1 | //===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file defines a hash set that can be used to remove duplication of nodes |
11 | // in a graph. This code was originally created by Chris Lattner for use with |
12 | // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #ifndef LLVM_ADT_FOLDINGSET_H |
17 | #define LLVM_ADT_FOLDINGSET_H |
18 | |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/iterator.h" |
21 | #include "llvm/Support/Allocator.h" |
22 | #include <cassert> |
23 | #include <cstddef> |
24 | #include <cstdint> |
25 | #include <utility> |
26 | |
27 | namespace llvm { |
28 | |
29 | /// This folding set used for two purposes: |
30 | /// 1. Given information about a node we want to create, look up the unique |
31 | /// instance of the node in the set. If the node already exists, return |
32 | /// it, otherwise return the bucket it should be inserted into. |
33 | /// 2. Given a node that has already been created, remove it from the set. |
34 | /// |
35 | /// This class is implemented as a single-link chained hash table, where the |
36 | /// "buckets" are actually the nodes themselves (the next pointer is in the |
37 | /// node). The last node points back to the bucket to simplify node removal. |
38 | /// |
39 | /// Any node that is to be included in the folding set must be a subclass of |
40 | /// FoldingSetNode. The node class must also define a Profile method used to |
41 | /// establish the unique bits of data for the node. The Profile method is |
42 | /// passed a FoldingSetNodeID object which is used to gather the bits. Just |
43 | /// call one of the Add* functions defined in the FoldingSetBase::NodeID class. |
44 | /// NOTE: That the folding set does not own the nodes and it is the |
45 | /// responsibility of the user to dispose of the nodes. |
46 | /// |
47 | /// Eg. |
48 | /// class MyNode : public FoldingSetNode { |
49 | /// private: |
50 | /// std::string Name; |
51 | /// unsigned Value; |
52 | /// public: |
53 | /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} |
54 | /// ... |
55 | /// void Profile(FoldingSetNodeID &ID) const { |
56 | /// ID.AddString(Name); |
57 | /// ID.AddInteger(Value); |
58 | /// } |
59 | /// ... |
60 | /// }; |
61 | /// |
62 | /// To define the folding set itself use the FoldingSet template; |
63 | /// |
64 | /// Eg. |
65 | /// FoldingSet<MyNode> MyFoldingSet; |
66 | /// |
67 | /// Four public methods are available to manipulate the folding set; |
68 | /// |
69 | /// 1) If you have an existing node that you want add to the set but unsure |
70 | /// that the node might already exist then call; |
71 | /// |
72 | /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); |
73 | /// |
74 | /// If The result is equal to the input then the node has been inserted. |
75 | /// Otherwise, the result is the node existing in the folding set, and the |
76 | /// input can be discarded (use the result instead.) |
77 | /// |
78 | /// 2) If you are ready to construct a node but want to check if it already |
79 | /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to |
80 | /// check; |
81 | /// |
82 | /// FoldingSetNodeID ID; |
83 | /// ID.AddString(Name); |
84 | /// ID.AddInteger(Value); |
85 | /// void *InsertPoint; |
86 | /// |
87 | /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); |
88 | /// |
89 | /// If found then M with be non-NULL, else InsertPoint will point to where it |
90 | /// should be inserted using InsertNode. |
91 | /// |
92 | /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new |
93 | /// node with FindNodeOrInsertPos; |
94 | /// |
95 | /// InsertNode(N, InsertPoint); |
96 | /// |
97 | /// 4) Finally, if you want to remove a node from the folding set call; |
98 | /// |
99 | /// bool WasRemoved = RemoveNode(N); |
100 | /// |
101 | /// The result indicates whether the node existed in the folding set. |
102 | |
103 | class FoldingSetNodeID; |
104 | class StringRef; |
105 | |
106 | //===----------------------------------------------------------------------===// |
107 | /// FoldingSetBase - Implements the folding set functionality. The main |
108 | /// structure is an array of buckets. Each bucket is indexed by the hash of |
109 | /// the nodes it contains. The bucket itself points to the nodes contained |
110 | /// in the bucket via a singly linked list. The last node in the list points |
111 | /// back to the bucket to facilitate node removal. |
112 | /// |
113 | class FoldingSetBase { |
114 | virtual void anchor(); // Out of line virtual method. |
115 | |
