShareLock); |
| 1383 | |
| 1384 | /* |
| 1385 | * If tuple was not found, we need to build a negative cache entry |
| 1386 | * containing a fake tuple. The fake tuple has the correct key columns, |
| 1387 | * but nulls everywhere else. |
| 1388 | * |
| 1389 | * In bootstrap mode, we don't build negative entries, because the cache |
| 1390 | * invalidation mechanism isn't alive and can't clear them if the tuple |
| 1391 | * gets created later. (Bootstrap doesn't do UPDATEs, so it doesn't need |
| 1392 | * cache inval for that.) |
| 1393 | */ |
| 1394 | if (ct == NULL) |
| 1395 | { |
| 1396 | if (IsBootstrapProcessingMode()) |
| 1397 | return NULL; |
| 1398 | |
| 1399 | ct = CatalogCacheCreateEntry(cache, NULL, arguments, |
| 1400 | hashValue, hashIndex, |
| 1401 | true); |
| 1402 | |
| 1403 | CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples" , |
| 1404 | cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup); |
| 1405 | CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d" , |
| 1406 | cache->cc_relname, hashIndex); |
| 1407 | |
| 1408 | /* |
| 1409 | * We are not returning the negative entry to the caller, so leave its |
| 1410 | * refcount zero. |
| 1411 | */ |
| 1412 | |
| 1413 | return NULL; |
| 1414 | } |
| 1415 | |
| 1416 | CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples" , |
| 1417 | cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup); |
| 1418 | CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d" , |
| 1419 | cache->cc_relname, hashIndex); |
| 1420 | |
| 1421 | #ifdef CATCACHE_STATS |
| 1422 | cache->cc_newloads++; |
| 1423 | #endif |
| 1424 | |
| 1425 | return &ct->tuple; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * ReleaseCatCache |
| 1430 | * |
| 1431 | * Decrement the reference count of a catcache entry (releasing the |
| 1432 | * hold grabbed by a successful SearchCatCache). |
| 1433 | * |
| 1434 | * NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries |
| 1435 | * will be freed as soon as their refcount goes to zero. In combination |
| 1436 | * with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test |
| 1437 | * to catch references to already-released catcache entries. |
| 1438 | */ |
| 1439 | void |
| 1440 | ReleaseCatCache(HeapTuple tuple) |
| 1441 | { |
| 1442 | CatCTup *ct = (CatCTup *) (((char *) tuple) - |
| 1443 | offsetof(CatCTup, tuple)); |
| 1444 | |
| 1445 | /* Safety checks to ensure we were handed a cache entry */ |
| 1446 | Assert(ct->ct_magic == CT_MAGIC); |
| 1447 | Assert(ct->refcount > 0); |
| 1448 | |
| 1449 | ct->refcount--; |
| 1450 | ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple); |
| 1451 | |
| 1452 | if ( |
| 1453 | #ifndef CATCACHE_FORCE_RELEASE |
| 1454 | ct->dead && |
| 1455 | #endif |
| 1456 | ct->refcount == 0 && |
| 1457 | (ct->c_list == NULL || ct->c_list->refcount == 0)) |
| 1458 | CatCacheRemoveCTup(ct->my_cache, ct); |
| 1459 | } |
| 1460 | |
| 1461 | |
| 1462 | /* |
| 1463 | * GetCatCacheHashValue |
| 1464 | * |
| 1465 | * Compute the hash value for a given set of search keys. |
| 1466 | * |
| 1467 | * The reason for exposing this as part of the API is that the hash value is |
| 1468 | * exposed in cache invalidation operations, so there are places outside the |
| 1469 | * catcache code that need to be able to compute the hash values. |
| 1470 | */ |
| 1471 | uint32 |
| 1472 | GetCatCacheHashValue(CatCache *cache, |
| 1473 | Datum v1, |
| 1474 | Datum v2, |
| 1475 | Datum v3, |
| 1476 | Datum v4) |
| 1477 | { |
| 1478 | /* |
| 1479 | * one-time startup overhead for each cache |
| 1480 | */ |
| 1481 | if (cache->cc_tupdesc == NULL) |
| 1482 | CatalogCacheInitializeCache(cache); |
