1/*
2 * QEMU Floppy disk emulator (Intel 82078)
3 *
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25/*
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
28 */
29
30#include "qemu/osdep.h"
31#include "hw/block/fdc.h"
32#include "qapi/error.h"
33#include "qemu/error-report.h"
34#include "qemu/timer.h"
35#include "hw/irq.h"
36#include "hw/isa/isa.h"
37#include "hw/qdev-properties.h"
38#include "hw/sysbus.h"
39#include "migration/vmstate.h"
40#include "hw/block/block.h"
41#include "sysemu/block-backend.h"
42#include "sysemu/blockdev.h"
43#include "sysemu/sysemu.h"
44#include "qemu/log.h"
45#include "qemu/main-loop.h"
46#include "qemu/module.h"
47#include "trace.h"
48
49/********************************************************/
50/* debug Floppy devices */
51
52#define DEBUG_FLOPPY 0
53
54#define FLOPPY_DPRINTF(fmt, ...) \
55 do { \
56 if (DEBUG_FLOPPY) { \
57 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
58 } \
59 } while (0)
60
61
62/********************************************************/
63/* qdev floppy bus */
64
65#define TYPE_FLOPPY_BUS "floppy-bus"
66#define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
67
68typedef struct FDCtrl FDCtrl;
69typedef struct FDrive FDrive;
70static FDrive *get_drv(FDCtrl *fdctrl, int unit);
71
72typedef struct FloppyBus {
73 BusState bus;
74 FDCtrl *fdc;
75} FloppyBus;
76
77static const TypeInfo floppy_bus_info = {
78 .name = TYPE_FLOPPY_BUS,
79 .parent = TYPE_BUS,
80 .instance_size = sizeof(FloppyBus),
81};
82
83static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
84{
85 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
86 bus->fdc = fdc;
87}
88
89
90/********************************************************/
91/* Floppy drive emulation */
92
93typedef enum FDriveRate {
94 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
95 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
96 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
97 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
98} FDriveRate;
99
100typedef enum FDriveSize {
101 FDRIVE_SIZE_UNKNOWN,
102 FDRIVE_SIZE_350,
103 FDRIVE_SIZE_525,
104} FDriveSize;
105
106typedef struct FDFormat {
107 FloppyDriveType drive;
108 uint8_t last_sect;
109 uint8_t max_track;
110 uint8_t max_head;
111 FDriveRate rate;
112} FDFormat;
113
114/* In many cases, the total sector size of a format is enough to uniquely
115 * identify it. However, there are some total sector collisions between
116 * formats of different physical size, and these are noted below by
117 * highlighting the total sector size for entries with collisions. */
118static const FDFormat fd_formats[] = {
119 /* First entry is default format */
120 /* 1.44 MB 3"1/2 floppy disks */
121 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
122 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
123 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
124 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
125 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
126 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
127 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
128 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
129 /* 2.88 MB 3"1/2 floppy disks */
130 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
131 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
132 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
133 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
134 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
135 /* 720 kB 3"1/2 floppy disks */
136 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
137 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
138 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
139 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
140 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
141 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
142 /* 1.2 MB 5"1/4 floppy disks */
143 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
144 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
145 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
146 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
147 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
148 /* 720 kB 5"1/4 floppy disks */
149 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
150 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
151 /* 360 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
153 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
154 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
155 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
156 /* 320 kB 5"1/4 floppy disks */
157 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
158 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
159 /* 360 kB must match 5"1/4 better than 3"1/2... */
160 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
161 /* end */
162 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
163};
164
165static FDriveSize drive_size(FloppyDriveType drive)
166{
167 switch (drive) {
168 case FLOPPY_DRIVE_TYPE_120:
169 return FDRIVE_SIZE_525;
170 case FLOPPY_DRIVE_TYPE_144:
171 case FLOPPY_DRIVE_TYPE_288:
172 return FDRIVE_SIZE_350;
173 default:
174 return FDRIVE_SIZE_UNKNOWN;
175 }
176}
177
178#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
179#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
180
181/* Will always be a fixed parameter for us */
182#define FD_SECTOR_LEN 512
183#define FD_SECTOR_SC 2 /* Sector size code */
184#define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
185
186/* Floppy disk drive emulation */
187typedef enum FDiskFlags {
188 FDISK_DBL_SIDES = 0x01,
189} FDiskFlags;
190
191struct FDrive {
192 FDCtrl *fdctrl;
193 BlockBackend *blk;
194 BlockConf *conf;
195 /* Drive status */
196 FloppyDriveType drive; /* CMOS drive type */
197 uint8_t perpendicular; /* 2.88 MB access mode */
198 /* Position */
199 uint8_t head;
200 uint8_t track;
201 uint8_t sect;
202 /* Media */
203 FloppyDriveType disk; /* Current disk type */
204 FDiskFlags flags;
205 uint8_t last_sect; /* Nb sector per track */
206 uint8_t max_track; /* Nb of tracks */
207 uint16_t bps; /* Bytes per sector */
208 uint8_t ro; /* Is read-only */
209 uint8_t media_changed; /* Is media changed */
210 uint8_t media_rate; /* Data rate of medium */
211
212 bool media_validated; /* Have we validated the media? */
213};
214
215
216static FloppyDriveType get_fallback_drive_type(FDrive *drv);
217
218/* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
219 * currently goes through some pains to keep seeks within the bounds
220 * established by last_sect and max_track. Correcting this is difficult,
221 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
222 *
223 * For now: allow empty drives to have large bounds so we can seek around,
224 * with the understanding that when a diskette is inserted, the bounds will
225 * properly tighten to match the geometry of that inserted medium.
