1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file defines the SmallVector class. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_SMALLVECTOR_H |
15 | #define LLVM_ADT_SMALLVECTOR_H |
16 | |
17 | #include "llvm/ADT/iterator_range.h" |
18 | #include "llvm/Support/AlignOf.h" |
19 | #include "llvm/Support/Compiler.h" |
20 | #include "llvm/Support/MathExtras.h" |
21 | #include "llvm/Support/MemAlloc.h" |
22 | #include "llvm/Support/type_traits.h" |
23 | #include "llvm/Support/ErrorHandling.h" |
24 | #include <algorithm> |
25 | #include <cassert> |
26 | #include <cstddef> |
27 | #include <cstdlib> |
28 | #include <cstring> |
29 | #include <initializer_list> |
30 | #include <iterator> |
31 | #include <memory> |
32 | #include <new> |
33 | #include <type_traits> |
34 | #include <utility> |
35 | |
36 | namespace llvm { |
37 | |
38 | /// This is all the non-templated stuff common to all SmallVectors. |
39 | class SmallVectorBase { |
40 | protected: |
41 | void *BeginX; |
42 | unsigned Size = 0, Capacity; |
43 | |
44 | SmallVectorBase() = delete; |
45 | SmallVectorBase(void *FirstEl, size_t Capacity) |
46 | : BeginX(FirstEl), Capacity(Capacity) {} |
47 | |
48 | /// This is an implementation of the grow() method which only works |
49 | /// on POD-like data types and is out of line to reduce code duplication. |
50 | void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize); |
51 | |
52 | public: |
53 | size_t size() const { return Size; } |
54 | size_t capacity() const { return Capacity; } |
55 | |
56 | LLVM_NODISCARD bool empty() const { return !Size; } |
57 | |
58 | /// Set the array size to \p N, which the current array must have enough |
59 | /// capacity for. |
60 | /// |
61 | /// This does not construct or destroy any elements in the vector. |
62 | /// |
63 | /// Clients can use this in conjunction with capacity() to write past the end |
64 | /// of the buffer when they know that more elements are available, and only |
65 | /// update the size later. This avoids the cost of value initializing elements |
66 | /// which will only be overwritten. |
67 | void set_size(size_t Size) { |
68 | assert(Size <= capacity()); |
69 | this->Size = Size; |
70 | } |
71 | }; |
72 | |
73 | /// Figure out the offset of the first element. |
74 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
75 | AlignedCharArrayUnion<SmallVectorBase> Base; |
76 | AlignedCharArrayUnion<T> FirstEl; |
77 | }; |
78 | |
79 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
80 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
81 | /// to avoid unnecessarily requiring T to be complete. |
82 | template <typename T, typename = void> |
83 | class SmallVectorTemplateCommon : public SmallVectorBase { |
84 | /// Find the address of the first element. For this pointer math to be valid |
85 | /// with small-size of 0 for T with lots of alignment, it's important that |
86 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
87 | void *getFirstEl() const { |
88 | return const_cast<void *>(reinterpret_cast<const void *>( |
89 | reinterpret_cast<const char *>(this) + |
90 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
91 | } |
92 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
93 | |
94 | protected: |
95 | SmallVectorTemplateCommon(size_t Size) |
96 | : SmallVectorBase(getFirstEl(), Size) {} |
97 | |
98 | void grow_pod(size_t MinCapacity, size_t TSize) { |
99 | SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize); |
100 | } |
101 | |
102 | /// Return true if this is a smallvector which has not had dynamic |
103 | /// memory allocated for it. |
104 | bool isSmall() const { return BeginX == getFirstEl(); } |
105 | |
106 | /// Put this vector in a state of being small. |
107 | void resetToSmall() { |
108 | BeginX = getFirstEl(); |
109 | Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
110 | } |
111 | |
112 | public: |
113 | using size_type = size_t; |
114 | using difference_type = ptrdiff_t; |
115 | using value_type = T; |
116 | using iterator = T *; |
117 | using const_iterator = const T *; |
118 | |
119 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
120 | using reverse_iterator = std::reverse_iterator<iterator>; |
121 | |
122 | using reference = T &; |