116 | protected: |
117 | /// Buckets - Array of bucket chains. |
118 | void **Buckets; |
119 | |
120 | /// NumBuckets - Length of the Buckets array. Always a power of 2. |
121 | unsigned NumBuckets; |
122 | |
123 | /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes |
124 | /// is greater than twice the number of buckets. |
125 | unsigned NumNodes; |
126 | |
127 | explicit FoldingSetBase(unsigned Log2InitSize = 6); |
128 | FoldingSetBase(FoldingSetBase &&Arg); |
129 | FoldingSetBase &operator=(FoldingSetBase &&RHS); |
130 | ~FoldingSetBase(); |
131 | |
132 | public: |
133 | //===--------------------------------------------------------------------===// |
134 | /// Node - This class is used to maintain the singly linked bucket list in |
135 | /// a folding set. |
136 | class Node { |
137 | private: |
138 | // NextInFoldingSetBucket - next link in the bucket list. |
139 | void *NextInFoldingSetBucket = nullptr; |
140 | |
141 | public: |
142 | Node() = default; |
143 | |
144 | // Accessors |
145 | void *getNextInBucket() const { return NextInFoldingSetBucket; } |
146 | void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } |
147 | }; |
148 | |
149 | /// clear - Remove all nodes from the folding set. |
150 | void clear(); |
151 | |
152 | /// size - Returns the number of nodes in the folding set. |
153 | unsigned size() const { return NumNodes; } |
154 | |
155 | /// empty - Returns true if there are no nodes in the folding set. |
156 | bool empty() const { return NumNodes == 0; } |
157 | |
158 | /// reserve - Increase the number of buckets such that adding the |
159 | /// EltCount-th node won't cause a rebucket operation. reserve is permitted |
160 | /// to allocate more space than requested by EltCount. |
161 | void reserve(unsigned EltCount); |
162 | |
163 | /// capacity - Returns the number of nodes permitted in the folding set |
164 | /// before a rebucket operation is performed. |
165 | unsigned capacity() { |
166 | // We allow a load factor of up to 2.0, |
167 | // so that means our capacity is NumBuckets * 2 |
168 | return NumBuckets * 2; |
169 | } |
170 | |
171 | private: |
172 | /// GrowHashTable - Double the size of the hash table and rehash everything. |
173 | void GrowHashTable(); |
174 | |
175 | /// GrowBucketCount - resize the hash table and rehash everything. |
176 | /// NewBucketCount must be a power of two, and must be greater than the old |
177 | /// bucket count. |
178 | void GrowBucketCount(unsigned NewBucketCount); |
179 | |
180 | protected: |
181 | /// GetNodeProfile - Instantiations of the FoldingSet template implement |
182 | /// this function to gather data bits for the given node. |
183 | virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; |
184 | |
185 | /// NodeEquals - Instantiations of the FoldingSet template implement |
186 | /// this function to compare the given node with the given ID. |
187 | virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
188 | FoldingSetNodeID &TempID) const=0; |
189 | |
190 | /// ComputeNodeHash - Instantiations of the FoldingSet template implement |
191 | /// this function to compute a hash value for the given node. |
192 | virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; |
193 | |
194 | // The below methods are protected to encourage subclasses to provide a more |
195 | // type-safe API. |
196 | |
197 | /// RemoveNode - Remove a node from the folding set, returning true if one |
198 | /// was removed or false if the node was not in the folding set. |
199 | bool RemoveNode(Node *N); |
200 | |
201 | /// GetOrInsertNode - If there is an existing simple Node exactly |
202 | /// equal to the specified node, return it. Otherwise, insert 'N' and return |
203 | /// it instead. |
204 | Node *GetOrInsertNode(Node *N); |
205 | |
206 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
207 | /// return it. If not, return the insertion token that will make insertion |
208 | /// faster. |
209 | Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
210 | |
211 | /// InsertNode - Insert the specified node into the folding set, knowing that |
212 | /// it is not already in the folding set. InsertPos must be obtained from |
213 | /// FindNodeOrInsertPos. |
214 | void InsertNode(Node *N, void *InsertPos); |
215 | }; |
216 | |
217 | //===----------------------------------------------------------------------===// |
218 | |
219 | /// DefaultFoldingSetTrait - This class provides default implementations |
220 | /// for FoldingSetTrait implementations. |