| 1483 | |
| 1484 | /* |
| 1485 | * calculate the hash value |
| 1486 | */ |
| 1487 | return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4); |
| 1488 | } |
| 1489 | |
| 1490 | |
| 1491 | /* |
| 1492 | * SearchCatCacheList |
| 1493 | * |
| 1494 | * Generate a list of all tuples matching a partial key (that is, |
| 1495 | * a key specifying just the first K of the cache's N key columns). |
| 1496 | * |
| 1497 | * It doesn't make any sense to specify all of the cache's key columns |
| 1498 | * here: since the key is unique, there could be at most one match, so |
| 1499 | * you ought to use SearchCatCache() instead. Hence this function takes |
| 1500 | * one less Datum argument than SearchCatCache() does. |
| 1501 | * |
| 1502 | * The caller must not modify the list object or the pointed-to tuples, |
| 1503 | * and must call ReleaseCatCacheList() when done with the list. |
| 1504 | */ |
| 1505 | CatCList * |
| 1506 | SearchCatCacheList(CatCache *cache, |
| 1507 | int nkeys, |
| 1508 | Datum v1, |
| 1509 | Datum v2, |
| 1510 | Datum v3) |
| 1511 | { |
| 1512 | Datum v4 = 0; /* dummy last-column value */ |
| 1513 | Datum arguments[CATCACHE_MAXKEYS]; |
| 1514 | uint32 lHashValue; |
| 1515 | dlist_iter iter; |
| 1516 | CatCList *cl; |
| 1517 | CatCTup *ct; |
| 1518 | List *volatile ctlist; |
| 1519 | ListCell *ctlist_item; |
| 1520 | int nmembers; |
| 1521 | bool ordered; |
| 1522 | HeapTuple ntp; |
| 1523 | MemoryContext oldcxt; |
| 1524 | int i; |
| 1525 | |
| 1526 | /* |
| 1527 | * one-time startup overhead for each cache |
| 1528 | */ |
| 1529 | if (cache->cc_tupdesc == NULL) |
| 1530 | CatalogCacheInitializeCache(cache); |
| 1531 | |
| 1532 | Assert(nkeys > 0 && nkeys < cache->cc_nkeys); |
| 1533 | |
| 1534 | #ifdef CATCACHE_STATS |
| 1535 | cache->cc_lsearches++; |
| 1536 | #endif |
| 1537 | |
| 1538 | /* Initialize local parameter array */ |
| 1539 | arguments[0] = v1; |
| 1540 | arguments[1] = v2; |
| 1541 | arguments[2] = v3; |
| 1542 | arguments[3] = v4; |
| 1543 | |
| 1544 | /* |
| 1545 | * compute a hash value of the given keys for faster search. We don't |
| 1546 | * presently divide the CatCList items into buckets, but this still lets |
| 1547 | * us skip non-matching items quickly most of the time. |
| 1548 | */ |
| 1549 | lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4); |
| 1550 | |
| 1551 | /* |
| 1552 | * scan the items until we find a match or exhaust our list |
| 1553 | * |
| 1554 | * Note: it's okay to use dlist_foreach here, even though we modify the |
| 1555 | * dlist within the loop, because we don't continue the loop afterwards. |
| 1556 | */ |
| 1557 | dlist_foreach(iter, &cache->cc_lists) |
| 1558 | { |
| 1559 | cl = dlist_container(CatCList, cache_elem, iter.cur); |
| 1560 | |
| 1561 | if (cl->dead) |
| 1562 | continue; /* ignore dead entries */ |
| 1563 | |
| 1564 | if (cl->hash_value != lHashValue) |
| 1565 | continue; /* quickly skip entry if wrong hash val */ |
| 1566 | |
| 1567 | /* |
| 1568 | * see if the cached list matches our key. |
| 1569 | */ |
| 1570 | if (cl->nkeys != nkeys) |
| 1571 | continue; |
| 1572 | |
| 1573 | if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments)) |
| 1574 | continue; |
| 1575 | |
| 1576 | /* |
| 1577 | * We found a matching list. Move the list to the front of the |
| 1578 | * cache's list-of-lists, to speed subsequent searches. (We do not |
| 1579 | * move the members to the fronts of their hashbucket lists, however, |
| 1580 | * since there's no point in that unless they are searched for |
| 1581 | * individually.) |
| 1582 | */ |
| 1583 | dlist_move_head(&cache->cc_lists, &cl->cache_elem); |
