1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file contains some templates that are useful if you are working with the |
11 | // STL at all. |
12 | // |
13 | // No library is required when using these functions. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_ADT_STLEXTRAS_H |
18 | #define |
19 | |
20 | #include "llvm/ADT/Optional.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/iterator.h" |
23 | #include "llvm/ADT/iterator_range.h" |
24 | #include "llvm/Config/abi-breaking.h" |
25 | #include "llvm/Support/ErrorHandling.h" |
26 | #include <algorithm> |
27 | #include <cassert> |
28 | #include <cstddef> |
29 | #include <cstdint> |
30 | #include <cstdlib> |
31 | #include <functional> |
32 | #include <initializer_list> |
33 | #include <iterator> |
34 | #include <limits> |
35 | #include <memory> |
36 | #include <tuple> |
37 | #include <type_traits> |
38 | #include <utility> |
39 | |
40 | #ifdef EXPENSIVE_CHECKS |
41 | #include <random> // for std::mt19937 |
42 | #endif |
43 | |
44 | namespace llvm { |
45 | |
46 | // Only used by compiler if both template types are the same. Useful when |
47 | // using SFINAE to test for the existence of member functions. |
48 | template <typename T, T> struct SameType; |
49 | |
50 | namespace detail { |
51 | |
52 | template <typename RangeT> |
53 | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); |
54 | |
55 | template <typename RangeT> |
56 | using ValueOfRange = typename std::remove_reference<decltype( |
57 | *std::begin(std::declval<RangeT &>()))>::type; |
58 | |
59 | } // end namespace detail |
60 | |
61 | //===----------------------------------------------------------------------===// |
62 | // Extra additions to <type_traits> |
63 | //===----------------------------------------------------------------------===// |
64 | |
65 | template <typename T> |
66 | struct negation : std::integral_constant<bool, !bool(T::value)> {}; |
67 | |
68 | template <typename...> struct conjunction : std::true_type {}; |
69 | template <typename B1> struct conjunction<B1> : B1 {}; |
70 | template <typename B1, typename... Bn> |
71 | struct conjunction<B1, Bn...> |
72 | : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {}; |
73 | |
74 | template <typename T> struct make_const_ptr { |
75 | using type = |
76 | typename std::add_pointer<typename std::add_const<T>::type>::type; |
77 | }; |
78 | |
79 | template <typename T> struct make_const_ref { |
80 | using type = typename std::add_lvalue_reference< |
81 | typename std::add_const<T>::type>::type; |
82 | }; |
83 | |
84 | //===----------------------------------------------------------------------===// |
85 | // Extra additions to <functional> |
86 | //===----------------------------------------------------------------------===// |
87 | |
88 | template <class Ty> struct identity { |
89 | using argument_type = Ty; |
90 | |
91 | Ty &operator()(Ty &self) const { |
92 | return self; |
93 | } |
94 | const Ty &operator()(const Ty &self) const { |
95 | return self; |
96 | } |
97 | }; |
98 | |
99 | template <class Ty> struct less_ptr { |
100 | bool operator()(const Ty* left, const Ty* right) const { |
101 | return *left < *right; |
102 | } |
103 | }; |
104 | |
105 | template <class Ty> struct greater_ptr { |
106 | bool operator()(const Ty* left, const Ty* right) const { |
107 | return *right < *left; |
108 | } |
109 | }; |
110 | |
111 | /// An efficient, type-erasing, non-owning reference to a callable. This is |
112 | /// intended for use as the type of a function parameter that is not used |
113 | /// after the function in question returns. |
114 | /// |
115 | /// This class does not own the callable, so it is not in general safe to store |
116 | /// a function_ref. |
117 | template<typename Fn> class function_ref; |
118 | |
119 | template<typename Ret, typename ...Params> |
120 | class function_ref<Ret(Params...)> { |
121 | Ret (*callback)(intptr_t callable, Params ...params) = nullptr; |
122 | intptr_t callable; |
123 | |
124 | template<typename Callable> |
125 | static Ret callback_fn(intptr_t callable, Params ...params) { |
126 | return (*reinterpret_cast<Callable*>(callable))( |
127 | std::forward<Params>(params)...); |
128 | } |
129 | |
130 | public: |
131 | function_ref() = default; |
132 | function_ref(std::nullptr_t) {} |
133 | |
134 | template <typename Callable> |
135 | function_ref(Callable &&callable, |
136 | typename std::enable_if< |
137 | !std::is_same<typename std::remove_reference<Callable>::type, |
138 | function_ref>::value>::type * = nullptr) |
139 | : callback(callback_fn<typename std::remove_reference<Callable>::type>), |
140 | callable(reinterpret_cast<intptr_t>(&callable)) {} |
141 | |
142 | Ret operator()(Params ...params) const { |
143 | return callback(callable, std::forward<Params>(params)...); |
144 | } |
145 | |
146 | operator bool() const { return callback; } |
147 | }; |
148 | |
149 | // deleter - Very very very simple method that is used to invoke operator |
150 | // delete on something. It is used like this: |
151 | // |
152 | // for_each(V.begin(), B.end(), deleter<Interval>); |
153 | template <class T> |
154 | inline void deleter(T *Ptr) { |
155 | delete Ptr; |
156 | } |
157 | |
158 | //===----------------------------------------------------------------------===// |
159 | // Extra additions to <iterator> |
160 | //===----------------------------------------------------------------------===// |
161 | |
162 | namespace adl_detail { |
163 | |
164 | using std::begin; |
165 | |
166 | template <typename ContainerTy> |
167 | auto adl_begin(ContainerTy &&container) |
168 | -> decltype(begin(std::forward<ContainerTy>(container))) { |
169 | return begin(std::forward<ContainerTy>(container)); |
170 | } |
171 | |
172 | using std::end; |
173 | |
174 | template <typename ContainerTy> |
175 | auto adl_end(ContainerTy &&container) |
176 | -> decltype(end(std::forward<ContainerTy>(container))) { |
177 | return end(std::forward<ContainerTy>(container)); |
178 | } |
179 | |
180 | using std::swap; |
181 | |
182 | template <typename T> |
183 | void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), |
184 | std::declval<T>()))) { |
185 | swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
186 | } |
187 | |
188 | } // end namespace adl_detail |
189 | |
190 | template <typename ContainerTy> |
191 | auto adl_begin(ContainerTy &&container) |
192 | -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) { |
193 | return adl_detail::adl_begin(std::forward<ContainerTy>(container)); |
194 | } |
195 | |
196 | template <typename ContainerTy> |
197 | auto adl_end(ContainerTy &&container) |
198 | -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) { |
199 | return adl_detail::adl_end(std::forward<ContainerTy>(container)); |
200 | } |
201 | |
202 | template <typename T> |
203 | void adl_swap(T &&lhs, T &&rhs) noexcept( |
204 | noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { |
205 | adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
206 | } |
207 | |
208 | /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. |
209 | template <typename T> |
210 | constexpr bool empty(const T &RangeOrContainer) { |
211 | return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); |
212 | } |
213 | |
214 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
215 | // be applied whenever operator* is invoked on the iterator. |
216 | |
217 | template <typename ItTy, typename FuncTy, |
218 | typename FuncReturnTy = |
219 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
220 | class mapped_iterator |
221 | : public iterator_adaptor_base< |
222 | mapped_iterator<ItTy, FuncTy>, ItTy, |
223 | typename std::iterator_traits<ItTy>::iterator_category, |
224 | typename std::remove_reference<FuncReturnTy>::type> { |