123 | using const_reference = const T &; |
124 | using pointer = T *; |
125 | using const_pointer = const T *; |
126 | |
127 | // forward iterator creation methods. |
128 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
129 | iterator begin() { return (iterator)this->BeginX; } |
130 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
131 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
132 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
133 | iterator end() { return begin() + size(); } |
134 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
135 | const_iterator end() const { return begin() + size(); } |
136 | |
137 | // reverse iterator creation methods. |
138 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
139 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
140 | reverse_iterator rend() { return reverse_iterator(begin()); } |
141 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
142 | |
143 | size_type size_in_bytes() const { return size() * sizeof(T); } |
144 | size_type max_size() const { return size_type(-1) / sizeof(T); } |
145 | |
146 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
147 | |
148 | /// Return a pointer to the vector's buffer, even if empty(). |
149 | pointer data() { return pointer(begin()); } |
150 | /// Return a pointer to the vector's buffer, even if empty(). |
151 | const_pointer data() const { return const_pointer(begin()); } |
152 | |
153 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
154 | reference operator[](size_type idx) { |
155 | assert(idx < size()); |
156 | return begin()[idx]; |
157 | } |
158 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
159 | const_reference operator[](size_type idx) const { |
160 | assert(idx < size()); |
161 | return begin()[idx]; |
162 | } |
163 | |
164 | reference front() { |
165 | assert(!empty()); |
166 | return begin()[0]; |
167 | } |
168 | const_reference front() const { |
169 | assert(!empty()); |
170 | return begin()[0]; |
171 | } |
172 | |
173 | reference back() { |
174 | assert(!empty()); |
175 | return end()[-1]; |
176 | } |
177 | const_reference back() const { |
178 | assert(!empty()); |
179 | return end()[-1]; |
180 | } |
181 | }; |
182 | |
183 | /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method |
184 | /// implementations that are designed to work with non-POD-like T's. |
185 | template <typename T, bool = isPodLike<T>::value> |
186 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
187 | protected: |
188 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
189 | |
190 | static void destroy_range(T *S, T *E) { |
191 | while (S != E) { |
192 | --E; |
193 | E->~T(); |
194 | } |
195 | } |
196 | |
197 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
198 | /// constructing elements as needed. |
199 | template<typename It1, typename It2> |
200 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
201 | std::uninitialized_copy(std::make_move_iterator(I), |
202 | std::make_move_iterator(E), Dest); |
203 | } |
204 | |
205 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
206 | /// constructing elements as needed. |
207 | template<typename It1, typename It2> |
208 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
209 | std::uninitialized_copy(I, E, Dest); |
210 | } |
211 | |
212 | /// Grow the allocated memory (without initializing new elements), doubling |
213 | /// the size of the allocated memory. Guarantees space for at least one more |
214 | /// element, or MinSize more elements if specified. |
215 | void grow(size_t MinSize = 0); |
216 | |
217 | public: |
218 | void push_back(const T &Elt) { |
219 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
220 | this->grow(); |
221 | ::new ((void*) this->end()) T(Elt); |
222 | this->set_size(this->size() + 1); |
223 | } |
224 | |
225 | void push_back(T &&Elt) { |
226 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
227 | this->grow(); |
228 | ::new ((void*) this->end()) T(::std::move(Elt)); |
229 | this->set_size(this->size() + 1); |
230 | } |
231 | |
232 | void pop_back() { |
233 | this->set_size(this->size() - 1); |
234 | this->end()->~T(); |
235 | } |
236 | }; |
237 | |
238 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