226 */
227static void fd_empty_seek_hack(FDrive *drv)
228{
229 drv->last_sect = 0xFF;
230 drv->max_track = 0xFF;
231}
232
233static void fd_init(FDrive *drv)
234{
235 /* Drive */
236 drv->perpendicular = 0;
237 /* Disk */
238 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
239 drv->last_sect = 0;
240 drv->max_track = 0;
241 drv->ro = true;
242 drv->media_changed = 1;
243}
244
245#define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
246
247static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
248 uint8_t last_sect, uint8_t num_sides)
249{
250 return (((track * num_sides) + head) * last_sect) + sect - 1;
251}
252
253/* Returns current position, in sectors, for given drive */
254static int fd_sector(FDrive *drv)
255{
256 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
257 NUM_SIDES(drv));
258}
259
260/* Returns current position, in bytes, for given drive */
261static int fd_offset(FDrive *drv)
262{
263 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
264 return fd_sector(drv) << BDRV_SECTOR_BITS;
265}
266
267/* Seek to a new position:
268 * returns 0 if already on right track
269 * returns 1 if track changed
270 * returns 2 if track is invalid
271 * returns 3 if sector is invalid
272 * returns 4 if seek is disabled
273 */
274static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
275 int enable_seek)
276{
277 uint32_t sector;
278 int ret;
279
280 if (track > drv->max_track ||
281 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
282 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
283 head, track, sect, 1,
284 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
285 drv->max_track, drv->last_sect);
286 return 2;
287 }
288 if (sect > drv->last_sect) {
289 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
290 head, track, sect, 1,
291 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
292 drv->max_track, drv->last_sect);
293 return 3;
294 }
295 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
296 ret = 0;
297 if (sector != fd_sector(drv)) {
298#if 0
299 if (!enable_seek) {
300 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
301 " (max=%d %02x %02x)\n",
302 head, track, sect, 1, drv->max_track,
303 drv->last_sect);
304 return 4;
305 }
306#endif
307 drv->head = head;
308 if (drv->track != track) {
309 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
310 drv->media_changed = 0;
311 }
312 ret = 1;
313 }
314 drv->track = track;
315 drv->sect = sect;
316 }
317
318 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
319 ret = 2;
320 }
321
322 return ret;
323}
324
325/* Set drive back to track 0 */
326static void fd_recalibrate(FDrive *drv)
327{
328 FLOPPY_DPRINTF("recalibrate\n");
329 fd_seek(drv, 0, 0, 1, 1);
330}
331
332/**
333 * Determine geometry based on inserted diskette.
334 * Will not operate on an empty drive.
335 *
336 * @return: 0 on success, -1 if the drive is empty.
337 */
338static int pick_geometry(FDrive *drv)
339{
340 BlockBackend *blk = drv->blk;
341 const FDFormat *parse;
342 uint64_t nb_sectors, size;
343 int i;
344 int match, size_match, type_match;
345 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
346
347 /* We can only pick a geometry if we have a diskette. */
348 if (!drv->blk || !blk_is_inserted(drv->blk) ||
349 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
350 {
351 return -1;
352 }
353
354 /* We need to determine the likely geometry of the inserted medium.
355 * In order of preference, we look for:
356 * (1) The same drive type and number of sectors,
357 * (2) The same diskette size and number of sectors,
358 * (3) The same drive type.
359 *
360 * In all cases, matches that occur higher in the drive table will take
361 * precedence over matches that occur later in the table.
362 */
363 blk_get_geometry(blk, &nb_sectors);
364 match = size_match = type_match = -1;
365 for (i = 0; ; i++) {
366 parse = &fd_formats[i];
367 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
368 break;
369 }
370 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
371 if (nb_sectors == size) {
372 if (magic || parse->drive == drv->drive) {
373 /* (1) perfect match -- nb_sectors and drive type */
374 goto out;
375 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
376 /* (2) size match -- nb_sectors and physical medium size */
377 match = (match == -1) ? i : match;
378 } else {
379 /* This is suspicious -- Did the user misconfigure? */
380 size_match = (size_match == -1) ? i : size_match;
381 }
382 } else if (type_match == -1) {
383 if ((parse->drive == drv->drive) ||
384 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
385 /* (3) type match -- nb_sectors mismatch, but matches the type
386 * specified explicitly by the user, or matches the fallback
387 * default type when using the drive autodetect mechanism */
388 type_match = i;
389 }
390 }
391 }
392
393 /* No exact match found */
394 if (match == -1) {
395 if (size_match != -1) {
396 parse = &fd_formats[size_match];
397 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
398 "but inserted medium appears to be a "
399 "%"PRId64" sector '%s' type\n",
400 FloppyDriveType_str(drv->drive),
401 nb_sectors,
402 FloppyDriveType_str(parse->drive));
403 }
404 assert(type_match != -1 && "misconfigured fd_format");
405 match = type_match;
406 }
407 parse = &(fd_formats[match]);
408
409 out:
410 if (parse->max_head == 0) {
411 drv->flags &= ~FDISK_DBL_SIDES;
412 } else {
