| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * tuplestore.c |
| 4 | * Generalized routines for temporary tuple storage. |
| 5 | * |
| 6 | * This module handles temporary storage of tuples for purposes such |
| 7 | * as Materialize nodes, hashjoin batch files, etc. It is essentially |
| 8 | * a dumbed-down version of tuplesort.c; it does no sorting of tuples |
| 9 | * but can only store and regurgitate a sequence of tuples. However, |
| 10 | * because no sort is required, it is allowed to start reading the sequence |
| 11 | * before it has all been written. This is particularly useful for cursors, |
| 12 | * because it allows random access within the already-scanned portion of |
| 13 | * a query without having to process the underlying scan to completion. |
| 14 | * Also, it is possible to support multiple independent read pointers. |
| 15 | * |
| 16 | * A temporary file is used to handle the data if it exceeds the |
| 17 | * space limit specified by the caller. |
| 18 | * |
| 19 | * The (approximate) amount of memory allowed to the tuplestore is specified |
| 20 | * in kilobytes by the caller. We absorb tuples and simply store them in an |
| 21 | * in-memory array as long as we haven't exceeded maxKBytes. If we do exceed |
| 22 | * maxKBytes, we dump all the tuples into a temp file and then read from that |
| 23 | * when needed. |
| 24 | * |
| 25 | * Upon creation, a tuplestore supports a single read pointer, numbered 0. |
| 26 | * Additional read pointers can be created using tuplestore_alloc_read_pointer. |
| 27 | * Mark/restore behavior is supported by copying read pointers. |
| 28 | * |
| 29 | * When the caller requests backward-scan capability, we write the temp file |
| 30 | * in a format that allows either forward or backward scan. Otherwise, only |
| 31 | * forward scan is allowed. A request for backward scan must be made before |
| 32 | * putting any tuples into the tuplestore. Rewind is normally allowed but |
| 33 | * can be turned off via tuplestore_set_eflags; turning off rewind for all |
| 34 | * read pointers enables truncation of the tuplestore at the oldest read point |
| 35 | * for minimal memory usage. (The caller must explicitly call tuplestore_trim |
| 36 | * at appropriate times for truncation to actually happen.) |
| 37 | * |
| 38 | * Note: in TSS_WRITEFILE state, the temp file's seek position is the |
| 39 | * current write position, and the write-position variables in the tuplestore |
| 40 | * aren't kept up to date. Similarly, in TSS_READFILE state the temp file's |
| 41 | * seek position is the active read pointer's position, and that read pointer |
| 42 | * isn't kept up to date. We update the appropriate variables using ftell() |
| 43 | * before switching to the other state or activating a different read pointer. |
| 44 | * |
| 45 | * |
| 46 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 47 | * Portions Copyright (c) 1994, Regents of the University of California |
| 48 | * |
| 49 | * IDENTIFICATION |
| 50 | * src/backend/utils/sort/tuplestore.c |
| 51 | * |
| 52 | *------------------------------------------------------------------------- |
| 53 | */ |
| 54 | |
| 55 | #include "postgres.h" |
| 56 | |
| 57 | #include <limits.h> |
| 58 | |
| 59 | #include "access/htup_details.h" |
| 60 | #include "commands/tablespace.h" |
| 61 | #include "executor/executor.h" |
| 62 | #include "miscadmin.h" |
| 63 | #include "storage/buffile.h" |
| 64 | #include "utils/memutils.h" |
| 65 | #include "utils/resowner.h" |
| 66 | |
| 67 | |
| 68 | /* |
| 69 | * Possible states of a Tuplestore object. These denote the states that |
| 70 | * persist between calls of Tuplestore routines. |
| 71 | */ |
| 72 | typedef enum |
| 73 | { |
| 74 | TSS_INMEM, /* Tuples still fit in memory */ |
| 75 | TSS_WRITEFILE, /* Writing to temp file */ |
| 76 | TSS_READFILE /* Reading from temp file */ |
| 77 | } TupStoreStatus; |
| 78 | |
| 79 | /* |
| 80 | * State for a single read pointer. If we are in state INMEM then all the |
| 81 | * read pointers' "current" fields denote the read positions. In state |
| 82 | * WRITEFILE, the file/offset fields denote the read positions. In state |
| 83 | * READFILE, inactive read pointers have valid file/offset, but the active |
| 84 | * read pointer implicitly has position equal to the temp file's seek position. |
| 85 | * |
| 86 | * Special case: if eof_reached is true, then the pointer's read position is |
| 87 | * implicitly equal to the write position, and current/file/offset aren't |
| 88 | * maintained. This way we need not update all the read pointers each time |
| 89 | * we write. |
| 90 | */ |
| 91 | typedef struct |
| 92 | { |
| 93 | int eflags; /* capability flags */ |
| 94 | bool eof_reached; /* read has reached EOF */ |
| 95 | int current; /* next array index to read */ |
| 96 | int file; /* temp file# */ |
| 97 | off_t offset; /* byte offset in file */ |
| 98 | } TSReadPointer; |
| 99 | |
| 100 | /* |
| 101 | * Private state of a Tuplestore operation. |
| 102 | */ |
| 103 | struct Tuplestorestate |
| 104 | { |
| 105 | TupStoreStatus status; /* enumerated value as shown above */ |
| 106 | int eflags; /* capability flags (OR of pointers' flags) */ |
| 107 | bool backward; /* store extra length words in file? */ |
| 108 | bool interXact; /* keep open through transactions? */ |
| 109 | bool truncated; /* tuplestore_trim has removed tuples? */ |
| 110 | int64 availMem; /* remaining memory available, in bytes */ |
| 111 | int64 allowedMem; /* total memory allowed, in bytes */ |
| 112 | int64 tuples; /* number of tuples added */ |
| 113 | BufFile *myfile; /* underlying file, or NULL if none */ |
| 114 | MemoryContext context; /* memory context for holding tuples */ |
| 115 | ResourceOwner resowner; /* resowner for holding temp files */ |
| 116 | |
| 117 | /* |
| 118 | * These function pointers decouple the routines that must know what kind |
| 119 | * of tuple we are handling from the routines that don't need to know it. |
| 120 | * They are set up by the tuplestore_begin_xxx routines. |
| 121 | * |
| 122 | * (Although tuplestore.c currently only supports heap tuples, I've copied |
| 123 | * this part of tuplesort.c so that extension to other kinds of objects |
| 124 | * will be easy if it's ever needed.) |
| 125 | * |
| 126 | * Function to copy a supplied input tuple into palloc'd space. (NB: we |
| 127 | * assume that a single pfree() is enough to release the tuple later, so |
| 128 | * the representation must be "flat" in one palloc chunk.) state->availMem |
| 129 | * must be decreased by the amount of space used. |
| 130 | */ |
| 131 | void *(*copytup) (Tuplestorestate *state, void *tup); |
| 132 | |
| 133 | /* |
| 134 | * Function to write a stored tuple onto tape. The representation of the |
| 135 | * tuple on tape need not be the same as it is in memory; requirements on |
| 136 | * the tape representation are given below. After writing the tuple, |
| 137 | * pfree() it, and increase state->availMem by the amount of memory space |
| 138 | * thereby released. |
| 139 | */ |
| 140 | void (*writetup) (Tuplestorestate *state, void *tup); |
| 141 | |
| 142 | /* |
| 143 | * Function to read a stored tuple from tape back into memory. 'len' is |
| 144 | * the already-read length of the stored tuple. Create and return a |
| 145 | * palloc'd copy, and decrease state->availMem by the amount of memory |
| 146 | * space consumed. |
| 147 | */ |
