1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * dsa.c |
4 | * Dynamic shared memory areas. |
5 | * |
6 | * This module provides dynamic shared memory areas which are built on top of |
7 | * DSM segments. While dsm.c allows segments of memory of shared memory to be |
8 | * created and shared between backends, it isn't designed to deal with small |
9 | * objects. A DSA area is a shared memory heap usually backed by one or more |
10 | * DSM segments which can allocate memory using dsa_allocate() and dsa_free(). |
11 | * Alternatively, it can be created in pre-existing shared memory, including a |
12 | * DSM segment, and then create extra DSM segments as required. Unlike the |
13 | * regular system heap, it deals in pseudo-pointers which must be converted to |
14 | * backend-local pointers before they are dereferenced. These pseudo-pointers |
15 | * can however be shared with other backends, and can be used to construct |
16 | * shared data structures. |
17 | * |
18 | * Each DSA area manages a set of DSM segments, adding new segments as |
19 | * required and detaching them when they are no longer needed. Each segment |
20 | * contains a number of 4KB pages, a free page manager for tracking |
21 | * consecutive runs of free pages, and a page map for tracking the source of |
22 | * objects allocated on each page. Allocation requests above 8KB are handled |
23 | * by choosing a segment and finding consecutive free pages in its free page |
24 | * manager. Allocation requests for smaller sizes are handled using pools of |
25 | * objects of a selection of sizes. Each pool consists of a number of 16 page |
26 | * (64KB) superblocks allocated in the same way as large objects. Allocation |
27 | * of large objects and new superblocks is serialized by a single LWLock, but |
28 | * allocation of small objects from pre-existing superblocks uses one LWLock |
29 | * per pool. Currently there is one pool, and therefore one lock, per size |
30 | * class. Per-core pools to increase concurrency and strategies for reducing |
31 | * the resulting fragmentation are areas for future research. Each superblock |
32 | * is managed with a 'span', which tracks the superblock's freelist. Free |
33 | * requests are handled by looking in the page map to find which span an |
34 | * address was allocated from, so that small objects can be returned to the |
35 | * appropriate free list, and large object pages can be returned directly to |
36 | * the free page map. When allocating, simple heuristics for selecting |
37 | * segments and superblocks try to encourage occupied memory to be |
38 | * concentrated, increasing the likelihood that whole superblocks can become |
39 | * empty and be returned to the free page manager, and whole segments can |
40 | * become empty and be returned to the operating system. |
41 | * |
42 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
43 | * Portions Copyright (c) 1994, Regents of the University of California |
44 | * |
45 | * IDENTIFICATION |
46 | * src/backend/utils/mmgr/dsa.c |
47 | * |
48 | *------------------------------------------------------------------------- |
49 | */ |
50 | |
51 | #include "postgres.h" |
52 | |
53 | #include "port/atomics.h" |
54 | #include "storage/dsm.h" |
55 | #include "storage/ipc.h" |
56 | #include "storage/lwlock.h" |
57 | #include "storage/shmem.h" |
58 | #include "utils/dsa.h" |
59 | #include "utils/freepage.h" |
60 | #include "utils/memutils.h" |
61 | |
62 | /* |
63 | * The size of the initial DSM segment that backs a dsa_area created by |
64 | * dsa_create. After creating some number of segments of this size we'll |
65 | * double this size, and so on. Larger segments may be created if necessary |
66 | * to satisfy large requests. |
67 | */ |
68 | #define DSA_INITIAL_SEGMENT_SIZE ((size_t) (1 * 1024 * 1024)) |
69 | |
70 | /* |
71 | * How many segments to create before we double the segment size. If this is |
72 | * low, then there is likely to be a lot of wasted space in the largest |
73 | * segment. If it is high, then we risk running out of segment slots (see |
74 | * dsm.c's limits on total number of segments), or limiting the total size |
75 | * an area can manage when using small pointers. |
76 | */ |
77 | #define DSA_NUM_SEGMENTS_AT_EACH_SIZE 4 |
78 | |
79 | /* |
80 | * The number of bits used to represent the offset part of a dsa_pointer. |
81 | * This controls the maximum size of a segment, the maximum possible |
82 | * allocation size and also the maximum number of segments per area. |
83 | */ |
84 | #if SIZEOF_DSA_POINTER == 4 |
85 | #define DSA_OFFSET_WIDTH 27 /* 32 segments of size up to 128MB */ |
86 | #else |
87 | #define DSA_OFFSET_WIDTH 40 /* 1024 segments of size up to 1TB */ |
88 | #endif |
89 | |
90 | /* |
91 | * The maximum number of DSM segments that an area can own, determined by |
92 | * the number of bits remaining (but capped at 1024). |
93 | */ |
94 | #define DSA_MAX_SEGMENTS \ |
95 | Min(1024, (1 << ((SIZEOF_DSA_POINTER * 8) - DSA_OFFSET_WIDTH))) |
96 | |
97 | /* The bitmask for extracting the offset from a dsa_pointer. */ |
98 | #define DSA_OFFSET_BITMASK (((dsa_pointer) 1 << DSA_OFFSET_WIDTH) - 1) |
99 | |
100 | /* The maximum size of a DSM segment. */ |
101 | #define DSA_MAX_SEGMENT_SIZE ((size_t) 1 << DSA_OFFSET_WIDTH) |
102 | |
103 | /* Number of pages (see FPM_PAGE_SIZE) per regular superblock. */ |
104 | #define DSA_PAGES_PER_SUPERBLOCK 16 |
105 | |
106 | /* |
107 | * A magic number used as a sanity check for following DSM segments belonging |
108 | * to a DSA area (this number will be XORed with the area handle and |
109 | * the segment index). |
110 | */ |
111 | #define 0x0ce26608 |
112 | |
113 | /* Build a dsa_pointer given a segment number and offset. */ |
114 | #define DSA_MAKE_POINTER(segment_number, offset) \ |
115 | (((dsa_pointer) (segment_number) << DSA_OFFSET_WIDTH) | (offset)) |
116 | |
117 | /* Extract the segment number from a dsa_pointer. */ |
118 | #define (dp) ((dp) >> DSA_OFFSET_WIDTH) |
119 | |
120 | /* Extract the offset from a dsa_pointer. */ |
121 | #define (dp) ((dp) & DSA_OFFSET_BITMASK) |
122 | |
123 | /* The type used for index segment indexes (zero based). */ |
124 | typedef size_t dsa_segment_index; |
125 | |
126 | /* Sentinel value for dsa_segment_index indicating 'none' or 'end'. */ |
127 | #define DSA_SEGMENT_INDEX_NONE (~(dsa_segment_index)0) |
128 | |
129 | /* |
130 | * How many bins of segments do we have? The bins are used to categorize |
131 | * segments by their largest contiguous run of free pages. |
132 | */ |
133 | #define DSA_NUM_SEGMENT_BINS 16 |
134 | |
135 | /* |
136 | * What is the lowest bin that holds segments that *might* have n contiguous |
137 | * free pages? There is no point in looking in segments in lower bins; they |
138 | * definitely can't service a request for n free pages. |
139 | */ |
140 | #define contiguous_pages_to_segment_bin(n) Min(fls(n), DSA_NUM_SEGMENT_BINS - 1) |
141 | |
142 | /* Macros for access to locks. */ |
143 | #define DSA_AREA_LOCK(area) (&area->control->lock) |
144 | #define DSA_SCLASS_LOCK(area, sclass) (&area->control->pools[sclass].lock) |
145 | |
146 | /* |
147 | * The header for an individual segment. This lives at the start of each DSM |
148 | * segment owned by a DSA area including the first segment (where it appears |
149 | * as part of the dsa_area_control struct). |
150 | */ |
151 | typedef struct |
152 | { |
153 | /* Sanity check magic value. */ |
154 | uint32 magic; |
155 | /* Total number of pages in this segment (excluding metadata area). */ |
156 | size_t usable_pages; |
157 | /* Total size of this segment in bytes. */ |
158 | size_t size; |
159 | |
160 | /* |
161 | * Index of the segment that precedes this one in the same segment bin, or |
162 | * DSA_SEGMENT_INDEX_NONE if this is the first one. |
163 | */ |
164 | dsa_segment_index prev; |
165 | |
166 | /* |
167 | * Index of the segment that follows this one in the same segment bin, or |
168 | * DSA_SEGMENT_INDEX_NONE if this is the last one. |
169 | */ |
170 | dsa_segment_index next; |
171 | /* The index of the bin that contains this segment. */ |
172 | size_t bin; |
173 | |
174 | /* |
175 | * A flag raised to indicate that this segment is being returned to the |
176 | * operating system and has been unpinned. |
177 | */ |
178 | bool freed; |
179 | } ; |
180 | |
181 | /* |
182 | * Metadata for one superblock. |
183 | * |
184 | * For most blocks, span objects are stored out-of-line; that is, the span |
185 | * object is not stored within the block itself. But, as an exception, for a |
186 | * "span of spans", the span object is stored "inline". The allocation is |
187 | * always exactly one page, and the dsa_area_span object is located at |
188 | * the beginning of that page. The size class is DSA_SCLASS_BLOCK_OF_SPANS, |
189 | * and the remaining fields are used just as they would be in an ordinary |
190 | * block. We can't allocate spans out of ordinary superblocks because |
191 | * creating an ordinary superblock requires us to be able to allocate a span |
192 | * *first*. Doing it this way avoids that circularity. |
193 | */ |
194 | typedef struct |
195 | { |
196 | dsa_pointer pool; /* Containing pool. */ |
197 | dsa_pointer prevspan; /* Previous span. */ |
198 | dsa_pointer nextspan; /* Next span. */ |
199 | dsa_pointer start; /* Starting address. */ |
200 | size_t npages; /* Length of span in pages. */ |
201 | uint16 size_class; /* Size class. */ |
202 | uint16 ninitialized; /* Maximum number of objects ever allocated. */ |
203 | uint16 nallocatable; /* Number of objects currently allocatable. */ |
204 | uint16 firstfree; /* First object on free list. */ |
205 | uint16 nmax; /* Maximum number of objects ever possible. */ |
206 | uint16 fclass; /* Current fullness class. */ |
207 | } dsa_area_span; |
208 | |
209 | /* |
210 | * Given a pointer to an object in a span, access the index of the next free |
211 | * object in the same span (ie in the span's freelist) as an L-value. |
212 | */ |
213 | #define NextFreeObjectIndex(object) (* (uint16 *) (object)) |
214 | |
215 | /* |
216 | * Small allocations are handled by dividing a single block of memory into |
217 | * many small objects of equal size. The possible allocation sizes are |
218 | * defined by the following array. Larger size classes are spaced more widely |
219 | * than smaller size classes. We fudge the spacing for size classes >1kB to |
220 | * avoid space wastage: based on the knowledge that we plan to allocate 64kB |
221 | * blocks, we bump the maximum object size up to the largest multiple of |
222 | * 8 bytes that still lets us fit the same number of objects into one block. |
223 | * |
224 | * NB: Because of this fudging, if we were ever to use differently-sized blocks |
225 | * for small allocations, these size classes would need to be reworked to be |
226 | * optimal for the new size. |
227 | * |
228 | * NB: The optimal spacing for size classes, as well as the size of the blocks |
229 | * out of which small objects are allocated, is not a question that has one |
230 | * right answer. Some allocators (such as tcmalloc) use more closely-spaced |
231 | * size classes than we do here, while others (like aset.c) use more |
232 | * widely-spaced classes. Spacing the classes more closely avoids wasting |
233 | * memory within individual chunks, but also means a larger number of |
234 | * potentially-unfilled blocks. |
235 | */ |
236 | static const uint16 dsa_size_classes[] = { |
237 | sizeof(dsa_area_span), 0, /* special size classes */ |
238 | 8, 16, 24, 32, 40, 48, 56, 64, /* 8 classes separated by 8 bytes */ |