225 | public: |
226 | mapped_iterator(ItTy U, FuncTy F) |
227 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
228 | |
229 | ItTy getCurrent() { return this->I; } |
230 | |
231 | FuncReturnTy operator*() { return F(*this->I); } |
232 | |
233 | private: |
234 | FuncTy F; |
235 | }; |
236 | |
237 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
238 | // make_pair is useful for creating pairs... |
239 | template <class ItTy, class FuncTy> |
240 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
241 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
242 | } |
243 | |
244 | /// Helper to determine if type T has a member called rbegin(). |
245 | template <typename Ty> class has_rbegin_impl { |
246 | using yes = char[1]; |
247 | using no = char[2]; |
248 | |
249 | template <typename Inner> |
250 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
251 | |
252 | template <typename> |
253 | static no& test(...); |
254 | |
255 | public: |
256 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
257 | }; |
258 | |
259 | /// Metafunction to determine if T& or T has a member called rbegin(). |
260 | template <typename Ty> |
261 | struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { |
262 | }; |
263 | |
264 | // Returns an iterator_range over the given container which iterates in reverse. |
265 | // Note that the container must have rbegin()/rend() methods for this to work. |
266 | template <typename ContainerTy> |
267 | auto reverse(ContainerTy &&C, |
268 | typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = |
269 | nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { |
270 | return make_range(C.rbegin(), C.rend()); |
271 | } |
272 | |
273 | // Returns a std::reverse_iterator wrapped around the given iterator. |
274 | template <typename IteratorTy> |
275 | std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { |
276 | return std::reverse_iterator<IteratorTy>(It); |
277 | } |
278 | |
279 | // Returns an iterator_range over the given container which iterates in reverse. |
280 | // Note that the container must have begin()/end() methods which return |
281 | // bidirectional iterators for this to work. |
282 | template <typename ContainerTy> |
283 | auto reverse( |
284 | ContainerTy &&C, |
285 | typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) |
286 | -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), |
287 | llvm::make_reverse_iterator(std::begin(C)))) { |
288 | return make_range(llvm::make_reverse_iterator(std::end(C)), |
289 | llvm::make_reverse_iterator(std::begin(C))); |
290 | } |
291 | |
292 | /// An iterator adaptor that filters the elements of given inner iterators. |
293 | /// |
294 | /// The predicate parameter should be a callable object that accepts the wrapped |
295 | /// iterator's reference type and returns a bool. When incrementing or |
296 | /// decrementing the iterator, it will call the predicate on each element and |
297 | /// skip any where it returns false. |
298 | /// |
299 | /// \code |
300 | /// int A[] = { 1, 2, 3, 4 }; |
301 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
302 | /// // R contains { 1, 3 }. |
303 | /// \endcode |
304 | /// |
305 | /// Note: filter_iterator_base implements support for forward iteration. |
306 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
307 | /// conditional on whether the wrapped iterator supports it. |
308 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
309 | class filter_iterator_base |
310 | : public iterator_adaptor_base< |
311 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
312 | WrappedIteratorT, |
313 | typename std::common_type< |
314 | IterTag, typename std::iterator_traits< |
315 | WrappedIteratorT>::iterator_category>::type> { |
316 | using BaseT = iterator_adaptor_base< |
317 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
318 | WrappedIteratorT, |
319 | typename std::common_type< |
320 | IterTag, typename std::iterator_traits< |
321 | WrappedIteratorT>::iterator_category>::type>; |
322 | |
323 | protected: |
324 | WrappedIteratorT End; |
325 | PredicateT Pred; |
326 | |
327 | void findNextValid() { |
328 | while (this->I != End && !Pred(*this->I)) |
329 | BaseT::operator++(); |
330 | } |
331 | |
332 | // Construct the iterator. The begin iterator needs to know where the end |
333 | // is, so that it can properly stop when it gets there. The end iterator only |
334 | // needs the predicate to support bidirectional iteration. |
335 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
336 | PredicateT Pred) |
337 | : BaseT(Begin), End(End), Pred(Pred) { |
338 | findNextValid(); |
339 | } |
340 | |
341 | public: |
342 | using BaseT::operator++; |
343 | |
344 | filter_iterator_base &operator++() { |
345 | BaseT::operator++(); |
346 | findNextValid(); |
347 | return *this; |
348 | } |
349 | }; |
350 | |
351 | /// Specialization of filter_iterator_base for forward iteration only. |
352 | template <typename WrappedIteratorT, typename PredicateT, |
353 | typename IterTag = std::forward_iterator_tag> |
354 | class filter_iterator_impl |
355 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
356 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; |
357 | |
358 | public: |
359 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
360 | PredicateT Pred) |
361 | : BaseT(Begin, End, Pred) {} |
362 | }; |
363 | |
364 | /// Specialization of filter_iterator_base for bidirectional iteration. |
365 | template <typename WrappedIteratorT, typename PredicateT> |
366 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
367 | std::bidirectional_iterator_tag> |
368 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
369 | std::bidirectional_iterator_tag> { |
370 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, |
371 | std::bidirectional_iterator_tag>; |
372 | void findPrevValid() { |
373 | while (!this->Pred(*this->I)) |
374 | BaseT::operator--(); |
375 | } |
376 | |
377 | public: |
378 | using BaseT::operator--; |
379 | |
380 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
381 | PredicateT Pred) |
382 | : BaseT(Begin, End, Pred) {} |
383 | |
384 | filter_iterator_impl &operator--() { |
385 | BaseT::operator--(); |
386 | findPrevValid(); |
387 | return *this; |
388 | } |
389 | }; |
390 | |
391 | namespace detail { |
392 | |
393 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
394 | using type = std::forward_iterator_tag; |
395 | }; |
396 | |
397 | template <> struct fwd_or_bidi_tag_impl<true> { |
398 | using type = std::bidirectional_iterator_tag; |
399 | }; |
400 | |
401 | /// Helper which sets its type member to forward_iterator_tag if the category |
402 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
403 | /// bidirectional_iterator_tag otherwise. |
404 | template <typename IterT> struct fwd_or_bidi_tag { |
405 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
406 | std::bidirectional_iterator_tag, |
407 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
408 | }; |
409 | |
410 | } // namespace detail |
411 | |
412 | /// Defines filter_iterator to a suitable specialization of |
413 | /// filter_iterator_impl, based on the underlying iterator's category. |
414 | template <typename WrappedIteratorT, typename PredicateT> |
415 | using filter_iterator = filter_iterator_impl< |
416 | WrappedIteratorT, PredicateT, |
417 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
418 | |
419 | /// Convenience function that takes a range of elements and a predicate, |
420 | /// and return a new filter_iterator range. |
421 | /// |
422 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
423 | /// lifetime of that temporary is not kept by the returned range object, and the |