| 1584 | |
| 1585 | /* Bump the list's refcount and return it */ |
| 1586 | ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner); |
| 1587 | cl->refcount++; |
| 1588 | ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl); |
| 1589 | |
| 1590 | CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list" , |
| 1591 | cache->cc_relname); |
| 1592 | |
| 1593 | #ifdef CATCACHE_STATS |
| 1594 | cache->cc_lhits++; |
| 1595 | #endif |
| 1596 | |
| 1597 | return cl; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * List was not found in cache, so we have to build it by reading the |
| 1602 | * relation. For each matching tuple found in the relation, use an |
| 1603 | * existing cache entry if possible, else build a new one. |
| 1604 | * |
| 1605 | * We have to bump the member refcounts temporarily to ensure they won't |
| 1606 | * get dropped from the cache while loading other members. We use a PG_TRY |
| 1607 | * block to ensure we can undo those refcounts if we get an error before |
| 1608 | * we finish constructing the CatCList. |
| 1609 | */ |
| 1610 | ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner); |
| 1611 | |
| 1612 | ctlist = NIL; |
| 1613 | |
| 1614 | PG_TRY(); |
| 1615 | { |
| 1616 | ScanKeyData cur_skey[CATCACHE_MAXKEYS]; |
| 1617 | Relation relation; |
| 1618 | SysScanDesc scandesc; |
| 1619 | |
| 1620 | /* |
| 1621 | * Ok, need to make a lookup in the relation, copy the scankey and |
| 1622 | * fill out any per-call fields. |
| 1623 | */ |
| 1624 | memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys); |
| 1625 | cur_skey[0].sk_argument = v1; |
| 1626 | cur_skey[1].sk_argument = v2; |
| 1627 | cur_skey[2].sk_argument = v3; |
| 1628 | cur_skey[3].sk_argument = v4; |
| 1629 | |
| 1630 | relation = table_open(cache->cc_reloid, AccessShareLock); |
| 1631 | |
| 1632 | scandesc = systable_beginscan(relation, |
| 1633 | cache->cc_indexoid, |
| 1634 | IndexScanOK(cache, cur_skey), |
| 1635 | NULL, |
| 1636 | nkeys, |
| 1637 | cur_skey); |
| 1638 | |
| 1639 | /* The list will be ordered iff we are doing an index scan */ |
| 1640 | ordered = (scandesc->irel != NULL); |
| 1641 | |
| 1642 | while (HeapTupleIsValid(ntp = systable_getnext(scandesc))) |
| 1643 | { |
| 1644 | uint32 hashValue; |
| 1645 | Index hashIndex; |
| 1646 | bool found = false; |
| 1647 | dlist_head *bucket; |
| 1648 | |
| 1649 | /* |
| 1650 | * See if there's an entry for this tuple already. |
| 1651 | */ |
| 1652 | ct = NULL; |
| 1653 | hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp); |
| 1654 | hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets); |
| 1655 | |
| 1656 | bucket = &cache->cc_bucket[hashIndex]; |
| 1657 | dlist_foreach(iter, bucket) |
| 1658 | { |
| 1659 | ct = dlist_container(CatCTup, cache_elem, iter.cur); |
| 1660 | |
| 1661 | if (ct->dead || ct->negative) |
| 1662 | continue; /* ignore dead and negative entries */ |
| 1663 | |
| 1664 | if (ct->hash_value != hashValue) |
| 1665 | continue; /* quickly skip entry if wrong hash val */ |
| 1666 | |
| 1667 | if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self))) |
| 1668 | continue; /* not same tuple */ |
| 1669 | |
| 1670 | /* |
| 1671 | * Found a match, but can't use it if it belongs to another |
| 1672 | * list already |
| 1673 | */ |
| 1674 | if (ct->c_list) |
| 1675 | continue; |
| 1676 | |
| 1677 | found = true; |
| 1678 | break; /* A-OK */ |
| 1679 | } |
| 1680 | |
| 1681 | if (!found) |
| 1682 | { |
| 1683 | /* We didn't find a usable entry, so make a new one */ |
| 1684 | ct = CatalogCacheCreateEntry(cache, ntp, arguments, |
| 1685 | hashValue, hashIndex, |
| 1686 | false); |
| 1687 | } |