239 | 80, 96, 112, 128, /* 4 classes separated by 16 bytes */ |
240 | 160, 192, 224, 256, /* 4 classes separated by 32 bytes */ |
241 | 320, 384, 448, 512, /* 4 classes separated by 64 bytes */ |
242 | 640, 768, 896, 1024, /* 4 classes separated by 128 bytes */ |
243 | 1280, 1560, 1816, 2048, /* 4 classes separated by ~256 bytes */ |
244 | 2616, 3120, 3640, 4096, /* 4 classes separated by ~512 bytes */ |
245 | 5456, 6552, 7280, 8192 /* 4 classes separated by ~1024 bytes */ |
246 | }; |
247 | #define DSA_NUM_SIZE_CLASSES lengthof(dsa_size_classes) |
248 | |
249 | /* Special size classes. */ |
250 | #define DSA_SCLASS_BLOCK_OF_SPANS 0 |
251 | #define DSA_SCLASS_SPAN_LARGE 1 |
252 | |
253 | /* |
254 | * The following lookup table is used to map the size of small objects |
255 | * (less than 1kB) onto the corresponding size class. To use this table, |
256 | * round the size of the object up to the next multiple of 8 bytes, and then |
257 | * index into this array. |
258 | */ |
259 | static const uint8 dsa_size_class_map[] = { |
260 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, |
261 | 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, |
262 | 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, |
263 | 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, |
264 | 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, |
265 | 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, |
266 | 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
267 | 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 |
268 | }; |
269 | #define DSA_SIZE_CLASS_MAP_QUANTUM 8 |
270 | |
271 | /* |
272 | * Superblocks are binned by how full they are. Generally, each fullness |
273 | * class corresponds to one quartile, but the block being used for |
274 | * allocations is always at the head of the list for fullness class 1, |
275 | * regardless of how full it really is. |
276 | */ |
277 | #define DSA_FULLNESS_CLASSES 4 |
278 | |
279 | /* |
280 | * A dsa_area_pool represents a set of objects of a given size class. |
281 | * |
282 | * Perhaps there should be multiple pools for the same size class for |
283 | * contention avoidance, but for now there is just one! |
284 | */ |
285 | typedef struct |
286 | { |
287 | /* A lock protecting access to this pool. */ |
288 | LWLock lock; |
289 | /* A set of linked lists of spans, arranged by fullness. */ |
290 | dsa_pointer spans[DSA_FULLNESS_CLASSES]; |
291 | /* Should we pad this out to a cacheline boundary? */ |
292 | } dsa_area_pool; |
293 | |
294 | /* |
295 | * The control block for an area. This lives in shared memory, at the start of |
296 | * the first DSM segment controlled by this area. |
297 | */ |
298 | typedef struct |
299 | { |
300 | /* The segment header for the first segment. */ |
301 | dsa_segment_header ; |
302 | /* The handle for this area. */ |
303 | dsa_handle handle; |
304 | /* The handles of the segments owned by this area. */ |
305 | dsm_handle segment_handles[DSA_MAX_SEGMENTS]; |
306 | /* Lists of segments, binned by maximum contiguous run of free pages. */ |
307 | dsa_segment_index segment_bins[DSA_NUM_SEGMENT_BINS]; |
308 | /* The object pools for each size class. */ |
309 | dsa_area_pool pools[DSA_NUM_SIZE_CLASSES]; |
310 | /* The total size of all active segments. */ |
311 | size_t total_segment_size; |
312 | /* The maximum total size of backing storage we are allowed. */ |
313 | size_t max_total_segment_size; |
314 | /* Highest used segment index in the history of this area. */ |
315 | dsa_segment_index high_segment_index; |
316 | /* The reference count for this area. */ |
317 | int refcnt; |
318 | /* A flag indicating that this area has been pinned. */ |
319 | bool pinned; |
320 | /* The number of times that segments have been freed. */ |
321 | size_t freed_segment_counter; |
322 | /* The LWLock tranche ID. */ |
323 | int lwlock_tranche_id; |
324 | /* The general lock (protects everything except object pools). */ |
325 | LWLock lock; |
326 | } dsa_area_control; |
327 | |
328 | /* Given a pointer to a pool, find a dsa_pointer. */ |
329 | #define DsaAreaPoolToDsaPointer(area, p) \ |
330 | DSA_MAKE_POINTER(0, (char *) p - (char *) area->control) |
331 | |
332 | /* |
333 | * A dsa_segment_map is stored within the backend-private memory of each |
334 | * individual backend. It holds the base address of the segment within that |
335 | * backend, plus the addresses of key objects within the segment. Those |
336 | * could instead be derived from the base address but it's handy to have them |
337 | * around. |
338 | */ |
339 | typedef struct |
340 | { |
341 | dsm_segment *segment; /* DSM segment */ |
342 | char *mapped_address; /* Address at which segment is mapped */ |
343 | dsa_segment_header *; /* Header (same as mapped_address) */ |
344 | FreePageManager *fpm; /* Free page manager within segment. */ |
345 | dsa_pointer *pagemap; /* Page map within segment. */ |
346 | } dsa_segment_map; |
347 | |
348 | /* |
349 | * Per-backend state for a storage area. Backends obtain one of these by |
350 | * creating an area or attaching to an existing one using a handle. Each |
351 | * process that needs to use an area uses its own object to track where the |
352 | * segments are mapped. |
353 | */ |
354 | struct dsa_area |
355 | { |
356 | /* Pointer to the control object in shared memory. */ |
357 | dsa_area_control *control; |
358 | |
359 | /* Has the mapping been pinned? */ |
360 | bool mapping_pinned; |
361 | |
362 | /* |
363 | * This backend's array of segment maps, ordered by segment index |
364 | * corresponding to control->segment_handles. Some of the area's segments |
365 | * may not be mapped in this backend yet, and some slots may have been |
366 | * freed and need to be detached; these operations happen on demand. |
367 | */ |
368 | dsa_segment_map segment_maps[DSA_MAX_SEGMENTS]; |
369 | |
370 | /* The highest segment index this backend has ever mapped. */ |
371 | dsa_segment_index high_segment_index; |
372 | |
373 | /* The last observed freed_segment_counter. */ |
374 | size_t freed_segment_counter; |
375 | }; |
376 | |
377 | #define DSA_SPAN_NOTHING_FREE ((uint16) -1) |
378 | #define DSA_SUPERBLOCK_SIZE (DSA_PAGES_PER_SUPERBLOCK * FPM_PAGE_SIZE) |
379 | |
380 | /* Given a pointer to a segment_map, obtain a segment index number. */ |
381 | #define get_segment_index(area, segment_map_ptr) \ |
382 | (segment_map_ptr - &area->segment_maps[0]) |
383 | |
384 | static void init_span(dsa_area *area, dsa_pointer span_pointer, |
385 | dsa_area_pool *pool, dsa_pointer start, size_t npages, |
386 | uint16 size_class); |
387 | static bool transfer_first_span(dsa_area *area, dsa_area_pool *pool, |
388 | int fromclass, int toclass); |
389 | static inline dsa_pointer alloc_object(dsa_area *area, int size_class); |
390 | static bool ensure_active_superblock(dsa_area *area, dsa_area_pool *pool, |
391 | int size_class); |
392 | static dsa_segment_map *get_segment_by_index(dsa_area *area, |
393 | dsa_segment_index index); |
394 | static void destroy_superblock(dsa_area *area, dsa_pointer span_pointer); |
395 | static void unlink_span(dsa_area *area, dsa_area_span *span); |
396 | static void add_span_to_fullness_class(dsa_area *area, dsa_area_span *span, |
397 | dsa_pointer span_pointer, int fclass); |
398 | static void unlink_segment(dsa_area *area, dsa_segment_map *segment_map); |
399 | static dsa_segment_map *get_best_segment(dsa_area *area, size_t npages); |
400 | static dsa_segment_map *make_new_segment(dsa_area *area, size_t requested_pages); |
401 | static dsa_area *create_internal(void *place, size_t size, |
402 | int tranche_id, |
403 | dsm_handle control_handle, |
404 | dsm_segment *control_segment); |
405 | static dsa_area *attach_internal(void *place, dsm_segment *segment, |
406 | dsa_handle handle); |
407 | static void check_for_freed_segments(dsa_area *area); |
408 | static void check_for_freed_segments_locked(dsa_area *area); |
409 | |
410 | /* |
411 | * Create a new shared area in a new DSM segment. Further DSM segments will |
412 | * be allocated as required to extend the available space. |
413 | * |
414 | * We can't allocate a LWLock tranche_id within this function, because tranche |
415 | * IDs are a scarce resource; there are only 64k available, using low numbers |
416 | * when possible matters, and we have no provision for recycling them. So, |
417 | * we require the caller to provide one. |
418 | */ |
419 | dsa_area * |
420 | dsa_create(int tranche_id) |
421 | { |
422 | dsm_segment *segment; |
423 | dsa_area *area; |
424 | |
425 | /* |
426 | * Create the DSM segment that will hold the shared control object and the |
427 | * first segment of usable space. |
428 | */ |
429 | segment = dsm_create(DSA_INITIAL_SEGMENT_SIZE, 0); |
430 | |
431 | /* |
432 | * All segments backing this area are pinned, so that DSA can explicitly |
433 | * control their lifetime (otherwise a newly created segment belonging to |
434 | * this area might be freed when the only backend that happens to have it |
435 | * mapped in ends, corrupting the area). |
436 | */ |
437 | dsm_pin_segment(segment); |
438 | |
439 | /* Create a new DSA area with the control object in this segment. */ |
440 | area = create_internal(dsm_segment_address(segment), |
441 | DSA_INITIAL_SEGMENT_SIZE, |
442 | tranche_id, |
443 | dsm_segment_handle(segment), segment); |
444 | |
445 | /* Clean up when the control segment detaches. */ |
446 | on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place, |
447 | PointerGetDatum(dsm_segment_address(segment))); |
448 | |
449 | return area; |
450 | } |
451 | |
452 | /* |
453 | * Create a new shared area in an existing shared memory space, which may be |
454 | * either DSM or Postmaster-initialized memory. DSM segments will be |
455 | * allocated as required to extend the available space, though that can be |
456 | * prevented with dsa_set_size_limit(area, size) using the same size provided |
457 | * to dsa_create_in_place. |
458 | * |
459 | * Areas created in-place must eventually be released by the backend that |
460 | * created them and all backends that attach to them. This can be done |
461 | * explicitly with dsa_release_in_place, or, in the special case that 'place' |
462 | * happens to be in a pre-existing DSM segment, by passing in a pointer to the |
463 | * segment so that a detach hook can be registered with the containing DSM |
464 | * segment. |
465 | * |
466 | * See dsa_create() for a note about the tranche arguments. |
467 | */ |
468 | dsa_area * |
469 | dsa_create_in_place(void *place, size_t size, |
470 | int tranche_id, dsm_segment *segment) |
471 | { |
472 | dsa_area *area; |
473 | |
474 | area = create_internal(place, size, tranche_id, |
475 | DSM_HANDLE_INVALID, NULL); |
476 | |
477 | /* |
478 | * Clean up when the control segment detaches, if a containing DSM segment |
479 | * was provided. |
480 | */ |
481 | if (segment != NULL) |
482 | on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place, |
483 | PointerGetDatum(place)); |
484 | |
485 | return area; |
486 | } |
487 | |
488 | /* |
489 | * Obtain a handle that can be passed to other processes so that they can |
490 | * attach to the given area. Cannot be called for areas created with |
491 | * dsa_create_in_place. |
492 | */ |
493 | dsa_handle |
494 | dsa_get_handle(dsa_area *area) |
495 | { |
496 | Assert(area->control->handle != DSM_HANDLE_INVALID); |
497 | return area->control->handle; |
498 | } |
499 | |
500 | /* |
501 | * Attach to an area given a handle generated (possibly in another process) by |
502 | * dsa_get_handle. The area must have been created with dsa_create (not |