221 | template<typename T> struct DefaultFoldingSetTrait { |
222 | static void Profile(const T &X, FoldingSetNodeID &ID) { |
223 | X.Profile(ID); |
224 | } |
225 | static void Profile(T &X, FoldingSetNodeID &ID) { |
226 | X.Profile(ID); |
227 | } |
228 | |
229 | // Equals - Test if the profile for X would match ID, using TempID |
230 | // to compute a temporary ID if necessary. The default implementation |
231 | // just calls Profile and does a regular comparison. Implementations |
232 | // can override this to provide more efficient implementations. |
233 | static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
234 | FoldingSetNodeID &TempID); |
235 | |
236 | // ComputeHash - Compute a hash value for X, using TempID to |
237 | // compute a temporary ID if necessary. The default implementation |
238 | // just calls Profile and does a regular hash computation. |
239 | // Implementations can override this to provide more efficient |
240 | // implementations. |
241 | static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); |
242 | }; |
243 | |
244 | /// FoldingSetTrait - This trait class is used to define behavior of how |
245 | /// to "profile" (in the FoldingSet parlance) an object of a given type. |
246 | /// The default behavior is to invoke a 'Profile' method on an object, but |
247 | /// through template specialization the behavior can be tailored for specific |
248 | /// types. Combined with the FoldingSetNodeWrapper class, one can add objects |
249 | /// to FoldingSets that were not originally designed to have that behavior. |
250 | template<typename T> struct FoldingSetTrait |
251 | : public DefaultFoldingSetTrait<T> {}; |
252 | |
253 | /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but |
254 | /// for ContextualFoldingSets. |
255 | template<typename T, typename Ctx> |
256 | struct DefaultContextualFoldingSetTrait { |
257 | static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { |
258 | X.Profile(ID, Context); |
259 | } |
260 | |
261 | static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
262 | FoldingSetNodeID &TempID, Ctx Context); |
263 | static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, |
264 | Ctx Context); |
265 | }; |
266 | |
267 | /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for |
268 | /// ContextualFoldingSets. |
269 | template<typename T, typename Ctx> struct ContextualFoldingSetTrait |
270 | : public DefaultContextualFoldingSetTrait<T, Ctx> {}; |
271 | |
272 | //===--------------------------------------------------------------------===// |
273 | /// FoldingSetNodeIDRef - This class describes a reference to an interned |
274 | /// FoldingSetNodeID, which can be a useful to store node id data rather |
275 | /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector |
276 | /// is often much larger than necessary, and the possibility of heap |
277 | /// allocation means it requires a non-trivial destructor call. |
278 | class FoldingSetNodeIDRef { |
279 | const unsigned *Data = nullptr; |
280 | size_t Size = 0; |
281 | |
282 | public: |
283 | FoldingSetNodeIDRef() = default; |
284 | FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} |
285 | |
286 | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, |
287 | /// used to lookup the node in the FoldingSetBase. |
288 | unsigned ComputeHash() const; |
289 | |
290 | bool operator==(FoldingSetNodeIDRef) const; |
291 | |
292 | bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } |
293 | |
294 | /// Used to compare the "ordering" of two nodes as defined by the |
295 | /// profiled bits and their ordering defined by memcmp(). |
296 | bool operator<(FoldingSetNodeIDRef) const; |
297 | |
298 | const unsigned *getData() const { return Data; } |
299 | size_t getSize() const { return Size; } |
300 | }; |
301 | |
302 | //===--------------------------------------------------------------------===// |
303 | /// FoldingSetNodeID - This class is used to gather all the unique data bits of |
304 | /// a node. When all the bits are gathered this class is used to produce a |
305 | /// hash value for the node. |
306 | class FoldingSetNodeID { |
307 | /// Bits - Vector of all the data bits that make the node unique. |
308 | /// Use a SmallVector to avoid a heap allocation in the common case. |
309 | SmallVector<unsigned, 32> Bits; |
310 | |
311 | public: |
312 | FoldingSetNodeID() = default; |
313 | |
314 | FoldingSetNodeID(FoldingSetNodeIDRef Ref) |
315 | : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} |
316 | |
317 | /// Add* - Add various data types to Bit data. |