| 1688 | |
| 1689 | /* Careful here: add entry to ctlist, then bump its refcount */ |
| 1690 | /* This way leaves state correct if lappend runs out of memory */ |
| 1691 | ctlist = lappend(ctlist, ct); |
| 1692 | ct->refcount++; |
| 1693 | } |
| 1694 | |
| 1695 | systable_endscan(scandesc); |
| 1696 | |
| 1697 | table_close(relation, AccessShareLock); |
| 1698 | |
| 1699 | /* Now we can build the CatCList entry. */ |
| 1700 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 1701 | nmembers = list_length(ctlist); |
| 1702 | cl = (CatCList *) |
| 1703 | palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *)); |
| 1704 | |
| 1705 | /* Extract key values */ |
| 1706 | CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno, |
| 1707 | arguments, cl->keys); |
| 1708 | MemoryContextSwitchTo(oldcxt); |
| 1709 | |
| 1710 | /* |
| 1711 | * We are now past the last thing that could trigger an elog before we |
| 1712 | * have finished building the CatCList and remembering it in the |
| 1713 | * resource owner. So it's OK to fall out of the PG_TRY, and indeed |
| 1714 | * we'd better do so before we start marking the members as belonging |
| 1715 | * to the list. |
| 1716 | */ |
| 1717 | |
| 1718 | } |
| 1719 | PG_CATCH(); |
| 1720 | { |
| 1721 | foreach(ctlist_item, ctlist) |
| 1722 | { |
| 1723 | ct = (CatCTup *) lfirst(ctlist_item); |
| 1724 | Assert(ct->c_list == NULL); |
| 1725 | Assert(ct->refcount > 0); |
| 1726 | ct->refcount--; |
| 1727 | if ( |
| 1728 | #ifndef CATCACHE_FORCE_RELEASE |
| 1729 | ct->dead && |
| 1730 | #endif |
| 1731 | ct->refcount == 0 && |
| 1732 | (ct->c_list == NULL || ct->c_list->refcount == 0)) |
| 1733 | CatCacheRemoveCTup(cache, ct); |
| 1734 | } |
| 1735 | |
| 1736 | PG_RE_THROW(); |
| 1737 | } |
| 1738 | PG_END_TRY(); |
| 1739 | |
| 1740 | cl->cl_magic = CL_MAGIC; |
| 1741 | cl->my_cache = cache; |
| 1742 | cl->refcount = 0; /* for the moment */ |
| 1743 | cl->dead = false; |
| 1744 | cl->ordered = ordered; |
| 1745 | cl->nkeys = nkeys; |
| 1746 | cl->hash_value = lHashValue; |
| 1747 | cl->n_members = nmembers; |
| 1748 | |
| 1749 | i = 0; |
| 1750 | foreach(ctlist_item, ctlist) |
| 1751 | { |
| 1752 | cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item); |
| 1753 | Assert(ct->c_list == NULL); |
| 1754 | ct->c_list = cl; |
| 1755 | /* release the temporary refcount on the member */ |
| 1756 | Assert(ct->refcount > 0); |
| 1757 | ct->refcount--; |
| 1758 | /* mark list dead if any members already dead */ |
| 1759 | if (ct->dead) |
| 1760 | cl->dead = true; |
| 1761 | } |
| 1762 | Assert(i == nmembers); |
| 1763 | |
| 1764 | dlist_push_head(&cache->cc_lists, &cl->cache_elem); |
| 1765 | |
| 1766 | /* Finally, bump the list's refcount and return it */ |
| 1767 | cl->refcount++; |
| 1768 | ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl); |
| 1769 | |
| 1770 | CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members" , |
| 1771 | cache->cc_relname, nmembers); |
| 1772 | |
| 1773 | return cl; |
| 1774 | } |
| 1775 | |
| 1776 | /* |
| 1777 | * ReleaseCatCacheList |
| 1778 | * |
| 1779 | * Decrement the reference count of a catcache list. |
| 1780 | */ |
| 1781 | void |
| 1782 | ReleaseCatCacheList(CatCList *list) |
| 1783 | { |
| 1784 | /* Safety checks to ensure we were handed a cache entry */ |
| 1785 | Assert(list->cl_magic == CL_MAGIC); |
| 1786 | Assert(list->refcount > 0); |
| 1787 | list->refcount--; |
| 1788 | ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list); |
| 1789 | |
| 1790 | if ( |
| 1791 | #ifndef CATCACHE_FORCE_RELEASE |
| 1792 | list->dead && |
| 1793 | #endif |
| 1794 | list->refcount == 0) |
