| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * timeout.c |
| 4 | * Routines to multiplex SIGALRM interrupts for multiple timeout reasons. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/misc/timeout.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <sys/time.h> |
| 18 | |
| 19 | #include "miscadmin.h" |
| 20 | #include "storage/proc.h" |
| 21 | #include "utils/timeout.h" |
| 22 | #include "utils/timestamp.h" |
| 23 | |
| 24 | |
| 25 | /* Data about any one timeout reason */ |
| 26 | typedef struct timeout_params |
| 27 | { |
| 28 | TimeoutId index; /* identifier of timeout reason */ |
| 29 | |
| 30 | /* volatile because it may be changed from the signal handler */ |
| 31 | volatile bool indicator; /* true if timeout has occurred */ |
| 32 | |
| 33 | /* callback function for timeout, or NULL if timeout not registered */ |
| 34 | timeout_handler_proc timeout_handler; |
| 35 | |
| 36 | TimestampTz start_time; /* time that timeout was last activated */ |
| 37 | TimestampTz fin_time; /* time it is, or was last, due to fire */ |
| 38 | } timeout_params; |
| 39 | |
| 40 | /* |
| 41 | * List of possible timeout reasons in the order of enum TimeoutId. |
| 42 | */ |
| 43 | static timeout_params all_timeouts[MAX_TIMEOUTS]; |
| 44 | static bool all_timeouts_initialized = false; |
| 45 | |
| 46 | /* |
| 47 | * List of active timeouts ordered by their fin_time and priority. |
| 48 | * This list is subject to change by the interrupt handler, so it's volatile. |
| 49 | */ |
| 50 | static volatile int num_active_timeouts = 0; |
| 51 | static timeout_params *volatile active_timeouts[MAX_TIMEOUTS]; |
| 52 | |
| 53 | /* |
| 54 | * Flag controlling whether the signal handler is allowed to do anything. |
| 55 | * We leave this "false" when we're not expecting interrupts, just in case. |
| 56 | * |
| 57 | * Note that we don't bother to reset any pending timer interrupt when we |
| 58 | * disable the signal handler; it's not really worth the cycles to do so, |
| 59 | * since the probability of the interrupt actually occurring while we have |
| 60 | * it disabled is low. See comments in schedule_alarm() about that. |
| 61 | */ |
| 62 | static volatile sig_atomic_t alarm_enabled = false; |
| 63 | |
| 64 | #define disable_alarm() (alarm_enabled = false) |
| 65 | #define enable_alarm() (alarm_enabled = true) |
| 66 | |
| 67 | |
| 68 | /***************************************************************************** |
| 69 | * Internal helper functions |
| 70 | * |
| 71 | * For all of these, it is caller's responsibility to protect them from |
| 72 | * interruption by the signal handler. Generally, call disable_alarm() |
| 73 | * first to prevent interruption, then update state, and last call |
| 74 | * schedule_alarm(), which will re-enable the signal handler if needed. |
| 75 | *****************************************************************************/ |
| 76 | |
| 77 | /* |
| 78 | * Find the index of a given timeout reason in the active array. |
| 79 | * If it's not there, return -1. |
| 80 | */ |
| 81 | static int |
| 82 | find_active_timeout(TimeoutId id) |
| 83 | { |
| 84 | int i; |
| 85 | |
| 86 | for (i = 0; i < num_active_timeouts; i++) |
| 87 | { |
| 88 | if (active_timeouts[i]->index == id) |
| 89 | return i; |
| 90 | } |
| 91 | |
| 92 | return -1; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * Insert specified timeout reason into the list of active timeouts |
| 97 | * at the given index. |
| 98 | */ |
| 99 | static void |
| 100 | insert_timeout(TimeoutId id, int index) |
| 101 | { |
| 102 | int i; |
| 103 | |
| 104 | if (index < 0 || index > num_active_timeouts) |
| 105 | elog(FATAL, "timeout index %d out of range 0..%d" , index, |
| 106 | num_active_timeouts); |
| 107 | |
| 108 | for (i = num_active_timeouts - 1; i >= index; i--) |
| 109 | active_timeouts[i + 1] = active_timeouts[i]; |
| 110 | |