503 | * dsa_create_in_place). |
504 | */ |
505 | dsa_area * |
506 | dsa_attach(dsa_handle handle) |
507 | { |
508 | dsm_segment *segment; |
509 | dsa_area *area; |
510 | |
511 | /* |
512 | * An area handle is really a DSM segment handle for the first segment, so |
513 | * we go ahead and attach to that. |
514 | */ |
515 | segment = dsm_attach(handle); |
516 | if (segment == NULL) |
517 | ereport(ERROR, |
518 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
519 | errmsg("could not attach to dynamic shared area" ))); |
520 | |
521 | area = attach_internal(dsm_segment_address(segment), segment, handle); |
522 | |
523 | /* Clean up when the control segment detaches. */ |
524 | on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place, |
525 | PointerGetDatum(dsm_segment_address(segment))); |
526 | |
527 | return area; |
528 | } |
529 | |
530 | /* |
531 | * Attach to an area that was created with dsa_create_in_place. The caller |
532 | * must somehow know the location in memory that was used when the area was |
533 | * created, though it may be mapped at a different virtual address in this |
534 | * process. |
535 | * |
536 | * See dsa_create_in_place for note about releasing in-place areas, and the |
537 | * optional 'segment' argument which can be provided to allow automatic |
538 | * release if the containing memory happens to be a DSM segment. |
539 | */ |
540 | dsa_area * |
541 | dsa_attach_in_place(void *place, dsm_segment *segment) |
542 | { |
543 | dsa_area *area; |
544 | |
545 | area = attach_internal(place, NULL, DSM_HANDLE_INVALID); |
546 | |
547 | /* |
548 | * Clean up when the control segment detaches, if a containing DSM segment |
549 | * was provided. |
550 | */ |
551 | if (segment != NULL) |
552 | on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place, |
553 | PointerGetDatum(place)); |
554 | |
555 | return area; |
556 | } |
557 | |
558 | /* |
559 | * Release a DSA area that was produced by dsa_create_in_place or |
560 | * dsa_attach_in_place. The 'segment' argument is ignored but provides an |
561 | * interface suitable for on_dsm_detach, for the convenience of users who want |
562 | * to create a DSA segment inside an existing DSM segment and have it |
563 | * automatically released when the containing DSM segment is detached. |
564 | * 'place' should be the address of the place where the area was created. |
565 | * |
566 | * This callback is automatically registered for the DSM segment containing |
567 | * the control object of in-place areas when a segment is provided to |
568 | * dsa_create_in_place or dsa_attach_in_place, and also for all areas created |
569 | * with dsa_create. |
570 | */ |
571 | void |
572 | dsa_on_dsm_detach_release_in_place(dsm_segment *segment, Datum place) |
573 | { |
574 | dsa_release_in_place(DatumGetPointer(place)); |
575 | } |
576 | |
577 | /* |
578 | * Release a DSA area that was produced by dsa_create_in_place or |
579 | * dsa_attach_in_place. The 'code' argument is ignored but provides an |
580 | * interface suitable for on_shmem_exit or before_shmem_exit, for the |
581 | * convenience of users who want to create a DSA segment inside shared memory |
582 | * other than a DSM segment and have it automatically release at backend exit. |
583 | * 'place' should be the address of the place where the area was created. |
584 | */ |
585 | void |
586 | dsa_on_shmem_exit_release_in_place(int code, Datum place) |
587 | { |
588 | dsa_release_in_place(DatumGetPointer(place)); |
589 | } |
590 | |
591 | /* |
592 | * Release a DSA area that was produced by dsa_create_in_place or |
593 | * dsa_attach_in_place. It is preferable to use one of the 'dsa_on_XXX' |
594 | * callbacks so that this is managed automatically, because failure to release |
595 | * an area created in-place leaks its segments permanently. |
596 | * |
597 | * This is also called automatically for areas produced by dsa_create or |
598 | * dsa_attach as an implementation detail. |
599 | */ |
600 | void |
601 | dsa_release_in_place(void *place) |
602 | { |
603 | dsa_area_control *control = (dsa_area_control *) place; |
604 | int i; |
605 | |
606 | LWLockAcquire(&control->lock, LW_EXCLUSIVE); |
607 | Assert(control->segment_header.magic == |
608 | (DSA_SEGMENT_HEADER_MAGIC ^ control->handle ^ 0)); |
609 | Assert(control->refcnt > 0); |
610 | if (--control->refcnt == 0) |
611 | { |
612 | for (i = 0; i <= control->high_segment_index; ++i) |
613 | { |
614 | dsm_handle handle; |
615 | |
616 | handle = control->segment_handles[i]; |
617 | if (handle != DSM_HANDLE_INVALID) |
618 | dsm_unpin_segment(handle); |
619 | } |
620 | } |
621 | LWLockRelease(&control->lock); |
622 | } |
623 | |
624 | /* |
625 | * Keep a DSA area attached until end of session or explicit detach. |
626 | * |
627 | * By default, areas are owned by the current resource owner, which means they |
628 | * are detached automatically when that scope ends. |
629 | */ |
630 | void |
631 | dsa_pin_mapping(dsa_area *area) |
632 | { |
633 | int i; |
634 | |
635 | Assert(!area->mapping_pinned); |
636 | area->mapping_pinned = true; |
637 | |
638 | for (i = 0; i <= area->high_segment_index; ++i) |
639 | if (area->segment_maps[i].segment != NULL) |
640 | dsm_pin_mapping(area->segment_maps[i].segment); |
641 | } |
642 | |
643 | /* |
644 | * Allocate memory in this storage area. The return value is a dsa_pointer |
645 | * that can be passed to other processes, and converted to a local pointer |
646 | * with dsa_get_address. 'flags' is a bitmap which should be constructed |
647 | * from the following values: |
648 | * |
649 | * DSA_ALLOC_HUGE allows allocations >= 1GB. Otherwise, such allocations |
650 | * will result in an ERROR. |
651 | * |
652 | * DSA_ALLOC_NO_OOM causes this function to return InvalidDsaPointer when |
653 | * no memory is available or a size limit established by dsa_set_size_limit |
654 | * would be exceeded. Otherwise, such allocations will result in an ERROR. |
655 | * |
656 | * DSA_ALLOC_ZERO causes the allocated memory to be zeroed. Otherwise, the |
657 | * contents of newly-allocated memory are indeterminate. |
658 | * |
659 | * These flags correspond to similarly named flags used by |
660 | * MemoryContextAllocExtended(). See also the macros dsa_allocate and |
661 | * dsa_allocate0 which expand to a call to this function with commonly used |
662 | * flags. |
663 | */ |
664 | dsa_pointer |
665 | dsa_allocate_extended(dsa_area *area, size_t size, int flags) |
666 | { |
667 | uint16 size_class; |
668 | dsa_pointer start_pointer; |
669 | dsa_segment_map *segment_map; |
670 | dsa_pointer result; |
671 | |
672 | Assert(size > 0); |
673 | |
674 | /* Sanity check on huge individual allocation size. */ |
675 | if (((flags & DSA_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) || |
676 | ((flags & DSA_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size))) |
677 | elog(ERROR, "invalid DSA memory alloc request size %zu" , size); |
678 | |
679 | /* |
680 | * If bigger than the largest size class, just grab a run of pages from |
681 | * the free page manager, instead of allocating an object from a pool. |
682 | * There will still be a span, but it's a special class of span that |
683 | * manages this whole allocation and simply gives all pages back to the |
684 | * free page manager when dsa_free is called. |
685 | */ |
686 | if (size > dsa_size_classes[lengthof(dsa_size_classes) - 1]) |
687 | { |
688 | size_t npages = fpm_size_to_pages(size); |
689 | size_t first_page; |
690 | dsa_pointer span_pointer; |
691 | dsa_area_pool *pool = &area->control->pools[DSA_SCLASS_SPAN_LARGE]; |
692 | |
693 | /* Obtain a span object. */ |
694 | span_pointer = alloc_object(area, DSA_SCLASS_BLOCK_OF_SPANS); |
695 | if (!DsaPointerIsValid(span_pointer)) |
696 | { |
697 | /* Raise error unless asked not to. */ |
698 | if ((flags & DSA_ALLOC_NO_OOM) == 0) |
699 | ereport(ERROR, |
700 | (errcode(ERRCODE_OUT_OF_MEMORY), |
701 | errmsg("out of memory" ), |
702 | errdetail("Failed on DSA request of size %zu." , |
703 | size))); |
704 | return InvalidDsaPointer; |
705 | } |
706 | |
707 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
708 | |
709 | /* Find a segment from which to allocate. */ |
710 | segment_map = get_best_segment(area, npages); |
711 | if (segment_map == NULL) |
712 | segment_map = make_new_segment(area, npages); |
713 | if (segment_map == NULL) |
714 | { |
715 | /* Can't make any more segments: game over. */ |
716 | LWLockRelease(DSA_AREA_LOCK(area)); |
717 | dsa_free(area, span_pointer); |
718 | |
719 | /* Raise error unless asked not to. */ |
720 | if ((flags & DSA_ALLOC_NO_OOM) == 0) |
721 | ereport(ERROR, |
722 | (errcode(ERRCODE_OUT_OF_MEMORY), |
723 | errmsg("out of memory" ), |
724 | errdetail("Failed on DSA request of size %zu." , |
725 | size))); |
726 | return InvalidDsaPointer; |
727 | } |
728 | |
729 | /* |
730 | * Ask the free page manager for a run of pages. This should always |
731 | * succeed, since both get_best_segment and make_new_segment should |
732 | * only return a non-NULL pointer if it actually contains enough |
733 | * contiguous freespace. If it does fail, something in our backend |
734 | * private state is out of whack, so use FATAL to kill the process. |
735 | */ |
736 | if (!FreePageManagerGet(segment_map->fpm, npages, &first_page)) |
737 | elog(FATAL, |
738 | "dsa_allocate could not find %zu free pages" , npages); |
739 | LWLockRelease(DSA_AREA_LOCK(area)); |
740 | |
741 | start_pointer = DSA_MAKE_POINTER(get_segment_index(area, segment_map), |
742 | first_page * FPM_PAGE_SIZE); |
743 | |
744 | /* Initialize span and pagemap. */ |
745 | LWLockAcquire(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE), |
746 | LW_EXCLUSIVE); |
747 | init_span(area, span_pointer, pool, start_pointer, npages, |
748 | DSA_SCLASS_SPAN_LARGE); |
749 | segment_map->pagemap[first_page] = span_pointer; |
750 | LWLockRelease(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE)); |
751 | |
752 | /* Zero-initialize the memory if requested. */ |
753 | if ((flags & DSA_ALLOC_ZERO) != 0) |
754 | memset(dsa_get_address(area, start_pointer), 0, size); |
755 | |
756 | return start_pointer; |
757 | } |
758 | |
759 | /* Map allocation to a size class. */ |
760 | if (size < lengthof(dsa_size_class_map) * DSA_SIZE_CLASS_MAP_QUANTUM) |
761 | { |
762 | int mapidx; |
763 | |
764 | /* For smaller sizes we have a lookup table... */ |
765 | mapidx = ((size + DSA_SIZE_CLASS_MAP_QUANTUM - 1) / |
766 | DSA_SIZE_CLASS_MAP_QUANTUM) - 1; |
767 | size_class = dsa_size_class_map[mapidx]; |
768 | } |
769 | else |
770 | { |
771 | uint16 min; |
772 | uint16 max; |
773 | |
774 | /* ... and for the rest we search by binary chop. */ |
775 | min = dsa_size_class_map[lengthof(dsa_size_class_map) - 1]; |
776 | max = lengthof(dsa_size_classes) - 1; |
777 | |
778 | while (min < max) |
779 | { |
780 | uint16 mid = (min + max) / 2; |
781 | uint16 class_size = dsa_size_classes[mid]; |
782 | |
783 | if (class_size < size) |
784 | min = mid + 1; |
785 | else |
786 | max = mid; |
787 | } |
788 | |
789 | size_class = min; |
790 | } |
791 | Assert(size <= dsa_size_classes[size_class]); |
792 | Assert(size_class == 0 || size > dsa_size_classes[size_class - 1]); |
793 | |
794 | /* Attempt to allocate an object from the appropriate pool. */ |
795 | result = alloc_object(area, size_class); |
796 | |
797 | /* Check for failure to allocate. */ |
798 | if (!DsaPointerIsValid(result)) |
799 | { |
800 | /* Raise error unless asked not to. */ |
801 | if ((flags & DSA_ALLOC_NO_OOM) == 0) |
802 | ereport(ERROR, |
803 | (errcode(ERRCODE_OUT_OF_MEMORY), |