424 | /// temporary is going to be dropped on the floor after the make_iterator_range |
425 | /// full expression that contains this function call. |
426 | template <typename RangeT, typename PredicateT> |
427 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
428 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
429 | using FilterIteratorT = |
430 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
431 | return make_range( |
432 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
433 | std::end(std::forward<RangeT>(Range)), Pred), |
434 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
435 | std::end(std::forward<RangeT>(Range)), Pred)); |
436 | } |
437 | |
438 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
439 | /// style loops. |
440 | /// |
441 | /// This is *not a normal iterator* and should almost never be used directly. It |
442 | /// is intended primarily to be used with range based for loops and some range |
443 | /// algorithms. |
444 | /// |
445 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
446 | /// somewhere between them. The constraints of these iterators are: |
447 | /// |
448 | /// - On construction or after being incremented, it is comparable and |
449 | /// dereferencable. It is *not* incrementable. |
450 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
451 | /// is only incrementable. |
452 | /// |
453 | /// This means you can only dereference the iterator once, and you can only |
454 | /// increment it once between dereferences. |
455 | template <typename WrappedIteratorT> |
456 | class early_inc_iterator_impl |
457 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
458 | WrappedIteratorT, std::input_iterator_tag> { |
459 | using BaseT = |
460 | iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
461 | WrappedIteratorT, std::input_iterator_tag>; |
462 | |
463 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
464 | |
465 | protected: |
466 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
467 | bool IsEarlyIncremented = false; |
468 | #endif |
469 | |
470 | public: |
471 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
472 | |
473 | using BaseT::operator*; |
474 | typename BaseT::reference operator*() { |
475 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
476 | assert(!IsEarlyIncremented && "Cannot dereference twice!" ); |
477 | IsEarlyIncremented = true; |
478 | #endif |
479 | return *(this->I)++; |
480 | } |
481 | |
482 | using BaseT::operator++; |
483 | early_inc_iterator_impl &operator++() { |
484 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
485 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!" ); |
486 | IsEarlyIncremented = false; |
487 | #endif |
488 | return *this; |
489 | } |
490 | |
491 | using BaseT::operator==; |
492 | bool operator==(const early_inc_iterator_impl &RHS) const { |
493 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
494 | assert(!IsEarlyIncremented && "Cannot compare after dereferencing!" ); |
495 | #endif |
496 | return BaseT::operator==(RHS); |
497 | } |
498 | }; |
499 | |
500 | /// Make a range that does early increment to allow mutation of the underlying |
501 | /// range without disrupting iteration. |
502 | /// |
503 | /// The underlying iterator will be incremented immediately after it is |
504 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
505 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
506 | /// the current iterator can be invalidated. |
507 | /// |
508 | /// This requires a very exact pattern of use that is only really suitable to |
509 | /// range based for loops and other range algorithms that explicitly guarantee |
510 | /// to dereference exactly once each element, and to increment exactly once each |
511 | /// element. |
512 | template <typename RangeT> |
513 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
514 | make_early_inc_range(RangeT &&Range) { |
515 | using EarlyIncIteratorT = |
516 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
517 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
518 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
519 | } |
520 | |
521 | // forward declarations required by zip_shortest/zip_first/zip_longest |
522 | template <typename R, typename UnaryPredicate> |
523 | bool all_of(R &&range, UnaryPredicate P); |
524 | template <typename R, typename UnaryPredicate> |
525 | bool any_of(R &&range, UnaryPredicate P); |
526 | |
527 | template <size_t... I> struct index_sequence; |
528 | |
529 | template <class... Ts> struct index_sequence_for; |
530 | |
531 | namespace detail { |
532 | |
533 | using std::declval; |
534 | |
535 | // We have to alias this since inlining the actual type at the usage site |
536 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
537 | template<typename... Iters> struct ZipTupleType { |
538 | using type = std::tuple<decltype(*declval<Iters>())...>; |
539 | }; |
540 | |
541 | template <typename ZipType, typename... Iters> |
542 | using zip_traits = iterator_facade_base< |
543 | ZipType, typename std::common_type<std::bidirectional_iterator_tag, |
544 | typename std::iterator_traits< |
545 | Iters>::iterator_category...>::type, |
546 | // ^ TODO: Implement random access methods. |
547 | typename ZipTupleType<Iters...>::type, |
548 | typename std::iterator_traits<typename std::tuple_element< |
549 | 0, std::tuple<Iters...>>::type>::difference_type, |
550 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
551 | // inner iterators have the same difference_type. It would fail if, for |
552 | // instance, the second field's difference_type were non-numeric while the |
553 | // first is. |
554 | typename ZipTupleType<Iters...>::type *, |
555 | typename ZipTupleType<Iters...>::type>; |
556 | |
557 | template <typename ZipType, typename... Iters> |
558 | struct zip_common : public zip_traits<ZipType, Iters...> { |
559 | using Base = zip_traits<ZipType, Iters...>; |
560 | using value_type = typename Base::value_type; |
561 | |
562 | std::tuple<Iters...> iterators; |
563 | |
564 | protected: |
565 | template <size_t... Ns> value_type deref(index_sequence<Ns...>) const { |
566 | return value_type(*std::get<Ns>(iterators)...); |
567 | } |
568 | |
569 | template <size_t... Ns> |
570 | decltype(iterators) tup_inc(index_sequence<Ns...>) const { |
571 | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); |
572 | } |
573 | |
574 | template <size_t... Ns> |
575 | decltype(iterators) tup_dec(index_sequence<Ns...>) const { |
576 | return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); |
577 | } |
578 | |
579 | public: |
580 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
581 | |
582 | value_type operator*() { return deref(index_sequence_for<Iters...>{}); } |
583 | |
584 | const value_type operator*() const { |
585 | return deref(index_sequence_for<Iters...>{}); |
586 | } |
587 | |
588 | ZipType &operator++() { |
589 | iterators = tup_inc(index_sequence_for<Iters...>{}); |
590 | return *reinterpret_cast<ZipType *>(this); |
591 | } |
592 | |
593 | ZipType &operator--() { |
594 | static_assert(Base::IsBidirectional, |
595 | "All inner iterators must be at least bidirectional." ); |
596 | iterators = tup_dec(index_sequence_for<Iters...>{}); |
597 | return *reinterpret_cast<ZipType *>(this); |
598 | } |
599 | }; |
600 | |
601 | template <typename... Iters> |
602 | struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { |
603 | using Base = zip_common<zip_first<Iters...>, Iters...>; |
604 | |
605 | bool operator==(const zip_first<Iters...> &other) const { |
606 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
607 | } |
608 | |
609 | zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
610 | }; |
611 | |
612 | template <typename... Iters> |