318 | void AddPointer(const void *Ptr); |
319 | void AddInteger(signed I); |
320 | void AddInteger(unsigned I); |
321 | void AddInteger(long I); |
322 | void AddInteger(unsigned long I); |
323 | void AddInteger(long long I); |
324 | void AddInteger(unsigned long long I); |
325 | void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } |
326 | void AddString(StringRef String); |
327 | void AddNodeID(const FoldingSetNodeID &ID); |
328 | |
329 | template <typename T> |
330 | inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } |
331 | |
332 | /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID |
333 | /// object to be used to compute a new profile. |
334 | inline void clear() { Bits.clear(); } |
335 | |
336 | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used |
337 | /// to lookup the node in the FoldingSetBase. |
338 | unsigned ComputeHash() const; |
339 | |
340 | /// operator== - Used to compare two nodes to each other. |
341 | bool operator==(const FoldingSetNodeID &RHS) const; |
342 | bool operator==(const FoldingSetNodeIDRef RHS) const; |
343 | |
344 | bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } |
345 | bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} |
346 | |
347 | /// Used to compare the "ordering" of two nodes as defined by the |
348 | /// profiled bits and their ordering defined by memcmp(). |
349 | bool operator<(const FoldingSetNodeID &RHS) const; |
350 | bool operator<(const FoldingSetNodeIDRef RHS) const; |
351 | |
352 | /// Intern - Copy this node's data to a memory region allocated from the |
353 | /// given allocator and return a FoldingSetNodeIDRef describing the |
354 | /// interned data. |
355 | FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; |
356 | }; |
357 | |
358 | // Convenience type to hide the implementation of the folding set. |
359 | using FoldingSetNode = FoldingSetBase::Node; |
360 | template<class T> class FoldingSetIterator; |
361 | template<class T> class FoldingSetBucketIterator; |
362 | |
363 | // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which |
364 | // require the definition of FoldingSetNodeID. |
365 | template<typename T> |
366 | inline bool |
367 | DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, |
368 | unsigned /*IDHash*/, |
369 | FoldingSetNodeID &TempID) { |
370 | FoldingSetTrait<T>::Profile(X, TempID); |
371 | return TempID == ID; |
372 | } |
373 | template<typename T> |
374 | inline unsigned |
375 | DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { |
376 | FoldingSetTrait<T>::Profile(X, TempID); |
377 | return TempID.ComputeHash(); |
378 | } |
379 | template<typename T, typename Ctx> |
380 | inline bool |
381 | DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, |
382 | const FoldingSetNodeID &ID, |
383 | unsigned /*IDHash*/, |
384 | FoldingSetNodeID &TempID, |
385 | Ctx Context) { |
386 | ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
387 | return TempID == ID; |
388 | } |
389 | template<typename T, typename Ctx> |
390 | inline unsigned |
391 | DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, |
392 | FoldingSetNodeID &TempID, |
393 | Ctx Context) { |
394 | ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
395 | return TempID.ComputeHash(); |
396 | } |
397 | |
398 | //===----------------------------------------------------------------------===// |
399 | /// FoldingSetImpl - An implementation detail that lets us share code between |
400 | /// FoldingSet and ContextualFoldingSet. |
401 | template <class T> class FoldingSetImpl : public FoldingSetBase { |
402 | protected: |
403 | explicit FoldingSetImpl(unsigned Log2InitSize) |
404 | : FoldingSetBase(Log2InitSize) {} |
405 | |
406 | FoldingSetImpl(FoldingSetImpl &&Arg) = default; |
407 | FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default; |
408 | ~FoldingSetImpl() = default; |
409 | |
410 | public: |
411 | using iterator = FoldingSetIterator<T>; |
412 | |
413 | iterator begin() { return iterator(Buckets); } |
414 | iterator end() { return iterator(Buckets+NumBuckets); } |
415 | |
416 | using const_iterator = FoldingSetIterator<const T>; |
417 | |
418 | const_iterator begin() const { return const_iterator(Buckets); } |
419 | const_iterator end() const { return const_iterator(Buckets+NumBuckets); } |
420 | |
421 | using bucket_iterator = FoldingSetBucketIterator<T>; |
422 | |
423 | bucket_iterator bucket_begin(unsigned hash) { |
424 | return bucket_iterator(Buckets + (hash & (NumBuckets-1))); |
425 | } |
426 | |