239 | template <typename T, bool isPodLike> |
240 | void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) { |
241 | if (MinSize > UINT32_MAX) |
242 | report_bad_alloc_error("SmallVector capacity overflow during allocation" ); |
243 | |
244 | // Always grow, even from zero. |
245 | size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2)); |
246 | NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX)); |
247 | T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T))); |
248 | |
249 | // Move the elements over. |
250 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
251 | |
252 | // Destroy the original elements. |
253 | destroy_range(this->begin(), this->end()); |
254 | |
255 | // If this wasn't grown from the inline copy, deallocate the old space. |
256 | if (!this->isSmall()) |
257 | free(this->begin()); |
258 | |
259 | this->BeginX = NewElts; |
260 | this->Capacity = NewCapacity; |
261 | } |
262 | |
263 | |
264 | /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method |
265 | /// implementations that are designed to work with POD-like T's. |
266 | template <typename T> |
267 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
268 | protected: |
269 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
270 | |
271 | // No need to do a destroy loop for POD's. |
272 | static void destroy_range(T *, T *) {} |
273 | |
274 | /// Move the range [I, E) onto the uninitialized memory |
275 | /// starting with "Dest", constructing elements into it as needed. |
276 | template<typename It1, typename It2> |
277 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
278 | // Just do a copy. |
279 | uninitialized_copy(I, E, Dest); |
280 | } |
281 | |
282 | /// Copy the range [I, E) onto the uninitialized memory |
283 | /// starting with "Dest", constructing elements into it as needed. |
284 | template<typename It1, typename It2> |
285 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
286 | // Arbitrary iterator types; just use the basic implementation. |
287 | std::uninitialized_copy(I, E, Dest); |
288 | } |
289 | |
290 | /// Copy the range [I, E) onto the uninitialized memory |
291 | /// starting with "Dest", constructing elements into it as needed. |
292 | template <typename T1, typename T2> |
293 | static void uninitialized_copy( |
294 | T1 *I, T1 *E, T2 *Dest, |
295 | typename std::enable_if<std::is_same<typename std::remove_const<T1>::type, |
296 | T2>::value>::type * = nullptr) { |
297 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
298 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
299 | // use memcpy here. Note that I and E are iterators and thus might be |
300 | // invalid for memcpy if they are equal. |
301 | if (I != E) |
302 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
303 | } |
304 | |
305 | /// Double the size of the allocated memory, guaranteeing space for at |
306 | /// least one more element or MinSize if specified. |
307 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
308 | |
309 | public: |
310 | void push_back(const T &Elt) { |
311 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
312 | this->grow(); |
313 | memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T)); |
314 | this->set_size(this->size() + 1); |
315 | } |
316 | |
317 | void pop_back() { this->set_size(this->size() - 1); } |
318 | }; |
319 | |
320 | /// This class consists of common code factored out of the SmallVector class to |
321 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
322 | template <typename T> |
323 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
324 | using SuperClass = SmallVectorTemplateBase<T>; |
325 | |
326 | public: |
327 | using iterator = typename SuperClass::iterator; |
328 | using const_iterator = typename SuperClass::const_iterator; |
329 | using size_type = typename SuperClass::size_type; |
330 | |
331 | protected: |
332 | // Default ctor - Initialize to empty. |
333 | explicit SmallVectorImpl(unsigned N) |
334 | : SmallVectorTemplateBase<T, isPodLike<T>::value>(N) {} |
335 | |
336 | public: |
337 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
338 | |
339 | ~SmallVectorImpl() { |
340 | // Subclass has already destructed this vector's elements. |
