1 | //===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | |
10 | #ifndef LLVM_ADT_TWINE_H |
11 | #define LLVM_ADT_TWINE_H |
12 | |
13 | #include "llvm/ADT/SmallVector.h" |
14 | #include "llvm/ADT/StringRef.h" |
15 | #include "llvm/Support/ErrorHandling.h" |
16 | #include <cassert> |
17 | #include <cstdint> |
18 | #include <string> |
19 | |
20 | namespace llvm { |
21 | |
22 | class formatv_object_base; |
23 | class raw_ostream; |
24 | |
25 | /// Twine - A lightweight data structure for efficiently representing the |
26 | /// concatenation of temporary values as strings. |
27 | /// |
28 | /// A Twine is a kind of rope, it represents a concatenated string using a |
29 | /// binary-tree, where the string is the preorder of the nodes. Since the |
30 | /// Twine can be efficiently rendered into a buffer when its result is used, |
31 | /// it avoids the cost of generating temporary values for intermediate string |
32 | /// results -- particularly in cases when the Twine result is never |
33 | /// required. By explicitly tracking the type of leaf nodes, we can also avoid |
34 | /// the creation of temporary strings for conversions operations (such as |
35 | /// appending an integer to a string). |
36 | /// |
37 | /// A Twine is not intended for use directly and should not be stored, its |
38 | /// implementation relies on the ability to store pointers to temporary stack |
39 | /// objects which may be deallocated at the end of a statement. Twines should |
40 | /// only be used accepted as const references in arguments, when an API wishes |
41 | /// to accept possibly-concatenated strings. |
42 | /// |
43 | /// Twines support a special 'null' value, which always concatenates to form |
44 | /// itself, and renders as an empty string. This can be returned from APIs to |
45 | /// effectively nullify any concatenations performed on the result. |
46 | /// |
47 | /// \b Implementation |
48 | /// |
49 | /// Given the nature of a Twine, it is not possible for the Twine's |
50 | /// concatenation method to construct interior nodes; the result must be |
51 | /// represented inside the returned value. For this reason a Twine object |
52 | /// actually holds two values, the left- and right-hand sides of a |
53 | /// concatenation. We also have nullary Twine objects, which are effectively |
54 | /// sentinel values that represent empty strings. |
55 | /// |
56 | /// Thus, a Twine can effectively have zero, one, or two children. The \see |
57 | /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for |
58 | /// testing the number of children. |
59 | /// |
60 | /// We maintain a number of invariants on Twine objects (FIXME: Why): |
61 | /// - Nullary twines are always represented with their Kind on the left-hand |
62 | /// side, and the Empty kind on the right-hand side. |
63 | /// - Unary twines are always represented with the value on the left-hand |
64 | /// side, and the Empty kind on the right-hand side. |
65 | /// - If a Twine has another Twine as a child, that child should always be |
66 | /// binary (otherwise it could have been folded into the parent). |
67 | /// |
68 | /// These invariants are check by \see isValid(). |
69 | /// |
70 | /// \b Efficiency Considerations |
71 | /// |
72 | /// The Twine is designed to yield efficient and small code for common |
73 | /// situations. For this reason, the concat() method is inlined so that |
74 | /// concatenations of leaf nodes can be optimized into stores directly into a |
75 | /// single stack allocated object. |
76 | /// |
77 | /// In practice, not all compilers can be trusted to optimize concat() fully, |
78 | /// so we provide two additional methods (and accompanying operator+ |
79 | /// overloads) to guarantee that particularly important cases (cstring plus |
80 | /// StringRef) codegen as desired. |
81 | class Twine { |
82 | /// NodeKind - Represent the type of an argument. |