| 111 | active_timeouts[index] = &all_timeouts[id]; |
| 112 | |
| 113 | num_active_timeouts++; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Remove the index'th element from the timeout list. |
| 118 | */ |
| 119 | static void |
| 120 | remove_timeout_index(int index) |
| 121 | { |
| 122 | int i; |
| 123 | |
| 124 | if (index < 0 || index >= num_active_timeouts) |
| 125 | elog(FATAL, "timeout index %d out of range 0..%d" , index, |
| 126 | num_active_timeouts - 1); |
| 127 | |
| 128 | for (i = index + 1; i < num_active_timeouts; i++) |
| 129 | active_timeouts[i - 1] = active_timeouts[i]; |
| 130 | |
| 131 | num_active_timeouts--; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * Enable the specified timeout reason |
| 136 | */ |
| 137 | static void |
| 138 | enable_timeout(TimeoutId id, TimestampTz now, TimestampTz fin_time) |
| 139 | { |
| 140 | int i; |
| 141 | |
| 142 | /* Assert request is sane */ |
| 143 | Assert(all_timeouts_initialized); |
| 144 | Assert(all_timeouts[id].timeout_handler != NULL); |
| 145 | |
| 146 | /* |
| 147 | * If this timeout was already active, momentarily disable it. We |
| 148 | * interpret the call as a directive to reschedule the timeout. |
| 149 | */ |
| 150 | i = find_active_timeout(id); |
| 151 | if (i >= 0) |
| 152 | remove_timeout_index(i); |
| 153 | |
| 154 | /* |
| 155 | * Find out the index where to insert the new timeout. We sort by |
| 156 | * fin_time, and for equal fin_time by priority. |
| 157 | */ |
| 158 | for (i = 0; i < num_active_timeouts; i++) |
| 159 | { |
| 160 | timeout_params *old_timeout = active_timeouts[i]; |
| 161 | |
| 162 | if (fin_time < old_timeout->fin_time) |
| 163 | break; |
| 164 | if (fin_time == old_timeout->fin_time && id < old_timeout->index) |
| 165 | break; |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * Mark the timeout active, and insert it into the active list. |
| 170 | */ |
| 171 | all_timeouts[id].indicator = false; |
| 172 | all_timeouts[id].start_time = now; |
| 173 | all_timeouts[id].fin_time = fin_time; |
| 174 | |
| 175 | insert_timeout(id, i); |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Schedule alarm for the next active timeout, if any |
| 180 | * |
| 181 | * We assume the caller has obtained the current time, or a close-enough |
| 182 | * approximation. |
| 183 | */ |
| 184 | static void |
| 185 | schedule_alarm(TimestampTz now) |
| 186 | { |
| 187 | if (num_active_timeouts > 0) |
| 188 | { |
| 189 | struct itimerval timeval; |
| 190 | long secs; |
| 191 | int usecs; |
| 192 | |
| 193 | MemSet(&timeval, 0, sizeof(struct itimerval)); |
| 194 | |
| 195 | /* Get the time remaining till the nearest pending timeout */ |
| 196 | TimestampDifference(now, active_timeouts[0]->fin_time, |
| 197 | &secs, &usecs); |
| 198 | |
| 199 | /* |
| 200 | * It's possible that the difference is less than a microsecond; |
| 201 | * ensure we don't cancel, rather than set, the interrupt. |
| 202 | */ |
| 203 | if (secs == 0 && usecs == 0) |
| 204 | usecs = 1; |
| 205 | |
| 206 | timeval.it_value.tv_sec = secs; |
| 207 | timeval.it_value.tv_usec = usecs; |
| 208 | |
| 209 | /* |
| 210 | * We must enable the signal handler before calling setitimer(); if we |
| 211 | * did it in the other order, we'd have a race condition wherein the |
| 212 | * interrupt could occur before we can set alarm_enabled, so that the |
| 213 | * signal handler would fail to do anything. |
| 214 | * |
| 215 | * Because we didn't bother to reset the timer in disable_alarm(), |
| 216 | * it's possible that a previously-set interrupt will fire between |
| 217 | * enable_alarm() and setitimer(). This is safe, however. There are |
| 218 | * two possible outcomes: |
| 219 | * |
| 220 | * 1. The signal handler finds nothing to do (because the nearest |
| 221 | * timeout event is still in the future). It will re-set the timer |
| 222 | * and return. Then we'll overwrite the timer value with a new one. |