341 | // If this wasn't grown from the inline copy, deallocate the old space. |
342 | if (!this->isSmall()) |
343 | free(this->begin()); |
344 | } |
345 | |
346 | void clear() { |
347 | this->destroy_range(this->begin(), this->end()); |
348 | this->Size = 0; |
349 | } |
350 | |
351 | void resize(size_type N) { |
352 | if (N < this->size()) { |
353 | this->destroy_range(this->begin()+N, this->end()); |
354 | this->set_size(N); |
355 | } else if (N > this->size()) { |
356 | if (this->capacity() < N) |
357 | this->grow(N); |
358 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
359 | new (&*I) T(); |
360 | this->set_size(N); |
361 | } |
362 | } |
363 | |
364 | void resize(size_type N, const T &NV) { |
365 | if (N < this->size()) { |
366 | this->destroy_range(this->begin()+N, this->end()); |
367 | this->set_size(N); |
368 | } else if (N > this->size()) { |
369 | if (this->capacity() < N) |
370 | this->grow(N); |
371 | std::uninitialized_fill(this->end(), this->begin()+N, NV); |
372 | this->set_size(N); |
373 | } |
374 | } |
375 | |
376 | void reserve(size_type N) { |
377 | if (this->capacity() < N) |
378 | this->grow(N); |
379 | } |
380 | |
381 | LLVM_NODISCARD T pop_back_val() { |
382 | T Result = ::std::move(this->back()); |
383 | this->pop_back(); |
384 | return Result; |
385 | } |
386 | |
387 | void swap(SmallVectorImpl &RHS); |
388 | |
389 | /// Add the specified range to the end of the SmallVector. |
390 | template <typename in_iter, |
391 | typename = typename std::enable_if<std::is_convertible< |
392 | typename std::iterator_traits<in_iter>::iterator_category, |
393 | std::input_iterator_tag>::value>::type> |
394 | void append(in_iter in_start, in_iter in_end) { |
395 | size_type NumInputs = std::distance(in_start, in_end); |
396 | // Grow allocated space if needed. |
397 | if (NumInputs > this->capacity() - this->size()) |
398 | this->grow(this->size()+NumInputs); |
399 | |
400 | // Copy the new elements over. |
401 | this->uninitialized_copy(in_start, in_end, this->end()); |
402 | this->set_size(this->size() + NumInputs); |
403 | } |
404 | |
405 | /// Add the specified range to the end of the SmallVector. |
406 | void append(size_type NumInputs, const T &Elt) { |
407 | // Grow allocated space if needed. |
408 | if (NumInputs > this->capacity() - this->size()) |
409 | this->grow(this->size()+NumInputs); |
410 | |
411 | // Copy the new elements over. |
412 | std::uninitialized_fill_n(this->end(), NumInputs, Elt); |
413 | this->set_size(this->size() + NumInputs); |
414 | } |
415 | |
416 | void append(std::initializer_list<T> IL) { |
417 | append(IL.begin(), IL.end()); |
418 | } |
419 | |
420 | // FIXME: Consider assigning over existing elements, rather than clearing & |
421 | // re-initializing them - for all assign(...) variants. |
422 | |
423 | void assign(size_type NumElts, const T &Elt) { |
424 | clear(); |
425 | if (this->capacity() < NumElts) |
426 | this->grow(NumElts); |
427 | this->set_size(NumElts); |
428 | std::uninitialized_fill(this->begin(), this->end(), Elt); |
429 | } |
430 | |
431 | template <typename in_iter, |
432 | typename = typename std::enable_if<std::is_convertible< |
433 | typename std::iterator_traits<in_iter>::iterator_category, |
434 | std::input_iterator_tag>::value>::type> |
435 | void assign(in_iter in_start, in_iter in_end) { |
436 | clear(); |
437 | append(in_start, in_end); |
438 | } |
439 | |
440 | void assign(std::initializer_list<T> IL) { |
441 | clear(); |
442 | append(IL); |
443 | } |
444 | |
445 | iterator erase(const_iterator CI) { |
446 | // Just cast away constness because this is a non-const member function. |
447 | iterator I = const_cast<iterator>(CI); |
448 | |
449 | assert(I >= this->begin() && "Iterator to erase is out of bounds." ); |
450 | assert(I < this->end() && "Erasing at past-the-end iterator." ); |
451 | |
452 | iterator N = I; |
453 | // Shift all elts down one. |
454 | std::move(I+1, this->end(), I); |
455 | // Drop the last elt. |
456 | this->pop_back(); |
457 | return(N); |
458 | } |
459 | |
460 | iterator erase(const_iterator CS, const_iterator CE) { |
461 | // Just cast away constness because this is a non-const member function. |
462 | iterator S = const_cast<iterator>(CS); |