413 drv->flags |= FDISK_DBL_SIDES;
414 }
415 drv->max_track = parse->max_track;
416 drv->last_sect = parse->last_sect;
417 drv->disk = parse->drive;
418 drv->media_rate = parse->rate;
419 return 0;
420}
421
422static void pick_drive_type(FDrive *drv)
423{
424 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
425 return;
426 }
427
428 if (pick_geometry(drv) == 0) {
429 drv->drive = drv->disk;
430 } else {
431 drv->drive = get_fallback_drive_type(drv);
432 }
433
434 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
435}
436
437/* Revalidate a disk drive after a disk change */
438static void fd_revalidate(FDrive *drv)
439{
440 int rc;
441
442 FLOPPY_DPRINTF("revalidate\n");
443 if (drv->blk != NULL) {
444 drv->ro = blk_is_read_only(drv->blk);
445 if (!blk_is_inserted(drv->blk)) {
446 FLOPPY_DPRINTF("No disk in drive\n");
447 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
448 fd_empty_seek_hack(drv);
449 } else if (!drv->media_validated) {
450 rc = pick_geometry(drv);
451 if (rc) {
452 FLOPPY_DPRINTF("Could not validate floppy drive media");
453 } else {
454 drv->media_validated = true;
455 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
456 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
457 drv->max_track, drv->last_sect,
458 drv->ro ? "ro" : "rw");
459 }
460 }
461 } else {
462 FLOPPY_DPRINTF("No drive connected\n");
463 drv->last_sect = 0;
464 drv->max_track = 0;
465 drv->flags &= ~FDISK_DBL_SIDES;
466 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
467 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
468 }
469}
470
471static void fd_change_cb(void *opaque, bool load, Error **errp)
472{
473 FDrive *drive = opaque;
474
475 if (!load) {
476 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
477 } else {
478 if (!blkconf_apply_backend_options(drive->conf,
479 blk_is_read_only(drive->blk), false,
480 errp)) {
481 return;
482 }
483 }
484
485 drive->media_changed = 1;
486 drive->media_validated = false;
487 fd_revalidate(drive);
488}
489
490static const BlockDevOps fd_block_ops = {
491 .change_media_cb = fd_change_cb,
492};
493
494
495#define TYPE_FLOPPY_DRIVE "floppy"
496#define FLOPPY_DRIVE(obj) \
497 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
498
499typedef struct FloppyDrive {
500 DeviceState qdev;
501 uint32_t unit;
502 BlockConf conf;
503 FloppyDriveType type;
504} FloppyDrive;
505
506static Property floppy_drive_properties[] = {
507 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
508 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
509 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
510 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
511 FloppyDriveType),
512 DEFINE_PROP_END_OF_LIST(),
513};
514
515static void floppy_drive_realize(DeviceState *qdev, Error **errp)
516{
517 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
518 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
519 FDrive *drive;
520 bool read_only;
521 int ret;
522
523 if (dev->unit == -1) {
524 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
525 drive = get_drv(bus->fdc, dev->unit);
526 if (!drive->blk) {
527 break;
528 }
529 }
530 }
531
532 if (dev->unit >= MAX_FD) {
533 error_setg(errp, "Can't create floppy unit %d, bus supports "
534 "only %d units", dev->unit, MAX_FD);
535 return;
536 }
537
538 drive = get_drv(bus->fdc, dev->unit);
539 if (drive->blk) {
540 error_setg(errp, "Floppy unit %d is in use", dev->unit);
541 return;
542 }
543
544 if (!dev->conf.blk) {
545 /* Anonymous BlockBackend for an empty drive */
546 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
547 ret = blk_attach_dev(dev->conf.blk, qdev);
548 assert(ret == 0);
549
550 /* Don't take write permissions on an empty drive to allow attaching a
551 * read-only node later */
552 read_only = true;
553 } else {
554 read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
555 }
556
557 blkconf_blocksizes(&dev->conf);
558 if (dev->conf.logical_block_size != 512 ||
559 dev->conf.physical_block_size != 512)
560 {
561 error_setg(errp, "Physical and logical block size must "
562 "be 512 for floppy");
563 return;
564 }
565
566 /* rerror/werror aren't supported by fdc and therefore not even registered
567 * with qdev. So set the defaults manually before they are used in
568 * blkconf_apply_backend_options(). */
569 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
570 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
571
572 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
573 return;
574 }
575
576 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
577 * for empty drives. */
578 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
579 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
580 error_setg(errp, "fdc doesn't support drive option werror");
581 return;
582 }
583 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
584 error_setg(errp, "fdc doesn't support drive option rerror");
585 return;
586 }
587
588 drive->conf = &dev->conf;
589 drive->blk = dev->conf.blk;
590 drive->fdctrl = bus->fdc;
591
592 fd_init(drive);
593 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
594
595 /* Keep 'type' qdev property and FDrive->drive in sync */
596 drive->drive = dev->type;
597 pick_drive_type(drive);
598 dev->type = drive->drive;
599
600 fd_revalidate(drive);
601}
602
603static void floppy_drive_class_init(ObjectClass *klass, void *data)
604{
605 DeviceClass *k = DEVICE_CLASS(klass);