| 223 | * This will mean that the timer fires a little later than we |
| 224 | * intended, but only by the amount of time it takes for the signal |
| 225 | * handler to do nothing useful, which shouldn't be much. |
| 226 | * |
| 227 | * 2. The signal handler executes and removes one or more timeout |
| 228 | * events. When it returns, either the queue is now empty or the |
| 229 | * frontmost event is later than the one we looked at above. So we'll |
| 230 | * overwrite the timer value with one that is too soon (plus or minus |
| 231 | * the signal handler's execution time), causing a useless interrupt |
| 232 | * to occur. But the handler will then re-set the timer and |
| 233 | * everything will still work as expected. |
| 234 | * |
| 235 | * Since these cases are of very low probability (the window here |
| 236 | * being quite narrow), it's not worth adding cycles to the mainline |
| 237 | * code to prevent occasional wasted interrupts. |
| 238 | */ |
| 239 | enable_alarm(); |
| 240 | |
| 241 | /* Set the alarm timer */ |
| 242 | if (setitimer(ITIMER_REAL, &timeval, NULL) != 0) |
| 243 | elog(FATAL, "could not enable SIGALRM timer: %m" ); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | |
| 248 | /***************************************************************************** |
| 249 | * Signal handler |
| 250 | *****************************************************************************/ |
| 251 | |
| 252 | /* |
| 253 | * Signal handler for SIGALRM |
| 254 | * |
| 255 | * Process any active timeout reasons and then reschedule the interrupt |
| 256 | * as needed. |
| 257 | */ |
| 258 | static void |
| 259 | handle_sig_alarm(SIGNAL_ARGS) |
| 260 | { |
| 261 | int save_errno = errno; |
| 262 | |
| 263 | /* |
| 264 | * Bump the holdoff counter, to make sure nothing we call will process |
| 265 | * interrupts directly. No timeout handler should do that, but these |
| 266 | * failures are hard to debug, so better be sure. |
| 267 | */ |
| 268 | HOLD_INTERRUPTS(); |
| 269 | |
| 270 | /* |
| 271 | * SIGALRM is always cause for waking anything waiting on the process |
| 272 | * latch. |
| 273 | */ |
| 274 | SetLatch(MyLatch); |
| 275 | |
| 276 | /* |
| 277 | * Fire any pending timeouts, but only if we're enabled to do so. |
| 278 | */ |
| 279 | if (alarm_enabled) |
| 280 | { |
| 281 | /* |
| 282 | * Disable alarms, just in case this platform allows signal handlers |
| 283 | * to interrupt themselves. schedule_alarm() will re-enable if |
| 284 | * appropriate. |
| 285 | */ |
| 286 | disable_alarm(); |
| 287 | |
| 288 | if (num_active_timeouts > 0) |
| 289 | { |
| 290 | TimestampTz now = GetCurrentTimestamp(); |
| 291 | |
| 292 | /* While the first pending timeout has been reached ... */ |
| 293 | while (num_active_timeouts > 0 && |
| 294 | now >= active_timeouts[0]->fin_time) |
| 295 | { |
| 296 | timeout_params *this_timeout = active_timeouts[0]; |
| 297 | |
| 298 | /* Remove it from the active list */ |
| 299 | remove_timeout_index(0); |
| 300 | |
| 301 | /* Mark it as fired */ |
| 302 | this_timeout->indicator = true; |
| 303 | |
| 304 | /* And call its handler function */ |
| 305 | this_timeout->timeout_handler(); |
| 306 | |
| 307 | /* |
| 308 | * The handler might not take negligible time (CheckDeadLock |
| 309 | * for instance isn't too cheap), so let's update our idea of |
| 310 | * "now" after each one. |
| 311 | */ |
| 312 | now = GetCurrentTimestamp(); |
| 313 | } |
| 314 | |
| 315 | /* Done firing timeouts, so reschedule next interrupt if any */ |
| 316 | schedule_alarm(now); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | RESUME_INTERRUPTS(); |
| 321 | |
| 322 | errno = save_errno; |
| 323 | } |
| 324 | |
| 325 | |
| 326 | /***************************************************************************** |
| 327 | * Public API |