| 148 | void *(*readtup) (Tuplestorestate *state, unsigned int len); |
| 149 | |
| 150 | /* |
| 151 | * This array holds pointers to tuples in memory if we are in state INMEM. |
| 152 | * In states WRITEFILE and READFILE it's not used. |
| 153 | * |
| 154 | * When memtupdeleted > 0, the first memtupdeleted pointers are already |
| 155 | * released due to a tuplestore_trim() operation, but we haven't expended |
| 156 | * the effort to slide the remaining pointers down. These unused pointers |
| 157 | * are set to NULL to catch any invalid accesses. Note that memtupcount |
| 158 | * includes the deleted pointers. |
| 159 | */ |
| 160 | void **memtuples; /* array of pointers to palloc'd tuples */ |
| 161 | int memtupdeleted; /* the first N slots are currently unused */ |
| 162 | int memtupcount; /* number of tuples currently present */ |
| 163 | int memtupsize; /* allocated length of memtuples array */ |
| 164 | bool growmemtuples; /* memtuples' growth still underway? */ |
| 165 | |
| 166 | /* |
| 167 | * These variables are used to keep track of the current positions. |
| 168 | * |
| 169 | * In state WRITEFILE, the current file seek position is the write point; |
| 170 | * in state READFILE, the write position is remembered in writepos_xxx. |
| 171 | * (The write position is the same as EOF, but since BufFileSeek doesn't |
| 172 | * currently implement SEEK_END, we have to remember it explicitly.) |
| 173 | */ |
| 174 | TSReadPointer *readptrs; /* array of read pointers */ |
| 175 | int activeptr; /* index of the active read pointer */ |
| 176 | int readptrcount; /* number of pointers currently valid */ |
| 177 | int readptrsize; /* allocated length of readptrs array */ |
| 178 | |
| 179 | int writepos_file; /* file# (valid if READFILE state) */ |
| 180 | off_t writepos_offset; /* offset (valid if READFILE state) */ |
| 181 | }; |
| 182 | |
| 183 | #define COPYTUP(state,tup) ((*(state)->copytup) (state, tup)) |
| 184 | #define WRITETUP(state,tup) ((*(state)->writetup) (state, tup)) |
| 185 | #define READTUP(state,len) ((*(state)->readtup) (state, len)) |
| 186 | #define LACKMEM(state) ((state)->availMem < 0) |
| 187 | #define USEMEM(state,amt) ((state)->availMem -= (amt)) |
| 188 | #define FREEMEM(state,amt) ((state)->availMem += (amt)) |
| 189 | |
| 190 | /*-------------------- |
| 191 | * |
| 192 | * NOTES about on-tape representation of tuples: |
| 193 | * |
| 194 | * We require the first "unsigned int" of a stored tuple to be the total size |
| 195 | * on-tape of the tuple, including itself (so it is never zero). |
| 196 | * The remainder of the stored tuple |
| 197 | * may or may not match the in-memory representation of the tuple --- |
| 198 | * any conversion needed is the job of the writetup and readtup routines. |
| 199 | * |
| 200 | * If state->backward is true, then the stored representation of |
| 201 | * the tuple must be followed by another "unsigned int" that is a copy of the |
| 202 | * length --- so the total tape space used is actually sizeof(unsigned int) |
| 203 | * more than the stored length value. This allows read-backwards. When |
| 204 | * state->backward is not set, the write/read routines may omit the extra |
| 205 | * length word. |
| 206 | * |
| 207 | * writetup is expected to write both length words as well as the tuple |
| 208 | * data. When readtup is called, the tape is positioned just after the |
| 209 | * front length word; readtup must read the tuple data and advance past |
| 210 | * the back length word (if present). |
| 211 | * |
| 212 | * The write/read routines can make use of the tuple description data |
| 213 | * stored in the Tuplestorestate record, if needed. They are also expected |
| 214 | * to adjust state->availMem by the amount of memory space (not tape space!) |
| 215 | * released or consumed. There is no error return from either writetup |
| 216 | * or readtup; they should ereport() on failure. |
| 217 | * |
| 218 | * |
| 219 | * NOTES about memory consumption calculations: |
| 220 | * |
| 221 | * We count space allocated for tuples against the maxKBytes limit, |
| 222 | * plus the space used by the variable-size array memtuples. |
| 223 | * Fixed-size space (primarily the BufFile I/O buffer) is not counted. |
| 224 | * We don't worry about the size of the read pointer array, either. |
| 225 | * |
| 226 | * Note that we count actual space used (as shown by GetMemoryChunkSpace) |
| 227 | * rather than the originally-requested size. This is important since |
| 228 | * palloc can add substantial overhead. It's not a complete answer since |
| 229 | * we won't count any wasted space in palloc allocation blocks, but it's |
| 230 | * a lot better than what we were doing before 7.3. |
| 231 | * |
| 232 | *-------------------- |
| 233 | */ |
| 234 | |
| 235 | |
| 236 | static Tuplestorestate *tuplestore_begin_common(int eflags, |
| 237 | bool interXact, |
| 238 | int maxKBytes); |
| 239 | static void tuplestore_puttuple_common(Tuplestorestate *state, void *tuple); |
| 240 | static void dumptuples(Tuplestorestate *state); |
| 241 | static unsigned int getlen(Tuplestorestate *state, bool eofOK); |
| 242 | static void *copytup_heap(Tuplestorestate *state, void *tup); |
| 243 | static void writetup_heap(Tuplestorestate *state, void *tup); |
| 244 | static void *readtup_heap(Tuplestorestate *state, unsigned int len); |
| 245 | |
| 246 | |
| 247 | /* |
| 248 | * tuplestore_begin_xxx |
| 249 | * |
| 250 | * Initialize for a tuple store operation. |
| 251 | */ |
| 252 | static Tuplestorestate * |
| 253 | tuplestore_begin_common(int eflags, bool interXact, int maxKBytes) |
| 254 | { |
| 255 | Tuplestorestate *state; |
| 256 | |
| 257 | state = (Tuplestorestate *) palloc0(sizeof(Tuplestorestate)); |
| 258 | |
| 259 | state->status = TSS_INMEM; |
| 260 | state->eflags = eflags; |
| 261 | state->interXact = interXact; |
| 262 | state->truncated = false; |
| 263 | state->allowedMem = maxKBytes * 1024L; |
| 264 | state->availMem = state->allowedMem; |
| 265 | state->myfile = NULL; |
| 266 | state->context = CurrentMemoryContext; |
| 267 | state->resowner = CurrentResourceOwner; |
| 268 | |
| 269 | state->memtupdeleted = 0; |
| 270 | state->memtupcount = 0; |
| 271 | state->tuples = 0; |
| 272 | |
| 273 | /* |
| 274 | * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD; |
| 275 | * see comments in grow_memtuples(). |
| 276 | */ |
| 277 | state->memtupsize = Max(16384 / sizeof(void *), |
| 278 | ALLOCSET_SEPARATE_THRESHOLD / sizeof(void *) + 1); |
| 279 | |
| 280 | state->growmemtuples = true; |
| 281 | state->memtuples = (void **) palloc(state->memtupsize * sizeof(void *)); |
| 282 | |
| 283 | USEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 284 | |
| 285 | state->activeptr = 0; |
| 286 | state->readptrcount = 1; |
| 287 | state->readptrsize = 8; /* arbitrary */ |
| 288 | state->readptrs = (TSReadPointer *) |
| 289 | palloc(state->readptrsize * sizeof(TSReadPointer)); |
| 290 | |
| 291 | state->readptrs[0].eflags = eflags; |
| 292 | state->readptrs[0].eof_reached = false; |
| 293 | state->readptrs[0].current = 0; |
| 294 | |
| 295 | return state; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * tuplestore_begin_heap |
| 300 | * |
| 301 | * Create a new tuplestore; other types of tuple stores (other than |
| 302 | * "heap" tuple stores, for heap tuples) are possible, but not presently |
| 303 | * implemented. |
| 304 | * |
| 305 | * randomAccess: if true, both forward and backward accesses to the |