606 k->realize = floppy_drive_realize;
607 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
608 k->bus_type = TYPE_FLOPPY_BUS;
609 k->props = floppy_drive_properties;
610 k->desc = "virtual floppy drive";
611}
612
613static const TypeInfo floppy_drive_info = {
614 .name = TYPE_FLOPPY_DRIVE,
615 .parent = TYPE_DEVICE,
616 .instance_size = sizeof(FloppyDrive),
617 .class_init = floppy_drive_class_init,
618};
619
620/********************************************************/
621/* Intel 82078 floppy disk controller emulation */
622
623static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
624static void fdctrl_to_command_phase(FDCtrl *fdctrl);
625static int fdctrl_transfer_handler (void *opaque, int nchan,
626 int dma_pos, int dma_len);
627static void fdctrl_raise_irq(FDCtrl *fdctrl);
628static FDrive *get_cur_drv(FDCtrl *fdctrl);
629
630static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
631static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
632static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
633static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
634static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
635static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
636static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
637static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
638static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
639static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
640static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
641static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
642
643enum {
644 FD_DIR_WRITE = 0,
645 FD_DIR_READ = 1,
646 FD_DIR_SCANE = 2,
647 FD_DIR_SCANL = 3,
648 FD_DIR_SCANH = 4,
649 FD_DIR_VERIFY = 5,
650};
651
652enum {
653 FD_STATE_MULTI = 0x01, /* multi track flag */
654 FD_STATE_FORMAT = 0x02, /* format flag */
655};
656
657enum {
658 FD_REG_SRA = 0x00,
659 FD_REG_SRB = 0x01,
660 FD_REG_DOR = 0x02,
661 FD_REG_TDR = 0x03,
662 FD_REG_MSR = 0x04,
663 FD_REG_DSR = 0x04,
664 FD_REG_FIFO = 0x05,
665 FD_REG_DIR = 0x07,
666 FD_REG_CCR = 0x07,
667};
668
669enum {
670 FD_CMD_READ_TRACK = 0x02,
671 FD_CMD_SPECIFY = 0x03,
672 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
673 FD_CMD_WRITE = 0x05,
674 FD_CMD_READ = 0x06,
675 FD_CMD_RECALIBRATE = 0x07,
676 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
677 FD_CMD_WRITE_DELETED = 0x09,
678 FD_CMD_READ_ID = 0x0a,
679 FD_CMD_READ_DELETED = 0x0c,
680 FD_CMD_FORMAT_TRACK = 0x0d,
681 FD_CMD_DUMPREG = 0x0e,
682 FD_CMD_SEEK = 0x0f,
683 FD_CMD_VERSION = 0x10,
684 FD_CMD_SCAN_EQUAL = 0x11,
685 FD_CMD_PERPENDICULAR_MODE = 0x12,
686 FD_CMD_CONFIGURE = 0x13,
687 FD_CMD_LOCK = 0x14,
688 FD_CMD_VERIFY = 0x16,
689 FD_CMD_POWERDOWN_MODE = 0x17,
690 FD_CMD_PART_ID = 0x18,
691 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
692 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
693 FD_CMD_SAVE = 0x2e,
694 FD_CMD_OPTION = 0x33,
695 FD_CMD_RESTORE = 0x4e,
696 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
697 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
698 FD_CMD_FORMAT_AND_WRITE = 0xcd,
699 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
700};
701
702enum {
703 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
704 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
705 FD_CONFIG_POLL = 0x10, /* Poll enabled */
706 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
707 FD_CONFIG_EIS = 0x40, /* No implied seeks */
708};
709
710enum {
711 FD_SR0_DS0 = 0x01,
712 FD_SR0_DS1 = 0x02,
713 FD_SR0_HEAD = 0x04,
714 FD_SR0_EQPMT = 0x10,
715 FD_SR0_SEEK = 0x20,
716 FD_SR0_ABNTERM = 0x40,
717 FD_SR0_INVCMD = 0x80,
718 FD_SR0_RDYCHG = 0xc0,
719};
720
721enum {
722 FD_SR1_MA = 0x01, /* Missing address mark */
723 FD_SR1_NW = 0x02, /* Not writable */
724 FD_SR1_EC = 0x80, /* End of cylinder */
725};
726
727enum {
728 FD_SR2_SNS = 0x04, /* Scan not satisfied */
729 FD_SR2_SEH = 0x08, /* Scan equal hit */
730};
731
732enum {
733 FD_SRA_DIR = 0x01,
734 FD_SRA_nWP = 0x02,
735 FD_SRA_nINDX = 0x04,
736 FD_SRA_HDSEL = 0x08,
737 FD_SRA_nTRK0 = 0x10,
738 FD_SRA_STEP = 0x20,
739 FD_SRA_nDRV2 = 0x40,
740 FD_SRA_INTPEND = 0x80,
741};
742
743enum {
744 FD_SRB_MTR0 = 0x01,
745 FD_SRB_MTR1 = 0x02,
746 FD_SRB_WGATE = 0x04,
747 FD_SRB_RDATA = 0x08,
748 FD_SRB_WDATA = 0x10,
749 FD_SRB_DR0 = 0x20,
750};
751
752enum {
753#if MAX_FD == 4
754 FD_DOR_SELMASK = 0x03,
755#else
756 FD_DOR_SELMASK = 0x01,
757#endif
758 FD_DOR_nRESET = 0x04,
759 FD_DOR_DMAEN = 0x08,
760 FD_DOR_MOTEN0 = 0x10,
761 FD_DOR_MOTEN1 = 0x20,
762 FD_DOR_MOTEN2 = 0x40,
763 FD_DOR_MOTEN3 = 0x80,
764};
765
766enum {
767#if MAX_FD == 4
768 FD_TDR_BOOTSEL = 0x0c,
769#else
770 FD_TDR_BOOTSEL = 0x04,
771#endif
772};
773
774enum {
775 FD_DSR_DRATEMASK= 0x03,
776 FD_DSR_PWRDOWN = 0x40,
777 FD_DSR_SWRESET = 0x80,
778};
779
780enum {
781 FD_MSR_DRV0BUSY = 0x01,
782 FD_MSR_DRV1BUSY = 0x02,
783 FD_MSR_DRV2BUSY = 0x04,
784 FD_MSR_DRV3BUSY = 0x08,
785 FD_MSR_CMDBUSY = 0x10,
786 FD_MSR_NONDMA = 0x20,
787 FD_MSR_DIO = 0x40,
788 FD_MSR_RQM = 0x80,
789};
790
791enum {
792 FD_DIR_DSKCHG = 0x80,
793};
794
795/*
796 * See chapter 5.0 "Controller phases" of the spec:
797 *
798 * Command phase:
799 * The host writes a command and its parameters into the FIFO. The command
800 * phase is completed when all parameters for the command have been supplied,
801 * and execution phase is entered.