83 | enum NodeKind : unsigned char { |
84 | /// An empty string; the result of concatenating anything with it is also |
85 | /// empty. |
86 | NullKind, |
87 | |
88 | /// The empty string. |
89 | EmptyKind, |
90 | |
91 | /// A pointer to a Twine instance. |
92 | TwineKind, |
93 | |
94 | /// A pointer to a C string instance. |
95 | CStringKind, |
96 | |
97 | /// A pointer to an std::string instance. |
98 | StdStringKind, |
99 | |
100 | /// A pointer to a StringRef instance. |
101 | StringRefKind, |
102 | |
103 | /// A pointer to a SmallString instance. |
104 | SmallStringKind, |
105 | |
106 | /// A pointer to a formatv_object_base instance. |
107 | FormatvObjectKind, |
108 | |
109 | /// A char value, to render as a character. |
110 | CharKind, |
111 | |
112 | /// An unsigned int value, to render as an unsigned decimal integer. |
113 | DecUIKind, |
114 | |
115 | /// An int value, to render as a signed decimal integer. |
116 | DecIKind, |
117 | |
118 | /// A pointer to an unsigned long value, to render as an unsigned decimal |
119 | /// integer. |
120 | DecULKind, |
121 | |
122 | /// A pointer to a long value, to render as a signed decimal integer. |
123 | DecLKind, |
124 | |
125 | /// A pointer to an unsigned long long value, to render as an unsigned |
126 | /// decimal integer. |
127 | DecULLKind, |
128 | |
129 | /// A pointer to a long long value, to render as a signed decimal integer. |
130 | DecLLKind, |
131 | |
132 | /// A pointer to a uint64_t value, to render as an unsigned hexadecimal |
133 | /// integer. |
134 | UHexKind |
135 | }; |
136 | |
137 | union Child |
138 | { |
139 | const Twine *twine; |
140 | const char *cString; |
141 | const std::string *stdString; |
142 | const StringRef *stringRef; |
143 | const SmallVectorImpl<char> *smallString; |
144 | const formatv_object_base *formatvObject; |
145 | char character; |
146 | unsigned int decUI; |
147 | int decI; |
148 | const unsigned long *decUL; |
149 | const long *decL; |
150 | const unsigned long long *decULL; |
151 | const long long *decLL; |
152 | const uint64_t *uHex; |
153 | }; |
154 | |
155 | /// LHS - The prefix in the concatenation, which may be uninitialized for |
156 | /// Null or Empty kinds. |
157 | Child LHS; |
158 | |
159 | /// RHS - The suffix in the concatenation, which may be uninitialized for |
160 | /// Null or Empty kinds. |
161 | Child RHS; |
162 | |
163 | /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). |
164 | NodeKind LHSKind = EmptyKind; |
165 | |
166 | /// RHSKind - The NodeKind of the right hand side, \see getRHSKind(). |
167 | NodeKind RHSKind = EmptyKind; |
168 | |
169 | /// Construct a nullary twine; the kind must be NullKind or EmptyKind. |
170 | explicit Twine(NodeKind Kind) : LHSKind(Kind) { |
171 | assert(isNullary() && "Invalid kind!" ); |
172 | } |
173 | |
174 | /// Construct a binary twine. |
175 | explicit Twine(const Twine &LHS, const Twine &RHS) |
176 | : LHSKind(TwineKind), RHSKind(TwineKind) { |
177 | this->LHS.twine = &LHS; |
178 | this->RHS.twine = &RHS; |
179 | assert(isValid() && "Invalid twine!" ); |
180 | } |
181 | |
182 | /// Construct a twine from explicit values. |
183 | explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind) |
184 | : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) { |
185 | assert(isValid() && "Invalid twine!" ); |
186 | } |
187 | |
188 | /// Check for the null twine. |
189 | bool isNull() const { |
190 | return getLHSKind() == NullKind; |
191 | } |
192 | |
193 | /// Check for the empty twine. |
194 | bool isEmpty() const { |
195 | return getLHSKind() == EmptyKind; |
196 | } |
197 | |
198 | /// Check if this is a nullary twine (null or empty). |
199 | bool isNullary() const { |
200 | return isNull() || isEmpty(); |
201 | } |
202 | |
203 | /// Check if this is a unary twine. |
204 | bool isUnary() const { |
205 | return getRHSKind() == EmptyKind && !isNullary(); |