427 | bucket_iterator bucket_end(unsigned hash) { |
428 | return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); |
429 | } |
430 | |
431 | /// RemoveNode - Remove a node from the folding set, returning true if one |
432 | /// was removed or false if the node was not in the folding set. |
433 | bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); } |
434 | |
435 | /// GetOrInsertNode - If there is an existing simple Node exactly |
436 | /// equal to the specified node, return it. Otherwise, insert 'N' and |
437 | /// return it instead. |
438 | T *GetOrInsertNode(T *N) { |
439 | return static_cast<T *>(FoldingSetBase::GetOrInsertNode(N)); |
440 | } |
441 | |
442 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
443 | /// return it. If not, return the insertion token that will make insertion |
444 | /// faster. |
445 | T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
446 | return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(ID, InsertPos)); |
447 | } |
448 | |
449 | /// InsertNode - Insert the specified node into the folding set, knowing that |
450 | /// it is not already in the folding set. InsertPos must be obtained from |
451 | /// FindNodeOrInsertPos. |
452 | void InsertNode(T *N, void *InsertPos) { |
453 | FoldingSetBase::InsertNode(N, InsertPos); |
454 | } |
455 | |
456 | /// InsertNode - Insert the specified node into the folding set, knowing that |
457 | /// it is not already in the folding set. |
458 | void InsertNode(T *N) { |
459 | T *Inserted = GetOrInsertNode(N); |
460 | (void)Inserted; |
461 | assert(Inserted == N && "Node already inserted!" ); |
462 | } |
463 | }; |
464 | |
465 | //===----------------------------------------------------------------------===// |
466 | /// FoldingSet - This template class is used to instantiate a specialized |
467 | /// implementation of the folding set to the node class T. T must be a |
468 | /// subclass of FoldingSetNode and implement a Profile function. |
469 | /// |
470 | /// Note that this set type is movable and move-assignable. However, its |
471 | /// moved-from state is not a valid state for anything other than |
472 | /// move-assigning and destroying. This is primarily to enable movable APIs |
473 | /// that incorporate these objects. |
474 | template <class T> class FoldingSet final : public FoldingSetImpl<T> { |
475 | using Super = FoldingSetImpl<T>; |
476 | using Node = typename Super::Node; |
477 | |
478 | /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
479 | /// way to convert nodes into a unique specifier. |
480 | void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { |
481 | T *TN = static_cast<T *>(N); |
482 | FoldingSetTrait<T>::Profile(*TN, ID); |
483 | } |
484 | |
485 | /// NodeEquals - Instantiations may optionally provide a way to compare a |
486 | /// node with a specified ID. |
487 | bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
488 | FoldingSetNodeID &TempID) const override { |
489 | T *TN = static_cast<T *>(N); |
490 | return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); |
491 | } |
492 | |
493 | /// ComputeNodeHash - Instantiations may optionally provide a way to compute a |
494 | /// hash value directly from a node. |
495 | unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { |
496 | T *TN = static_cast<T *>(N); |
497 | return FoldingSetTrait<T>::ComputeHash(*TN, TempID); |
498 | } |
499 | |
500 | public: |
501 | explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {} |
502 | FoldingSet(FoldingSet &&Arg) = default; |
503 | FoldingSet &operator=(FoldingSet &&RHS) = default; |
504 | }; |
505 | |
506 | //===----------------------------------------------------------------------===// |
507 | /// ContextualFoldingSet - This template class is a further refinement |
508 | /// of FoldingSet which provides a context argument when calling |
509 | /// Profile on its nodes. Currently, that argument is fixed at |
510 | /// initialization time. |
511 | /// |
512 | /// T must be a subclass of FoldingSetNode and implement a Profile |
513 | /// function with signature |
514 | /// void Profile(FoldingSetNodeID &, Ctx); |
515 | template <class T, class Ctx> |
516 | class ContextualFoldingSet final : public FoldingSetImpl<T> { |
517 | // Unfortunately, this can't derive from FoldingSet<T> because the |
518 | // construction of the vtable for FoldingSet<T> requires |
519 | // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn |
520 | // requires a single-argument T::Profile(). |
521 | |
522 | using Super = FoldingSetImpl<T>; |