613 | class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { |
614 | template <size_t... Ns> |
615 | bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const { |
616 | return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
617 | std::get<Ns>(other.iterators)...}, |
618 | identity<bool>{}); |
619 | } |
620 | |
621 | public: |
622 | using Base = zip_common<zip_shortest<Iters...>, Iters...>; |
623 | |
624 | zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
625 | |
626 | bool operator==(const zip_shortest<Iters...> &other) const { |
627 | return !test(other, index_sequence_for<Iters...>{}); |
628 | } |
629 | }; |
630 | |
631 | template <template <typename...> class ItType, typename... Args> class zippy { |
632 | public: |
633 | using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; |
634 | using iterator_category = typename iterator::iterator_category; |
635 | using value_type = typename iterator::value_type; |
636 | using difference_type = typename iterator::difference_type; |
637 | using pointer = typename iterator::pointer; |
638 | using reference = typename iterator::reference; |
639 | |
640 | private: |
641 | std::tuple<Args...> ts; |
642 | |
643 | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const { |
644 | return iterator(std::begin(std::get<Ns>(ts))...); |
645 | } |
646 | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const { |
647 | return iterator(std::end(std::get<Ns>(ts))...); |
648 | } |
649 | |
650 | public: |
651 | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
652 | |
653 | iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); } |
654 | iterator end() const { return end_impl(index_sequence_for<Args...>{}); } |
655 | }; |
656 | |
657 | } // end namespace detail |
658 | |
659 | /// zip iterator for two or more iteratable types. |
660 | template <typename T, typename U, typename... Args> |
661 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
662 | Args &&... args) { |
663 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
664 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
665 | } |
666 | |
667 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
668 | /// be the shortest. |
669 | template <typename T, typename U, typename... Args> |
670 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
671 | Args &&... args) { |
672 | return detail::zippy<detail::zip_first, T, U, Args...>( |
673 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
674 | } |
675 | |
676 | namespace detail { |
677 | template <typename Iter> |
678 | static Iter next_or_end(const Iter &I, const Iter &End) { |
679 | if (I == End) |
680 | return End; |
681 | return std::next(I); |
682 | } |
683 | |
684 | template <typename Iter> |
685 | static auto deref_or_none(const Iter &I, const Iter &End) |
686 | -> llvm::Optional<typename std::remove_const< |
687 | typename std::remove_reference<decltype(*I)>::type>::type> { |
688 | if (I == End) |
689 | return None; |
690 | return *I; |
691 | } |
692 | |
693 | template <typename Iter> struct ZipLongestItemType { |
694 | using type = |
695 | llvm::Optional<typename std::remove_const<typename std::remove_reference< |
696 | decltype(*std::declval<Iter>())>::type>::type>; |
697 | }; |
698 | |
699 | template <typename... Iters> struct ZipLongestTupleType { |
700 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
701 | }; |
702 | |
703 | template <typename... Iters> |
704 | class zip_longest_iterator |
705 | : public iterator_facade_base< |
706 | zip_longest_iterator<Iters...>, |
707 | typename std::common_type< |
708 | std::forward_iterator_tag, |
709 | typename std::iterator_traits<Iters>::iterator_category...>::type, |
710 | typename ZipLongestTupleType<Iters...>::type, |
711 | typename std::iterator_traits<typename std::tuple_element< |
712 | 0, std::tuple<Iters...>>::type>::difference_type, |
713 | typename ZipLongestTupleType<Iters...>::type *, |
714 | typename ZipLongestTupleType<Iters...>::type> { |
715 | public: |
716 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
717 | |
718 | private: |
719 | std::tuple<Iters...> iterators; |
720 | std::tuple<Iters...> end_iterators; |
721 | |
722 | template <size_t... Ns> |
723 | bool test(const zip_longest_iterator<Iters...> &other, |
724 | index_sequence<Ns...>) const { |
725 | return llvm::any_of( |
726 | std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
727 | std::get<Ns>(other.iterators)...}, |
728 | identity<bool>{}); |
729 | } |
730 | |
731 | template <size_t... Ns> value_type deref(index_sequence<Ns...>) const { |
732 | return value_type( |
733 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
734 | } |
735 | |
736 | template <size_t... Ns> |
737 | decltype(iterators) tup_inc(index_sequence<Ns...>) const { |
738 | return std::tuple<Iters...>( |
739 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
740 | } |
741 | |
742 | public: |
743 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
744 | : iterators(std::forward<Iters>(ts.first)...), |
745 | end_iterators(std::forward<Iters>(ts.second)...) {} |
746 | |
747 | value_type operator*() { return deref(index_sequence_for<Iters...>{}); } |
748 | |
749 | value_type operator*() const { return deref(index_sequence_for<Iters...>{}); } |
750 | |
751 | zip_longest_iterator<Iters...> &operator++() { |
752 | iterators = tup_inc(index_sequence_for<Iters...>{}); |
753 | return *this; |
754 | } |
755 | |
756 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
757 | return !test(other, index_sequence_for<Iters...>{}); |
758 | } |
759 | }; |
760 | |
761 | template <typename... Args> class zip_longest_range { |
762 | public: |
763 | using iterator = |
764 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
765 | using iterator_category = typename iterator::iterator_category; |
766 | using value_type = typename iterator::value_type; |
767 | using difference_type = typename iterator::difference_type; |
768 | using pointer = typename iterator::pointer; |
769 | using reference = typename iterator::reference; |
770 | |
771 | private: |
772 | std::tuple<Args...> ts; |
773 | |
774 | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const { |
775 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
776 | adl_end(std::get<Ns>(ts)))...); |
777 | } |
778 | |
779 | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const { |
780 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
781 | adl_end(std::get<Ns>(ts)))...); |
782 | } |
783 | |
784 | public: |
785 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
786 | |
787 | iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); } |
788 | iterator end() const { return end_impl(index_sequence_for<Args...>{}); } |
789 | }; |
790 | } // namespace detail |
791 | |
792 | /// Iterate over two or more iterators at the same time. Iteration continues |
793 | /// until all iterators reach the end. The llvm::Optional only contains a value |
794 | /// if the iterator has not reached the end. |
795 | template <typename T, typename U, typename... Args> |
796 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
797 | Args &&... args) { |
798 | return detail::zip_longest_range<T, U, Args...>( |
799 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
800 | } |
801 | |
802 | /// Iterator wrapper that concatenates sequences together. |
803 | /// |
804 | /// This can concatenate different iterators, even with different types, into |
805 | /// a single iterator provided the value types of all the concatenated |
806 | /// iterators expose `reference` and `pointer` types that can be converted to |
807 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
808 | /// interesting/customized pointer or reference types. |
809 | /// |
810 | /// Currently this only supports forward or higher iterator categories as |