206 | } |
207 | |
208 | /// Check if this is a binary twine. |
209 | bool isBinary() const { |
210 | return getLHSKind() != NullKind && getRHSKind() != EmptyKind; |
211 | } |
212 | |
213 | /// Check if this is a valid twine (satisfying the invariants on |
214 | /// order and number of arguments). |
215 | bool isValid() const { |
216 | // Nullary twines always have Empty on the RHS. |
217 | if (isNullary() && getRHSKind() != EmptyKind) |
218 | return false; |
219 | |
220 | // Null should never appear on the RHS. |
221 | if (getRHSKind() == NullKind) |
222 | return false; |
223 | |
224 | // The RHS cannot be non-empty if the LHS is empty. |
225 | if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) |
226 | return false; |
227 | |
228 | // A twine child should always be binary. |
229 | if (getLHSKind() == TwineKind && |
230 | !LHS.twine->isBinary()) |
231 | return false; |
232 | if (getRHSKind() == TwineKind && |
233 | !RHS.twine->isBinary()) |
234 | return false; |
235 | |
236 | return true; |
237 | } |
238 | |
239 | /// Get the NodeKind of the left-hand side. |
240 | NodeKind getLHSKind() const { return LHSKind; } |
241 | |
242 | /// Get the NodeKind of the right-hand side. |
243 | NodeKind getRHSKind() const { return RHSKind; } |
244 | |
245 | /// Print one child from a twine. |
246 | void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const; |
247 | |
248 | /// Print the representation of one child from a twine. |
249 | void printOneChildRepr(raw_ostream &OS, Child Ptr, |
250 | NodeKind Kind) const; |
251 | |
252 | public: |
253 | /// @name Constructors |
254 | /// @{ |
255 | |
256 | /// Construct from an empty string. |
257 | /*implicit*/ Twine() { |
258 | assert(isValid() && "Invalid twine!" ); |
259 | } |
260 | |
261 | Twine(const Twine &) = default; |
262 | |
263 | /// Construct from a C string. |
264 | /// |
265 | /// We take care here to optimize "" into the empty twine -- this will be |
266 | /// optimized out for string constants. This allows Twine arguments have |
267 | /// default "" values, without introducing unnecessary string constants. |
268 | /*implicit*/ Twine(const char *Str) { |
269 | if (Str[0] != '\0') { |
270 | LHS.cString = Str; |
271 | LHSKind = CStringKind; |
272 | } else |
273 | LHSKind = EmptyKind; |
274 | |
275 | assert(isValid() && "Invalid twine!" ); |
276 | } |
277 | |
278 | /// Construct from an std::string. |
279 | /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) { |
280 | LHS.stdString = &Str; |
281 | assert(isValid() && "Invalid twine!" ); |
282 | } |
283 | |
284 | /// Construct from a StringRef. |
285 | /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) { |
286 | LHS.stringRef = &Str; |
287 | assert(isValid() && "Invalid twine!" ); |
288 | } |
289 | |
290 | /// Construct from a SmallString. |
291 | /*implicit*/ Twine(const SmallVectorImpl<char> &Str) |
292 | : LHSKind(SmallStringKind) { |
293 | LHS.smallString = &Str; |
294 | assert(isValid() && "Invalid twine!" ); |
295 | } |
296 | |
297 | /// Construct from a formatv_object_base. |
298 | /*implicit*/ Twine(const formatv_object_base &Fmt) |
299 | : LHSKind(FormatvObjectKind) { |
300 | LHS.formatvObject = &Fmt; |
301 | assert(isValid() && "Invalid twine!" ); |
302 | } |
303 | |
304 | /// Construct from a char. |
305 | explicit Twine(char Val) : LHSKind(CharKind) { |
306 | LHS.character = Val; |
307 | } |
308 | |
309 | /// Construct from a signed char. |
310 | explicit Twine(signed char Val) : LHSKind(CharKind) { |
311 | LHS.character = static_cast<char>(Val); |
312 | } |
313 | |
314 | /// Construct from an unsigned char. |
315 | explicit Twine(unsigned char Val) : LHSKind(CharKind) { |
316 | LHS.character = static_cast<char>(Val); |
317 | } |
318 | |
319 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
320 | explicit Twine(unsigned Val) : LHSKind(DecUIKind) { |
321 | LHS.decUI = Val; |
322 | } |
323 | |