804 | errmsg("out of memory" ), |
805 | errdetail("Failed on DSA request of size %zu." , size))); |
806 | return InvalidDsaPointer; |
807 | } |
808 | |
809 | /* Zero-initialize the memory if requested. */ |
810 | if ((flags & DSA_ALLOC_ZERO) != 0) |
811 | memset(dsa_get_address(area, result), 0, size); |
812 | |
813 | return result; |
814 | } |
815 | |
816 | /* |
817 | * Free memory obtained with dsa_allocate. |
818 | */ |
819 | void |
820 | dsa_free(dsa_area *area, dsa_pointer dp) |
821 | { |
822 | dsa_segment_map *segment_map; |
823 | int pageno; |
824 | dsa_pointer span_pointer; |
825 | dsa_area_span *span; |
826 | char *superblock; |
827 | char *object; |
828 | size_t size; |
829 | int size_class; |
830 | |
831 | /* Make sure we don't have a stale segment in the slot 'dp' refers to. */ |
832 | check_for_freed_segments(area); |
833 | |
834 | /* Locate the object, span and pool. */ |
835 | segment_map = get_segment_by_index(area, DSA_EXTRACT_SEGMENT_NUMBER(dp)); |
836 | pageno = DSA_EXTRACT_OFFSET(dp) / FPM_PAGE_SIZE; |
837 | span_pointer = segment_map->pagemap[pageno]; |
838 | span = dsa_get_address(area, span_pointer); |
839 | superblock = dsa_get_address(area, span->start); |
840 | object = dsa_get_address(area, dp); |
841 | size_class = span->size_class; |
842 | size = dsa_size_classes[size_class]; |
843 | |
844 | /* |
845 | * Special case for large objects that live in a special span: we return |
846 | * those pages directly to the free page manager and free the span. |
847 | */ |
848 | if (span->size_class == DSA_SCLASS_SPAN_LARGE) |
849 | { |
850 | |
851 | #ifdef CLOBBER_FREED_MEMORY |
852 | memset(object, 0x7f, span->npages * FPM_PAGE_SIZE); |
853 | #endif |
854 | |
855 | /* Give pages back to free page manager. */ |
856 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
857 | FreePageManagerPut(segment_map->fpm, |
858 | DSA_EXTRACT_OFFSET(span->start) / FPM_PAGE_SIZE, |
859 | span->npages); |
860 | LWLockRelease(DSA_AREA_LOCK(area)); |
861 | /* Unlink span. */ |
862 | LWLockAcquire(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE), |
863 | LW_EXCLUSIVE); |
864 | unlink_span(area, span); |
865 | LWLockRelease(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE)); |
866 | /* Free the span object so it can be reused. */ |
867 | dsa_free(area, span_pointer); |
868 | return; |
869 | } |
870 | |
871 | #ifdef CLOBBER_FREED_MEMORY |
872 | memset(object, 0x7f, size); |
873 | #endif |
874 | |
875 | LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE); |
876 | |
877 | /* Put the object on the span's freelist. */ |
878 | Assert(object >= superblock); |
879 | Assert(object < superblock + DSA_SUPERBLOCK_SIZE); |
880 | Assert((object - superblock) % size == 0); |
881 | NextFreeObjectIndex(object) = span->firstfree; |
882 | span->firstfree = (object - superblock) / size; |
883 | ++span->nallocatable; |
884 | |
885 | /* |
886 | * See if the span needs to moved to a different fullness class, or be |
887 | * freed so its pages can be given back to the segment. |
888 | */ |
889 | if (span->nallocatable == 1 && span->fclass == DSA_FULLNESS_CLASSES - 1) |
890 | { |
891 | /* |
892 | * The block was completely full and is located in the |
893 | * highest-numbered fullness class, which is never scanned for free |
894 | * chunks. We must move it to the next-lower fullness class. |
895 | */ |
896 | unlink_span(area, span); |
897 | add_span_to_fullness_class(area, span, span_pointer, |
898 | DSA_FULLNESS_CLASSES - 2); |
899 | |
900 | /* |
901 | * If this is the only span, and there is no active span, then we |
902 | * should probably move this span to fullness class 1. (Otherwise if |
903 | * you allocate exactly all the objects in the only span, it moves to |
904 | * class 3, then you free them all, it moves to 2, and then is given |
905 | * back, leaving no active span). |
906 | */ |
907 | } |
908 | else if (span->nallocatable == span->nmax && |
909 | (span->fclass != 1 || span->prevspan != InvalidDsaPointer)) |
910 | { |
911 | /* |
912 | * This entire block is free, and it's not the active block for this |
913 | * size class. Return the memory to the free page manager. We don't |
914 | * do this for the active block to prevent hysteresis: if we |
915 | * repeatedly allocate and free the only chunk in the active block, it |
916 | * will be very inefficient if we deallocate and reallocate the block |
917 | * every time. |
918 | */ |
919 | destroy_superblock(area, span_pointer); |
920 | } |
921 | |
922 | LWLockRelease(DSA_SCLASS_LOCK(area, size_class)); |
923 | } |
924 | |
925 | /* |
926 | * Obtain a backend-local address for a dsa_pointer. 'dp' must point to |
927 | * memory allocated by the given area (possibly in another process) that |
928 | * hasn't yet been freed. This may cause a segment to be mapped into the |
929 | * current process if required, and may cause freed segments to be unmapped. |
930 | */ |
931 | void * |
932 | dsa_get_address(dsa_area *area, dsa_pointer dp) |
933 | { |
934 | dsa_segment_index index; |
935 | size_t offset; |
936 | |
937 | /* Convert InvalidDsaPointer to NULL. */ |
938 | if (!DsaPointerIsValid(dp)) |
939 | return NULL; |
940 | |
941 | /* Process any requests to detach from freed segments. */ |
942 | check_for_freed_segments(area); |
943 | |
944 | /* Break the dsa_pointer into its components. */ |
945 | index = DSA_EXTRACT_SEGMENT_NUMBER(dp); |
946 | offset = DSA_EXTRACT_OFFSET(dp); |
947 | Assert(index < DSA_MAX_SEGMENTS); |
948 | |
949 | /* Check if we need to cause this segment to be mapped in. */ |
950 | if (unlikely(area->segment_maps[index].mapped_address == NULL)) |
951 | { |
952 | /* Call for effect (we don't need the result). */ |
953 | get_segment_by_index(area, index); |
954 | } |
955 | |
956 | return area->segment_maps[index].mapped_address + offset; |
957 | } |
958 | |
959 | /* |
960 | * Pin this area, so that it will continue to exist even if all backends |
961 | * detach from it. In that case, the area can still be reattached to if a |
962 | * handle has been recorded somewhere. |
963 | */ |
964 | void |
965 | dsa_pin(dsa_area *area) |
966 | { |
967 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
968 | if (area->control->pinned) |
969 | { |
970 | LWLockRelease(DSA_AREA_LOCK(area)); |
971 | elog(ERROR, "dsa_area already pinned" ); |
972 | } |
973 | area->control->pinned = true; |
974 | ++area->control->refcnt; |
975 | LWLockRelease(DSA_AREA_LOCK(area)); |
976 | } |
977 | |
978 | /* |
979 | * Undo the effects of dsa_pin, so that the given area can be freed when no |
980 | * backends are attached to it. May be called only if dsa_pin has been |
981 | * called. |
982 | */ |
983 | void |
984 | dsa_unpin(dsa_area *area) |
985 | { |
986 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
987 | Assert(area->control->refcnt > 1); |
988 | if (!area->control->pinned) |
989 | { |
990 | LWLockRelease(DSA_AREA_LOCK(area)); |
991 | elog(ERROR, "dsa_area not pinned" ); |
992 | } |
993 | area->control->pinned = false; |
994 | --area->control->refcnt; |
995 | LWLockRelease(DSA_AREA_LOCK(area)); |
996 | } |
997 | |
998 | /* |
999 | * Set the total size limit for this area. This limit is checked whenever new |
1000 | * segments need to be allocated from the operating system. If the new size |
1001 | * limit is already exceeded, this has no immediate effect. |
1002 | * |
1003 | * Note that the total virtual memory usage may be temporarily larger than |
1004 | * this limit when segments have been freed, but not yet detached by all |
1005 | * backends that have attached to them. |
1006 | */ |
1007 | void |
1008 | dsa_set_size_limit(dsa_area *area, size_t limit) |
1009 | { |
1010 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
1011 | area->control->max_total_segment_size = limit; |
1012 | LWLockRelease(DSA_AREA_LOCK(area)); |
1013 | } |
1014 | |
1015 | /* |
1016 | * Aggressively free all spare memory in the hope of returning DSM segments to |
1017 | * the operating system. |
1018 | */ |
1019 | void |
1020 | dsa_trim(dsa_area *area) |
1021 | { |
1022 | int size_class; |
1023 | |
1024 | /* |
1025 | * Trim in reverse pool order so we get to the spans-of-spans last, just |
1026 | * in case any become entirely free while processing all the other pools. |
1027 | */ |
1028 | for (size_class = DSA_NUM_SIZE_CLASSES - 1; size_class >= 0; --size_class) |
1029 | { |
1030 | dsa_area_pool *pool = &area->control->pools[size_class]; |
1031 | dsa_pointer span_pointer; |
1032 | |
1033 | if (size_class == DSA_SCLASS_SPAN_LARGE) |
1034 | { |
1035 | /* Large object frees give back segments aggressively already. */ |
1036 | continue; |
1037 | } |
1038 | |
1039 | /* |
1040 | * Search fullness class 1 only. That is where we expect to find an |
1041 | * entirely empty superblock (entirely empty superblocks in other |
1042 | * fullness classes are returned to the free page map by dsa_free). |
1043 | */ |
1044 | LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE); |
1045 | span_pointer = pool->spans[1]; |
1046 | while (DsaPointerIsValid(span_pointer)) |
1047 | { |
1048 | dsa_area_span *span = dsa_get_address(area, span_pointer); |
1049 | dsa_pointer next = span->nextspan; |
1050 | |
1051 | if (span->nallocatable == span->nmax) |
1052 | destroy_superblock(area, span_pointer); |
1053 | |
1054 | span_pointer = next; |
1055 | } |
1056 | LWLockRelease(DSA_SCLASS_LOCK(area, size_class)); |
1057 | } |
1058 | } |
1059 | |
1060 | /* |
1061 | * Print out debugging information about the internal state of the shared |
1062 | * memory area. |
1063 | */ |
1064 | void |
1065 | dsa_dump(dsa_area *area) |
1066 | { |
1067 | size_t i, |
1068 | j; |
1069 | |
1070 | /* |
1071 | * Note: This gives an inconsistent snapshot as it acquires and releases |
1072 | * individual locks as it goes... |
1073 | */ |
1074 | |
1075 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
1076 | check_for_freed_segments_locked(area); |
1077 | fprintf(stderr, "dsa_area handle %x:\n" , area->control->handle); |
1078 | fprintf(stderr, " max_total_segment_size: %zu\n" , |
1079 | area->control->max_total_segment_size); |
1080 | fprintf(stderr, " total_segment_size: %zu\n" , |
1081 | area->control->total_segment_size); |
1082 | fprintf(stderr, " refcnt: %d\n" , area->control->refcnt); |
1083 | fprintf(stderr, " pinned: %c\n" , area->control->pinned ? 't' : 'f'); |
1084 | fprintf(stderr, " segment bins:\n" ); |
1085 | for (i = 0; i < DSA_NUM_SEGMENT_BINS; ++i) |
1086 | { |
1087 | if (area->control->segment_bins[i] != DSA_SEGMENT_INDEX_NONE) |
1088 | { |
1089 | dsa_segment_index segment_index; |
1090 | |
1091 | fprintf(stderr, |
1092 | " segment bin %zu (at least %d contiguous pages free):\n" , |
1093 | i, 1 << (i - 1)); |
1094 | segment_index = area->control->segment_bins[i]; |
1095 | while (segment_index != DSA_SEGMENT_INDEX_NONE) |
1096 | { |
1097 | dsa_segment_map *segment_map; |
1098 | |
1099 | segment_map = |
1100 | get_segment_by_index(area, segment_index); |
1101 | |
1102 | fprintf(stderr, |
1103 | " segment index %zu, usable_pages = %zu, " |
1104 | "contiguous_pages = %zu, mapped at %p\n" , |
1105 | segment_index, |
1106 | segment_map->header->usable_pages, |
1107 | fpm_largest(segment_map->fpm), |
1108 | segment_map->mapped_address); |
1109 | segment_index = segment_map->header->next; |
1110 | } |
1111 | } |
1112 | } |
1113 | LWLockRelease(DSA_AREA_LOCK(area)); |
1114 | |
1115 | fprintf(stderr, " pools:\n" ); |
1116 | for (i = 0; i < DSA_NUM_SIZE_CLASSES; ++i) |
1117 | { |
1118 | bool found = false; |
1119 | |
1120 | LWLockAcquire(DSA_SCLASS_LOCK(area, i), LW_EXCLUSIVE); |
1121 | for (j = 0; j < DSA_FULLNESS_CLASSES; ++j) |