811 | /// inputs and always exposes a forward iterator interface. |
812 | template <typename ValueT, typename... IterTs> |
813 | class concat_iterator |
814 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
815 | std::forward_iterator_tag, ValueT> { |
816 | using BaseT = typename concat_iterator::iterator_facade_base; |
817 | |
818 | /// We store both the current and end iterators for each concatenated |
819 | /// sequence in a tuple of pairs. |
820 | /// |
821 | /// Note that something like iterator_range seems nice at first here, but the |
822 | /// range properties are of little benefit and end up getting in the way |
823 | /// because we need to do mutation on the current iterators. |
824 | std::tuple<IterTs...> Begins; |
825 | std::tuple<IterTs...> Ends; |
826 | |
827 | /// Attempts to increment a specific iterator. |
828 | /// |
829 | /// Returns true if it was able to increment the iterator. Returns false if |
830 | /// the iterator is already at the end iterator. |
831 | template <size_t Index> bool incrementHelper() { |
832 | auto &Begin = std::get<Index>(Begins); |
833 | auto &End = std::get<Index>(Ends); |
834 | if (Begin == End) |
835 | return false; |
836 | |
837 | ++Begin; |
838 | return true; |
839 | } |
840 | |
841 | /// Increments the first non-end iterator. |
842 | /// |
843 | /// It is an error to call this with all iterators at the end. |
844 | template <size_t... Ns> void increment(index_sequence<Ns...>) { |
845 | // Build a sequence of functions to increment each iterator if possible. |
846 | bool (concat_iterator::*IncrementHelperFns[])() = { |
847 | &concat_iterator::incrementHelper<Ns>...}; |
848 | |
849 | // Loop over them, and stop as soon as we succeed at incrementing one. |
850 | for (auto &IncrementHelperFn : IncrementHelperFns) |
851 | if ((this->*IncrementHelperFn)()) |
852 | return; |
853 | |
854 | llvm_unreachable("Attempted to increment an end concat iterator!" ); |
855 | } |
856 | |
857 | /// Returns null if the specified iterator is at the end. Otherwise, |
858 | /// dereferences the iterator and returns the address of the resulting |
859 | /// reference. |
860 | template <size_t Index> ValueT *getHelper() const { |
861 | auto &Begin = std::get<Index>(Begins); |
862 | auto &End = std::get<Index>(Ends); |
863 | if (Begin == End) |
864 | return nullptr; |
865 | |
866 | return &*Begin; |
867 | } |
868 | |
869 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
870 | /// reference. |
871 | /// |
872 | /// It is an error to call this with all iterators at the end. |
873 | template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const { |
874 | // Build a sequence of functions to get from iterator if possible. |
875 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
876 | &concat_iterator::getHelper<Ns>...}; |
877 | |
878 | // Loop over them, and return the first result we find. |
879 | for (auto &GetHelperFn : GetHelperFns) |
880 | if (ValueT *P = (this->*GetHelperFn)()) |
881 | return *P; |
882 | |
883 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!" ); |
884 | } |
885 | |
886 | public: |
887 | /// Constructs an iterator from a squence of ranges. |
888 | /// |
889 | /// We need the full range to know how to switch between each of the |
890 | /// iterators. |
891 | template <typename... RangeTs> |
892 | explicit concat_iterator(RangeTs &&... Ranges) |
893 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
894 | |
895 | using BaseT::operator++; |
896 | |
897 | concat_iterator &operator++() { |
898 | increment(index_sequence_for<IterTs...>()); |
899 | return *this; |
900 | } |
901 | |
902 | ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); } |
903 | |
904 | bool operator==(const concat_iterator &RHS) const { |
905 | return Begins == RHS.Begins && Ends == RHS.Ends; |
906 | } |
907 | }; |
908 | |
909 | namespace detail { |
910 | |
911 | /// Helper to store a sequence of ranges being concatenated and access them. |
912 | /// |
913 | /// This is designed to facilitate providing actual storage when temporaries |
914 | /// are passed into the constructor such that we can use it as part of range |
915 | /// based for loops. |
916 | template <typename ValueT, typename... RangeTs> class concat_range { |
917 | public: |
918 | using iterator = |
919 | concat_iterator<ValueT, |
920 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
921 | |
922 | private: |
923 | std::tuple<RangeTs...> Ranges; |
924 | |
925 | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) { |
926 | return iterator(std::get<Ns>(Ranges)...); |
927 | } |
928 | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) { |
929 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
930 | std::end(std::get<Ns>(Ranges)))...); |
931 | } |
932 | |
933 | public: |
934 | concat_range(RangeTs &&... Ranges) |
935 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
936 | |
937 | iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); } |
938 | iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); } |
939 | }; |
940 | |
941 | } // end namespace detail |
942 | |
943 | /// Concatenated range across two or more ranges. |
944 | /// |
945 | /// The desired value type must be explicitly specified. |
946 | template <typename ValueT, typename... RangeTs> |
947 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
948 | static_assert(sizeof...(RangeTs) > 1, |
949 | "Need more than one range to concatenate!" ); |
950 | return detail::concat_range<ValueT, RangeTs...>( |
951 | std::forward<RangeTs>(Ranges)...); |
952 | } |
953 | |
954 | //===----------------------------------------------------------------------===// |
955 | // Extra additions to <utility> |
956 | //===----------------------------------------------------------------------===// |
957 | |
958 | /// Function object to check whether the first component of a std::pair |
959 | /// compares less than the first component of another std::pair. |
960 | struct less_first { |
961 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
962 | return lhs.first < rhs.first; |
963 | } |
964 | }; |
965 | |
966 | /// Function object to check whether the second component of a std::pair |
967 | /// compares less than the second component of another std::pair. |
968 | struct less_second { |
969 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
970 | return lhs.second < rhs.second; |
971 | } |
972 | }; |
973 | |
974 | /// \brief Function object to apply a binary function to the first component of |
975 | /// a std::pair. |
976 | template<typename FuncTy> |
977 | struct on_first { |
978 | FuncTy func; |
979 | |
980 | template <typename T> |
981 | auto operator()(const T &lhs, const T &rhs) const |
982 | -> decltype(func(lhs.first, rhs.first)) { |
983 | return func(lhs.first, rhs.first); |
984 | } |
985 | }; |
986 | |
987 | // A subset of N3658. More stuff can be added as-needed. |
988 | |
989 | /// Represents a compile-time sequence of integers. |
990 | template <class T, T... I> struct integer_sequence { |
991 | using value_type = T; |
992 | |
993 | static constexpr size_t size() { return sizeof...(I); } |
994 | }; |
995 | |
996 | /// Alias for the common case of a sequence of size_ts. |
997 | template <size_t... I> |
998 | struct index_sequence : integer_sequence<std::size_t, I...> {}; |
999 | |
1000 | template <std::size_t N, std::size_t... I> |
1001 | struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {}; |
1002 | template <std::size_t... I> |
1003 | struct build_index_impl<0, I...> : index_sequence<I...> {}; |
1004 | |
1005 | /// Creates a compile-time integer sequence for a parameter pack. |
1006 | template <class... Ts> |
1007 | struct index_sequence_for : build_index_impl<sizeof...(Ts)> {}; |