| 306 | * tuple store are allowed. |
| 307 | * |
| 308 | * interXact: if true, the files used for on-disk storage persist beyond the |
| 309 | * end of the current transaction. NOTE: It's the caller's responsibility to |
| 310 | * create such a tuplestore in a memory context and resource owner that will |
| 311 | * also survive transaction boundaries, and to ensure the tuplestore is closed |
| 312 | * when it's no longer wanted. |
| 313 | * |
| 314 | * maxKBytes: how much data to store in memory (any data beyond this |
| 315 | * amount is paged to disk). When in doubt, use work_mem. |
| 316 | */ |
| 317 | Tuplestorestate * |
| 318 | tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes) |
| 319 | { |
| 320 | Tuplestorestate *state; |
| 321 | int eflags; |
| 322 | |
| 323 | /* |
| 324 | * This interpretation of the meaning of randomAccess is compatible with |
| 325 | * the pre-8.3 behavior of tuplestores. |
| 326 | */ |
| 327 | eflags = randomAccess ? |
| 328 | (EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND) : |
| 329 | (EXEC_FLAG_REWIND); |
| 330 | |
| 331 | state = tuplestore_begin_common(eflags, interXact, maxKBytes); |
| 332 | |
| 333 | state->copytup = copytup_heap; |
| 334 | state->writetup = writetup_heap; |
| 335 | state->readtup = readtup_heap; |
| 336 | |
| 337 | return state; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * tuplestore_set_eflags |
| 342 | * |
| 343 | * Set the capability flags for read pointer 0 at a finer grain than is |
| 344 | * allowed by tuplestore_begin_xxx. This must be called before inserting |
| 345 | * any data into the tuplestore. |
| 346 | * |
| 347 | * eflags is a bitmask following the meanings used for executor node |
| 348 | * startup flags (see executor.h). tuplestore pays attention to these bits: |
| 349 | * EXEC_FLAG_REWIND need rewind to start |
| 350 | * EXEC_FLAG_BACKWARD need backward fetch |
| 351 | * If tuplestore_set_eflags is not called, REWIND is allowed, and BACKWARD |
| 352 | * is set per "randomAccess" in the tuplestore_begin_xxx call. |
| 353 | * |
| 354 | * NOTE: setting BACKWARD without REWIND means the pointer can read backwards, |
| 355 | * but not further than the truncation point (the furthest-back read pointer |
| 356 | * position at the time of the last tuplestore_trim call). |
| 357 | */ |
| 358 | void |
| 359 | tuplestore_set_eflags(Tuplestorestate *state, int eflags) |
| 360 | { |
| 361 | int i; |
| 362 | |
| 363 | if (state->status != TSS_INMEM || state->memtupcount != 0) |
| 364 | elog(ERROR, "too late to call tuplestore_set_eflags" ); |
| 365 | |
| 366 | state->readptrs[0].eflags = eflags; |
| 367 | for (i = 1; i < state->readptrcount; i++) |
| 368 | eflags |= state->readptrs[i].eflags; |
| 369 | state->eflags = eflags; |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * tuplestore_alloc_read_pointer - allocate another read pointer. |
| 374 | * |
| 375 | * Returns the pointer's index. |
| 376 | * |
| 377 | * The new pointer initially copies the position of read pointer 0. |
| 378 | * It can have its own eflags, but if any data has been inserted into |
| 379 | * the tuplestore, these eflags must not represent an increase in |
| 380 | * requirements. |
| 381 | */ |
| 382 | int |
| 383 | tuplestore_alloc_read_pointer(Tuplestorestate *state, int eflags) |
| 384 | { |
| 385 | /* Check for possible increase of requirements */ |
| 386 | if (state->status != TSS_INMEM || state->memtupcount != 0) |
| 387 | { |
| 388 | if ((state->eflags | eflags) != state->eflags) |
| 389 | elog(ERROR, "too late to require new tuplestore eflags" ); |
| 390 | } |
| 391 | |
| 392 | /* Make room for another read pointer if needed */ |
| 393 | if (state->readptrcount >= state->readptrsize) |
| 394 | { |
| 395 | int newcnt = state->readptrsize * 2; |
| 396 | |
| 397 | state->readptrs = (TSReadPointer *) |
| 398 | repalloc(state->readptrs, newcnt * sizeof(TSReadPointer)); |
| 399 | state->readptrsize = newcnt; |
| 400 | } |
| 401 | |
| 402 | /* And set it up */ |
| 403 | state->readptrs[state->readptrcount] = state->readptrs[0]; |
| 404 | state->readptrs[state->readptrcount].eflags = eflags; |
| 405 | |
| 406 | state->eflags |= eflags; |
| 407 | |
| 408 | return state->readptrcount++; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * tuplestore_clear |
| 413 | * |
| 414 | * Delete all the contents of a tuplestore, and reset its read pointers |
| 415 | * to the start. |
| 416 | */ |
| 417 | void |
| 418 | tuplestore_clear(Tuplestorestate *state) |
| 419 | { |
| 420 | int i; |
| 421 | TSReadPointer *readptr; |
| 422 | |
| 423 | if (state->myfile) |
| 424 | BufFileClose(state->myfile); |
| 425 | state->myfile = NULL; |
| 426 | if (state->memtuples) |
| 427 | { |
| 428 | for (i = state->memtupdeleted; i < state->memtupcount; i++) |
| 429 | { |
| 430 | FREEMEM(state, GetMemoryChunkSpace(state->memtuples[i])); |
| 431 | pfree(state->memtuples[i]); |
| 432 | } |
| 433 | } |
| 434 | state->status = TSS_INMEM; |
| 435 | state->truncated = false; |
| 436 | state->memtupdeleted = 0; |
| 437 | state->memtupcount = 0; |
| 438 | state->tuples = 0; |
| 439 | readptr = state->readptrs; |
| 440 | for (i = 0; i < state->readptrcount; readptr++, i++) |
| 441 | { |
| 442 | readptr->eof_reached = false; |
| 443 | readptr->current = 0; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * tuplestore_end |
| 449 | * |
| 450 | * Release resources and clean up. |
| 451 | */ |
| 452 | void |
| 453 | tuplestore_end(Tuplestorestate *state) |
| 454 | { |
| 455 | int i; |
| 456 | |
| 457 | if (state->myfile) |
| 458 | BufFileClose(state->myfile); |
| 459 | if (state->memtuples) |
| 460 | { |
| 461 | for (i = state->memtupdeleted; i < state->memtupcount; i++) |
| 462 | pfree(state->memtuples[i]); |
| 463 | pfree(state->memtuples); |
| 464 | } |
| 465 | pfree(state->readptrs); |
| 466 | pfree(state); |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * tuplestore_select_read_pointer - make the specified read pointer active |
| 471 | */ |
| 472 | void |
| 473 | tuplestore_select_read_pointer(Tuplestorestate *state, int ptr) |
| 474 | { |
| 475 | TSReadPointer *readptr; |
| 476 | TSReadPointer *oldptr; |
| 477 | |
| 478 | Assert(ptr >= 0 && ptr < state->readptrcount); |
| 479 | |
| 480 | /* No work if already active */ |
| 481 | if (ptr == state->activeptr) |
| 482 | return; |
| 483 | |
| 484 | readptr = &state->readptrs[ptr]; |
| 485 | oldptr = &state->readptrs[state->activeptr]; |
| 486 | |
| 487 | switch (state->status) |
| 488 | { |
| 489 | case TSS_INMEM: |
| 490 | case TSS_WRITEFILE: |
| 491 | /* no work */ |
| 492 | break; |
| 493 | case TSS_READFILE: |
| 494 | |
| 495 | /* |
| 496 | * First, save the current read position in the pointer about to |
| 497 | * become inactive. |
| 498 | */ |
| 499 | if (!oldptr->eof_reached) |
| 500 | BufFileTell(state->myfile, |
| 501 | &oldptr->file, |
| 502 | &oldptr->offset); |
| 503 | |
| 504 | /* |
| 505 | * We have to make the temp file's seek position equal to the |
| 506 | * logical position of the new read pointer. In eof_reached |
| 507 | * state, that's the EOF, which we have available from the saved |
| 508 | * write position. |
| 509 | */ |
| 510 | if (readptr->eof_reached) |
| 511 | { |
| 512 | if (BufFileSeek(state->myfile, |
| 513 | state->writepos_file, |
| 514 | state->writepos_offset, |
| 515 | SEEK_SET) != 0) |
| 516 | ereport(ERROR, |
| 517 | (errcode_for_file_access(), |
| 518 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 519 | } |