1122 | if (DsaPointerIsValid(area->control->pools[i].spans[j])) |
1123 | found = true; |
1124 | if (found) |
1125 | { |
1126 | if (i == DSA_SCLASS_BLOCK_OF_SPANS) |
1127 | fprintf(stderr, " pool for blocks of span objects:\n" ); |
1128 | else if (i == DSA_SCLASS_SPAN_LARGE) |
1129 | fprintf(stderr, " pool for large object spans:\n" ); |
1130 | else |
1131 | fprintf(stderr, |
1132 | " pool for size class %zu (object size %hu bytes):\n" , |
1133 | i, dsa_size_classes[i]); |
1134 | for (j = 0; j < DSA_FULLNESS_CLASSES; ++j) |
1135 | { |
1136 | if (!DsaPointerIsValid(area->control->pools[i].spans[j])) |
1137 | fprintf(stderr, " fullness class %zu is empty\n" , j); |
1138 | else |
1139 | { |
1140 | dsa_pointer span_pointer = area->control->pools[i].spans[j]; |
1141 | |
1142 | fprintf(stderr, " fullness class %zu:\n" , j); |
1143 | while (DsaPointerIsValid(span_pointer)) |
1144 | { |
1145 | dsa_area_span *span; |
1146 | |
1147 | span = dsa_get_address(area, span_pointer); |
1148 | fprintf(stderr, |
1149 | " span descriptor at " |
1150 | DSA_POINTER_FORMAT ", superblock at " |
1151 | DSA_POINTER_FORMAT |
1152 | ", pages = %zu, objects free = %hu/%hu\n" , |
1153 | span_pointer, span->start, span->npages, |
1154 | span->nallocatable, span->nmax); |
1155 | span_pointer = span->nextspan; |
1156 | } |
1157 | } |
1158 | } |
1159 | } |
1160 | LWLockRelease(DSA_SCLASS_LOCK(area, i)); |
1161 | } |
1162 | } |
1163 | |
1164 | /* |
1165 | * Return the smallest size that you can successfully provide to |
1166 | * dsa_create_in_place. |
1167 | */ |
1168 | size_t |
1169 | dsa_minimum_size(void) |
1170 | { |
1171 | size_t size; |
1172 | int pages = 0; |
1173 | |
1174 | size = MAXALIGN(sizeof(dsa_area_control)) + |
1175 | MAXALIGN(sizeof(FreePageManager)); |
1176 | |
1177 | /* Figure out how many pages we need, including the page map... */ |
1178 | while (((size + FPM_PAGE_SIZE - 1) / FPM_PAGE_SIZE) > pages) |
1179 | { |
1180 | ++pages; |
1181 | size += sizeof(dsa_pointer); |
1182 | } |
1183 | |
1184 | return pages * FPM_PAGE_SIZE; |
1185 | } |
1186 | |
1187 | /* |
1188 | * Workhorse function for dsa_create and dsa_create_in_place. |
1189 | */ |
1190 | static dsa_area * |
1191 | create_internal(void *place, size_t size, |
1192 | int tranche_id, |
1193 | dsm_handle control_handle, |
1194 | dsm_segment *control_segment) |
1195 | { |
1196 | dsa_area_control *control; |
1197 | dsa_area *area; |
1198 | dsa_segment_map *segment_map; |
1199 | size_t usable_pages; |
1200 | size_t total_pages; |
1201 | size_t metadata_bytes; |
1202 | int i; |
1203 | |
1204 | /* Sanity check on the space we have to work in. */ |
1205 | if (size < dsa_minimum_size()) |
1206 | elog(ERROR, "dsa_area space must be at least %zu, but %zu provided" , |
1207 | dsa_minimum_size(), size); |
1208 | |
1209 | /* Now figure out how much space is usable */ |
1210 | total_pages = size / FPM_PAGE_SIZE; |
1211 | metadata_bytes = |
1212 | MAXALIGN(sizeof(dsa_area_control)) + |
1213 | MAXALIGN(sizeof(FreePageManager)) + |
1214 | total_pages * sizeof(dsa_pointer); |
1215 | /* Add padding up to next page boundary. */ |
1216 | if (metadata_bytes % FPM_PAGE_SIZE != 0) |
1217 | metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE); |
1218 | Assert(metadata_bytes <= size); |
1219 | usable_pages = (size - metadata_bytes) / FPM_PAGE_SIZE; |
1220 | |
1221 | /* |
1222 | * Initialize the dsa_area_control object located at the start of the |
1223 | * space. |
1224 | */ |
1225 | control = (dsa_area_control *) place; |
1226 | control->segment_header.magic = |
1227 | DSA_SEGMENT_HEADER_MAGIC ^ control_handle ^ 0; |
1228 | control->segment_header.next = DSA_SEGMENT_INDEX_NONE; |
1229 | control->segment_header.prev = DSA_SEGMENT_INDEX_NONE; |
1230 | control->segment_header.usable_pages = usable_pages; |
1231 | control->segment_header.freed = false; |
1232 | control->segment_header.size = DSA_INITIAL_SEGMENT_SIZE; |
1233 | control->handle = control_handle; |
1234 | control->max_total_segment_size = (size_t) -1; |
1235 | control->total_segment_size = size; |
1236 | memset(&control->segment_handles[0], 0, |
1237 | sizeof(dsm_handle) * DSA_MAX_SEGMENTS); |
1238 | control->segment_handles[0] = control_handle; |
1239 | for (i = 0; i < DSA_NUM_SEGMENT_BINS; ++i) |
1240 | control->segment_bins[i] = DSA_SEGMENT_INDEX_NONE; |
1241 | control->high_segment_index = 0; |
1242 | control->refcnt = 1; |
1243 | control->freed_segment_counter = 0; |
1244 | control->lwlock_tranche_id = tranche_id; |
1245 | |
1246 | /* |
1247 | * Create the dsa_area object that this backend will use to access the |
1248 | * area. Other backends will need to obtain their own dsa_area object by |
1249 | * attaching. |
1250 | */ |
1251 | area = palloc(sizeof(dsa_area)); |
1252 | area->control = control; |
1253 | area->mapping_pinned = false; |
1254 | memset(area->segment_maps, 0, sizeof(dsa_segment_map) * DSA_MAX_SEGMENTS); |
1255 | area->high_segment_index = 0; |
1256 | area->freed_segment_counter = 0; |
1257 | LWLockInitialize(&control->lock, control->lwlock_tranche_id); |
1258 | for (i = 0; i < DSA_NUM_SIZE_CLASSES; ++i) |
1259 | LWLockInitialize(DSA_SCLASS_LOCK(area, i), |
1260 | control->lwlock_tranche_id); |
1261 | |
1262 | /* Set up the segment map for this process's mapping. */ |
1263 | segment_map = &area->segment_maps[0]; |
1264 | segment_map->segment = control_segment; |
1265 | segment_map->mapped_address = place; |
1266 | segment_map->header = (dsa_segment_header *) place; |
1267 | segment_map->fpm = (FreePageManager *) |
1268 | (segment_map->mapped_address + |
1269 | MAXALIGN(sizeof(dsa_area_control))); |
1270 | segment_map->pagemap = (dsa_pointer *) |
1271 | (segment_map->mapped_address + |
1272 | MAXALIGN(sizeof(dsa_area_control)) + |
1273 | MAXALIGN(sizeof(FreePageManager))); |
1274 | |
1275 | /* Set up the free page map. */ |
1276 | FreePageManagerInitialize(segment_map->fpm, segment_map->mapped_address); |
1277 | /* There can be 0 usable pages if size is dsa_minimum_size(). */ |
1278 | |
1279 | if (usable_pages > 0) |
1280 | FreePageManagerPut(segment_map->fpm, metadata_bytes / FPM_PAGE_SIZE, |
1281 | usable_pages); |
1282 | |
1283 | /* Put this segment into the appropriate bin. */ |
1284 | control->segment_bins[contiguous_pages_to_segment_bin(usable_pages)] = 0; |
1285 | segment_map->header->bin = contiguous_pages_to_segment_bin(usable_pages); |
1286 | |
1287 | return area; |
1288 | } |
1289 | |
1290 | /* |
1291 | * Workhorse function for dsa_attach and dsa_attach_in_place. |
1292 | */ |
1293 | static dsa_area * |
1294 | attach_internal(void *place, dsm_segment *segment, dsa_handle handle) |
1295 | { |
1296 | dsa_area_control *control; |
1297 | dsa_area *area; |
1298 | dsa_segment_map *segment_map; |
1299 | |
1300 | control = (dsa_area_control *) place; |
1301 | Assert(control->handle == handle); |
1302 | Assert(control->segment_handles[0] == handle); |
1303 | Assert(control->segment_header.magic == |
1304 | (DSA_SEGMENT_HEADER_MAGIC ^ handle ^ 0)); |
1305 | |
1306 | /* Build the backend-local area object. */ |
1307 | area = palloc(sizeof(dsa_area)); |
1308 | area->control = control; |
1309 | area->mapping_pinned = false; |
1310 | memset(&area->segment_maps[0], 0, |
1311 | sizeof(dsa_segment_map) * DSA_MAX_SEGMENTS); |
1312 | area->high_segment_index = 0; |
1313 | |
1314 | /* Set up the segment map for this process's mapping. */ |
1315 | segment_map = &area->segment_maps[0]; |
1316 | segment_map->segment = segment; /* NULL for in-place */ |
1317 | segment_map->mapped_address = place; |
1318 | segment_map->header = (dsa_segment_header *) segment_map->mapped_address; |
1319 | segment_map->fpm = (FreePageManager *) |
1320 | (segment_map->mapped_address + MAXALIGN(sizeof(dsa_area_control))); |
1321 | segment_map->pagemap = (dsa_pointer *) |
1322 | (segment_map->mapped_address + MAXALIGN(sizeof(dsa_area_control)) + |
1323 | MAXALIGN(sizeof(FreePageManager))); |
1324 | |
1325 | /* Bump the reference count. */ |
1326 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
1327 | if (control->refcnt == 0) |
1328 | { |
1329 | /* We can't attach to a DSA area that has already been destroyed. */ |
1330 | ereport(ERROR, |
1331 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
1332 | errmsg("could not attach to dynamic shared area" ))); |
1333 | } |
1334 | ++control->refcnt; |
1335 | area->freed_segment_counter = area->control->freed_segment_counter; |
1336 | LWLockRelease(DSA_AREA_LOCK(area)); |
1337 | |
1338 | return area; |
1339 | } |
1340 | |
1341 | /* |
1342 | * Add a new span to fullness class 1 of the indicated pool. |
1343 | */ |
1344 | static void |
1345 | init_span(dsa_area *area, |
1346 | dsa_pointer span_pointer, |
1347 | dsa_area_pool *pool, dsa_pointer start, size_t npages, |
1348 | uint16 size_class) |
1349 | { |
1350 | dsa_area_span *span = dsa_get_address(area, span_pointer); |
1351 | size_t obsize = dsa_size_classes[size_class]; |
1352 | |
1353 | /* |
1354 | * The per-pool lock must be held because we manipulate the span list for |
1355 | * this pool. |
1356 | */ |
1357 | Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class))); |
1358 | |
1359 | /* Push this span onto the front of the span list for fullness class 1. */ |
1360 | if (DsaPointerIsValid(pool->spans[1])) |
1361 | { |
1362 | dsa_area_span *head = (dsa_area_span *) |
1363 | dsa_get_address(area, pool->spans[1]); |
1364 | |
1365 | head->prevspan = span_pointer; |
1366 | } |
1367 | span->pool = DsaAreaPoolToDsaPointer(area, pool); |
1368 | span->nextspan = pool->spans[1]; |
1369 | span->prevspan = InvalidDsaPointer; |
1370 | pool->spans[1] = span_pointer; |
1371 | |
1372 | span->start = start; |
1373 | span->npages = npages; |
1374 | span->size_class = size_class; |
1375 | span->ninitialized = 0; |
1376 | if (size_class == DSA_SCLASS_BLOCK_OF_SPANS) |
1377 | { |
1378 | /* |
1379 | * A block-of-spans contains its own descriptor, so mark one object as |
1380 | * initialized and reduce the count of allocatable objects by one. |
1381 | * Doing this here has the side effect of also reducing nmax by one, |
1382 | * which is important to make sure we free this object at the correct |
1383 | * time. |
1384 | */ |
1385 | span->ninitialized = 1; |
1386 | span->nallocatable = FPM_PAGE_SIZE / obsize - 1; |
1387 | } |
1388 | else if (size_class != DSA_SCLASS_SPAN_LARGE) |
1389 | span->nallocatable = DSA_SUPERBLOCK_SIZE / obsize; |
1390 | span->firstfree = DSA_SPAN_NOTHING_FREE; |
1391 | span->nmax = span->nallocatable; |
1392 | span->fclass = 1; |
1393 | } |
1394 | |
1395 | /* |
1396 | * Transfer the first span in one fullness class to the head of another |
1397 | * fullness class. |
1398 | */ |
1399 | static bool |
1400 | transfer_first_span(dsa_area *area, |
1401 | dsa_area_pool *pool, int fromclass, int toclass) |
1402 | { |
1403 | dsa_pointer span_pointer; |
1404 | dsa_area_span *span; |
1405 | dsa_area_span *nextspan; |
1406 | |
1407 | /* Can't do it if source list is empty. */ |
1408 | span_pointer = pool->spans[fromclass]; |
1409 | if (!DsaPointerIsValid(span_pointer)) |
1410 | return false; |
1411 | |
1412 | /* Remove span from head of source list. */ |
1413 | span = dsa_get_address(area, span_pointer); |
1414 | pool->spans[fromclass] = span->nextspan; |
1415 | if (DsaPointerIsValid(span->nextspan)) |
1416 | { |
1417 | nextspan = (dsa_area_span *) |
1418 | dsa_get_address(area, span->nextspan); |
1419 | nextspan->prevspan = InvalidDsaPointer; |
1420 | } |
1421 | |
1422 | /* Add span to head of target list. */ |
1423 | span->nextspan = pool->spans[toclass]; |
1424 | pool->spans[toclass] = span_pointer; |
1425 | if (DsaPointerIsValid(span->nextspan)) |