| 328 | *****************************************************************************/ |
| 329 | |
| 330 | /* |
| 331 | * Initialize timeout module. |
| 332 | * |
| 333 | * This must be called in every process that wants to use timeouts. |
| 334 | * |
| 335 | * If the process was forked from another one that was also using this |
| 336 | * module, be sure to call this before re-enabling signals; else handlers |
| 337 | * meant to run in the parent process might get invoked in this one. |
| 338 | */ |
| 339 | void |
| 340 | InitializeTimeouts(void) |
| 341 | { |
| 342 | int i; |
| 343 | |
| 344 | /* Initialize, or re-initialize, all local state */ |
| 345 | disable_alarm(); |
| 346 | |
| 347 | num_active_timeouts = 0; |
| 348 | |
| 349 | for (i = 0; i < MAX_TIMEOUTS; i++) |
| 350 | { |
| 351 | all_timeouts[i].index = i; |
| 352 | all_timeouts[i].indicator = false; |
| 353 | all_timeouts[i].timeout_handler = NULL; |
| 354 | all_timeouts[i].start_time = 0; |
| 355 | all_timeouts[i].fin_time = 0; |
| 356 | } |
| 357 | |
| 358 | all_timeouts_initialized = true; |
| 359 | |
| 360 | /* Now establish the signal handler */ |
| 361 | pqsignal(SIGALRM, handle_sig_alarm); |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Register a timeout reason |
| 366 | * |
| 367 | * For predefined timeouts, this just registers the callback function. |
| 368 | * |
| 369 | * For user-defined timeouts, pass id == USER_TIMEOUT; we then allocate and |
| 370 | * return a timeout ID. |
| 371 | */ |
| 372 | TimeoutId |
| 373 | RegisterTimeout(TimeoutId id, timeout_handler_proc handler) |
| 374 | { |
| 375 | Assert(all_timeouts_initialized); |
| 376 | |
| 377 | /* There's no need to disable the signal handler here. */ |
| 378 | |
| 379 | if (id >= USER_TIMEOUT) |
| 380 | { |
| 381 | /* Allocate a user-defined timeout reason */ |
| 382 | for (id = USER_TIMEOUT; id < MAX_TIMEOUTS; id++) |
| 383 | if (all_timeouts[id].timeout_handler == NULL) |
| 384 | break; |
| 385 | if (id >= MAX_TIMEOUTS) |
| 386 | ereport(FATAL, |
| 387 | (errcode(ERRCODE_CONFIGURATION_LIMIT_EXCEEDED), |
| 388 | errmsg("cannot add more timeout reasons" ))); |
| 389 | } |
| 390 | |
| 391 | Assert(all_timeouts[id].timeout_handler == NULL); |
| 392 | |
| 393 | all_timeouts[id].timeout_handler = handler; |
| 394 | |
| 395 | return id; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Reschedule any pending SIGALRM interrupt. |
| 400 | * |
| 401 | * This can be used during error recovery in case query cancel resulted in loss |
| 402 | * of a SIGALRM event (due to longjmp'ing out of handle_sig_alarm before it |
| 403 | * could do anything). But note it's not necessary if any of the public |
| 404 | * enable_ or disable_timeout functions are called in the same area, since |
| 405 | * those all do schedule_alarm() internally if needed. |
| 406 | */ |
| 407 | void |
| 408 | reschedule_timeouts(void) |
| 409 | { |
| 410 | /* For flexibility, allow this to be called before we're initialized. */ |
| 411 | if (!all_timeouts_initialized) |
| 412 | return; |
| 413 | |
| 414 | /* Disable timeout interrupts for safety. */ |
| 415 | disable_alarm(); |
| 416 | |
| 417 | /* Reschedule the interrupt, if any timeouts remain active. */ |
| 418 | if (num_active_timeouts > 0) |
| 419 | schedule_alarm(GetCurrentTimestamp()); |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * Enable the specified timeout to fire after the specified delay. |
| 424 | * |
| 425 | * Delay is given in milliseconds. |
| 426 | */ |
| 427 | void |
| 428 | enable_timeout_after(TimeoutId id, int delay_ms) |
| 429 | { |
| 430 | TimestampTz now; |
| 431 | TimestampTz fin_time; |
| 432 | |
| 433 | /* Disable timeout interrupts for safety. */ |
| 434 | disable_alarm(); |
| 435 | |
| 436 | /* Queue the timeout at the appropriate time. */ |
| 437 | now = GetCurrentTimestamp(); |
| 438 | fin_time = TimestampTzPlusMilliseconds(now, delay_ms); |
| 439 | enable_timeout(id, now, fin_time); |