| 520 | else |
| 521 | { |
| 522 | if (BufFileSeek(state->myfile, |
| 523 | readptr->file, |
| 524 | readptr->offset, |
| 525 | SEEK_SET) != 0) |
| 526 | ereport(ERROR, |
| 527 | (errcode_for_file_access(), |
| 528 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 529 | } |
| 530 | break; |
| 531 | default: |
| 532 | elog(ERROR, "invalid tuplestore state" ); |
| 533 | break; |
| 534 | } |
| 535 | |
| 536 | state->activeptr = ptr; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * tuplestore_tuple_count |
| 541 | * |
| 542 | * Returns the number of tuples added since creation or the last |
| 543 | * tuplestore_clear(). |
| 544 | */ |
| 545 | int64 |
| 546 | tuplestore_tuple_count(Tuplestorestate *state) |
| 547 | { |
| 548 | return state->tuples; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * tuplestore_ateof |
| 553 | * |
| 554 | * Returns the active read pointer's eof_reached state. |
| 555 | */ |
| 556 | bool |
| 557 | tuplestore_ateof(Tuplestorestate *state) |
| 558 | { |
| 559 | return state->readptrs[state->activeptr].eof_reached; |
| 560 | } |
| 561 | |
| 562 | /* |
| 563 | * Grow the memtuples[] array, if possible within our memory constraint. We |
| 564 | * must not exceed INT_MAX tuples in memory or the caller-provided memory |
| 565 | * limit. Return true if we were able to enlarge the array, false if not. |
| 566 | * |
| 567 | * Normally, at each increment we double the size of the array. When doing |
| 568 | * that would exceed a limit, we attempt one last, smaller increase (and then |
| 569 | * clear the growmemtuples flag so we don't try any more). That allows us to |
| 570 | * use memory as fully as permitted; sticking to the pure doubling rule could |
| 571 | * result in almost half going unused. Because availMem moves around with |
| 572 | * tuple addition/removal, we need some rule to prevent making repeated small |
| 573 | * increases in memtupsize, which would just be useless thrashing. The |
| 574 | * growmemtuples flag accomplishes that and also prevents useless |
| 575 | * recalculations in this function. |
| 576 | */ |
| 577 | static bool |
| 578 | grow_memtuples(Tuplestorestate *state) |
| 579 | { |
| 580 | int newmemtupsize; |
| 581 | int memtupsize = state->memtupsize; |
| 582 | int64 memNowUsed = state->allowedMem - state->availMem; |
| 583 | |
| 584 | /* Forget it if we've already maxed out memtuples, per comment above */ |
| 585 | if (!state->growmemtuples) |
| 586 | return false; |
| 587 | |
| 588 | /* Select new value of memtupsize */ |
| 589 | if (memNowUsed <= state->availMem) |
| 590 | { |
| 591 | /* |
| 592 | * We've used no more than half of allowedMem; double our usage, |
| 593 | * clamping at INT_MAX tuples. |
| 594 | */ |
| 595 | if (memtupsize < INT_MAX / 2) |
| 596 | newmemtupsize = memtupsize * 2; |
| 597 | else |
| 598 | { |
| 599 | newmemtupsize = INT_MAX; |
| 600 | state->growmemtuples = false; |
| 601 | } |
| 602 | } |
| 603 | else |
| 604 | { |
| 605 | /* |
| 606 | * This will be the last increment of memtupsize. Abandon doubling |
| 607 | * strategy and instead increase as much as we safely can. |
| 608 | * |
| 609 | * To stay within allowedMem, we can't increase memtupsize by more |
| 610 | * than availMem / sizeof(void *) elements. In practice, we want to |
| 611 | * increase it by considerably less, because we need to leave some |
| 612 | * space for the tuples to which the new array slots will refer. We |
| 613 | * assume the new tuples will be about the same size as the tuples |
| 614 | * we've already seen, and thus we can extrapolate from the space |
| 615 | * consumption so far to estimate an appropriate new size for the |
| 616 | * memtuples array. The optimal value might be higher or lower than |
| 617 | * this estimate, but it's hard to know that in advance. We again |
| 618 | * clamp at INT_MAX tuples. |
| 619 | * |
| 620 | * This calculation is safe against enlarging the array so much that |
| 621 | * LACKMEM becomes true, because the memory currently used includes |
| 622 | * the present array; thus, there would be enough allowedMem for the |
| 623 | * new array elements even if no other memory were currently used. |
| 624 | * |
| 625 | * We do the arithmetic in float8, because otherwise the product of |
| 626 | * memtupsize and allowedMem could overflow. Any inaccuracy in the |
| 627 | * result should be insignificant; but even if we computed a |
| 628 | * completely insane result, the checks below will prevent anything |
| 629 | * really bad from happening. |
| 630 | */ |
| 631 | double grow_ratio; |
| 632 | |
| 633 | grow_ratio = (double) state->allowedMem / (double) memNowUsed; |
| 634 | if (memtupsize * grow_ratio < INT_MAX) |
| 635 | newmemtupsize = (int) (memtupsize * grow_ratio); |
| 636 | else |
| 637 | newmemtupsize = INT_MAX; |
| 638 | |
| 639 | /* We won't make any further enlargement attempts */ |
| 640 | state->growmemtuples = false; |
| 641 | } |
| 642 | |
| 643 | /* Must enlarge array by at least one element, else report failure */ |
| 644 | if (newmemtupsize <= memtupsize) |
| 645 | goto noalloc; |
| 646 | |
| 647 | /* |
| 648 | * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp |
| 649 | * to ensure our request won't be rejected. Note that we can easily |
| 650 | * exhaust address space before facing this outcome. (This is presently |
| 651 | * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but |
| 652 | * don't rely on that at this distance.) |
| 653 | */ |
| 654 | if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(void *)) |
| 655 | { |
| 656 | newmemtupsize = (int) (MaxAllocHugeSize / sizeof(void *)); |
| 657 | state->growmemtuples = false; /* can't grow any more */ |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * We need to be sure that we do not cause LACKMEM to become true, else |
| 662 | * the space management algorithm will go nuts. The code above should |
| 663 | * never generate a dangerous request, but to be safe, check explicitly |
| 664 | * that the array growth fits within availMem. (We could still cause |
| 665 | * LACKMEM if the memory chunk overhead associated with the memtuples |
| 666 | * array were to increase. That shouldn't happen because we chose the |
| 667 | * initial array size large enough to ensure that palloc will be treating |
| 668 | * both old and new arrays as separate chunks. But we'll check LACKMEM |
| 669 | * explicitly below just in case.) |
| 670 | */ |
| 671 | if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(void *))) |
| 672 | goto noalloc; |
| 673 | |
| 674 | /* OK, do it */ |
| 675 | FREEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 676 | state->memtupsize = newmemtupsize; |
| 677 | state->memtuples = (void **) |
| 678 | repalloc_huge(state->memtuples, |
| 679 | state->memtupsize * sizeof(void *)); |
| 680 | USEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 681 | if (LACKMEM(state)) |
| 682 | elog(ERROR, "unexpected out-of-memory situation in tuplestore" ); |
| 683 | return true; |
| 684 | |
| 685 | noalloc: |
| 686 | /* If for any reason we didn't realloc, shut off future attempts */ |
| 687 | state->growmemtuples = false; |
| 688 | return false; |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * Accept one tuple and append it to the tuplestore. |
| 693 | * |
| 694 | * Note that the input tuple is always copied; the caller need not save it. |
| 695 | * |