802 *
803 * Execution phase:
804 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
805 * contains the payload now, otherwise it's unused. When all bytes of the
806 * required data have been transferred, the state is switched to either result
807 * phase (if the command produces status bytes) or directly back into the
808 * command phase for the next command.
809 *
810 * Result phase:
811 * The host reads out the FIFO, which contains one or more result bytes now.
812 */
813enum {
814 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
815 FD_PHASE_RECONSTRUCT = 0,
816
817 FD_PHASE_COMMAND = 1,
818 FD_PHASE_EXECUTION = 2,
819 FD_PHASE_RESULT = 3,
820};
821
822#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
823#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
824
825struct FDCtrl {
826 MemoryRegion iomem;
827 qemu_irq irq;
828 /* Controller state */
829 QEMUTimer *result_timer;
830 int dma_chann;
831 uint8_t phase;
832 IsaDma *dma;
833 /* Controller's identification */
834 uint8_t version;
835 /* HW */
836 uint8_t sra;
837 uint8_t srb;
838 uint8_t dor;
839 uint8_t dor_vmstate; /* only used as temp during vmstate */
840 uint8_t tdr;
841 uint8_t dsr;
842 uint8_t msr;
843 uint8_t cur_drv;
844 uint8_t status0;
845 uint8_t status1;
846 uint8_t status2;
847 /* Command FIFO */
848 uint8_t *fifo;
849 int32_t fifo_size;
850 uint32_t data_pos;
851 uint32_t data_len;
852 uint8_t data_state;
853 uint8_t data_dir;
854 uint8_t eot; /* last wanted sector */
855 /* States kept only to be returned back */
856 /* precompensation */
857 uint8_t precomp_trk;
858 uint8_t config;
859 uint8_t lock;
860 /* Power down config (also with status regB access mode */
861 uint8_t pwrd;
862 /* Floppy drives */
863 FloppyBus bus;
864 uint8_t num_floppies;
865 FDrive drives[MAX_FD];
866 struct {
867 BlockBackend *blk;
868 FloppyDriveType type;
869 } qdev_for_drives[MAX_FD];
870 int reset_sensei;
871 uint32_t check_media_rate;
872 FloppyDriveType fallback; /* type=auto failure fallback */
873 /* Timers state */
874 uint8_t timer0;
875 uint8_t timer1;
876 PortioList portio_list;
877};
878
879static FloppyDriveType get_fallback_drive_type(FDrive *drv)
880{
881 return drv->fdctrl->fallback;
882}
883
884#define TYPE_SYSBUS_FDC "base-sysbus-fdc"
885#define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
886
887typedef struct FDCtrlSysBus {
888 /*< private >*/
889 SysBusDevice parent_obj;
890 /*< public >*/
891
892 struct FDCtrl state;
893} FDCtrlSysBus;
894
895#define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
896
897typedef struct FDCtrlISABus {
898 ISADevice parent_obj;
899
900 uint32_t iobase;
901 uint32_t irq;
902 uint32_t dma;
903 struct FDCtrl state;
904 int32_t bootindexA;
905 int32_t bootindexB;
906} FDCtrlISABus;
907
908static uint32_t fdctrl_read (void *opaque, uint32_t reg)
909{
910 FDCtrl *fdctrl = opaque;
911 uint32_t retval;
912
913 reg &= 7;
914 switch (reg) {
915 case FD_REG_SRA:
916 retval = fdctrl_read_statusA(fdctrl);
917 break;
918 case FD_REG_SRB:
919 retval = fdctrl_read_statusB(fdctrl);
920 break;
921 case FD_REG_DOR:
922 retval = fdctrl_read_dor(fdctrl);
923 break;
924 case FD_REG_TDR:
925 retval = fdctrl_read_tape(fdctrl);
926 break;
927 case FD_REG_MSR:
928 retval = fdctrl_read_main_status(fdctrl);
929 break;
930 case FD_REG_FIFO:
931 retval = fdctrl_read_data(fdctrl);
932 break;
933 case FD_REG_DIR:
934 retval = fdctrl_read_dir(fdctrl);
935 break;
936 default:
937 retval = (uint32_t)(-1);
938 break;
939 }
940 trace_fdc_ioport_read(reg, retval);
941
942 return retval;
943}
944
945static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