1426 | { |
1427 | nextspan = (dsa_area_span *) |
1428 | dsa_get_address(area, span->nextspan); |
1429 | nextspan->prevspan = span_pointer; |
1430 | } |
1431 | span->fclass = toclass; |
1432 | |
1433 | return true; |
1434 | } |
1435 | |
1436 | /* |
1437 | * Allocate one object of the requested size class from the given area. |
1438 | */ |
1439 | static inline dsa_pointer |
1440 | alloc_object(dsa_area *area, int size_class) |
1441 | { |
1442 | dsa_area_pool *pool = &area->control->pools[size_class]; |
1443 | dsa_area_span *span; |
1444 | dsa_pointer block; |
1445 | dsa_pointer result; |
1446 | char *object; |
1447 | size_t size; |
1448 | |
1449 | /* |
1450 | * Even though ensure_active_superblock can in turn call alloc_object if |
1451 | * it needs to allocate a new span, that's always from a different pool, |
1452 | * and the order of lock acquisition is always the same, so it's OK that |
1453 | * we hold this lock for the duration of this function. |
1454 | */ |
1455 | Assert(!LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class))); |
1456 | LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE); |
1457 | |
1458 | /* |
1459 | * If there's no active superblock, we must successfully obtain one or |
1460 | * fail the request. |
1461 | */ |
1462 | if (!DsaPointerIsValid(pool->spans[1]) && |
1463 | !ensure_active_superblock(area, pool, size_class)) |
1464 | { |
1465 | result = InvalidDsaPointer; |
1466 | } |
1467 | else |
1468 | { |
1469 | /* |
1470 | * There should be a block in fullness class 1 at this point, and it |
1471 | * should never be completely full. Thus we can either pop an object |
1472 | * from the free list or, failing that, initialize a new object. |
1473 | */ |
1474 | Assert(DsaPointerIsValid(pool->spans[1])); |
1475 | span = (dsa_area_span *) |
1476 | dsa_get_address(area, pool->spans[1]); |
1477 | Assert(span->nallocatable > 0); |
1478 | block = span->start; |
1479 | Assert(size_class < DSA_NUM_SIZE_CLASSES); |
1480 | size = dsa_size_classes[size_class]; |
1481 | if (span->firstfree != DSA_SPAN_NOTHING_FREE) |
1482 | { |
1483 | result = block + span->firstfree * size; |
1484 | object = dsa_get_address(area, result); |
1485 | span->firstfree = NextFreeObjectIndex(object); |
1486 | } |
1487 | else |
1488 | { |
1489 | result = block + span->ninitialized * size; |
1490 | ++span->ninitialized; |
1491 | } |
1492 | --span->nallocatable; |
1493 | |
1494 | /* If it's now full, move it to the highest-numbered fullness class. */ |
1495 | if (span->nallocatable == 0) |
1496 | transfer_first_span(area, pool, 1, DSA_FULLNESS_CLASSES - 1); |
1497 | } |
1498 | |
1499 | Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class))); |
1500 | LWLockRelease(DSA_SCLASS_LOCK(area, size_class)); |
1501 | |
1502 | return result; |
1503 | } |
1504 | |
1505 | /* |
1506 | * Ensure an active (i.e. fullness class 1) superblock, unless all existing |
1507 | * superblocks are completely full and no more can be allocated. |
1508 | * |
1509 | * Fullness classes K of 0..N are loosely intended to represent blocks whose |
1510 | * utilization percentage is at least K/N, but we only enforce this rigorously |
1511 | * for the highest-numbered fullness class, which always contains exactly |
1512 | * those blocks that are completely full. It's otherwise acceptable for a |
1513 | * block to be in a higher-numbered fullness class than the one to which it |
1514 | * logically belongs. In addition, the active block, which is always the |
1515 | * first block in fullness class 1, is permitted to have a higher allocation |
1516 | * percentage than would normally be allowable for that fullness class; we |
1517 | * don't move it until it's completely full, and then it goes to the |
1518 | * highest-numbered fullness class. |
1519 | * |
1520 | * It might seem odd that the active block is the head of fullness class 1 |
1521 | * rather than fullness class 0, but experience with other allocators has |
1522 | * shown that it's usually better to allocate from a block that's moderately |
1523 | * full rather than one that's nearly empty. Insofar as is reasonably |
1524 | * possible, we want to avoid performing new allocations in a block that would |
1525 | * otherwise become empty soon. |
1526 | */ |
1527 | static bool |
1528 | ensure_active_superblock(dsa_area *area, dsa_area_pool *pool, |
1529 | int size_class) |
1530 | { |
1531 | dsa_pointer span_pointer; |
1532 | dsa_pointer start_pointer; |
1533 | size_t obsize = dsa_size_classes[size_class]; |
1534 | size_t nmax; |
1535 | int fclass; |
1536 | size_t npages = 1; |
1537 | size_t first_page; |
1538 | size_t i; |
1539 | dsa_segment_map *segment_map; |
1540 | |
1541 | Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class))); |
1542 | |
1543 | /* |
1544 | * Compute the number of objects that will fit in a block of this size |
1545 | * class. Span-of-spans blocks are just a single page, and the first |
1546 | * object isn't available for use because it describes the block-of-spans |
1547 | * itself. |
1548 | */ |
1549 | if (size_class == DSA_SCLASS_BLOCK_OF_SPANS) |
1550 | nmax = FPM_PAGE_SIZE / obsize - 1; |
1551 | else |
1552 | nmax = DSA_SUPERBLOCK_SIZE / obsize; |
1553 | |
1554 | /* |
1555 | * If fullness class 1 is empty, try to find a span to put in it by |
1556 | * scanning higher-numbered fullness classes (excluding the last one, |
1557 | * whose blocks are certain to all be completely full). |
1558 | */ |
1559 | for (fclass = 2; fclass < DSA_FULLNESS_CLASSES - 1; ++fclass) |
1560 | { |
1561 | span_pointer = pool->spans[fclass]; |
1562 | |
1563 | while (DsaPointerIsValid(span_pointer)) |
1564 | { |
1565 | int tfclass; |
1566 | dsa_area_span *span; |
1567 | dsa_area_span *nextspan; |
1568 | dsa_area_span *prevspan; |
1569 | dsa_pointer next_span_pointer; |
1570 | |
1571 | span = (dsa_area_span *) |
1572 | dsa_get_address(area, span_pointer); |
1573 | next_span_pointer = span->nextspan; |
1574 | |
1575 | /* Figure out what fullness class should contain this span. */ |
1576 | tfclass = (nmax - span->nallocatable) |
1577 | * (DSA_FULLNESS_CLASSES - 1) / nmax; |
1578 | |
1579 | /* Look up next span. */ |
1580 | if (DsaPointerIsValid(span->nextspan)) |
1581 | nextspan = (dsa_area_span *) |
1582 | dsa_get_address(area, span->nextspan); |
1583 | else |
1584 | nextspan = NULL; |
1585 | |
1586 | /* |
1587 | * If utilization has dropped enough that this now belongs in some |
1588 | * other fullness class, move it there. |
1589 | */ |
1590 | if (tfclass < fclass) |
1591 | { |
1592 | /* Remove from the current fullness class list. */ |
1593 | if (pool->spans[fclass] == span_pointer) |
1594 | { |
1595 | /* It was the head; remove it. */ |
1596 | Assert(!DsaPointerIsValid(span->prevspan)); |
1597 | pool->spans[fclass] = span->nextspan; |
1598 | if (nextspan != NULL) |
1599 | nextspan->prevspan = InvalidDsaPointer; |
1600 | } |
1601 | else |
1602 | { |
1603 | /* It was not the head. */ |
1604 | Assert(DsaPointerIsValid(span->prevspan)); |
1605 | prevspan = (dsa_area_span *) |
1606 | dsa_get_address(area, span->prevspan); |
1607 | prevspan->nextspan = span->nextspan; |
1608 | } |
1609 | if (nextspan != NULL) |
1610 | nextspan->prevspan = span->prevspan; |
1611 | |
1612 | /* Push onto the head of the new fullness class list. */ |
1613 | span->nextspan = pool->spans[tfclass]; |
1614 | pool->spans[tfclass] = span_pointer; |
1615 | span->prevspan = InvalidDsaPointer; |
1616 | if (DsaPointerIsValid(span->nextspan)) |
1617 | { |
1618 | nextspan = (dsa_area_span *) |
1619 | dsa_get_address(area, span->nextspan); |
1620 | nextspan->prevspan = span_pointer; |
1621 | } |
1622 | span->fclass = tfclass; |
1623 | } |
1624 | |
1625 | /* Advance to next span on list. */ |
1626 | span_pointer = next_span_pointer; |
1627 | } |
1628 | |
1629 | /* Stop now if we found a suitable block. */ |
1630 | if (DsaPointerIsValid(pool->spans[1])) |
1631 | return true; |
1632 | } |
1633 | |
1634 | /* |
1635 | * If there are no blocks that properly belong in fullness class 1, pick |
1636 | * one from some other fullness class and move it there anyway, so that we |
1637 | * have an allocation target. Our last choice is to transfer a block |
1638 | * that's almost empty (and might become completely empty soon if left |
1639 | * alone), but even that is better than failing, which is what we must do |
1640 | * if there are no blocks at all with freespace. |
1641 | */ |
1642 | Assert(!DsaPointerIsValid(pool->spans[1])); |
1643 | for (fclass = 2; fclass < DSA_FULLNESS_CLASSES - 1; ++fclass) |
1644 | if (transfer_first_span(area, pool, fclass, 1)) |
1645 | return true; |
1646 | if (!DsaPointerIsValid(pool->spans[1]) && |
1647 | transfer_first_span(area, pool, 0, 1)) |
1648 | return true; |
1649 | |
1650 | /* |
1651 | * We failed to find an existing span with free objects, so we need to |
1652 | * allocate a new superblock and construct a new span to manage it. |
1653 | * |
1654 | * First, get a dsa_area_span object to describe the new superblock block |
1655 | * ... unless this allocation is for a dsa_area_span object, in which case |
1656 | * that's surely not going to work. We handle that case by storing the |
1657 | * span describing a block-of-spans inline. |
1658 | */ |
1659 | if (size_class != DSA_SCLASS_BLOCK_OF_SPANS) |
1660 | { |
1661 | span_pointer = alloc_object(area, DSA_SCLASS_BLOCK_OF_SPANS); |
1662 | if (!DsaPointerIsValid(span_pointer)) |
1663 | return false; |
1664 | npages = DSA_PAGES_PER_SUPERBLOCK; |
1665 | } |
1666 | |
1667 | /* Find or create a segment and allocate the superblock. */ |
1668 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
1669 | segment_map = get_best_segment(area, npages); |
1670 | if (segment_map == NULL) |
1671 | { |
1672 | segment_map = make_new_segment(area, npages); |
1673 | if (segment_map == NULL) |
1674 | { |
1675 | LWLockRelease(DSA_AREA_LOCK(area)); |
1676 | return false; |
1677 | } |
1678 | } |
1679 | |
1680 | /* |
1681 | * This shouldn't happen: get_best_segment() or make_new_segment() |
1682 | * promised that we can successfully allocate npages. |
1683 | */ |
1684 | if (!FreePageManagerGet(segment_map->fpm, npages, &first_page)) |
1685 | elog(FATAL, |
1686 | "dsa_allocate could not find %zu free pages for superblock" , |
1687 | npages); |
1688 | LWLockRelease(DSA_AREA_LOCK(area)); |
1689 | |
1690 | /* Compute the start of the superblock. */ |
1691 | start_pointer = |
1692 | DSA_MAKE_POINTER(get_segment_index(area, segment_map), |
1693 | first_page * FPM_PAGE_SIZE); |
1694 | |
1695 | /* |
1696 | * If this is a block-of-spans, carve the descriptor right out of the |
1697 | * allocated space. |
1698 | */ |
1699 | if (size_class == DSA_SCLASS_BLOCK_OF_SPANS) |
1700 | { |
1701 | /* |
1702 | * We have a pointer into the segment. We need to build a dsa_pointer |
1703 | * from the segment index and offset into the segment. |
1704 | */ |
1705 | span_pointer = start_pointer; |
1706 | } |
1707 | |
1708 | /* Initialize span and pagemap. */ |
1709 | init_span(area, span_pointer, pool, start_pointer, npages, size_class); |
1710 | for (i = 0; i < npages; ++i) |
1711 | segment_map->pagemap[first_page + i] = span_pointer; |
1712 | |
1713 | return true; |
1714 | } |
1715 | |
1716 | /* |
1717 | * Return the segment map corresponding to a given segment index, mapping the |
1718 | * segment in if necessary. For internal segment book-keeping, this is called |
1719 | * with the area lock held. It is also called by dsa_free and dsa_get_address |
1720 | * without any locking, relying on the fact they have a known live segment |
1721 | * index and they always call check_for_freed_segments to ensures that any |