| 696 | * If the active read pointer is currently "at EOF", it remains so (the read |
| 697 | * pointer implicitly advances along with the write pointer); otherwise the |
| 698 | * read pointer is unchanged. Non-active read pointers do not move, which |
| 699 | * means they are certain to not be "at EOF" immediately after puttuple. |
| 700 | * This curious-seeming behavior is for the convenience of nodeMaterial.c and |
| 701 | * nodeCtescan.c, which would otherwise need to do extra pointer repositioning |
| 702 | * steps. |
| 703 | * |
| 704 | * tuplestore_puttupleslot() is a convenience routine to collect data from |
| 705 | * a TupleTableSlot without an extra copy operation. |
| 706 | */ |
| 707 | void |
| 708 | tuplestore_puttupleslot(Tuplestorestate *state, |
| 709 | TupleTableSlot *slot) |
| 710 | { |
| 711 | MinimalTuple tuple; |
| 712 | MemoryContext oldcxt = MemoryContextSwitchTo(state->context); |
| 713 | |
| 714 | /* |
| 715 | * Form a MinimalTuple in working memory |
| 716 | */ |
| 717 | tuple = ExecCopySlotMinimalTuple(slot); |
| 718 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 719 | |
| 720 | tuplestore_puttuple_common(state, (void *) tuple); |
| 721 | |
| 722 | MemoryContextSwitchTo(oldcxt); |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * "Standard" case to copy from a HeapTuple. This is actually now somewhat |
| 727 | * deprecated, but not worth getting rid of in view of the number of callers. |
| 728 | */ |
| 729 | void |
| 730 | tuplestore_puttuple(Tuplestorestate *state, HeapTuple tuple) |
| 731 | { |
| 732 | MemoryContext oldcxt = MemoryContextSwitchTo(state->context); |
| 733 | |
| 734 | /* |
| 735 | * Copy the tuple. (Must do this even in WRITEFILE case. Note that |
| 736 | * COPYTUP includes USEMEM, so we needn't do that here.) |
| 737 | */ |
| 738 | tuple = COPYTUP(state, tuple); |
| 739 | |
| 740 | tuplestore_puttuple_common(state, (void *) tuple); |
| 741 | |
| 742 | MemoryContextSwitchTo(oldcxt); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Similar to tuplestore_puttuple(), but work from values + nulls arrays. |
| 747 | * This avoids an extra tuple-construction operation. |
| 748 | */ |
| 749 | void |
| 750 | tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, |
| 751 | Datum *values, bool *isnull) |
| 752 | { |
| 753 | MinimalTuple tuple; |
| 754 | MemoryContext oldcxt = MemoryContextSwitchTo(state->context); |
| 755 | |
| 756 | tuple = heap_form_minimal_tuple(tdesc, values, isnull); |
| 757 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 758 | |
| 759 | tuplestore_puttuple_common(state, (void *) tuple); |
| 760 | |
| 761 | MemoryContextSwitchTo(oldcxt); |
| 762 | } |
| 763 | |
| 764 | static void |
| 765 | tuplestore_puttuple_common(Tuplestorestate *state, void *tuple) |
| 766 | { |
| 767 | TSReadPointer *readptr; |
| 768 | int i; |
| 769 | ResourceOwner oldowner; |
| 770 | |
| 771 | state->tuples++; |
| 772 | |
| 773 | switch (state->status) |
| 774 | { |
| 775 | case TSS_INMEM: |
| 776 | |
| 777 | /* |
| 778 | * Update read pointers as needed; see API spec above. |
| 779 | */ |
| 780 | readptr = state->readptrs; |
| 781 | for (i = 0; i < state->readptrcount; readptr++, i++) |
| 782 | { |
| 783 | if (readptr->eof_reached && i != state->activeptr) |
| 784 | { |
| 785 | readptr->eof_reached = false; |
| 786 | readptr->current = state->memtupcount; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * Grow the array as needed. Note that we try to grow the array |
| 792 | * when there is still one free slot remaining --- if we fail, |
| 793 | * there'll still be room to store the incoming tuple, and then |
| 794 | * we'll switch to tape-based operation. |
| 795 | */ |
| 796 | if (state->memtupcount >= state->memtupsize - 1) |
| 797 | { |
| 798 | (void) grow_memtuples(state); |
| 799 | Assert(state->memtupcount < state->memtupsize); |
| 800 | } |
| 801 | |
| 802 | /* Stash the tuple in the in-memory array */ |
| 803 | state->memtuples[state->memtupcount++] = tuple; |
| 804 | |
| 805 | /* |
| 806 | * Done if we still fit in available memory and have array slots. |
| 807 | */ |
| 808 | if (state->memtupcount < state->memtupsize && !LACKMEM(state)) |
| 809 | return; |
| 810 | |
| 811 | /* |
| 812 | * Nope; time to switch to tape-based operation. Make sure that |
| 813 | * the temp file(s) are created in suitable temp tablespaces. |
| 814 | */ |
| 815 | PrepareTempTablespaces(); |
| 816 | |
| 817 | /* associate the file with the store's resource owner */ |
| 818 | oldowner = CurrentResourceOwner; |
| 819 | CurrentResourceOwner = state->resowner; |
| 820 | |
| 821 | state->myfile = BufFileCreateTemp(state->interXact); |
| 822 | |
| 823 | CurrentResourceOwner = oldowner; |
| 824 | |
| 825 | /* |
| 826 | * Freeze the decision about whether trailing length words will be |
| 827 | * used. We can't change this choice once data is on tape, even |
| 828 | * though callers might drop the requirement. |
| 829 | */ |
| 830 | state->backward = (state->eflags & EXEC_FLAG_BACKWARD) != 0; |
| 831 | state->status = TSS_WRITEFILE; |
| 832 | dumptuples(state); |
| 833 | break; |
| 834 | case TSS_WRITEFILE: |
| 835 | |
| 836 | /* |
| 837 | * Update read pointers as needed; see API spec above. Note: |
| 838 | * BufFileTell is quite cheap, so not worth trying to avoid |
| 839 | * multiple calls. |
| 840 | */ |
| 841 | readptr = state->readptrs; |
| 842 | for (i = 0; i < state->readptrcount; readptr++, i++) |
| 843 | { |
| 844 | if (readptr->eof_reached && i != state->activeptr) |
| 845 | { |
| 846 | readptr->eof_reached = false; |
| 847 | BufFileTell(state->myfile, |
| 848 | &readptr->file, |
| 849 | &readptr->offset); |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | WRITETUP(state, tuple); |
| 854 | break; |
| 855 | case TSS_READFILE: |
| 856 | |
| 857 | /* |
| 858 | * Switch from reading to writing. |
| 859 | */ |
| 860 | if (!state->readptrs[state->activeptr].eof_reached) |
| 861 | BufFileTell(state->myfile, |
| 862 | &state->readptrs[state->activeptr].file, |
| 863 | &state->readptrs[state->activeptr].offset); |
| 864 | if (BufFileSeek(state->myfile, |
| 865 | state->writepos_file, state->writepos_offset, |
| 866 | SEEK_SET) != 0) |
| 867 | ereport(ERROR, |
| 868 | (errcode_for_file_access(), |
| 869 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 870 | state->status = TSS_WRITEFILE; |
| 871 | |
| 872 | /* |
| 873 | * Update read pointers as needed; see API spec above. |
| 874 | */ |
| 875 | readptr = state->readptrs; |
| 876 | for (i = 0; i < state->readptrcount; readptr++, i++) |
| 877 | { |
| 878 | if (readptr->eof_reached && i != state->activeptr) |
| 879 | { |
| 880 | readptr->eof_reached = false; |
| 881 | readptr->file = state->writepos_file; |
| 882 | readptr->offset = state->writepos_offset; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | WRITETUP(state, tuple); |
| 887 | break; |
| 888 | default: |
| 889 | elog(ERROR, "invalid tuplestore state" ); |
| 890 | break; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * Fetch the next tuple in either forward or back direction. |
| 896 | * Returns NULL if no more tuples. If should_free is set, the |
| 897 | * caller must pfree the returned tuple when done with it. |
| 898 | * |
| 899 | * Backward scan is only allowed if randomAccess was set true or |
| 900 | * EXEC_FLAG_BACKWARD was specified to tuplestore_set_eflags(). |
| 901 | */ |
| 902 | static void * |
| 903 | tuplestore_gettuple(Tuplestorestate *state, bool forward, |
| 904 | bool *should_free) |