946{
947 FDCtrl *fdctrl = opaque;
948
949 reg &= 7;
950 trace_fdc_ioport_write(reg, value);
951 switch (reg) {
952 case FD_REG_DOR:
953 fdctrl_write_dor(fdctrl, value);
954 break;
955 case FD_REG_TDR:
956 fdctrl_write_tape(fdctrl, value);
957 break;
958 case FD_REG_DSR:
959 fdctrl_write_rate(fdctrl, value);
960 break;
961 case FD_REG_FIFO:
962 fdctrl_write_data(fdctrl, value);
963 break;
964 case FD_REG_CCR:
965 fdctrl_write_ccr(fdctrl, value);
966 break;
967 default:
968 break;
969 }
970}
971
972static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
973 unsigned ize)
974{
975 return fdctrl_read(opaque, (uint32_t)reg);
976}
977
978static void fdctrl_write_mem (void *opaque, hwaddr reg,
979 uint64_t value, unsigned size)
980{
981 fdctrl_write(opaque, (uint32_t)reg, value);
982}
983
984static const MemoryRegionOps fdctrl_mem_ops = {
985 .read = fdctrl_read_mem,
986 .write = fdctrl_write_mem,
987 .endianness = DEVICE_NATIVE_ENDIAN,
988};
989
990static const MemoryRegionOps fdctrl_mem_strict_ops = {
991 .read = fdctrl_read_mem,
992 .write = fdctrl_write_mem,
993 .endianness = DEVICE_NATIVE_ENDIAN,
994 .valid = {
995 .min_access_size = 1,
996 .max_access_size = 1,
997 },
998};
999
1000static bool fdrive_media_changed_needed(void *opaque)
1001{
1002 FDrive *drive = opaque;
1003
1004 return (drive->blk != NULL && drive->media_changed != 1);
1005}
1006
1007static const VMStateDescription vmstate_fdrive_media_changed = {
1008 .name = "fdrive/media_changed",
1009 .version_id = 1,
1010 .minimum_version_id = 1,
1011 .needed = fdrive_media_changed_needed,
1012 .fields = (VMStateField[]) {
1013 VMSTATE_UINT8(media_changed, FDrive),
1014 VMSTATE_END_OF_LIST()
1015 }
1016};
1017
1018static bool fdrive_media_rate_needed(void *opaque)
1019{
1020 FDrive *drive = opaque;
1021
1022 return drive->fdctrl->check_media_rate;
1023}
1024
1025static const VMStateDescription vmstate_fdrive_media_rate = {
1026 .name = "fdrive/media_rate",
1027 .version_id = 1,
1028 .minimum_version_id = 1,
1029 .needed = fdrive_media_rate_needed,
1030 .fields = (VMStateField[]) {
1031 VMSTATE_UINT8(media_rate, FDrive),
1032 VMSTATE_END_OF_LIST()
1033 }
1034};
1035
1036static bool fdrive_perpendicular_needed(void *opaque)
1037{
1038 FDrive *drive = opaque;
1039
1040 return drive->perpendicular != 0;
1041}
1042
1043static const VMStateDescription vmstate_fdrive_perpendicular = {
1044 .name = "fdrive/perpendicular",
1045 .version_id = 1,
1046 .minimum_version_id = 1,
1047 .needed = fdrive_perpendicular_needed,
1048 .fields = (VMStateField[]) {
1049 VMSTATE_UINT8(perpendicular, FDrive),
1050 VMSTATE_END_OF_LIST()
1051 }
1052};
1053
1054static int fdrive_post_load(void *opaque, int version_id)
1055{
1056 fd_revalidate(opaque);
1057 return 0;
1058}
1059
1060static const VMStateDescription vmstate_fdrive = {
1061 .name = "fdrive",
1062 .version_id = 1,
1063 .minimum_version_id = 1,
1064 .post_load = fdrive_post_load,
1065 .fields = (VMStateField[]) {
1066 VMSTATE_UINT8(head, FDrive),
1067 VMSTATE_UINT8(track, FDrive),
1068 VMSTATE_UINT8(sect, FDrive),
1069 VMSTATE_END_OF_LIST()
1070 },
1071 .subsections = (const VMStateDescription*[]) {
1072 &vmstate_fdrive_media_changed,
1073 &vmstate_fdrive_media_rate,
1074 &vmstate_fdrive_perpendicular,
1075 NULL
1076 }
1077};
1078
1079/*
1080 * Reconstructs the phase from register values according to the logic that was
1081 * implemented in qemu 2.3. This is the default value that is used if the phase
1082 * subsection is not present on migration.
1083 *
1084 * Don't change this function to reflect newer qemu versions, it is part of
1085 * the migration ABI.