| 440 | |
| 441 | /* Set the timer interrupt. */ |
| 442 | schedule_alarm(now); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Enable the specified timeout to fire at the specified time. |
| 447 | * |
| 448 | * This is provided to support cases where there's a reason to calculate |
| 449 | * the timeout by reference to some point other than "now". If there isn't, |
| 450 | * use enable_timeout_after(), to avoid calling GetCurrentTimestamp() twice. |
| 451 | */ |
| 452 | void |
| 453 | enable_timeout_at(TimeoutId id, TimestampTz fin_time) |
| 454 | { |
| 455 | TimestampTz now; |
| 456 | |
| 457 | /* Disable timeout interrupts for safety. */ |
| 458 | disable_alarm(); |
| 459 | |
| 460 | /* Queue the timeout at the appropriate time. */ |
| 461 | now = GetCurrentTimestamp(); |
| 462 | enable_timeout(id, now, fin_time); |
| 463 | |
| 464 | /* Set the timer interrupt. */ |
| 465 | schedule_alarm(now); |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Enable multiple timeouts at once. |
| 470 | * |
| 471 | * This works like calling enable_timeout_after() and/or enable_timeout_at() |
| 472 | * multiple times. Use this to reduce the number of GetCurrentTimestamp() |
| 473 | * and setitimer() calls needed to establish multiple timeouts. |
| 474 | */ |
| 475 | void |
| 476 | enable_timeouts(const EnableTimeoutParams *timeouts, int count) |
| 477 | { |
| 478 | TimestampTz now; |
| 479 | int i; |
| 480 | |
| 481 | /* Disable timeout interrupts for safety. */ |
| 482 | disable_alarm(); |
| 483 | |
| 484 | /* Queue the timeout(s) at the appropriate times. */ |
| 485 | now = GetCurrentTimestamp(); |
| 486 | |
| 487 | for (i = 0; i < count; i++) |
| 488 | { |
| 489 | TimeoutId id = timeouts[i].id; |
| 490 | TimestampTz fin_time; |
| 491 | |
| 492 | switch (timeouts[i].type) |
| 493 | { |
| 494 | case TMPARAM_AFTER: |
| 495 | fin_time = TimestampTzPlusMilliseconds(now, |
| 496 | timeouts[i].delay_ms); |
| 497 | enable_timeout(id, now, fin_time); |
| 498 | break; |
| 499 | |
| 500 | case TMPARAM_AT: |
| 501 | enable_timeout(id, now, timeouts[i].fin_time); |
| 502 | break; |
| 503 | |
| 504 | default: |
| 505 | elog(ERROR, "unrecognized timeout type %d" , |
| 506 | (int) timeouts[i].type); |
| 507 | break; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /* Set the timer interrupt. */ |
| 512 | schedule_alarm(now); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Cancel the specified timeout. |
| 517 | * |
| 518 | * The timeout's I've-been-fired indicator is reset, |
| 519 | * unless keep_indicator is true. |
| 520 | * |
| 521 | * When a timeout is canceled, any other active timeout remains in force. |
| 522 | * It's not an error to disable a timeout that is not enabled. |
| 523 | */ |
| 524 | void |
| 525 | disable_timeout(TimeoutId id, bool keep_indicator) |
| 526 | { |
| 527 | int i; |
| 528 | |
| 529 | /* Assert request is sane */ |
| 530 | Assert(all_timeouts_initialized); |
| 531 | Assert(all_timeouts[id].timeout_handler != NULL); |
| 532 | |
| 533 | /* Disable timeout interrupts for safety. */ |
| 534 | disable_alarm(); |
| 535 | |
| 536 | /* Find the timeout and remove it from the active list. */ |
| 537 | i = find_active_timeout(id); |
| 538 | if (i >= 0) |
| 539 | remove_timeout_index(i); |
| 540 | |
| 541 | /* Mark it inactive, whether it was active or not. */ |
| 542 | if (!keep_indicator) |
| 543 | all_timeouts[id].indicator = false; |
| 544 | |
| 545 | /* Reschedule the interrupt, if any timeouts remain active. */ |
| 546 | if (num_active_timeouts > 0) |
| 547 | schedule_alarm(GetCurrentTimestamp()); |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Cancel multiple timeouts at once. |
| 552 | * |
| 553 | * The timeouts' I've-been-fired indicators are reset, |
| 554 | * unless timeouts[i].keep_indicator is true. |
| 555 | * |
| 556 | * This works like calling disable_timeout() multiple times. |