| 905 | { |
| 906 | TSReadPointer *readptr = &state->readptrs[state->activeptr]; |
| 907 | unsigned int tuplen; |
| 908 | void *tup; |
| 909 | |
| 910 | Assert(forward || (readptr->eflags & EXEC_FLAG_BACKWARD)); |
| 911 | |
| 912 | switch (state->status) |
| 913 | { |
| 914 | case TSS_INMEM: |
| 915 | *should_free = false; |
| 916 | if (forward) |
| 917 | { |
| 918 | if (readptr->eof_reached) |
| 919 | return NULL; |
| 920 | if (readptr->current < state->memtupcount) |
| 921 | { |
| 922 | /* We have another tuple, so return it */ |
| 923 | return state->memtuples[readptr->current++]; |
| 924 | } |
| 925 | readptr->eof_reached = true; |
| 926 | return NULL; |
| 927 | } |
| 928 | else |
| 929 | { |
| 930 | /* |
| 931 | * if all tuples are fetched already then we return last |
| 932 | * tuple, else tuple before last returned. |
| 933 | */ |
| 934 | if (readptr->eof_reached) |
| 935 | { |
| 936 | readptr->current = state->memtupcount; |
| 937 | readptr->eof_reached = false; |
| 938 | } |
| 939 | else |
| 940 | { |
| 941 | if (readptr->current <= state->memtupdeleted) |
| 942 | { |
| 943 | Assert(!state->truncated); |
| 944 | return NULL; |
| 945 | } |
| 946 | readptr->current--; /* last returned tuple */ |
| 947 | } |
| 948 | if (readptr->current <= state->memtupdeleted) |
| 949 | { |
| 950 | Assert(!state->truncated); |
| 951 | return NULL; |
| 952 | } |
| 953 | return state->memtuples[readptr->current - 1]; |
| 954 | } |
| 955 | break; |
| 956 | |
| 957 | case TSS_WRITEFILE: |
| 958 | /* Skip state change if we'll just return NULL */ |
| 959 | if (readptr->eof_reached && forward) |
| 960 | return NULL; |
| 961 | |
| 962 | /* |
| 963 | * Switch from writing to reading. |
| 964 | */ |
| 965 | BufFileTell(state->myfile, |
| 966 | &state->writepos_file, &state->writepos_offset); |
| 967 | if (!readptr->eof_reached) |
| 968 | if (BufFileSeek(state->myfile, |
| 969 | readptr->file, readptr->offset, |
| 970 | SEEK_SET) != 0) |
| 971 | ereport(ERROR, |
| 972 | (errcode_for_file_access(), |
| 973 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 974 | state->status = TSS_READFILE; |
| 975 | /* FALLTHROUGH */ |
| 976 | |
| 977 | case TSS_READFILE: |
| 978 | *should_free = true; |
| 979 | if (forward) |
| 980 | { |
| 981 | if ((tuplen = getlen(state, true)) != 0) |
| 982 | { |
| 983 | tup = READTUP(state, tuplen); |
| 984 | return tup; |
| 985 | } |
| 986 | else |
| 987 | { |
| 988 | readptr->eof_reached = true; |
| 989 | return NULL; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * Backward. |
| 995 | * |
| 996 | * if all tuples are fetched already then we return last tuple, |
| 997 | * else tuple before last returned. |
| 998 | * |
| 999 | * Back up to fetch previously-returned tuple's ending length |
| 1000 | * word. If seek fails, assume we are at start of file. |
| 1001 | */ |
| 1002 | if (BufFileSeek(state->myfile, 0, -(long) sizeof(unsigned int), |
| 1003 | SEEK_CUR) != 0) |
| 1004 | { |
| 1005 | /* even a failed backwards fetch gets you out of eof state */ |
| 1006 | readptr->eof_reached = false; |
| 1007 | Assert(!state->truncated); |
| 1008 | return NULL; |
| 1009 | } |
| 1010 | tuplen = getlen(state, false); |
| 1011 | |
| 1012 | if (readptr->eof_reached) |
| 1013 | { |
| 1014 | readptr->eof_reached = false; |
| 1015 | /* We will return the tuple returned before returning NULL */ |
| 1016 | } |
| 1017 | else |
| 1018 | { |
| 1019 | /* |
| 1020 | * Back up to get ending length word of tuple before it. |
| 1021 | */ |
| 1022 | if (BufFileSeek(state->myfile, 0, |
| 1023 | -(long) (tuplen + 2 * sizeof(unsigned int)), |
| 1024 | SEEK_CUR) != 0) |
| 1025 | { |
| 1026 | /* |
| 1027 | * If that fails, presumably the prev tuple is the first |
| 1028 | * in the file. Back up so that it becomes next to read |
| 1029 | * in forward direction (not obviously right, but that is |
| 1030 | * what in-memory case does). |
| 1031 | */ |
| 1032 | if (BufFileSeek(state->myfile, 0, |
| 1033 | -(long) (tuplen + sizeof(unsigned int)), |
| 1034 | SEEK_CUR) != 0) |
| 1035 | ereport(ERROR, |
| 1036 | (errcode_for_file_access(), |
| 1037 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 1038 | Assert(!state->truncated); |
| 1039 | return NULL; |
| 1040 | } |
| 1041 | tuplen = getlen(state, false); |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * Now we have the length of the prior tuple, back up and read it. |
| 1046 | * Note: READTUP expects we are positioned after the initial |
| 1047 | * length word of the tuple, so back up to that point. |
| 1048 | */ |
| 1049 | if (BufFileSeek(state->myfile, 0, |
| 1050 | -(long) tuplen, |
| 1051 | SEEK_CUR) != 0) |
| 1052 | ereport(ERROR, |
| 1053 | (errcode_for_file_access(), |
| 1054 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 1055 | tup = READTUP(state, tuplen); |
| 1056 | return tup; |
| 1057 | |
| 1058 | default: |
| 1059 | elog(ERROR, "invalid tuplestore state" ); |
| 1060 | return NULL; /* keep compiler quiet */ |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | * tuplestore_gettupleslot - exported function to fetch a MinimalTuple |
| 1066 | * |
| 1067 | * If successful, put tuple in slot and return true; else, clear the slot |
| 1068 | * and return false. |
| 1069 | * |
| 1070 | * If copy is true, the slot receives a copied tuple (allocated in current |
| 1071 | * memory context) that will stay valid regardless of future manipulations of |
| 1072 | * the tuplestore's state. If copy is false, the slot may just receive a |
| 1073 | * pointer to a tuple held within the tuplestore. The latter is more |
| 1074 | * efficient but the slot contents may be corrupted if additional writes to |
| 1075 | * the tuplestore occur. (If using tuplestore_trim, see comments therein.) |
| 1076 | */ |
| 1077 | bool |
| 1078 | tuplestore_gettupleslot(Tuplestorestate *state, bool forward, |
| 1079 | bool copy, TupleTableSlot *slot) |
| 1080 | { |
| 1081 | MinimalTuple tuple; |
| 1082 | bool should_free; |
| 1083 | |
| 1084 | tuple = (MinimalTuple) tuplestore_gettuple(state, forward, &should_free); |
| 1085 | |
| 1086 | if (tuple) |
| 1087 | { |
| 1088 | if (copy && !should_free) |
| 1089 | { |
| 1090 | tuple = heap_copy_minimal_tuple(tuple); |
| 1091 | should_free = true; |
| 1092 | } |
| 1093 | ExecStoreMinimalTuple(tuple, slot, should_free); |
| 1094 | return true; |
| 1095 | } |
| 1096 | else |
| 1097 | { |
| 1098 | ExecClearTuple(slot); |
| 1099 | return false; |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * tuplestore_advance - exported function to adjust position without fetching |
| 1105 | * |
| 1106 | * We could optimize this case to avoid palloc/pfree overhead, but for the |
| 1107 | * moment it doesn't seem worthwhile. |
| 1108 | */ |
| 1109 | bool |
| 1110 | tuplestore_advance(Tuplestorestate *state, bool forward) |
| 1111 | { |
| 1112 | void *tuple; |
| 1113 | bool should_free; |
| 1114 | |
| 1115 | tuple = tuplestore_gettuple(state, forward, &should_free); |
| 1116 | |
| 1117 | if (tuple) |
| 1118 | { |
| 1119 | if (should_free) |
| 1120 | pfree(tuple); |
| 1121 | return true; |
| 1122 | } |
| 1123 | else |
| 1124 | { |
| 1125 | return false; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * Advance over N tuples in either forward or back direction, |
| 1131 | * without returning any data. N<=0 is a no-op. |
| 1132 | * Returns true if successful, false if ran out of tuples. |
| 1133 | */ |
| 1134 | bool |