463 | iterator E = const_cast<iterator>(CE); |
464 | |
465 | assert(S >= this->begin() && "Range to erase is out of bounds." ); |
466 | assert(S <= E && "Trying to erase invalid range." ); |
467 | assert(E <= this->end() && "Trying to erase past the end." ); |
468 | |
469 | iterator N = S; |
470 | // Shift all elts down. |
471 | iterator I = std::move(E, this->end(), S); |
472 | // Drop the last elts. |
473 | this->destroy_range(I, this->end()); |
474 | this->set_size(I - this->begin()); |
475 | return(N); |
476 | } |
477 | |
478 | iterator insert(iterator I, T &&Elt) { |
479 | if (I == this->end()) { // Important special case for empty vector. |
480 | this->push_back(::std::move(Elt)); |
481 | return this->end()-1; |
482 | } |
483 | |
484 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
485 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
486 | |
487 | if (this->size() >= this->capacity()) { |
488 | size_t EltNo = I-this->begin(); |
489 | this->grow(); |
490 | I = this->begin()+EltNo; |
491 | } |
492 | |
493 | ::new ((void*) this->end()) T(::std::move(this->back())); |
494 | // Push everything else over. |
495 | std::move_backward(I, this->end()-1, this->end()); |
496 | this->set_size(this->size() + 1); |
497 | |
498 | // If we just moved the element we're inserting, be sure to update |
499 | // the reference. |
500 | T *EltPtr = &Elt; |
501 | if (I <= EltPtr && EltPtr < this->end()) |
502 | ++EltPtr; |
503 | |
504 | *I = ::std::move(*EltPtr); |
505 | return I; |
506 | } |
507 | |
508 | iterator insert(iterator I, const T &Elt) { |
509 | if (I == this->end()) { // Important special case for empty vector. |
510 | this->push_back(Elt); |
511 | return this->end()-1; |
512 | } |
513 | |
514 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
515 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
516 | |
517 | if (this->size() >= this->capacity()) { |
518 | size_t EltNo = I-this->begin(); |
519 | this->grow(); |
520 | I = this->begin()+EltNo; |
521 | } |
522 | ::new ((void*) this->end()) T(std::move(this->back())); |
523 | // Push everything else over. |
524 | std::move_backward(I, this->end()-1, this->end()); |
525 | this->set_size(this->size() + 1); |
526 | |
527 | // If we just moved the element we're inserting, be sure to update |
528 | // the reference. |
529 | const T *EltPtr = &Elt; |
530 | if (I <= EltPtr && EltPtr < this->end()) |
531 | ++EltPtr; |
532 | |
533 | *I = *EltPtr; |
534 | return I; |
535 | } |
536 | |
537 | iterator insert(iterator I, size_type NumToInsert, const T &Elt) { |
538 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
539 | size_t InsertElt = I - this->begin(); |
540 | |
541 | if (I == this->end()) { // Important special case for empty vector. |
542 | append(NumToInsert, Elt); |
543 | return this->begin()+InsertElt; |
544 | } |
545 | |
546 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
547 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
548 | |
549 | // Ensure there is enough space. |
550 | reserve(this->size() + NumToInsert); |
551 | |
552 | // Uninvalidate the iterator. |
553 | I = this->begin()+InsertElt; |
554 | |
555 | // If there are more elements between the insertion point and the end of the |
556 | // range than there are being inserted, we can use a simple approach to |
557 | // insertion. Since we already reserved space, we know that this won't |
558 | // reallocate the vector. |
559 | if (size_t(this->end()-I) >= NumToInsert) { |
560 | T *OldEnd = this->end(); |
561 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
562 | std::move_iterator<iterator>(this->end())); |
563 | |
564 | // Copy the existing elements that get replaced. |
565 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
566 | |
567 | std::fill_n(I, NumToInsert, Elt); |
568 | return I; |
569 | } |
570 | |
571 | // Otherwise, we're inserting more elements than exist already, and we're |
572 | // not inserting at the end. |
573 | |
574 | // Move over the elements that we're about to overwrite. |
575 | T *OldEnd = this->end(); |
576 | this->set_size(this->size() + NumToInsert); |
577 | size_t NumOverwritten = OldEnd-I; |
578 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
579 | |
580 | // Replace the overwritten part. |