| 1795 | CatCacheRemoveCList(list->my_cache, list); |
| 1796 | } |
| 1797 | |
| 1798 | |
| 1799 | /* |
| 1800 | * CatalogCacheCreateEntry |
| 1801 | * Create a new CatCTup entry, copying the given HeapTuple and other |
| 1802 | * supplied data into it. The new entry initially has refcount 0. |
| 1803 | */ |
| 1804 | static CatCTup * |
| 1805 | CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, Datum *arguments, |
| 1806 | uint32 hashValue, Index hashIndex, |
| 1807 | bool negative) |
| 1808 | { |
| 1809 | CatCTup *ct; |
| 1810 | HeapTuple dtp; |
| 1811 | MemoryContext oldcxt; |
| 1812 | |
| 1813 | /* negative entries have no tuple associated */ |
| 1814 | if (ntp) |
| 1815 | { |
| 1816 | int i; |
| 1817 | |
| 1818 | Assert(!negative); |
| 1819 | |
| 1820 | /* |
| 1821 | * If there are any out-of-line toasted fields in the tuple, expand |
| 1822 | * them in-line. This saves cycles during later use of the catcache |
| 1823 | * entry, and also protects us against the possibility of the toast |
| 1824 | * tuples being freed before we attempt to fetch them, in case of |
| 1825 | * something using a slightly stale catcache entry. |
| 1826 | */ |
| 1827 | if (HeapTupleHasExternal(ntp)) |
| 1828 | dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc); |
| 1829 | else |
| 1830 | dtp = ntp; |
| 1831 | |
| 1832 | /* Allocate memory for CatCTup and the cached tuple in one go */ |
| 1833 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 1834 | |
| 1835 | ct = (CatCTup *) palloc(sizeof(CatCTup) + |
| 1836 | MAXIMUM_ALIGNOF + dtp->t_len); |
| 1837 | ct->tuple.t_len = dtp->t_len; |
| 1838 | ct->tuple.t_self = dtp->t_self; |
| 1839 | ct->tuple.t_tableOid = dtp->t_tableOid; |
| 1840 | ct->tuple.t_data = (HeapTupleHeader) |
| 1841 | MAXALIGN(((char *) ct) + sizeof(CatCTup)); |
| 1842 | /* copy tuple contents */ |
| 1843 | memcpy((char *) ct->tuple.t_data, |
| 1844 | (const char *) dtp->t_data, |
| 1845 | dtp->t_len); |
| 1846 | MemoryContextSwitchTo(oldcxt); |
| 1847 | |
| 1848 | if (dtp != ntp) |
| 1849 | heap_freetuple(dtp); |
| 1850 | |
| 1851 | /* extract keys - they'll point into the tuple if not by-value */ |
| 1852 | for (i = 0; i < cache->cc_nkeys; i++) |
| 1853 | { |
| 1854 | Datum atp; |
| 1855 | bool isnull; |
| 1856 | |
| 1857 | atp = heap_getattr(&ct->tuple, |
| 1858 | cache->cc_keyno[i], |
| 1859 | cache->cc_tupdesc, |
| 1860 | &isnull); |
| 1861 | Assert(!isnull); |
| 1862 | ct->keys[i] = atp; |
| 1863 | } |
| 1864 | } |
| 1865 | else |
| 1866 | { |
| 1867 | Assert(negative); |
| 1868 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 1869 | ct = (CatCTup *) palloc(sizeof(CatCTup)); |
| 1870 | |
| 1871 | /* |
| 1872 | * Store keys - they'll point into separately allocated memory if not |
| 1873 | * by-value. |
| 1874 | */ |
| 1875 | CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno, |
| 1876 | arguments, ct->keys); |
| 1877 | MemoryContextSwitchTo(oldcxt); |
| 1878 | } |
| 1879 | |
| 1880 | /* |
| 1881 | * Finish initializing the CatCTup header, and add it to the cache's |
| 1882 | * linked list and counts. |
| 1883 | */ |
| 1884 | ct->ct_magic = CT_MAGIC; |
| 1885 | ct->my_cache = cache; |
| 1886 | ct->c_list = NULL; |
| 1887 | ct->refcount = 0; /* for the moment */ |
| 1888 | ct->dead = false; |
| 1889 | ct->negative = negative; |
| 1890 | ct->hash_value = hashValue; |
| 1891 | |
| 1892 | dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem); |
| 1893 | |
| 1894 | cache->cc_ntup++; |
| 1895 | CacheHdr->ch_ntup++; |
| 1896 | |
| 1897 | /* |
| 1898 | * If the hash table has become too full, enlarge the buckets array. Quite |
| 1899 | * arbitrarily, we enlarge when fill factor > 2. |