| 1135 | tuplestore_skiptuples(Tuplestorestate *state, int64 ntuples, bool forward) |
| 1136 | { |
| 1137 | TSReadPointer *readptr = &state->readptrs[state->activeptr]; |
| 1138 | |
| 1139 | Assert(forward || (readptr->eflags & EXEC_FLAG_BACKWARD)); |
| 1140 | |
| 1141 | if (ntuples <= 0) |
| 1142 | return true; |
| 1143 | |
| 1144 | switch (state->status) |
| 1145 | { |
| 1146 | case TSS_INMEM: |
| 1147 | if (forward) |
| 1148 | { |
| 1149 | if (readptr->eof_reached) |
| 1150 | return false; |
| 1151 | if (state->memtupcount - readptr->current >= ntuples) |
| 1152 | { |
| 1153 | readptr->current += ntuples; |
| 1154 | return true; |
| 1155 | } |
| 1156 | readptr->current = state->memtupcount; |
| 1157 | readptr->eof_reached = true; |
| 1158 | return false; |
| 1159 | } |
| 1160 | else |
| 1161 | { |
| 1162 | if (readptr->eof_reached) |
| 1163 | { |
| 1164 | readptr->current = state->memtupcount; |
| 1165 | readptr->eof_reached = false; |
| 1166 | ntuples--; |
| 1167 | } |
| 1168 | if (readptr->current - state->memtupdeleted > ntuples) |
| 1169 | { |
| 1170 | readptr->current -= ntuples; |
| 1171 | return true; |
| 1172 | } |
| 1173 | Assert(!state->truncated); |
| 1174 | readptr->current = state->memtupdeleted; |
| 1175 | return false; |
| 1176 | } |
| 1177 | break; |
| 1178 | |
| 1179 | default: |
| 1180 | /* We don't currently try hard to optimize other cases */ |
| 1181 | while (ntuples-- > 0) |
| 1182 | { |
| 1183 | void *tuple; |
| 1184 | bool should_free; |
| 1185 | |
| 1186 | tuple = tuplestore_gettuple(state, forward, &should_free); |
| 1187 | |
| 1188 | if (tuple == NULL) |
| 1189 | return false; |
| 1190 | if (should_free) |
| 1191 | pfree(tuple); |
| 1192 | CHECK_FOR_INTERRUPTS(); |
| 1193 | } |
| 1194 | return true; |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | /* |
| 1199 | * dumptuples - remove tuples from memory and write to tape |
| 1200 | * |
| 1201 | * As a side effect, we must convert each read pointer's position from |
| 1202 | * "current" to file/offset format. But eof_reached pointers don't |
| 1203 | * need to change state. |
| 1204 | */ |
| 1205 | static void |
| 1206 | dumptuples(Tuplestorestate *state) |
| 1207 | { |
| 1208 | int i; |
| 1209 | |
| 1210 | for (i = state->memtupdeleted;; i++) |
| 1211 | { |
| 1212 | TSReadPointer *readptr = state->readptrs; |
| 1213 | int j; |
| 1214 | |
| 1215 | for (j = 0; j < state->readptrcount; readptr++, j++) |
| 1216 | { |
| 1217 | if (i == readptr->current && !readptr->eof_reached) |
| 1218 | BufFileTell(state->myfile, |
| 1219 | &readptr->file, &readptr->offset); |
| 1220 | } |
| 1221 | if (i >= state->memtupcount) |
| 1222 | break; |
| 1223 | WRITETUP(state, state->memtuples[i]); |
| 1224 | } |
| 1225 | state->memtupdeleted = 0; |
| 1226 | state->memtupcount = 0; |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * tuplestore_rescan - rewind the active read pointer to start |
| 1231 | */ |
| 1232 | void |
| 1233 | tuplestore_rescan(Tuplestorestate *state) |
| 1234 | { |
| 1235 | TSReadPointer *readptr = &state->readptrs[state->activeptr]; |
| 1236 | |
| 1237 | Assert(readptr->eflags & EXEC_FLAG_REWIND); |
| 1238 | Assert(!state->truncated); |
| 1239 | |
| 1240 | switch (state->status) |
| 1241 | { |
| 1242 | case TSS_INMEM: |
| 1243 | readptr->eof_reached = false; |
| 1244 | readptr->current = 0; |
| 1245 | break; |
| 1246 | case TSS_WRITEFILE: |
| 1247 | readptr->eof_reached = false; |
| 1248 | readptr->file = 0; |
| 1249 | readptr->offset = 0L; |
| 1250 | break; |
| 1251 | case TSS_READFILE: |
| 1252 | readptr->eof_reached = false; |
| 1253 | if (BufFileSeek(state->myfile, 0, 0L, SEEK_SET) != 0) |
| 1254 | ereport(ERROR, |
| 1255 | (errcode_for_file_access(), |
| 1256 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 1257 | break; |
| 1258 | default: |
| 1259 | elog(ERROR, "invalid tuplestore state" ); |
| 1260 | break; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * tuplestore_copy_read_pointer - copy a read pointer's state to another |
| 1266 | */ |
| 1267 | void |
| 1268 | tuplestore_copy_read_pointer(Tuplestorestate *state, |
| 1269 | int srcptr, int destptr) |
| 1270 | { |
| 1271 | TSReadPointer *sptr = &state->readptrs[srcptr]; |
| 1272 | TSReadPointer *dptr = &state->readptrs[destptr]; |
| 1273 | |
| 1274 | Assert(srcptr >= 0 && srcptr < state->readptrcount); |
| 1275 | Assert(destptr >= 0 && destptr < state->readptrcount); |
| 1276 | |
| 1277 | /* Assigning to self is a no-op */ |
| 1278 | if (srcptr == destptr) |
| 1279 | return; |
| 1280 | |
| 1281 | if (dptr->eflags != sptr->eflags) |
| 1282 | { |
| 1283 | /* Possible change of overall eflags, so copy and then recompute */ |
| 1284 | int eflags; |
| 1285 | int i; |
| 1286 | |
| 1287 | *dptr = *sptr; |
| 1288 | eflags = state->readptrs[0].eflags; |
| 1289 | for (i = 1; i < state->readptrcount; i++) |
| 1290 | eflags |= state->readptrs[i].eflags; |
| 1291 | state->eflags = eflags; |
| 1292 | } |
| 1293 | else |
| 1294 | *dptr = *sptr; |
| 1295 | |
| 1296 | switch (state->status) |
| 1297 | { |
| 1298 | case TSS_INMEM: |
| 1299 | case TSS_WRITEFILE: |
| 1300 | /* no work */ |
| 1301 | break; |
| 1302 | case TSS_READFILE: |
| 1303 | |
| 1304 | /* |
| 1305 | * This case is a bit tricky since the active read pointer's |
| 1306 | * position corresponds to the seek point, not what is in its |
| 1307 | * variables. Assigning to the active requires a seek, and |
| 1308 | * assigning from the active requires a tell, except when |
| 1309 | * eof_reached. |
| 1310 | */ |
| 1311 | if (destptr == state->activeptr) |
| 1312 | { |
| 1313 | if (dptr->eof_reached) |
| 1314 | { |
| 1315 | if (BufFileSeek(state->myfile, |
| 1316 | state->writepos_file, |
| 1317 | state->writepos_offset, |
| 1318 | SEEK_SET) != 0) |
| 1319 | ereport(ERROR, |
| 1320 | (errcode_for_file_access(), |
| 1321 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 1322 | } |
| 1323 | else |
| 1324 | { |
| 1325 | if (BufFileSeek(state->myfile, |
| 1326 | dptr->file, dptr->offset, |
| 1327 | SEEK_SET) != 0) |
| 1328 | ereport(ERROR, |
| 1329 | (errcode_for_file_access(), |
| 1330 | errmsg("could not seek in tuplestore temporary file: %m" ))); |
| 1331 | } |
| 1332 | } |
| 1333 | else if (srcptr == state->activeptr) |
| 1334 | { |
| 1335 | if (!dptr->eof_reached) |
| 1336 | BufFileTell(state->myfile, |
| 1337 | &dptr->file, |
| 1338 | &dptr->offset); |
| 1339 | } |
| 1340 | break; |
| 1341 | default: |
| 1342 | elog(ERROR, "invalid tuplestore state" ); |
| 1343 | break; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | /* |
| 1348 | * tuplestore_trim - remove all no-longer-needed tuples |
| 1349 | * |
| 1350 | * Calling this function authorizes the tuplestore to delete all tuples |
| 1351 | * before the oldest read pointer, if no read pointer is marked as requiring |
| 1352 | * REWIND capability. |
| 1353 | * |
| 1354 | * Note: this is obviously safe if no pointer has BACKWARD capability either. |
| 1355 | * If a pointer is marked as BACKWARD but not REWIND capable, it means that |
| 1356 | * the pointer can be moved backward but not before the oldest other read |
| 1357 | * pointer. |
| 1358 | */ |
| 1359 | void |
| 1360 | tuplestore_trim(Tuplestorestate *state) |
| 1361 | { |
| 1362 | int oldest; |
| 1363 | int nremove; |
| 1364 | int i; |
| 1365 | |
| 1366 | /* |
| 1367 | * Truncation is disallowed if any read pointer requires rewind |
| 1368 | * capability. |
| 1369 | */ |
| 1370 | if (state->eflags & EXEC_FLAG_REWIND) |
| 1371 | return; |