324 | /// Construct a twine to print \p Val as a signed decimal integer. |
325 | explicit Twine(int Val) : LHSKind(DecIKind) { |
326 | LHS.decI = Val; |
327 | } |
328 | |
329 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
330 | explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) { |
331 | LHS.decUL = &Val; |
332 | } |
333 | |
334 | /// Construct a twine to print \p Val as a signed decimal integer. |
335 | explicit Twine(const long &Val) : LHSKind(DecLKind) { |
336 | LHS.decL = &Val; |
337 | } |
338 | |
339 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
340 | explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) { |
341 | LHS.decULL = &Val; |
342 | } |
343 | |
344 | /// Construct a twine to print \p Val as a signed decimal integer. |
345 | explicit Twine(const long long &Val) : LHSKind(DecLLKind) { |
346 | LHS.decLL = &Val; |
347 | } |
348 | |
349 | // FIXME: Unfortunately, to make sure this is as efficient as possible we |
350 | // need extra binary constructors from particular types. We can't rely on |
351 | // the compiler to be smart enough to fold operator+()/concat() down to the |
352 | // right thing. Yet. |
353 | |
354 | /// Construct as the concatenation of a C string and a StringRef. |
355 | /*implicit*/ Twine(const char *LHS, const StringRef &RHS) |
356 | : LHSKind(CStringKind), RHSKind(StringRefKind) { |
357 | this->LHS.cString = LHS; |
358 | this->RHS.stringRef = &RHS; |
359 | assert(isValid() && "Invalid twine!" ); |
360 | } |
361 | |
362 | /// Construct as the concatenation of a StringRef and a C string. |
363 | /*implicit*/ Twine(const StringRef &LHS, const char *RHS) |
364 | : LHSKind(StringRefKind), RHSKind(CStringKind) { |
365 | this->LHS.stringRef = &LHS; |
366 | this->RHS.cString = RHS; |
367 | assert(isValid() && "Invalid twine!" ); |
368 | } |
369 | |
370 | /// Since the intended use of twines is as temporary objects, assignments |
371 | /// when concatenating might cause undefined behavior or stack corruptions |
372 | Twine &operator=(const Twine &) = delete; |
373 | |
374 | /// Create a 'null' string, which is an empty string that always |
375 | /// concatenates to form another empty string. |
376 | static Twine createNull() { |
377 | return Twine(NullKind); |
378 | } |
379 | |
380 | /// @} |
381 | /// @name Numeric Conversions |
382 | /// @{ |
383 | |
384 | // Construct a twine to print \p Val as an unsigned hexadecimal integer. |
385 | static Twine utohexstr(const uint64_t &Val) { |
386 | Child LHS, RHS; |
387 | LHS.uHex = &Val; |
388 | RHS.twine = nullptr; |
389 | return Twine(LHS, UHexKind, RHS, EmptyKind); |
390 | } |
391 | |
392 | /// @} |
393 | /// @name Predicate Operations |
394 | /// @{ |
395 | |
396 | /// Check if this twine is trivially empty; a false return value does not |
397 | /// necessarily mean the twine is empty. |
398 | bool isTriviallyEmpty() const { |
399 | return isNullary(); |
400 | } |
401 | |
402 | /// Return true if this twine can be dynamically accessed as a single |
403 | /// StringRef value with getSingleStringRef(). |
404 | bool isSingleStringRef() const { |
405 | if (getRHSKind() != EmptyKind) return false; |
406 | |
407 | switch (getLHSKind()) { |
408 | case EmptyKind: |
409 | case CStringKind: |
410 | case StdStringKind: |
411 | case StringRefKind: |
412 | case SmallStringKind: |
413 | return true; |
414 | default: |
415 | return false; |
416 | } |
417 | } |
418 | |
419 | /// @} |
420 | /// @name String Operations |
421 | /// @{ |
422 | |
423 | Twine concat(const Twine &Suffix) const; |
424 | |
425 | /// @} |
426 | /// @name Output & Conversion. |
427 | /// @{ |
428 | |
429 | /// Return the twine contents as a std::string. |
430 | std::string str() const; |
431 | |
432 | /// Append the concatenated string into the given SmallString or SmallVector. |
433 | void toVector(SmallVectorImpl<char> &Out) const; |
434 | |