| 557 | * Use this to reduce the number of GetCurrentTimestamp() |
| 558 | * and setitimer() calls needed to cancel multiple timeouts. |
| 559 | */ |
| 560 | void |
| 561 | disable_timeouts(const DisableTimeoutParams *timeouts, int count) |
| 562 | { |
| 563 | int i; |
| 564 | |
| 565 | Assert(all_timeouts_initialized); |
| 566 | |
| 567 | /* Disable timeout interrupts for safety. */ |
| 568 | disable_alarm(); |
| 569 | |
| 570 | /* Cancel the timeout(s). */ |
| 571 | for (i = 0; i < count; i++) |
| 572 | { |
| 573 | TimeoutId id = timeouts[i].id; |
| 574 | int idx; |
| 575 | |
| 576 | Assert(all_timeouts[id].timeout_handler != NULL); |
| 577 | |
| 578 | idx = find_active_timeout(id); |
| 579 | if (idx >= 0) |
| 580 | remove_timeout_index(idx); |
| 581 | |
| 582 | if (!timeouts[i].keep_indicator) |
| 583 | all_timeouts[id].indicator = false; |
| 584 | } |
| 585 | |
| 586 | /* Reschedule the interrupt, if any timeouts remain active. */ |
| 587 | if (num_active_timeouts > 0) |
| 588 | schedule_alarm(GetCurrentTimestamp()); |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * Disable SIGALRM and remove all timeouts from the active list, |
| 593 | * and optionally reset their timeout indicators. |
| 594 | */ |
| 595 | void |
| 596 | disable_all_timeouts(bool keep_indicators) |
| 597 | { |
| 598 | disable_alarm(); |
| 599 | |
| 600 | /* |
| 601 | * Only bother to reset the timer if we think it's active. We could just |
| 602 | * let the interrupt happen anyway, but it's probably a bit cheaper to do |
| 603 | * setitimer() than to let the useless interrupt happen. |
| 604 | */ |
| 605 | if (num_active_timeouts > 0) |
| 606 | { |
| 607 | struct itimerval timeval; |
| 608 | |
| 609 | MemSet(&timeval, 0, sizeof(struct itimerval)); |
| 610 | if (setitimer(ITIMER_REAL, &timeval, NULL) != 0) |
| 611 | elog(FATAL, "could not disable SIGALRM timer: %m" ); |
| 612 | } |
| 613 | |
| 614 | num_active_timeouts = 0; |
| 615 | |
| 616 | if (!keep_indicators) |
| 617 | { |
| 618 | int i; |
| 619 | |
| 620 | for (i = 0; i < MAX_TIMEOUTS; i++) |
| 621 | all_timeouts[i].indicator = false; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * Return the timeout's I've-been-fired indicator |
| 627 | * |
| 628 | * If reset_indicator is true, reset the indicator when returning true. |
| 629 | * To avoid missing timeouts due to race conditions, we are careful not to |
| 630 | * reset the indicator when returning false. |
| 631 | */ |
| 632 | bool |
| 633 | get_timeout_indicator(TimeoutId id, bool reset_indicator) |
| 634 | { |
| 635 | if (all_timeouts[id].indicator) |
| 636 | { |
| 637 | if (reset_indicator) |
| 638 | all_timeouts[id].indicator = false; |
| 639 | return true; |
| 640 | } |
| 641 | return false; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Return the time when the timeout was most recently activated |
| 646 | * |
| 647 | * Note: will return 0 if timeout has never been activated in this process. |
| 648 | * However, we do *not* reset the start_time when a timeout occurs, so as |
| 649 | * not to create a race condition if SIGALRM fires just as some code is |
| 650 | * about to fetch the value. |
| 651 | */ |
| 652 | TimestampTz |
| 653 | get_timeout_start_time(TimeoutId id) |
| 654 | { |
| 655 | return all_timeouts[id].start_time; |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Return the time when the timeout is, or most recently was, due to fire |
| 660 | * |
| 661 | * Note: will return 0 if timeout has never been activated in this process. |
| 662 | * However, we do *not* reset the fin_time when a timeout occurs, so as |
| 663 | * not to create a race condition if SIGALRM fires just as some code is |
| 664 | * about to fetch the value. |
| 665 | */ |
| 666 | TimestampTz |
| 667 | get_timeout_finish_time(TimeoutId id) |
| 668 | { |
| 669 | return all_timeouts[id].fin_time; |
| 670 | } |
| 671 | |