1722 | * freed segment occupying the same slot is detached first. |
1723 | */ |
1724 | static dsa_segment_map * |
1725 | get_segment_by_index(dsa_area *area, dsa_segment_index index) |
1726 | { |
1727 | if (unlikely(area->segment_maps[index].mapped_address == NULL)) |
1728 | { |
1729 | dsm_handle handle; |
1730 | dsm_segment *segment; |
1731 | dsa_segment_map *segment_map; |
1732 | |
1733 | /* |
1734 | * If we are reached by dsa_free or dsa_get_address, there must be at |
1735 | * least one object allocated in the referenced segment. Otherwise, |
1736 | * their caller has a double-free or access-after-free bug, which we |
1737 | * have no hope of detecting. So we know it's safe to access this |
1738 | * array slot without holding a lock; it won't change underneath us. |
1739 | * Furthermore, we know that we can see the latest contents of the |
1740 | * slot, as explained in check_for_freed_segments, which those |
1741 | * functions call before arriving here. |
1742 | */ |
1743 | handle = area->control->segment_handles[index]; |
1744 | |
1745 | /* It's an error to try to access an unused slot. */ |
1746 | if (handle == DSM_HANDLE_INVALID) |
1747 | elog(ERROR, |
1748 | "dsa_area could not attach to a segment that has been freed" ); |
1749 | |
1750 | segment = dsm_attach(handle); |
1751 | if (segment == NULL) |
1752 | elog(ERROR, "dsa_area could not attach to segment" ); |
1753 | if (area->mapping_pinned) |
1754 | dsm_pin_mapping(segment); |
1755 | segment_map = &area->segment_maps[index]; |
1756 | segment_map->segment = segment; |
1757 | segment_map->mapped_address = dsm_segment_address(segment); |
1758 | segment_map->header = |
1759 | (dsa_segment_header *) segment_map->mapped_address; |
1760 | segment_map->fpm = (FreePageManager *) |
1761 | (segment_map->mapped_address + |
1762 | MAXALIGN(sizeof(dsa_segment_header))); |
1763 | segment_map->pagemap = (dsa_pointer *) |
1764 | (segment_map->mapped_address + |
1765 | MAXALIGN(sizeof(dsa_segment_header)) + |
1766 | MAXALIGN(sizeof(FreePageManager))); |
1767 | |
1768 | /* Remember the highest index this backend has ever mapped. */ |
1769 | if (area->high_segment_index < index) |
1770 | area->high_segment_index = index; |
1771 | |
1772 | Assert(segment_map->header->magic == |
1773 | (DSA_SEGMENT_HEADER_MAGIC ^ area->control->handle ^ index)); |
1774 | } |
1775 | |
1776 | /* |
1777 | * Callers of dsa_get_address() and dsa_free() don't hold the area lock, |
1778 | * but it's a bug in the calling code and undefined behavior if the |
1779 | * address is not live (ie if the segment might possibly have been freed, |
1780 | * they're trying to use a dangling pointer). |
1781 | * |
1782 | * For dsa.c code that holds the area lock to manipulate segment_bins |
1783 | * lists, it would be a bug if we ever reach a freed segment here. After |
1784 | * it's marked as freed, the only thing any backend should do with it is |
1785 | * unmap it, and it should always have done that in |
1786 | * check_for_freed_segments_locked() before arriving here to resolve an |
1787 | * index to a segment_map. |
1788 | * |
1789 | * Either way we can assert that we aren't returning a freed segment. |
1790 | */ |
1791 | Assert(!area->segment_maps[index].header->freed); |
1792 | |
1793 | return &area->segment_maps[index]; |
1794 | } |
1795 | |
1796 | /* |
1797 | * Return a superblock to the free page manager. If the underlying segment |
1798 | * has become entirely free, then return it to the operating system. |
1799 | * |
1800 | * The appropriate pool lock must be held. |
1801 | */ |
1802 | static void |
1803 | destroy_superblock(dsa_area *area, dsa_pointer span_pointer) |
1804 | { |
1805 | dsa_area_span *span = dsa_get_address(area, span_pointer); |
1806 | int size_class = span->size_class; |
1807 | dsa_segment_map *segment_map; |
1808 | |
1809 | |
1810 | /* Remove it from its fullness class list. */ |
1811 | unlink_span(area, span); |
1812 | |
1813 | /* |
1814 | * Note: Here we acquire the area lock while we already hold a per-pool |
1815 | * lock. We never hold the area lock and then take a pool lock, or we |
1816 | * could deadlock. |
1817 | */ |
1818 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
1819 | check_for_freed_segments_locked(area); |
1820 | segment_map = |
1821 | get_segment_by_index(area, DSA_EXTRACT_SEGMENT_NUMBER(span->start)); |
1822 | FreePageManagerPut(segment_map->fpm, |
1823 | DSA_EXTRACT_OFFSET(span->start) / FPM_PAGE_SIZE, |
1824 | span->npages); |
1825 | /* Check if the segment is now entirely free. */ |
1826 | if (fpm_largest(segment_map->fpm) == segment_map->header->usable_pages) |
1827 | { |
1828 | dsa_segment_index index = get_segment_index(area, segment_map); |
1829 | |
1830 | /* If it's not the segment with extra control data, free it. */ |
1831 | if (index != 0) |
1832 | { |
1833 | /* |
1834 | * Give it back to the OS, and allow other backends to detect that |
1835 | * they need to detach. |
1836 | */ |
1837 | unlink_segment(area, segment_map); |
1838 | segment_map->header->freed = true; |
1839 | Assert(area->control->total_segment_size >= |
1840 | segment_map->header->size); |
1841 | area->control->total_segment_size -= |
1842 | segment_map->header->size; |
1843 | dsm_unpin_segment(dsm_segment_handle(segment_map->segment)); |
1844 | dsm_detach(segment_map->segment); |
1845 | area->control->segment_handles[index] = DSM_HANDLE_INVALID; |
1846 | ++area->control->freed_segment_counter; |
1847 | segment_map->segment = NULL; |
1848 | segment_map->header = NULL; |
1849 | segment_map->mapped_address = NULL; |
1850 | } |
1851 | } |
1852 | LWLockRelease(DSA_AREA_LOCK(area)); |
1853 | |
1854 | /* |
1855 | * Span-of-spans blocks store the span which describes them within the |
1856 | * block itself, so freeing the storage implicitly frees the descriptor |
1857 | * also. If this is a block of any other type, we need to separately free |
1858 | * the span object also. This recursive call to dsa_free will acquire the |
1859 | * span pool's lock. We can't deadlock because the acquisition order is |
1860 | * always some other pool and then the span pool. |
1861 | */ |
1862 | if (size_class != DSA_SCLASS_BLOCK_OF_SPANS) |
1863 | dsa_free(area, span_pointer); |
1864 | } |
1865 | |
1866 | static void |
1867 | unlink_span(dsa_area *area, dsa_area_span *span) |
1868 | { |
1869 | if (DsaPointerIsValid(span->nextspan)) |
1870 | { |
1871 | dsa_area_span *next = dsa_get_address(area, span->nextspan); |
1872 | |
1873 | next->prevspan = span->prevspan; |
1874 | } |
1875 | if (DsaPointerIsValid(span->prevspan)) |
1876 | { |
1877 | dsa_area_span *prev = dsa_get_address(area, span->prevspan); |
1878 | |
1879 | prev->nextspan = span->nextspan; |
1880 | } |
1881 | else |
1882 | { |
1883 | dsa_area_pool *pool = dsa_get_address(area, span->pool); |
1884 | |
1885 | pool->spans[span->fclass] = span->nextspan; |
1886 | } |
1887 | } |
1888 | |
1889 | static void |
1890 | add_span_to_fullness_class(dsa_area *area, dsa_area_span *span, |
1891 | dsa_pointer span_pointer, |
1892 | int fclass) |
1893 | { |
1894 | dsa_area_pool *pool = dsa_get_address(area, span->pool); |
1895 | |
1896 | if (DsaPointerIsValid(pool->spans[fclass])) |
1897 | { |
1898 | dsa_area_span *head = dsa_get_address(area, |
1899 | pool->spans[fclass]); |
1900 | |
1901 | head->prevspan = span_pointer; |
1902 | } |
1903 | span->prevspan = InvalidDsaPointer; |
1904 | span->nextspan = pool->spans[fclass]; |
1905 | pool->spans[fclass] = span_pointer; |
1906 | span->fclass = fclass; |
1907 | } |
1908 | |
1909 | /* |
1910 | * Detach from an area that was either created or attached to by this process. |
1911 | */ |
1912 | void |
1913 | dsa_detach(dsa_area *area) |
1914 | { |
1915 | int i; |
1916 | |
1917 | /* Detach from all segments. */ |
1918 | for (i = 0; i <= area->high_segment_index; ++i) |
1919 | if (area->segment_maps[i].segment != NULL) |
1920 | dsm_detach(area->segment_maps[i].segment); |
1921 | |
1922 | /* |
1923 | * Note that 'detaching' (= detaching from DSM segments) doesn't include |
1924 | * 'releasing' (= adjusting the reference count). It would be nice to |
1925 | * combine these operations, but client code might never get around to |
1926 | * calling dsa_detach because of an error path, and a detach hook on any |
1927 | * particular segment is too late to detach other segments in the area |
1928 | * without risking a 'leak' warning in the non-error path. |
1929 | */ |
1930 | |
1931 | /* Free the backend-local area object. */ |
1932 | pfree(area); |
1933 | } |
1934 | |
1935 | /* |
1936 | * Unlink a segment from the bin that contains it. |
1937 | */ |
1938 | static void |
1939 | unlink_segment(dsa_area *area, dsa_segment_map *segment_map) |
1940 | { |
1941 | if (segment_map->header->prev != DSA_SEGMENT_INDEX_NONE) |
1942 | { |
1943 | dsa_segment_map *prev; |
1944 | |
1945 | prev = get_segment_by_index(area, segment_map->header->prev); |
1946 | prev->header->next = segment_map->header->next; |
1947 | } |
1948 | else |
1949 | { |
1950 | Assert(area->control->segment_bins[segment_map->header->bin] == |
1951 | get_segment_index(area, segment_map)); |
1952 | area->control->segment_bins[segment_map->header->bin] = |
1953 | segment_map->header->next; |
1954 | } |
1955 | if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE) |
1956 | { |
1957 | dsa_segment_map *next; |
1958 | |
1959 | next = get_segment_by_index(area, segment_map->header->next); |
1960 | next->header->prev = segment_map->header->prev; |
1961 | } |
1962 | } |
1963 | |
1964 | /* |
1965 | * Find a segment that could satisfy a request for 'npages' of contiguous |
1966 | * memory, or return NULL if none can be found. This may involve attaching to |
1967 | * segments that weren't previously attached so that we can query their free |
1968 | * pages map. |
1969 | */ |
1970 | static dsa_segment_map * |
1971 | get_best_segment(dsa_area *area, size_t npages) |
1972 | { |
1973 | size_t bin; |
1974 | |
1975 | Assert(LWLockHeldByMe(DSA_AREA_LOCK(area))); |
1976 | check_for_freed_segments_locked(area); |
1977 | |
1978 | /* |
1979 | * Start searching from the first bin that *might* have enough contiguous |
1980 | * pages. |
1981 | */ |
1982 | for (bin = contiguous_pages_to_segment_bin(npages); |
1983 | bin < DSA_NUM_SEGMENT_BINS; |
1984 | ++bin) |
1985 | { |
1986 | /* |
1987 | * The minimum contiguous size that any segment in this bin should |
1988 | * have. We'll re-bin if we see segments with fewer. |
1989 | */ |
1990 | size_t threshold = (size_t) 1 << (bin - 1); |
1991 | dsa_segment_index segment_index; |
1992 | |
1993 | /* Search this bin for a segment with enough contiguous space. */ |
1994 | segment_index = area->control->segment_bins[bin]; |
1995 | while (segment_index != DSA_SEGMENT_INDEX_NONE) |
1996 | { |
1997 | dsa_segment_map *segment_map; |
1998 | dsa_segment_index next_segment_index; |
1999 | size_t contiguous_pages; |
2000 | |
2001 | segment_map = get_segment_by_index(area, segment_index); |
2002 | next_segment_index = segment_map->header->next; |
2003 | contiguous_pages = fpm_largest(segment_map->fpm); |
2004 | |
2005 | /* Not enough for the request, still enough for this bin. */ |
2006 | if (contiguous_pages >= threshold && contiguous_pages < npages) |
2007 | { |
2008 | segment_index = next_segment_index; |
2009 | continue; |
2010 | } |
2011 | |
2012 | /* Re-bin it if it's no longer in the appropriate bin. */ |
2013 | if (contiguous_pages < threshold) |
2014 | { |
2015 | size_t new_bin; |
2016 | |
2017 | new_bin = contiguous_pages_to_segment_bin(contiguous_pages); |
2018 | |
2019 | /* Remove it from its current bin. */ |