435 | /// This returns the twine as a single StringRef. This method is only valid |
436 | /// if isSingleStringRef() is true. |
437 | StringRef getSingleStringRef() const { |
438 | assert(isSingleStringRef() &&"This cannot be had as a single stringref!" ); |
439 | switch (getLHSKind()) { |
440 | default: llvm_unreachable("Out of sync with isSingleStringRef" ); |
441 | case EmptyKind: return StringRef(); |
442 | case CStringKind: return StringRef(LHS.cString); |
443 | case StdStringKind: return StringRef(*LHS.stdString); |
444 | case StringRefKind: return *LHS.stringRef; |
445 | case SmallStringKind: |
446 | return StringRef(LHS.smallString->data(), LHS.smallString->size()); |
447 | } |
448 | } |
449 | |
450 | /// This returns the twine as a single StringRef if it can be |
451 | /// represented as such. Otherwise the twine is written into the given |
452 | /// SmallVector and a StringRef to the SmallVector's data is returned. |
453 | StringRef toStringRef(SmallVectorImpl<char> &Out) const { |
454 | if (isSingleStringRef()) |
455 | return getSingleStringRef(); |
456 | toVector(Out); |
457 | return StringRef(Out.data(), Out.size()); |
458 | } |
459 | |
460 | /// This returns the twine as a single null terminated StringRef if it |
461 | /// can be represented as such. Otherwise the twine is written into the |
462 | /// given SmallVector and a StringRef to the SmallVector's data is returned. |
463 | /// |
464 | /// The returned StringRef's size does not include the null terminator. |
465 | StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const; |
466 | |
467 | /// Write the concatenated string represented by this twine to the |
468 | /// stream \p OS. |
469 | void print(raw_ostream &OS) const; |
470 | |
471 | /// Dump the concatenated string represented by this twine to stderr. |
472 | void dump() const; |
473 | |
474 | /// Write the representation of this twine to the stream \p OS. |
475 | void printRepr(raw_ostream &OS) const; |
476 | |
477 | /// Dump the representation of this twine to stderr. |
478 | void dumpRepr() const; |
479 | |
480 | /// @} |
481 | }; |
482 | |
483 | /// @name Twine Inline Implementations |
484 | /// @{ |
485 | |
486 | inline Twine Twine::concat(const Twine &Suffix) const { |
487 | // Concatenation with null is null. |
488 | if (isNull() || Suffix.isNull()) |
489 | return Twine(NullKind); |
490 | |
491 | // Concatenation with empty yields the other side. |
492 | if (isEmpty()) |
493 | return Suffix; |
494 | if (Suffix.isEmpty()) |
495 | return *this; |
496 | |
497 | // Otherwise we need to create a new node, taking care to fold in unary |
498 | // twines. |
499 | Child NewLHS, NewRHS; |
500 | NewLHS.twine = this; |
501 | NewRHS.twine = &Suffix; |
502 | NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; |
503 | if (isUnary()) { |
504 | NewLHS = LHS; |
505 | NewLHSKind = getLHSKind(); |
506 | } |
507 | if (Suffix.isUnary()) { |
508 | NewRHS = Suffix.LHS; |
509 | NewRHSKind = Suffix.getLHSKind(); |
510 | } |
511 | |
512 | return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); |
513 | } |
514 | |
515 | inline Twine operator+(const Twine &LHS, const Twine &RHS) { |
516 | return LHS.concat(RHS); |
517 | } |
518 | |
519 | /// Additional overload to guarantee simplified codegen; this is equivalent to |
520 | /// concat(). |
521 | |
522 | inline Twine operator+(const char *LHS, const StringRef &RHS) { |
523 | return Twine(LHS, RHS); |
524 | } |
525 | |
526 | /// Additional overload to guarantee simplified codegen; this is equivalent to |
527 | /// concat(). |
528 | |
529 | inline Twine operator+(const StringRef &LHS, const char *RHS) { |
530 | return Twine(LHS, RHS); |
531 | } |
532 | |
533 | inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { |
534 | RHS.print(OS); |
535 | return OS; |
536 | } |
537 | |
538 | /// @} |
539 | |
540 | } // end namespace llvm |
541 | |
542 | #endif // LLVM_ADT_TWINE_H |
543 | |