581 | std::fill_n(I, NumOverwritten, Elt); |
582 | |
583 | // Insert the non-overwritten middle part. |
584 | std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); |
585 | return I; |
586 | } |
587 | |
588 | template <typename ItTy, |
589 | typename = typename std::enable_if<std::is_convertible< |
590 | typename std::iterator_traits<ItTy>::iterator_category, |
591 | std::input_iterator_tag>::value>::type> |
592 | iterator insert(iterator I, ItTy From, ItTy To) { |
593 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
594 | size_t InsertElt = I - this->begin(); |
595 | |
596 | if (I == this->end()) { // Important special case for empty vector. |
597 | append(From, To); |
598 | return this->begin()+InsertElt; |
599 | } |
600 | |
601 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
602 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
603 | |
604 | size_t NumToInsert = std::distance(From, To); |
605 | |
606 | // Ensure there is enough space. |
607 | reserve(this->size() + NumToInsert); |
608 | |
609 | // Uninvalidate the iterator. |
610 | I = this->begin()+InsertElt; |
611 | |
612 | // If there are more elements between the insertion point and the end of the |
613 | // range than there are being inserted, we can use a simple approach to |
614 | // insertion. Since we already reserved space, we know that this won't |
615 | // reallocate the vector. |
616 | if (size_t(this->end()-I) >= NumToInsert) { |
617 | T *OldEnd = this->end(); |
618 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
619 | std::move_iterator<iterator>(this->end())); |
620 | |
621 | // Copy the existing elements that get replaced. |
622 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
623 | |
624 | std::copy(From, To, I); |
625 | return I; |
626 | } |
627 | |
628 | // Otherwise, we're inserting more elements than exist already, and we're |
629 | // not inserting at the end. |
630 | |
631 | // Move over the elements that we're about to overwrite. |
632 | T *OldEnd = this->end(); |
633 | this->set_size(this->size() + NumToInsert); |
634 | size_t NumOverwritten = OldEnd-I; |
635 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
636 | |
637 | // Replace the overwritten part. |
638 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
639 | *J = *From; |
640 | ++J; ++From; |
641 | } |
642 | |
643 | // Insert the non-overwritten middle part. |
644 | this->uninitialized_copy(From, To, OldEnd); |
645 | return I; |
646 | } |
647 | |
648 | void insert(iterator I, std::initializer_list<T> IL) { |
649 | insert(I, IL.begin(), IL.end()); |
650 | } |
651 | |
652 | template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) { |
653 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
654 | this->grow(); |
655 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
656 | this->set_size(this->size() + 1); |
657 | } |
658 | |
659 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
660 | |
661 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
662 | |
663 | bool operator==(const SmallVectorImpl &RHS) const { |
664 | if (this->size() != RHS.size()) return false; |
665 | return std::equal(this->begin(), this->end(), RHS.begin()); |
666 | } |
667 | bool operator!=(const SmallVectorImpl &RHS) const { |
668 | return !(*this == RHS); |
669 | } |
670 | |
671 | bool operator<(const SmallVectorImpl &RHS) const { |
672 | return std::lexicographical_compare(this->begin(), this->end(), |
673 | RHS.begin(), RHS.end()); |
674 | } |
675 | }; |
676 | |
677 | template <typename T> |
678 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
679 | if (this == &RHS) return; |
680 | |
681 | // We can only avoid copying elements if neither vector is small. |
682 | if (!this->isSmall() && !RHS.isSmall()) { |
683 | std::swap(this->BeginX, RHS.BeginX); |
684 | std::swap(this->Size, RHS.Size); |
685 | std::swap(this->Capacity, RHS.Capacity); |
686 | return; |
687 | } |
688 | if (RHS.size() > this->capacity()) |
689 | this->grow(RHS.size()); |
690 | if (this->size() > RHS.capacity()) |
691 | RHS.grow(this->size()); |
692 | |
693 | // Swap the shared elements. |
694 | size_t NumShared = this->size(); |
695 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