1086 */
1087static int reconstruct_phase(FDCtrl *fdctrl)
1088{
1089 if (fdctrl->msr & FD_MSR_NONDMA) {
1090 return FD_PHASE_EXECUTION;
1091 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1092 /* qemu 2.3 disabled RQM only during DMA transfers */
1093 return FD_PHASE_EXECUTION;
1094 } else if (fdctrl->msr & FD_MSR_DIO) {
1095 return FD_PHASE_RESULT;
1096 } else {
1097 return FD_PHASE_COMMAND;
1098 }
1099}
1100
1101static int fdc_pre_save(void *opaque)
1102{
1103 FDCtrl *s = opaque;
1104
1105 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1106
1107 return 0;
1108}
1109
1110static int fdc_pre_load(void *opaque)
1111{
1112 FDCtrl *s = opaque;
1113 s->phase = FD_PHASE_RECONSTRUCT;
1114 return 0;
1115}
1116
1117static int fdc_post_load(void *opaque, int version_id)
1118{
1119 FDCtrl *s = opaque;
1120
1121 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1122 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1123
1124 if (s->phase == FD_PHASE_RECONSTRUCT) {
1125 s->phase = reconstruct_phase(s);
1126 }
1127
1128 return 0;
1129}
1130
1131static bool fdc_reset_sensei_needed(void *opaque)
1132{
1133 FDCtrl *s = opaque;
1134
1135 return s->reset_sensei != 0;
1136}
1137
1138static const VMStateDescription vmstate_fdc_reset_sensei = {
1139 .name = "fdc/reset_sensei",
1140 .version_id = 1,
1141 .minimum_version_id = 1,
1142 .needed = fdc_reset_sensei_needed,
1143 .fields = (VMStateField[]) {
1144 VMSTATE_INT32(reset_sensei, FDCtrl),
1145 VMSTATE_END_OF_LIST()
1146 }
1147};
1148
1149static bool fdc_result_timer_needed(void *opaque)
1150{
1151 FDCtrl *s = opaque;
1152
1153 return timer_pending(s->result_timer);
1154}
1155
1156static const VMStateDescription vmstate_fdc_result_timer = {
1157 .name = "fdc/result_timer",
1158 .version_id = 1,
1159 .minimum_version_id = 1,
1160 .needed = fdc_result_timer_needed,
1161 .fields = (VMStateField[]) {
1162 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1163 VMSTATE_END_OF_LIST()
1164 }
1165};
1166
1167static bool fdc_phase_needed(void *opaque)
1168{
1169 FDCtrl *fdctrl = opaque;
1170
1171 return reconstruct_phase(fdctrl) != fdctrl->phase;
1172}
1173
1174static const VMStateDescription vmstate_fdc_phase = {
1175 .name = "fdc/phase",
1176 .version_id = 1,
1177 .minimum_version_id = 1,
1178 .needed = fdc_phase_needed,
1179 .fields = (VMStateField[]) {
1180 VMSTATE_UINT8(phase, FDCtrl),
1181 VMSTATE_END_OF_LIST()
1182 }
1183};
1184
1185static const VMStateDescription vmstate_fdc = {
1186 .name = "fdc",
1187 .version_id = 2,
1188 .minimum_version_id = 2,
1189 .pre_save = fdc_pre_save,
1190 .pre_load = fdc_pre_load,
1191 .post_load = fdc_post_load,
1192 .fields = (VMStateField[]) {
1193 /* Controller State */
1194 VMSTATE_UINT8(sra, FDCtrl),
1195 VMSTATE_UINT8(srb, FDCtrl),
1196 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1197 VMSTATE_UINT8(tdr, FDCtrl),
1198 VMSTATE_UINT8(dsr, FDCtrl),
1199 VMSTATE_UINT8(msr, FDCtrl),
1200 VMSTATE_UINT8(status0, FDCtrl),
1201 VMSTATE_UINT8(status1, FDCtrl),
1202 VMSTATE_UINT8(status2, FDCtrl),
1203 /* Command FIFO */
1204 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1205 uint8_t),
1206 VMSTATE_UINT32(data_pos, FDCtrl),
1207 VMSTATE_UINT32(data_len, FDCtrl),
1208 VMSTATE_UINT8(data_state, FDCtrl),
1209 VMSTATE_UINT8(data_dir, FDCtrl),
1210 VMSTATE_UINT8(eot, FDCtrl),
1211 /* States kept only to be returned back */
1212 VMSTATE_UINT8(timer0, FDCtrl),
1213 VMSTATE_UINT8(timer1, FDCtrl),
1214 VMSTATE_UINT8(precomp_trk, FDCtrl),
1215 VMSTATE_UINT8(config, FDCtrl),
1216 VMSTATE_UINT8(lock, FDCtrl),
1217 VMSTATE_UINT8(pwrd, FDCtrl),
1218 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1219 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1220 vmstate_fdrive, FDrive),
1221 VMSTATE_END_OF_LIST()
1222 },
1223 .subsections = (const VMStateDescription*[]) {
1224 &vmstate_fdc_reset_sensei,
1225 &vmstate_fdc_result_timer,
1226 &vmstate_fdc_phase,
1227 NULL
1228 }
1229};
1230
1231static void fdctrl_external_reset_sysbus(DeviceState *d)
1232{
1233 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1234 FDCtrl *s = &sys->state;
1235
1236 fdctrl_reset(s, 0);
1237}
1238
1239static void fdctrl_external_reset_isa(DeviceState *d)
1240{
1241 FDCtrlISABus *isa = ISA_FDC(d);
1242 FDCtrl *s = &isa->state;
1243
1244 fdctrl_reset(s, 0);
1245}
1246
1247static void fdctrl_handle_tc(void *opaque, int irq, int level)
1248{
1249 //FDCtrl *s = opaque;
1250
1251 if (level) {
1252 // XXX
1253 FLOPPY_DPRINTF("TC pulsed\n");
1254 }
1255}
1256
1257/* Change IRQ state */
1258static void fdctrl_reset_irq(FDCtrl *fdctrl)
1259{
1260 fdctrl->status0 = 0;
1261 if (!(fdctrl->sra & FD_SRA_INTPEND))
1262 return;
1263 FLOPPY_DPRINTF("Reset interrupt\n");
1264 qemu_set_irq(fdctrl->irq, 0);
1265 fdctrl->sra &= ~FD_SRA_INTPEND;
1266}
1267
1268static void fdctrl_raise_irq(FDCtrl *fdctrl)
1269{
1270 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1271 qemu_set_irq(fdctrl->irq, 1);
1272 fdctrl->sra |= FD_SRA_INTPEND;
1273 }
1274
1275 fdctrl->reset_sensei = 0;
1276 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1277}
1278
1279/* Reset controller */
1280static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1281{
1282 int i;
1283
1284 FLOPPY_DPRINTF("reset controller\n");
1285 fdctrl_reset_irq(fdctrl);
1286 /* Initialise controller */