523 | using Node = typename Super::Node; |
524 | |
525 | Ctx Context; |
526 | |
527 | /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
528 | /// way to convert nodes into a unique specifier. |
529 | void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { |
530 | T *TN = static_cast<T *>(N); |
531 | ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); |
532 | } |
533 | |
534 | bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
535 | FoldingSetNodeID &TempID) const override { |
536 | T *TN = static_cast<T *>(N); |
537 | return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, |
538 | Context); |
539 | } |
540 | |
541 | unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { |
542 | T *TN = static_cast<T *>(N); |
543 | return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); |
544 | } |
545 | |
546 | public: |
547 | explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) |
548 | : Super(Log2InitSize), Context(Context) {} |
549 | |
550 | Ctx getContext() const { return Context; } |
551 | }; |
552 | |
553 | //===----------------------------------------------------------------------===// |
554 | /// FoldingSetVector - This template class combines a FoldingSet and a vector |
555 | /// to provide the interface of FoldingSet but with deterministic iteration |
556 | /// order based on the insertion order. T must be a subclass of FoldingSetNode |
557 | /// and implement a Profile function. |
558 | template <class T, class VectorT = SmallVector<T*, 8>> |
559 | class FoldingSetVector { |
560 | FoldingSet<T> Set; |
561 | VectorT Vector; |
562 | |
563 | public: |
564 | explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {} |
565 | |
566 | using iterator = pointee_iterator<typename VectorT::iterator>; |
567 | |
568 | iterator begin() { return Vector.begin(); } |
569 | iterator end() { return Vector.end(); } |
570 | |
571 | using const_iterator = pointee_iterator<typename VectorT::const_iterator>; |
572 | |
573 | const_iterator begin() const { return Vector.begin(); } |
574 | const_iterator end() const { return Vector.end(); } |
575 | |
576 | /// clear - Remove all nodes from the folding set. |
577 | void clear() { Set.clear(); Vector.clear(); } |
578 | |
579 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
580 | /// return it. If not, return the insertion token that will make insertion |
581 | /// faster. |
582 | T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
583 | return Set.FindNodeOrInsertPos(ID, InsertPos); |
584 | } |
585 | |
586 | /// GetOrInsertNode - If there is an existing simple Node exactly |
587 | /// equal to the specified node, return it. Otherwise, insert 'N' and |
588 | /// return it instead. |
589 | T *GetOrInsertNode(T *N) { |
590 | T *Result = Set.GetOrInsertNode(N); |
591 | if (Result == N) Vector.push_back(N); |
592 | return Result; |
593 | } |
594 | |
595 | /// InsertNode - Insert the specified node into the folding set, knowing that |
596 | /// it is not already in the folding set. InsertPos must be obtained from |
597 | /// FindNodeOrInsertPos. |
598 | void InsertNode(T *N, void *InsertPos) { |
599 | Set.InsertNode(N, InsertPos); |
600 | Vector.push_back(N); |
601 | } |
602 | |
603 | /// InsertNode - Insert the specified node into the folding set, knowing that |
604 | /// it is not already in the folding set. |
605 | void InsertNode(T *N) { |
606 | Set.InsertNode(N); |
607 | Vector.push_back(N); |
608 | } |
609 | |
610 | /// size - Returns the number of nodes in the folding set. |
611 | unsigned size() const { return Set.size(); } |
612 | |
613 | /// empty - Returns true if there are no nodes in the folding set. |
614 | bool empty() const { return Set.empty(); } |
615 | }; |
616 | |
617 | //===----------------------------------------------------------------------===// |
618 | /// FoldingSetIteratorImpl - This is the common iterator support shared by all |
619 | /// folding sets, which knows how to walk the folding set hash table. |
620 | class FoldingSetIteratorImpl { |
621 | protected: |
622 | FoldingSetNode *NodePtr; |
623 | |
624 | FoldingSetIteratorImpl(void **Bucket); |
625 | |
626 | void advance(); |
627 | |
628 | public: |
629 | bool operator==(const FoldingSetIteratorImpl &RHS) const { |
630 | return NodePtr == RHS.NodePtr; |
631 | } |
632 | bool operator!=(const FoldingSetIteratorImpl &RHS) const { |
633 | return NodePtr != RHS.NodePtr; |
634 | } |
635 | }; |
636 | |
637 | template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl { |
638 | public: |