696 | for (size_type i = 0; i != NumShared; ++i) |
697 | std::swap((*this)[i], RHS[i]); |
698 | |
699 | // Copy over the extra elts. |
700 | if (this->size() > RHS.size()) { |
701 | size_t EltDiff = this->size() - RHS.size(); |
702 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
703 | RHS.set_size(RHS.size() + EltDiff); |
704 | this->destroy_range(this->begin()+NumShared, this->end()); |
705 | this->set_size(NumShared); |
706 | } else if (RHS.size() > this->size()) { |
707 | size_t EltDiff = RHS.size() - this->size(); |
708 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
709 | this->set_size(this->size() + EltDiff); |
710 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
711 | RHS.set_size(NumShared); |
712 | } |
713 | } |
714 | |
715 | template <typename T> |
716 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
717 | operator=(const SmallVectorImpl<T> &RHS) { |
718 | // Avoid self-assignment. |
719 | if (this == &RHS) return *this; |
720 | |
721 | // If we already have sufficient space, assign the common elements, then |
722 | // destroy any excess. |
723 | size_t RHSSize = RHS.size(); |
724 | size_t CurSize = this->size(); |
725 | if (CurSize >= RHSSize) { |
726 | // Assign common elements. |
727 | iterator NewEnd; |
728 | if (RHSSize) |
729 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
730 | else |
731 | NewEnd = this->begin(); |
732 | |
733 | // Destroy excess elements. |
734 | this->destroy_range(NewEnd, this->end()); |
735 | |
736 | // Trim. |
737 | this->set_size(RHSSize); |
738 | return *this; |
739 | } |
740 | |
741 | // If we have to grow to have enough elements, destroy the current elements. |
742 | // This allows us to avoid copying them during the grow. |
743 | // FIXME: don't do this if they're efficiently moveable. |
744 | if (this->capacity() < RHSSize) { |
745 | // Destroy current elements. |
746 | this->destroy_range(this->begin(), this->end()); |
747 | this->set_size(0); |
748 | CurSize = 0; |
749 | this->grow(RHSSize); |
750 | } else if (CurSize) { |
751 | // Otherwise, use assignment for the already-constructed elements. |
752 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
753 | } |
754 | |
755 | // Copy construct the new elements in place. |
756 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
757 | this->begin()+CurSize); |
758 | |
759 | // Set end. |
760 | this->set_size(RHSSize); |
761 | return *this; |
762 | } |
763 | |
764 | template <typename T> |
765 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
766 | // Avoid self-assignment. |
767 | if (this == &RHS) return *this; |
768 | |
769 | // If the RHS isn't small, clear this vector and then steal its buffer. |
770 | if (!RHS.isSmall()) { |
771 | this->destroy_range(this->begin(), this->end()); |
772 | if (!this->isSmall()) free(this->begin()); |
773 | this->BeginX = RHS.BeginX; |
774 | this->Size = RHS.Size; |
775 | this->Capacity = RHS.Capacity; |
776 | RHS.resetToSmall(); |
777 | return *this; |
778 | } |
779 | |
780 | // If we already have sufficient space, assign the common elements, then |
781 | // destroy any excess. |
782 | size_t RHSSize = RHS.size(); |
783 | size_t CurSize = this->size(); |
784 | if (CurSize >= RHSSize) { |
785 | // Assign common elements. |
786 | iterator NewEnd = this->begin(); |
787 | if (RHSSize) |
788 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
789 | |
790 | // Destroy excess elements and trim the bounds. |
791 | this->destroy_range(NewEnd, this->end()); |
792 | this->set_size(RHSSize); |
793 | |
794 | // Clear the RHS. |
795 | RHS.clear(); |
796 | |
797 | return *this; |
798 | } |
799 | |
800 | // If we have to grow to have enough elements, destroy the current elements. |
801 | // This allows us to avoid copying them during the grow. |
802 | // FIXME: this may not actually make any sense if we can efficiently move |
803 | // elements. |
804 | if (this->capacity() < RHSSize) { |
805 | // Destroy current elements. |
806 | this->destroy_range(this->begin(), this->end()); |
807 | this->set_size(0); |
808 | CurSize = 0; |
809 | this->grow(RHSSize); |
810 | } else if (CurSize) { |
811 | // Otherwise, use assignment for the already-constructed elements. |
812 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