2020 | unlink_segment(area, segment_map); |
2021 | |
2022 | /* Push it onto the front of its new bin. */ |
2023 | segment_map->header->prev = DSA_SEGMENT_INDEX_NONE; |
2024 | segment_map->header->next = |
2025 | area->control->segment_bins[new_bin]; |
2026 | segment_map->header->bin = new_bin; |
2027 | area->control->segment_bins[new_bin] = segment_index; |
2028 | if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE) |
2029 | { |
2030 | dsa_segment_map *next; |
2031 | |
2032 | next = get_segment_by_index(area, |
2033 | segment_map->header->next); |
2034 | Assert(next->header->bin == new_bin); |
2035 | next->header->prev = segment_index; |
2036 | } |
2037 | |
2038 | /* |
2039 | * But fall through to see if it's enough to satisfy this |
2040 | * request anyway.... |
2041 | */ |
2042 | } |
2043 | |
2044 | /* Check if we are done. */ |
2045 | if (contiguous_pages >= npages) |
2046 | return segment_map; |
2047 | |
2048 | /* Continue searching the same bin. */ |
2049 | segment_index = next_segment_index; |
2050 | } |
2051 | } |
2052 | |
2053 | /* Not found. */ |
2054 | return NULL; |
2055 | } |
2056 | |
2057 | /* |
2058 | * Create a new segment that can handle at least requested_pages. Returns |
2059 | * NULL if the requested total size limit or maximum allowed number of |
2060 | * segments would be exceeded. |
2061 | */ |
2062 | static dsa_segment_map * |
2063 | make_new_segment(dsa_area *area, size_t requested_pages) |
2064 | { |
2065 | dsa_segment_index new_index; |
2066 | size_t metadata_bytes; |
2067 | size_t total_size; |
2068 | size_t total_pages; |
2069 | size_t usable_pages; |
2070 | dsa_segment_map *segment_map; |
2071 | dsm_segment *segment; |
2072 | |
2073 | Assert(LWLockHeldByMe(DSA_AREA_LOCK(area))); |
2074 | |
2075 | /* Find a segment slot that is not in use (linearly for now). */ |
2076 | for (new_index = 1; new_index < DSA_MAX_SEGMENTS; ++new_index) |
2077 | { |
2078 | if (area->control->segment_handles[new_index] == DSM_HANDLE_INVALID) |
2079 | break; |
2080 | } |
2081 | if (new_index == DSA_MAX_SEGMENTS) |
2082 | return NULL; |
2083 | |
2084 | /* |
2085 | * If the total size limit is already exceeded, then we exit early and |
2086 | * avoid arithmetic wraparound in the unsigned expressions below. |
2087 | */ |
2088 | if (area->control->total_segment_size >= |
2089 | area->control->max_total_segment_size) |
2090 | return NULL; |
2091 | |
2092 | /* |
2093 | * The size should be at least as big as requested, and at least big |
2094 | * enough to follow a geometric series that approximately doubles the |
2095 | * total storage each time we create a new segment. We use geometric |
2096 | * growth because the underlying DSM system isn't designed for large |
2097 | * numbers of segments (otherwise we might even consider just using one |
2098 | * DSM segment for each large allocation and for each superblock, and then |
2099 | * we wouldn't need to use FreePageManager). |
2100 | * |
2101 | * We decide on a total segment size first, so that we produce tidy |
2102 | * power-of-two sized segments. This is a good property to have if we |
2103 | * move to huge pages in the future. Then we work back to the number of |
2104 | * pages we can fit. |
2105 | */ |
2106 | total_size = DSA_INITIAL_SEGMENT_SIZE * |
2107 | ((size_t) 1 << (new_index / DSA_NUM_SEGMENTS_AT_EACH_SIZE)); |
2108 | total_size = Min(total_size, DSA_MAX_SEGMENT_SIZE); |
2109 | total_size = Min(total_size, |
2110 | area->control->max_total_segment_size - |
2111 | area->control->total_segment_size); |
2112 | |
2113 | total_pages = total_size / FPM_PAGE_SIZE; |
2114 | metadata_bytes = |
2115 | MAXALIGN(sizeof(dsa_segment_header)) + |
2116 | MAXALIGN(sizeof(FreePageManager)) + |
2117 | sizeof(dsa_pointer) * total_pages; |
2118 | |
2119 | /* Add padding up to next page boundary. */ |
2120 | if (metadata_bytes % FPM_PAGE_SIZE != 0) |
2121 | metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE); |
2122 | if (total_size <= metadata_bytes) |
2123 | return NULL; |
2124 | usable_pages = (total_size - metadata_bytes) / FPM_PAGE_SIZE; |
2125 | Assert(metadata_bytes + usable_pages * FPM_PAGE_SIZE <= total_size); |
2126 | |
2127 | /* See if that is enough... */ |
2128 | if (requested_pages > usable_pages) |
2129 | { |
2130 | /* |
2131 | * We'll make an odd-sized segment, working forward from the requested |
2132 | * number of pages. |
2133 | */ |
2134 | usable_pages = requested_pages; |
2135 | metadata_bytes = |
2136 | MAXALIGN(sizeof(dsa_segment_header)) + |
2137 | MAXALIGN(sizeof(FreePageManager)) + |
2138 | usable_pages * sizeof(dsa_pointer); |
2139 | |
2140 | /* Add padding up to next page boundary. */ |
2141 | if (metadata_bytes % FPM_PAGE_SIZE != 0) |
2142 | metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE); |
2143 | total_size = metadata_bytes + usable_pages * FPM_PAGE_SIZE; |
2144 | |
2145 | /* Is that too large for dsa_pointer's addressing scheme? */ |
2146 | if (total_size > DSA_MAX_SEGMENT_SIZE) |
2147 | return NULL; |
2148 | |
2149 | /* Would that exceed the limit? */ |
2150 | if (total_size > area->control->max_total_segment_size - |
2151 | area->control->total_segment_size) |
2152 | return NULL; |
2153 | } |
2154 | |
2155 | /* Create the segment. */ |
2156 | segment = dsm_create(total_size, 0); |
2157 | if (segment == NULL) |
2158 | return NULL; |
2159 | dsm_pin_segment(segment); |
2160 | if (area->mapping_pinned) |
2161 | dsm_pin_mapping(segment); |
2162 | |
2163 | /* Store the handle in shared memory to be found by index. */ |
2164 | area->control->segment_handles[new_index] = |
2165 | dsm_segment_handle(segment); |
2166 | /* Track the highest segment index in the history of the area. */ |
2167 | if (area->control->high_segment_index < new_index) |
2168 | area->control->high_segment_index = new_index; |
2169 | /* Track the highest segment index this backend has ever mapped. */ |
2170 | if (area->high_segment_index < new_index) |
2171 | area->high_segment_index = new_index; |
2172 | /* Track total size of all segments. */ |
2173 | area->control->total_segment_size += total_size; |
2174 | Assert(area->control->total_segment_size <= |
2175 | area->control->max_total_segment_size); |
2176 | |
2177 | /* Build a segment map for this segment in this backend. */ |
2178 | segment_map = &area->segment_maps[new_index]; |
2179 | segment_map->segment = segment; |
2180 | segment_map->mapped_address = dsm_segment_address(segment); |
2181 | segment_map->header = (dsa_segment_header *) segment_map->mapped_address; |
2182 | segment_map->fpm = (FreePageManager *) |
2183 | (segment_map->mapped_address + |
2184 | MAXALIGN(sizeof(dsa_segment_header))); |
2185 | segment_map->pagemap = (dsa_pointer *) |
2186 | (segment_map->mapped_address + |
2187 | MAXALIGN(sizeof(dsa_segment_header)) + |
2188 | MAXALIGN(sizeof(FreePageManager))); |
2189 | |
2190 | /* Set up the free page map. */ |
2191 | FreePageManagerInitialize(segment_map->fpm, segment_map->mapped_address); |
2192 | FreePageManagerPut(segment_map->fpm, metadata_bytes / FPM_PAGE_SIZE, |
2193 | usable_pages); |
2194 | |
2195 | /* Set up the segment header and put it in the appropriate bin. */ |
2196 | segment_map->header->magic = |
2197 | DSA_SEGMENT_HEADER_MAGIC ^ area->control->handle ^ new_index; |
2198 | segment_map->header->usable_pages = usable_pages; |
2199 | segment_map->header->size = total_size; |
2200 | segment_map->header->bin = contiguous_pages_to_segment_bin(usable_pages); |
2201 | segment_map->header->prev = DSA_SEGMENT_INDEX_NONE; |
2202 | segment_map->header->next = |
2203 | area->control->segment_bins[segment_map->header->bin]; |
2204 | segment_map->header->freed = false; |
2205 | area->control->segment_bins[segment_map->header->bin] = new_index; |
2206 | if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE) |
2207 | { |
2208 | dsa_segment_map *next = |
2209 | get_segment_by_index(area, segment_map->header->next); |
2210 | |
2211 | Assert(next->header->bin == segment_map->header->bin); |
2212 | next->header->prev = new_index; |
2213 | } |
2214 | |
2215 | return segment_map; |
2216 | } |
2217 | |
2218 | /* |
2219 | * Check if any segments have been freed by destroy_superblock, so we can |
2220 | * detach from them in this backend. This function is called by |
2221 | * dsa_get_address and dsa_free to make sure that a dsa_pointer they have |
2222 | * received can be resolved to the correct segment. |
2223 | * |
2224 | * The danger we want to defend against is that there could be an old segment |
2225 | * mapped into a given slot in this backend, and the dsa_pointer they have |
2226 | * might refer to some new segment in the same slot. So those functions must |
2227 | * be sure to process all instructions to detach from a freed segment that had |
2228 | * been generated by the time this process received the dsa_pointer, before |
2229 | * they call get_segment_by_index. |
2230 | */ |
2231 | static void |
2232 | check_for_freed_segments(dsa_area *area) |
2233 | { |
2234 | size_t freed_segment_counter; |
2235 | |
2236 | /* |
2237 | * Any other process that has freed a segment has incremented |
2238 | * free_segment_counter while holding an LWLock, and that must precede any |
2239 | * backend creating a new segment in the same slot while holding an |
2240 | * LWLock, and that must precede the creation of any dsa_pointer pointing |
2241 | * into the new segment which might reach us here, and the caller must |
2242 | * have sent the dsa_pointer to this process using appropriate memory |
2243 | * synchronization (some kind of locking or atomic primitive or system |
2244 | * call). So all we need to do on the reading side is ask for the load of |
2245 | * freed_segment_counter to follow the caller's load of the dsa_pointer it |
2246 | * has, and we can be sure to detect any segments that had been freed as |
2247 | * of the time that the dsa_pointer reached this process. |
2248 | */ |
2249 | pg_read_barrier(); |
2250 | freed_segment_counter = area->control->freed_segment_counter; |
2251 | if (unlikely(area->freed_segment_counter != freed_segment_counter)) |
2252 | { |
2253 | /* Check all currently mapped segments to find what's been freed. */ |
2254 | LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE); |
2255 | check_for_freed_segments_locked(area); |
2256 | LWLockRelease(DSA_AREA_LOCK(area)); |
2257 | } |
2258 | } |
2259 | |
2260 | /* |
2261 | * Workhorse for check_for_freed_segments(), and also used directly in path |
2262 | * where the area lock is already held. This should be called after acquiring |
2263 | * the lock but before looking up any segment by index number, to make sure we |
2264 | * unmap any stale segments that might have previously had the same index as a |
2265 | * current segment. |
2266 | */ |
2267 | static void |
2268 | check_for_freed_segments_locked(dsa_area *area) |
2269 | { |
2270 | size_t freed_segment_counter; |
2271 | int i; |
2272 | |
2273 | Assert(LWLockHeldByMe(DSA_AREA_LOCK(area))); |
2274 | freed_segment_counter = area->control->freed_segment_counter; |
2275 | if (unlikely(area->freed_segment_counter != freed_segment_counter)) |
2276 | { |
2277 | for (i = 0; i <= area->high_segment_index; ++i) |
2278 | { |
2279 | if (area->segment_maps[i].header != NULL && |
2280 | area->segment_maps[i].header->freed) |
2281 | { |
2282 | dsm_detach(area->segment_maps[i].segment); |
2283 | area->segment_maps[i].segment = NULL; |
2284 | area->segment_maps[i].header = NULL; |
2285 | area->segment_maps[i].mapped_address = NULL; |
2286 | } |
2287 | } |
2288 | area->freed_segment_counter = freed_segment_counter; |
2289 | } |
2290 | } |
2291 | |