1008 | |
1009 | /// Utility type to build an inheritance chain that makes it easy to rank |
1010 | /// overload candidates. |
1011 | template <int N> struct rank : rank<N - 1> {}; |
1012 | template <> struct rank<0> {}; |
1013 | |
1014 | /// traits class for checking whether type T is one of any of the given |
1015 | /// types in the variadic list. |
1016 | template <typename T, typename... Ts> struct is_one_of { |
1017 | static const bool value = false; |
1018 | }; |
1019 | |
1020 | template <typename T, typename U, typename... Ts> |
1021 | struct is_one_of<T, U, Ts...> { |
1022 | static const bool value = |
1023 | std::is_same<T, U>::value || is_one_of<T, Ts...>::value; |
1024 | }; |
1025 | |
1026 | /// traits class for checking whether type T is a base class for all |
1027 | /// the given types in the variadic list. |
1028 | template <typename T, typename... Ts> struct are_base_of { |
1029 | static const bool value = true; |
1030 | }; |
1031 | |
1032 | template <typename T, typename U, typename... Ts> |
1033 | struct are_base_of<T, U, Ts...> { |
1034 | static const bool value = |
1035 | std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; |
1036 | }; |
1037 | |
1038 | //===----------------------------------------------------------------------===// |
1039 | // Extra additions for arrays |
1040 | //===----------------------------------------------------------------------===// |
1041 | |
1042 | /// Find the length of an array. |
1043 | template <class T, std::size_t N> |
1044 | constexpr inline size_t array_lengthof(T (&)[N]) { |
1045 | return N; |
1046 | } |
1047 | |
1048 | /// Adapt std::less<T> for array_pod_sort. |
1049 | template<typename T> |
1050 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
1051 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
1052 | *reinterpret_cast<const T*>(P2))) |
1053 | return -1; |
1054 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
1055 | *reinterpret_cast<const T*>(P1))) |
1056 | return 1; |
1057 | return 0; |
1058 | } |
1059 | |
1060 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
1061 | /// get type deduction of T right. |
1062 | template<typename T> |
1063 | inline int (*get_array_pod_sort_comparator(const T &)) |
1064 | (const void*, const void*) { |
1065 | return array_pod_sort_comparator<T>; |
1066 | } |
1067 | |
1068 | /// array_pod_sort - This sorts an array with the specified start and end |
1069 | /// extent. This is just like std::sort, except that it calls qsort instead of |
1070 | /// using an inlined template. qsort is slightly slower than std::sort, but |
1071 | /// most sorts are not performance critical in LLVM and std::sort has to be |
1072 | /// template instantiated for each type, leading to significant measured code |
1073 | /// bloat. This function should generally be used instead of std::sort where |
1074 | /// possible. |
1075 | /// |
1076 | /// This function assumes that you have simple POD-like types that can be |
1077 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
1078 | /// you should use std::sort. |
1079 | /// |
1080 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
1081 | /// default to std::less. |
1082 | template<class IteratorTy> |
1083 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
1084 | // Don't inefficiently call qsort with one element or trigger undefined |
1085 | // behavior with an empty sequence. |
1086 | auto NElts = End - Start; |
1087 | if (NElts <= 1) return; |
1088 | #ifdef EXPENSIVE_CHECKS |
1089 | std::mt19937 Generator(std::random_device{}()); |
1090 | std::shuffle(Start, End, Generator); |
1091 | #endif |
1092 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
1093 | } |
1094 | |
1095 | template <class IteratorTy> |
1096 | inline void array_pod_sort( |
1097 | IteratorTy Start, IteratorTy End, |
1098 | int (*Compare)( |
1099 | const typename std::iterator_traits<IteratorTy>::value_type *, |
1100 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
1101 | // Don't inefficiently call qsort with one element or trigger undefined |
1102 | // behavior with an empty sequence. |
1103 | auto NElts = End - Start; |
1104 | if (NElts <= 1) return; |
1105 | #ifdef EXPENSIVE_CHECKS |
1106 | std::mt19937 Generator(std::random_device{}()); |
1107 | std::shuffle(Start, End, Generator); |
1108 | #endif |
1109 | qsort(&*Start, NElts, sizeof(*Start), |
1110 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
1111 | } |
1112 | |
1113 | // Provide wrappers to std::sort which shuffle the elements before sorting |
1114 | // to help uncover non-deterministic behavior (PR35135). |
1115 | template <typename IteratorTy> |
1116 | inline void sort(IteratorTy Start, IteratorTy End) { |
1117 | #ifdef EXPENSIVE_CHECKS |
1118 | std::mt19937 Generator(std::random_device{}()); |
1119 | std::shuffle(Start, End, Generator); |
1120 | #endif |
1121 | std::sort(Start, End); |
1122 | } |
1123 | |
1124 | template <typename Container> inline void sort(Container &&C) { |
1125 | llvm::sort(adl_begin(C), adl_end(C)); |
1126 | } |
1127 | |
1128 | template <typename IteratorTy, typename Compare> |
1129 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
1130 | #ifdef EXPENSIVE_CHECKS |
1131 | std::mt19937 Generator(std::random_device{}()); |
1132 | std::shuffle(Start, End, Generator); |
1133 | #endif |
1134 | std::sort(Start, End, Comp); |
1135 | } |
1136 | |
1137 | template <typename Container, typename Compare> |
1138 | inline void sort(Container &&C, Compare Comp) { |
1139 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
1140 | } |
1141 | |
1142 | //===----------------------------------------------------------------------===// |
1143 | // Extra additions to <algorithm> |
1144 | //===----------------------------------------------------------------------===// |
1145 | |
1146 | /// For a container of pointers, deletes the pointers and then clears the |
1147 | /// container. |
1148 | template<typename Container> |
1149 | void DeleteContainerPointers(Container &C) { |
1150 | for (auto V : C) |
1151 | delete V; |
1152 | C.clear(); |
1153 | } |
1154 | |
1155 | /// In a container of pairs (usually a map) whose second element is a pointer, |
1156 | /// deletes the second elements and then clears the container. |
1157 | template<typename Container> |
1158 | void DeleteContainerSeconds(Container &C) { |
1159 | for (auto &V : C) |
1160 | delete V.second; |
1161 | C.clear(); |
1162 | } |
1163 | |
1164 | /// Get the size of a range. This is a wrapper function around std::distance |
1165 | /// which is only enabled when the operation is O(1). |
1166 | template <typename R> |
1167 | auto size(R &&Range, typename std::enable_if< |
1168 | std::is_same<typename std::iterator_traits<decltype( |
1169 | Range.begin())>::iterator_category, |
1170 | std::random_access_iterator_tag>::value, |
1171 | void>::type * = nullptr) |
1172 | -> decltype(std::distance(Range.begin(), Range.end())) { |
1173 | return std::distance(Range.begin(), Range.end()); |
1174 | } |
1175 | |
1176 | /// Provide wrappers to std::for_each which take ranges instead of having to |
1177 | /// pass begin/end explicitly. |
1178 | template <typename R, typename UnaryPredicate> |
1179 | UnaryPredicate for_each(R &&Range, UnaryPredicate P) { |
1180 | return std::for_each(adl_begin(Range), adl_end(Range), P); |
1181 | } |
1182 | |
1183 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
1184 | /// begin/end explicitly. |
1185 | template <typename R, typename UnaryPredicate> |
1186 | bool all_of(R &&Range, UnaryPredicate P) { |
1187 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
1188 | } |
1189 | |
1190 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
1191 | /// begin/end explicitly. |
1192 | template <typename R, typename UnaryPredicate> |