| 1900 | */ |
| 1901 | if (cache->cc_ntup > cache->cc_nbuckets * 2) |
| 1902 | RehashCatCache(cache); |
| 1903 | |
| 1904 | return ct; |
| 1905 | } |
| 1906 | |
| 1907 | /* |
| 1908 | * Helper routine that frees keys stored in the keys array. |
| 1909 | */ |
| 1910 | static void |
| 1911 | CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys) |
| 1912 | { |
| 1913 | int i; |
| 1914 | |
| 1915 | for (i = 0; i < nkeys; i++) |
| 1916 | { |
| 1917 | int attnum = attnos[i]; |
| 1918 | Form_pg_attribute att; |
| 1919 | |
| 1920 | /* system attribute are not supported in caches */ |
| 1921 | Assert(attnum > 0); |
| 1922 | |
| 1923 | att = TupleDescAttr(tupdesc, attnum - 1); |
| 1924 | |
| 1925 | if (!att->attbyval) |
| 1926 | pfree(DatumGetPointer(keys[i])); |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | /* |
| 1931 | * Helper routine that copies the keys in the srckeys array into the dstkeys |
| 1932 | * one, guaranteeing that the datums are fully allocated in the current memory |
| 1933 | * context. |
| 1934 | */ |
| 1935 | static void |
| 1936 | CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos, |
| 1937 | Datum *srckeys, Datum *dstkeys) |
| 1938 | { |
| 1939 | int i; |
| 1940 | |
| 1941 | /* |
| 1942 | * XXX: memory and lookup performance could possibly be improved by |
| 1943 | * storing all keys in one allocation. |
| 1944 | */ |
| 1945 | |
| 1946 | for (i = 0; i < nkeys; i++) |
| 1947 | { |
| 1948 | int attnum = attnos[i]; |
| 1949 | Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1); |
| 1950 | Datum src = srckeys[i]; |
| 1951 | NameData srcname; |
| 1952 | |
| 1953 | /* |
| 1954 | * Must be careful in case the caller passed a C string where a NAME |
| 1955 | * is wanted: convert the given argument to a correctly padded NAME. |
| 1956 | * Otherwise the memcpy() done by datumCopy() could fall off the end |
| 1957 | * of memory. |
| 1958 | */ |
| 1959 | if (att->atttypid == NAMEOID) |
| 1960 | { |
| 1961 | namestrcpy(&srcname, DatumGetCString(src)); |
| 1962 | src = NameGetDatum(&srcname); |
| 1963 | } |
| 1964 | |
| 1965 | dstkeys[i] = datumCopy(src, |
| 1966 | att->attbyval, |
| 1967 | att->attlen); |
| 1968 | } |
| 1969 | |
| 1970 | } |
| 1971 | |
| 1972 | /* |
| 1973 | * PrepareToInvalidateCacheTuple() |
| 1974 | * |
| 1975 | * This is part of a rather subtle chain of events, so pay attention: |
| 1976 | * |
| 1977 | * When a tuple is inserted or deleted, it cannot be flushed from the |
| 1978 | * catcaches immediately, for reasons explained at the top of cache/inval.c. |
| 1979 | * Instead we have to add entry(s) for the tuple to a list of pending tuple |
| 1980 | * invalidations that will be done at the end of the command or transaction. |
| 1981 | * |
| 1982 | * The lists of tuples that need to be flushed are kept by inval.c. This |
| 1983 | * routine is a helper routine for inval.c. Given a tuple belonging to |
| 1984 | * the specified relation, find all catcaches it could be in, compute the |
| 1985 | * correct hash value for each such catcache, and call the specified |
| 1986 | * function to record the cache id and hash value in inval.c's lists. |
| 1987 | * SysCacheInvalidate will be called later, if appropriate, |
| 1988 | * using the recorded information. |
| 1989 | * |
| 1990 | * For an insert or delete, tuple is the target tuple and newtuple is NULL. |
| 1991 | * For an update, we are called just once, with tuple being the old tuple |
| 1992 | * version and newtuple the new version. We should make two list entries |
| 1993 | * if the tuple's hash value changed, but only one if it didn't. |
| 1994 | * |
| 1995 | * Note that it is irrelevant whether the given tuple is actually loaded |