639 | explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} |
640 | |
641 | T &operator*() const { |
642 | return *static_cast<T*>(NodePtr); |
643 | } |
644 | |
645 | T *operator->() const { |
646 | return static_cast<T*>(NodePtr); |
647 | } |
648 | |
649 | inline FoldingSetIterator &operator++() { // Preincrement |
650 | advance(); |
651 | return *this; |
652 | } |
653 | FoldingSetIterator operator++(int) { // Postincrement |
654 | FoldingSetIterator tmp = *this; ++*this; return tmp; |
655 | } |
656 | }; |
657 | |
658 | //===----------------------------------------------------------------------===// |
659 | /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support |
660 | /// shared by all folding sets, which knows how to walk a particular bucket |
661 | /// of a folding set hash table. |
662 | class FoldingSetBucketIteratorImpl { |
663 | protected: |
664 | void *Ptr; |
665 | |
666 | explicit FoldingSetBucketIteratorImpl(void **Bucket); |
667 | |
668 | FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {} |
669 | |
670 | void advance() { |
671 | void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); |
672 | uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; |
673 | Ptr = reinterpret_cast<void*>(x); |
674 | } |
675 | |
676 | public: |
677 | bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { |
678 | return Ptr == RHS.Ptr; |
679 | } |
680 | bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { |
681 | return Ptr != RHS.Ptr; |
682 | } |
683 | }; |
684 | |
685 | template <class T> |
686 | class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { |
687 | public: |
688 | explicit FoldingSetBucketIterator(void **Bucket) : |
689 | FoldingSetBucketIteratorImpl(Bucket) {} |
690 | |
691 | FoldingSetBucketIterator(void **Bucket, bool) : |
692 | FoldingSetBucketIteratorImpl(Bucket, true) {} |
693 | |
694 | T &operator*() const { return *static_cast<T*>(Ptr); } |
695 | T *operator->() const { return static_cast<T*>(Ptr); } |
696 | |
697 | inline FoldingSetBucketIterator &operator++() { // Preincrement |
698 | advance(); |
699 | return *this; |
700 | } |
701 | FoldingSetBucketIterator operator++(int) { // Postincrement |
702 | FoldingSetBucketIterator tmp = *this; ++*this; return tmp; |
703 | } |
704 | }; |
705 | |
706 | //===----------------------------------------------------------------------===// |
707 | /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary |
708 | /// types in an enclosing object so that they can be inserted into FoldingSets. |
709 | template <typename T> |
710 | class FoldingSetNodeWrapper : public FoldingSetNode { |
711 | T data; |
712 | |
713 | public: |
714 | template <typename... Ts> |
715 | explicit FoldingSetNodeWrapper(Ts &&... Args) |
716 | : data(std::forward<Ts>(Args)...) {} |
717 | |
718 | void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } |
719 | |
720 | T &getValue() { return data; } |
721 | const T &getValue() const { return data; } |
722 | |
723 | operator T&() { return data; } |
724 | operator const T&() const { return data; } |
725 | }; |
726 | |
727 | //===----------------------------------------------------------------------===// |
728 | /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores |
729 | /// a FoldingSetNodeID value rather than requiring the node to recompute it |
730 | /// each time it is needed. This trades space for speed (which can be |
731 | /// significant if the ID is long), and it also permits nodes to drop |
732 | /// information that would otherwise only be required for recomputing an ID. |
733 | class FastFoldingSetNode : public FoldingSetNode { |
734 | FoldingSetNodeID FastID; |
735 | |
736 | protected: |
737 | explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} |
738 | |
739 | public: |
740 | void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); } |
741 | }; |
742 | |
743 | //===----------------------------------------------------------------------===// |
744 | // Partial specializations of FoldingSetTrait. |
745 | |
746 | template<typename T> struct FoldingSetTrait<T*> { |
747 | static inline void Profile(T *X, FoldingSetNodeID &ID) { |
748 | ID.AddPointer(X); |
749 | } |
750 | }; |
751 | template <typename T1, typename T2> |
752 | struct FoldingSetTrait<std::pair<T1, T2>> { |
753 | static inline void Profile(const std::pair<T1, T2> &P, |
754 | FoldingSetNodeID &ID) { |
755 | ID.Add(P.first); |
756 | ID.Add(P.second); |
757 | } |
758 | }; |
759 | |
760 | } // end namespace llvm |
761 | |
762 | #endif // LLVM_ADT_FOLDINGSET_H |
763 | |