1193 | bool any_of(R &&Range, UnaryPredicate P) { |
1194 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
1195 | } |
1196 | |
1197 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
1198 | /// begin/end explicitly. |
1199 | template <typename R, typename UnaryPredicate> |
1200 | bool none_of(R &&Range, UnaryPredicate P) { |
1201 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
1202 | } |
1203 | |
1204 | /// Provide wrappers to std::find which take ranges instead of having to pass |
1205 | /// begin/end explicitly. |
1206 | template <typename R, typename T> |
1207 | auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) { |
1208 | return std::find(adl_begin(Range), adl_end(Range), Val); |
1209 | } |
1210 | |
1211 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
1212 | /// begin/end explicitly. |
1213 | template <typename R, typename UnaryPredicate> |
1214 | auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
1215 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
1216 | } |
1217 | |
1218 | template <typename R, typename UnaryPredicate> |
1219 | auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
1220 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
1221 | } |
1222 | |
1223 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
1224 | /// pass begin/end explicitly. |
1225 | template <typename R, typename UnaryPredicate> |
1226 | auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
1227 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
1228 | } |
1229 | |
1230 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
1231 | /// pass begin/end explicitly. |
1232 | template <typename R, typename OutputIt, typename UnaryPredicate> |
1233 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
1234 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
1235 | } |
1236 | |
1237 | template <typename R, typename OutputIt> |
1238 | OutputIt copy(R &&Range, OutputIt Out) { |
1239 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
1240 | } |
1241 | |
1242 | /// Wrapper function around std::find to detect if an element exists |
1243 | /// in a container. |
1244 | template <typename R, typename E> |
1245 | bool is_contained(R &&Range, const E &Element) { |
1246 | return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); |
1247 | } |
1248 | |
1249 | /// Wrapper function around std::count to count the number of times an element |
1250 | /// \p Element occurs in the given range \p Range. |
1251 | template <typename R, typename E> |
1252 | auto count(R &&Range, const E &Element) -> |
1253 | typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { |
1254 | return std::count(adl_begin(Range), adl_end(Range), Element); |
1255 | } |
1256 | |
1257 | /// Wrapper function around std::count_if to count the number of times an |
1258 | /// element satisfying a given predicate occurs in a range. |
1259 | template <typename R, typename UnaryPredicate> |
1260 | auto count_if(R &&Range, UnaryPredicate P) -> |
1261 | typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { |
1262 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
1263 | } |
1264 | |
1265 | /// Wrapper function around std::transform to apply a function to a range and |
1266 | /// store the result elsewhere. |
1267 | template <typename R, typename OutputIt, typename UnaryPredicate> |
1268 | OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { |
1269 | return std::transform(adl_begin(Range), adl_end(Range), d_first, P); |
1270 | } |
1271 | |
1272 | /// Provide wrappers to std::partition which take ranges instead of having to |
1273 | /// pass begin/end explicitly. |
1274 | template <typename R, typename UnaryPredicate> |
1275 | auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
1276 | return std::partition(adl_begin(Range), adl_end(Range), P); |
1277 | } |
1278 | |
1279 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
1280 | /// pass begin/end explicitly. |
1281 | template <typename R, typename ForwardIt> |
1282 | auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) { |
1283 | return std::lower_bound(adl_begin(Range), adl_end(Range), I); |
1284 | } |
1285 | |
1286 | template <typename R, typename ForwardIt, typename Compare> |
1287 | auto lower_bound(R &&Range, ForwardIt I, Compare C) |
1288 | -> decltype(adl_begin(Range)) { |
1289 | return std::lower_bound(adl_begin(Range), adl_end(Range), I, C); |
1290 | } |
1291 | |
1292 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
1293 | /// pass begin/end explicitly. |
1294 | template <typename R, typename ForwardIt> |
1295 | auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) { |
1296 | return std::upper_bound(adl_begin(Range), adl_end(Range), I); |
1297 | } |
1298 | |
1299 | template <typename R, typename ForwardIt, typename Compare> |
1300 | auto upper_bound(R &&Range, ForwardIt I, Compare C) |
1301 | -> decltype(adl_begin(Range)) { |
1302 | return std::upper_bound(adl_begin(Range), adl_end(Range), I, C); |
1303 | } |
1304 | /// Wrapper function around std::equal to detect if all elements |
1305 | /// in a container are same. |
1306 | template <typename R> |
1307 | bool is_splat(R &&Range) { |
1308 | size_t range_size = size(Range); |
1309 | return range_size != 0 && (range_size == 1 || |
1310 | std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); |
1311 | } |
1312 | |
1313 | /// Given a range of type R, iterate the entire range and return a |
1314 | /// SmallVector with elements of the vector. This is useful, for example, |
1315 | /// when you want to iterate a range and then sort the results. |
1316 | template <unsigned Size, typename R> |
1317 | SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size> |
1318 | to_vector(R &&Range) { |
1319 | return {adl_begin(Range), adl_end(Range)}; |
1320 | } |
1321 | |
1322 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
1323 | /// `erase_if` which is equivalent to: |
1324 | /// |
1325 | /// C.erase(remove_if(C, pred), C.end()); |
1326 | /// |
1327 | /// This version works for any container with an erase method call accepting |
1328 | /// two iterators. |
1329 | template <typename Container, typename UnaryPredicate> |
1330 | void erase_if(Container &C, UnaryPredicate P) { |
1331 | C.erase(remove_if(C, P), C.end()); |
1332 | } |
1333 | |
1334 | //===----------------------------------------------------------------------===// |
1335 | // Extra additions to <memory> |
1336 | //===----------------------------------------------------------------------===// |
1337 | |
1338 | // Implement make_unique according to N3656. |
1339 | |
1340 | /// Constructs a `new T()` with the given args and returns a |
1341 | /// `unique_ptr<T>` which owns the object. |
1342 | /// |
1343 | /// Example: |
1344 | /// |
1345 | /// auto p = make_unique<int>(); |
1346 | /// auto p = make_unique<std::tuple<int, int>>(0, 1); |
1347 | template <class T, class... Args> |
1348 | typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type |
1349 | make_unique(Args &&... args) { |
1350 | return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); |
1351 | } |
1352 | |
1353 | /// Constructs a `new T[n]` with the given args and returns a |
1354 | /// `unique_ptr<T[]>` which owns the object. |
1355 | /// |
1356 | /// \param n size of the new array. |
1357 | /// |
1358 | /// Example: |
1359 | /// |
1360 | /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's. |
1361 | template <class T> |
1362 | typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0, |
1363 | std::unique_ptr<T>>::type |
1364 | make_unique(size_t n) { |
1365 | return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); |
1366 | } |
1367 | |
1368 | /// This function isn't used and is only here to provide better compile errors. |