| 1996 | * into the catcache at the moment. Even if it's not there now, it might |
| 1997 | * be by the end of the command, or there might be a matching negative entry |
| 1998 | * to flush --- or other backends' caches might have such entries --- so |
| 1999 | * we have to make list entries to flush it later. |
| 2000 | * |
| 2001 | * Also note that it's not an error if there are no catcaches for the |
| 2002 | * specified relation. inval.c doesn't know exactly which rels have |
| 2003 | * catcaches --- it will call this routine for any tuple that's in a |
| 2004 | * system relation. |
| 2005 | */ |
| 2006 | void |
| 2007 | PrepareToInvalidateCacheTuple(Relation relation, |
| 2008 | HeapTuple tuple, |
| 2009 | HeapTuple newtuple, |
| 2010 | void (*function) (int, uint32, Oid)) |
| 2011 | { |
| 2012 | slist_iter iter; |
| 2013 | Oid reloid; |
| 2014 | |
| 2015 | CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called" ); |
| 2016 | |
| 2017 | /* |
| 2018 | * sanity checks |
| 2019 | */ |
| 2020 | Assert(RelationIsValid(relation)); |
| 2021 | Assert(HeapTupleIsValid(tuple)); |
| 2022 | Assert(PointerIsValid(function)); |
| 2023 | Assert(CacheHdr != NULL); |
| 2024 | |
| 2025 | reloid = RelationGetRelid(relation); |
| 2026 | |
| 2027 | /* ---------------- |
| 2028 | * for each cache |
| 2029 | * if the cache contains tuples from the specified relation |
| 2030 | * compute the tuple's hash value(s) in this cache, |
| 2031 | * and call the passed function to register the information. |
| 2032 | * ---------------- |
| 2033 | */ |
| 2034 | |
| 2035 | slist_foreach(iter, &CacheHdr->ch_caches) |
| 2036 | { |
| 2037 | CatCache *ccp = slist_container(CatCache, cc_next, iter.cur); |
| 2038 | uint32 hashvalue; |
| 2039 | Oid dbid; |
| 2040 | |
| 2041 | if (ccp->cc_reloid != reloid) |
| 2042 | continue; |
| 2043 | |
| 2044 | /* Just in case cache hasn't finished initialization yet... */ |
| 2045 | if (ccp->cc_tupdesc == NULL) |
| 2046 | CatalogCacheInitializeCache(ccp); |
| 2047 | |
| 2048 | hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple); |
| 2049 | dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId; |
| 2050 | |
| 2051 | (*function) (ccp->id, hashvalue, dbid); |
| 2052 | |
| 2053 | if (newtuple) |
| 2054 | { |
| 2055 | uint32 newhashvalue; |
| 2056 | |
| 2057 | newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple); |
| 2058 | |
| 2059 | if (newhashvalue != hashvalue) |
| 2060 | (*function) (ccp->id, newhashvalue, dbid); |
| 2061 | } |
| 2062 | } |
| 2063 | } |
| 2064 | |
| 2065 | |
| 2066 | /* |
| 2067 | * Subroutines for warning about reference leaks. These are exported so |
| 2068 | * that resowner.c can call them. |
| 2069 | */ |
| 2070 | void |
| 2071 | PrintCatCacheLeakWarning(HeapTuple tuple) |
| 2072 | { |
| 2073 | CatCTup *ct = (CatCTup *) (((char *) tuple) - |
| 2074 | offsetof(CatCTup, tuple)); |
| 2075 | |
| 2076 | /* Safety check to ensure we were handed a cache entry */ |
| 2077 | Assert(ct->ct_magic == CT_MAGIC); |
| 2078 | |
| 2079 | elog(WARNING, "cache reference leak: cache %s (%d), tuple %u/%u has count %d" , |
| 2080 | ct->my_cache->cc_relname, ct->my_cache->id, |
| 2081 | ItemPointerGetBlockNumber(&(tuple->t_self)), |
| 2082 | ItemPointerGetOffsetNumber(&(tuple->t_self)), |
| 2083 | ct->refcount); |
| 2084 | } |
| 2085 | |
| 2086 | void |
| 2087 | PrintCatCacheListLeakWarning(CatCList *list) |
| 2088 | { |
| 2089 | elog(WARNING, "cache reference leak: cache %s (%d), list %p has count %d" , |
| 2090 | list->my_cache->cc_relname, list->my_cache->id, |
| 2091 | list, list->refcount); |
| 2092 | } |
| 2093 | |