813 | } |
814 | |
815 | // Move-construct the new elements in place. |
816 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
817 | this->begin()+CurSize); |
818 | |
819 | // Set end. |
820 | this->set_size(RHSSize); |
821 | |
822 | RHS.clear(); |
823 | return *this; |
824 | } |
825 | |
826 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
827 | /// to avoid allocating unnecessary storage. |
828 | template <typename T, unsigned N> |
829 | struct SmallVectorStorage { |
830 | AlignedCharArrayUnion<T> InlineElts[N]; |
831 | }; |
832 | |
833 | /// We need the storage to be properly aligned even for small-size of 0 so that |
834 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
835 | /// well-defined. |
836 | template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {}; |
837 | |
838 | /// This is a 'vector' (really, a variable-sized array), optimized |
839 | /// for the case when the array is small. It contains some number of elements |
840 | /// in-place, which allows it to avoid heap allocation when the actual number of |
841 | /// elements is below that threshold. This allows normal "small" cases to be |
842 | /// fast without losing generality for large inputs. |
843 | /// |
844 | /// Note that this does not attempt to be exception safe. |
845 | /// |
846 | template <typename T, unsigned N> |
847 | class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> { |
848 | public: |
849 | SmallVector() : SmallVectorImpl<T>(N) {} |
850 | |
851 | ~SmallVector() { |
852 | // Destroy the constructed elements in the vector. |
853 | this->destroy_range(this->begin(), this->end()); |
854 | } |
855 | |
856 | explicit SmallVector(size_t Size, const T &Value = T()) |
857 | : SmallVectorImpl<T>(N) { |
858 | this->assign(Size, Value); |
859 | } |
860 | |
861 | template <typename ItTy, |
862 | typename = typename std::enable_if<std::is_convertible< |
863 | typename std::iterator_traits<ItTy>::iterator_category, |
864 | std::input_iterator_tag>::value>::type> |
865 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
866 | this->append(S, E); |
867 | } |
868 | |
869 | template <typename RangeTy> |
870 | explicit SmallVector(const iterator_range<RangeTy> &R) |
871 | : SmallVectorImpl<T>(N) { |
872 | this->append(R.begin(), R.end()); |
873 | } |
874 | |
875 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
876 | this->assign(IL); |
877 | } |
878 | |
879 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
880 | if (!RHS.empty()) |
881 | SmallVectorImpl<T>::operator=(RHS); |
882 | } |
883 | |
884 | const SmallVector &operator=(const SmallVector &RHS) { |
885 | SmallVectorImpl<T>::operator=(RHS); |
886 | return *this; |
887 | } |
888 | |
889 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
890 | if (!RHS.empty()) |
891 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
892 | } |
893 | |
894 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
895 | if (!RHS.empty()) |
896 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
897 | } |
898 | |
899 | const SmallVector &operator=(SmallVector &&RHS) { |
900 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
901 | return *this; |
902 | } |
903 | |
904 | const SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
905 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
906 | return *this; |
907 | } |
908 | |
909 | const SmallVector &operator=(std::initializer_list<T> IL) { |
910 | this->assign(IL); |
911 | return *this; |
912 | } |
913 | }; |
914 | |
915 | template <typename T, unsigned N> |
916 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
917 | return X.capacity_in_bytes(); |
918 | } |
919 | |
920 | } // end namespace llvm |
921 | |
922 | namespace std { |
923 | |
924 | /// Implement std::swap in terms of SmallVector swap. |
925 | template<typename T> |
926 | inline void |
927 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
928 | LHS.swap(RHS); |
929 | } |
930 | |
931 | /// Implement std::swap in terms of SmallVector swap. |
932 | template<typename T, unsigned N> |
933 | inline void |
934 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
935 | LHS.swap(RHS); |
936 | } |
937 | |
938 | } // end namespace std |
939 | |
940 | #endif // LLVM_ADT_SMALLVECTOR_H |
941 | |