1369 | template <class T, class... Args> |
1370 | typename std::enable_if<std::extent<T>::value != 0>::type |
1371 | make_unique(Args &&...) = delete; |
1372 | |
1373 | struct FreeDeleter { |
1374 | void operator()(void* v) { |
1375 | ::free(v); |
1376 | } |
1377 | }; |
1378 | |
1379 | template<typename First, typename Second> |
1380 | struct pair_hash { |
1381 | size_t operator()(const std::pair<First, Second> &P) const { |
1382 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
1383 | } |
1384 | }; |
1385 | |
1386 | /// A functor like C++14's std::less<void> in its absence. |
1387 | struct less { |
1388 | template <typename A, typename B> bool operator()(A &&a, B &&b) const { |
1389 | return std::forward<A>(a) < std::forward<B>(b); |
1390 | } |
1391 | }; |
1392 | |
1393 | /// A functor like C++14's std::equal<void> in its absence. |
1394 | struct equal { |
1395 | template <typename A, typename B> bool operator()(A &&a, B &&b) const { |
1396 | return std::forward<A>(a) == std::forward<B>(b); |
1397 | } |
1398 | }; |
1399 | |
1400 | /// Binary functor that adapts to any other binary functor after dereferencing |
1401 | /// operands. |
1402 | template <typename T> struct deref { |
1403 | T func; |
1404 | |
1405 | // Could be further improved to cope with non-derivable functors and |
1406 | // non-binary functors (should be a variadic template member function |
1407 | // operator()). |
1408 | template <typename A, typename B> |
1409 | auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { |
1410 | assert(lhs); |
1411 | assert(rhs); |
1412 | return func(*lhs, *rhs); |
1413 | } |
1414 | }; |
1415 | |
1416 | namespace detail { |
1417 | |
1418 | template <typename R> class enumerator_iter; |
1419 | |
1420 | template <typename R> struct result_pair { |
1421 | friend class enumerator_iter<R>; |
1422 | |
1423 | result_pair() = default; |
1424 | result_pair(std::size_t Index, IterOfRange<R> Iter) |
1425 | : Index(Index), Iter(Iter) {} |
1426 | |
1427 | result_pair<R> &operator=(const result_pair<R> &Other) { |
1428 | Index = Other.Index; |
1429 | Iter = Other.Iter; |
1430 | return *this; |
1431 | } |
1432 | |
1433 | std::size_t index() const { return Index; } |
1434 | const ValueOfRange<R> &value() const { return *Iter; } |
1435 | ValueOfRange<R> &value() { return *Iter; } |
1436 | |
1437 | private: |
1438 | std::size_t Index = std::numeric_limits<std::size_t>::max(); |
1439 | IterOfRange<R> Iter; |
1440 | }; |
1441 | |
1442 | template <typename R> |
1443 | class enumerator_iter |
1444 | : public iterator_facade_base< |
1445 | enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, |
1446 | typename std::iterator_traits<IterOfRange<R>>::difference_type, |
1447 | typename std::iterator_traits<IterOfRange<R>>::pointer, |
1448 | typename std::iterator_traits<IterOfRange<R>>::reference> { |
1449 | using result_type = result_pair<R>; |
1450 | |
1451 | public: |
1452 | explicit enumerator_iter(IterOfRange<R> EndIter) |
1453 | : Result(std::numeric_limits<size_t>::max(), EndIter) {} |
1454 | |
1455 | enumerator_iter(std::size_t Index, IterOfRange<R> Iter) |
1456 | : Result(Index, Iter) {} |
1457 | |
1458 | result_type &operator*() { return Result; } |
1459 | const result_type &operator*() const { return Result; } |
1460 | |
1461 | enumerator_iter<R> &operator++() { |
1462 | assert(Result.Index != std::numeric_limits<size_t>::max()); |
1463 | ++Result.Iter; |
1464 | ++Result.Index; |
1465 | return *this; |
1466 | } |
1467 | |
1468 | bool operator==(const enumerator_iter<R> &RHS) const { |
1469 | // Don't compare indices here, only iterators. It's possible for an end |
1470 | // iterator to have different indices depending on whether it was created |
1471 | // by calling std::end() versus incrementing a valid iterator. |
1472 | return Result.Iter == RHS.Result.Iter; |
1473 | } |
1474 | |
1475 | enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { |
1476 | Result = Other.Result; |
1477 | return *this; |
1478 | } |
1479 | |
1480 | private: |
1481 | result_type Result; |
1482 | }; |
1483 | |
1484 | template <typename R> class enumerator { |
1485 | public: |
1486 | explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} |
1487 | |
1488 | enumerator_iter<R> begin() { |
1489 | return enumerator_iter<R>(0, std::begin(TheRange)); |
1490 | } |
1491 | |
1492 | enumerator_iter<R> end() { |
1493 | return enumerator_iter<R>(std::end(TheRange)); |
1494 | } |
1495 | |
1496 | private: |
1497 | R TheRange; |
1498 | }; |
1499 | |
1500 | } // end namespace detail |
1501 | |
1502 | /// Given an input range, returns a new range whose values are are pair (A,B) |
1503 | /// such that A is the 0-based index of the item in the sequence, and B is |
1504 | /// the value from the original sequence. Example: |
1505 | /// |
1506 | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; |
1507 | /// for (auto X : enumerate(Items)) { |
1508 | /// printf("Item %d - %c\n", X.index(), X.value()); |
1509 | /// } |
1510 | /// |
1511 | /// Output: |
1512 | /// Item 0 - A |
1513 | /// Item 1 - B |
1514 | /// Item 2 - C |
1515 | /// Item 3 - D |
1516 | /// |
1517 | template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { |
1518 | return detail::enumerator<R>(std::forward<R>(TheRange)); |
1519 | } |
1520 | |
1521 | namespace detail { |
1522 | |
1523 | template <typename F, typename Tuple, std::size_t... I> |
1524 | auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>) |
1525 | -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { |
1526 | return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); |
1527 | } |
1528 | |
1529 | } // end namespace detail |
1530 | |
1531 | /// Given an input tuple (a1, a2, ..., an), pass the arguments of the |
1532 | /// tuple variadically to f as if by calling f(a1, a2, ..., an) and |
1533 | /// return the result. |
1534 | template <typename F, typename Tuple> |
1535 | auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( |
1536 | std::forward<F>(f), std::forward<Tuple>(t), |
1537 | build_index_impl< |
1538 | std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { |
1539 | using Indices = build_index_impl< |
1540 | std::tuple_size<typename std::decay<Tuple>::type>::value>; |
1541 | |
1542 | return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), |
1543 | Indices{}); |
1544 | } |
1545 | |
1546 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
1547 | /// time. Not meant for use with random-access iterators. |
1548 | template <typename IterTy> |
1549 | bool hasNItems( |
1550 | IterTy &&Begin, IterTy &&End, unsigned N, |
1551 | typename std::enable_if< |
1552 | !std::is_same< |
1553 | typename std::iterator_traits<typename std::remove_reference< |
1554 | decltype(Begin)>::type>::iterator_category, |
1555 | std::random_access_iterator_tag>::value, |
1556 | void>::type * = nullptr) { |
1557 | for (; N; --N, ++Begin) |
1558 | if (Begin == End) |
1559 | return false; // Too few. |
1560 | return Begin == End; |
1561 | } |
1562 | |
1563 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
1564 | /// time. Not meant for use with random-access iterators. |
1565 | template <typename IterTy> |
1566 | bool hasNItemsOrMore( |
1567 | IterTy &&Begin, IterTy &&End, unsigned N, |
1568 | typename std::enable_if< |
1569 | !std::is_same< |
1570 | typename std::iterator_traits<typename std::remove_reference< |
1571 | decltype(Begin)>::type>::iterator_category, |
1572 | std::random_access_iterator_tag>::value, |
1573 | void>::type * = nullptr) { |
1574 | for (; N; --N, ++Begin) |
1575 | if (Begin == End) |
1576 | return false; // Too few. |
1577 | return true; |
1578 | } |
1579 | |
1580 | } // end namespace llvm |
1581 | |
1582 | #endif // LLVM_ADT_STLEXTRAS_H |
1583 | |