| 1372 | |
| 1373 | /* |
| 1374 | * We don't bother trimming temp files since it usually would mean more |
| 1375 | * work than just letting them sit in kernel buffers until they age out. |
| 1376 | */ |
| 1377 | if (state->status != TSS_INMEM) |
| 1378 | return; |
| 1379 | |
| 1380 | /* Find the oldest read pointer */ |
| 1381 | oldest = state->memtupcount; |
| 1382 | for (i = 0; i < state->readptrcount; i++) |
| 1383 | { |
| 1384 | if (!state->readptrs[i].eof_reached) |
| 1385 | oldest = Min(oldest, state->readptrs[i].current); |
| 1386 | } |
| 1387 | |
| 1388 | /* |
| 1389 | * Note: you might think we could remove all the tuples before the oldest |
| 1390 | * "current", since that one is the next to be returned. However, since |
| 1391 | * tuplestore_gettuple returns a direct pointer to our internal copy of |
| 1392 | * the tuple, it's likely that the caller has still got the tuple just |
| 1393 | * before "current" referenced in a slot. So we keep one extra tuple |
| 1394 | * before the oldest "current". (Strictly speaking, we could require such |
| 1395 | * callers to use the "copy" flag to tuplestore_gettupleslot, but for |
| 1396 | * efficiency we allow this one case to not use "copy".) |
| 1397 | */ |
| 1398 | nremove = oldest - 1; |
| 1399 | if (nremove <= 0) |
| 1400 | return; /* nothing to do */ |
| 1401 | |
| 1402 | Assert(nremove >= state->memtupdeleted); |
| 1403 | Assert(nremove <= state->memtupcount); |
| 1404 | |
| 1405 | /* Release no-longer-needed tuples */ |
| 1406 | for (i = state->memtupdeleted; i < nremove; i++) |
| 1407 | { |
| 1408 | FREEMEM(state, GetMemoryChunkSpace(state->memtuples[i])); |
| 1409 | pfree(state->memtuples[i]); |
| 1410 | state->memtuples[i] = NULL; |
| 1411 | } |
| 1412 | state->memtupdeleted = nremove; |
| 1413 | |
| 1414 | /* mark tuplestore as truncated (used for Assert crosschecks only) */ |
| 1415 | state->truncated = true; |
| 1416 | |
| 1417 | /* |
| 1418 | * If nremove is less than 1/8th memtupcount, just stop here, leaving the |
| 1419 | * "deleted" slots as NULL. This prevents us from expending O(N^2) time |
| 1420 | * repeatedly memmove-ing a large pointer array. The worst case space |
| 1421 | * wastage is pretty small, since it's just pointers and not whole tuples. |
| 1422 | */ |
| 1423 | if (nremove < state->memtupcount / 8) |
| 1424 | return; |
| 1425 | |
| 1426 | /* |
| 1427 | * Slide the array down and readjust pointers. |
| 1428 | * |
| 1429 | * In mergejoin's current usage, it's demonstrable that there will always |
| 1430 | * be exactly one non-removed tuple; so optimize that case. |
| 1431 | */ |
| 1432 | if (nremove + 1 == state->memtupcount) |
| 1433 | state->memtuples[0] = state->memtuples[nremove]; |
| 1434 | else |
| 1435 | memmove(state->memtuples, state->memtuples + nremove, |
| 1436 | (state->memtupcount - nremove) * sizeof(void *)); |
| 1437 | |
| 1438 | state->memtupdeleted = 0; |
| 1439 | state->memtupcount -= nremove; |
| 1440 | for (i = 0; i < state->readptrcount; i++) |
| 1441 | { |
| 1442 | if (!state->readptrs[i].eof_reached) |
| 1443 | state->readptrs[i].current -= nremove; |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | /* |
| 1448 | * tuplestore_in_memory |
| 1449 | * |
| 1450 | * Returns true if the tuplestore has not spilled to disk. |
| 1451 | * |
| 1452 | * XXX exposing this is a violation of modularity ... should get rid of it. |
| 1453 | */ |
| 1454 | bool |
| 1455 | tuplestore_in_memory(Tuplestorestate *state) |
| 1456 | { |
| 1457 | return (state->status == TSS_INMEM); |
| 1458 | } |
| 1459 | |
| 1460 | |
| 1461 | /* |
| 1462 | * Tape interface routines |
| 1463 | */ |
| 1464 | |
| 1465 | static unsigned int |
| 1466 | getlen(Tuplestorestate *state, bool eofOK) |
| 1467 | { |
| 1468 | unsigned int len; |
| 1469 | size_t nbytes; |
| 1470 | |
| 1471 | nbytes = BufFileRead(state->myfile, (void *) &len, sizeof(len)); |
| 1472 | if (nbytes == sizeof(len)) |
| 1473 | return len; |
| 1474 | if (nbytes != 0 || !eofOK) |
| 1475 | ereport(ERROR, |
| 1476 | (errcode_for_file_access(), |
| 1477 | errmsg("could not read from tuplestore temporary file: %m" ))); |
| 1478 | return 0; |
| 1479 | } |
| 1480 | |
| 1481 | |
| 1482 | /* |
| 1483 | * Routines specialized for HeapTuple case |
| 1484 | * |
| 1485 | * The stored form is actually a MinimalTuple, but for largely historical |
| 1486 | * reasons we allow COPYTUP to work from a HeapTuple. |
| 1487 | * |
| 1488 | * Since MinimalTuple already has length in its first word, we don't need |
| 1489 | * to write that separately. |
| 1490 | */ |
| 1491 | |
| 1492 | static void * |
| 1493 | copytup_heap(Tuplestorestate *state, void *tup) |
| 1494 | { |
| 1495 | MinimalTuple tuple; |
| 1496 | |
| 1497 | tuple = minimal_tuple_from_heap_tuple((HeapTuple) tup); |
| 1498 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 1499 | return (void *) tuple; |
| 1500 | } |
| 1501 | |
| 1502 | static void |
| 1503 | writetup_heap(Tuplestorestate *state, void *tup) |
| 1504 | { |
| 1505 | MinimalTuple tuple = (MinimalTuple) tup; |
| 1506 | |
| 1507 | /* the part of the MinimalTuple we'll write: */ |
| 1508 | char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET; |
| 1509 | unsigned int tupbodylen = tuple->t_len - MINIMAL_TUPLE_DATA_OFFSET; |
| 1510 | |
| 1511 | /* total on-disk footprint: */ |
| 1512 | unsigned int tuplen = tupbodylen + sizeof(int); |
| 1513 | |
| 1514 | if (BufFileWrite(state->myfile, (void *) &tuplen, |
| 1515 | sizeof(tuplen)) != sizeof(tuplen)) |
| 1516 | ereport(ERROR, |
| 1517 | (errcode_for_file_access(), |
| 1518 | errmsg("could not write to tuplestore temporary file: %m" ))); |
| 1519 | if (BufFileWrite(state->myfile, (void *) tupbody, |
| 1520 | tupbodylen) != (size_t) tupbodylen) |
| 1521 | ereport(ERROR, |
| 1522 | (errcode_for_file_access(), |
| 1523 | errmsg("could not write to tuplestore temporary file: %m" ))); |
| 1524 | if (state->backward) /* need trailing length word? */ |
| 1525 | if (BufFileWrite(state->myfile, (void *) &tuplen, |
| 1526 | sizeof(tuplen)) != sizeof(tuplen)) |
| 1527 | ereport(ERROR, |
| 1528 | (errcode_for_file_access(), |
| 1529 | errmsg("could not write to tuplestore temporary file: %m" ))); |
| 1530 | |
| 1531 | FREEMEM(state, GetMemoryChunkSpace(tuple)); |
| 1532 | heap_free_minimal_tuple(tuple); |
| 1533 | } |
| 1534 | |
| 1535 | static void * |
| 1536 | readtup_heap(Tuplestorestate *state, unsigned int len) |
| 1537 | { |
| 1538 | unsigned int tupbodylen = len - sizeof(int); |
| 1539 | unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET; |
| 1540 | MinimalTuple tuple = (MinimalTuple) palloc(tuplen); |
| 1541 | char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET; |
| 1542 | |
| 1543 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 1544 | /* read in the tuple proper */ |
| 1545 | tuple->t_len = tuplen; |
| 1546 | if (BufFileRead(state->myfile, (void *) tupbody, |
| 1547 | tupbodylen) != (size_t) tupbodylen) |
| 1548 | ereport(ERROR, |
| 1549 | (errcode_for_file_access(), |
| 1550 | errmsg("could not read from tuplestore temporary file: %m" ))); |
| 1551 | if (state->backward) /* need trailing length word? */ |
| 1552 | if (BufFileRead(state->myfile, (void *) &tuplen, |
| 1553 | sizeof(tuplen)) != sizeof(tuplen)) |
| 1554 | ereport(ERROR, |
| 1555 | (errcode_for_file_access(), |
| 1556 | errmsg("could not read from tuplestore temporary file: %m" ))); |
| 1557 | return (void *) tuple; |
| 1558 | } |
| 1559 | |