1287 fdctrl->sra = 0;
1288 fdctrl->srb = 0xc0;
1289 if (!fdctrl->drives[1].blk) {
1290 fdctrl->sra |= FD_SRA_nDRV2;
1291 }
1292 fdctrl->cur_drv = 0;
1293 fdctrl->dor = FD_DOR_nRESET;
1294 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1295 fdctrl->msr = FD_MSR_RQM;
1296 fdctrl->reset_sensei = 0;
1297 timer_del(fdctrl->result_timer);
1298 /* FIFO state */
1299 fdctrl->data_pos = 0;
1300 fdctrl->data_len = 0;
1301 fdctrl->data_state = 0;
1302 fdctrl->data_dir = FD_DIR_WRITE;
1303 for (i = 0; i < MAX_FD; i++)
1304 fd_recalibrate(&fdctrl->drives[i]);
1305 fdctrl_to_command_phase(fdctrl);
1306 if (do_irq) {
1307 fdctrl->status0 |= FD_SR0_RDYCHG;
1308 fdctrl_raise_irq(fdctrl);
1309 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1310 }
1311}
1312
1313static inline FDrive *drv0(FDCtrl *fdctrl)
1314{
1315 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1316}
1317
1318static inline FDrive *drv1(FDCtrl *fdctrl)
1319{
1320 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1321 return &fdctrl->drives[1];
1322 else
1323 return &fdctrl->drives[0];
1324}
1325
1326#if MAX_FD == 4
1327static inline FDrive *drv2(FDCtrl *fdctrl)
1328{
1329 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1330 return &fdctrl->drives[2];
1331 else
1332 return &fdctrl->drives[1];
1333}
1334
1335static inline FDrive *drv3(FDCtrl *fdctrl)
1336{
1337 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1338 return &fdctrl->drives[3];
1339 else
1340 return &fdctrl->drives[2];
1341}
1342#endif
1343
1344static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1345{
1346 switch (unit) {
1347 case 0: return drv0(fdctrl);
1348 case 1: return drv1(fdctrl);
1349#if MAX_FD == 4
1350 case 2: return drv2(fdctrl);
1351 case 3: return drv3(fdctrl);
1352#endif
1353 default: return NULL;
1354 }
1355}
1356
1357static FDrive *get_cur_drv(FDCtrl *fdctrl)
1358{
1359 return get_drv(fdctrl, fdctrl->cur_drv);
1360}
1361
1362/* Status A register : 0x00 (read-only) */
1363static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1364{
1365 uint32_t retval = fdctrl->sra;
1366
1367 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1368
1369 return retval;
1370}
1371
1372/* Status B register : 0x01 (read-only) */
1373static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1374{
1375 uint32_t retval = fdctrl->srb;
1376
1377 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1378
1379 return retval;
1380}
1381
1382/* Digital output register : 0x02 */
1383static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1384{
1385 uint32_t retval = fdctrl->dor;
1386
1387 /* Selected drive */
1388 retval |= fdctrl->cur_drv;
1389 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1390
1391 return retval;
1392}
1393
1394static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1395{
1396 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1397
1398 /* Motors */
1399 if (value & FD_DOR_MOTEN0)
1400 fdctrl->srb |= FD_SRB_MTR0;
1401 else
1402 fdctrl->srb &= ~FD_SRB_MTR0;
1403 if (value & FD_DOR_MOTEN1)
1404 fdctrl->srb |= FD_SRB_MTR1;
1405 else
1406 fdctrl->srb &= ~FD_SRB_MTR1;
1407
1408 /* Drive */
1409 if (value & 1)
1410 fdctrl->srb |= FD_SRB_DR0;
1411 else
1412 fdctrl->srb &= ~FD_SRB_DR0;
1413
1414 /* Reset */
1415 if (!(value & FD_DOR_nRESET)) {
1416 if (fdctrl->dor & FD_DOR_nRESET) {
1417 FLOPPY_DPRINTF("controller enter RESET state\n");
1418 }
1419 } else {
1420 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1421 FLOPPY_DPRINTF("controller out of RESET state\n");
1422 fdctrl_reset(fdctrl, 1);
1423 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1424 }
1425 }
1426 /* Selected drive */
1427 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1428
1429 fdctrl->dor = value;
1430}
1431
1432/* Tape drive register : 0x03 */
1433static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1434{
1435 uint32_t retval = fdctrl->tdr;
1436
1437 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1438
1439 return retval;
1440}
1441
1442static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1443{
1444 /* Reset mode */
1445 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1446 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1447 return;
1448 }
1449 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1450 /* Disk boot selection indicator */
1451 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1452 /* Tape indicators: never allow */
1453}
1454
1455/* Main status register : 0x04 (read) */
1456static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1457{
1458 uint32_t retval = fdctrl->msr;
1459
1460 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1461 fdctrl->dor |= FD_DOR_nRESET;
1462
1463 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1464
1465 return retval;
1466}
1467
1468/* Data select rate register : 0x04 (write) */
1469static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1470{
1471 /* Reset mode */
1472 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1473 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1474 return;
1475 }
1476 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1477 /* Reset: autoclear */
1478 if (value & FD_DSR_SWRESET) {
1479 fdctrl->dor &= ~FD_DOR_nRESET;
1480 fdctrl_reset(fdctrl, 1);
1481 fdctrl->dor |= FD_DOR_nRESET;
1482 }
1483 if (value & FD_DSR_PWRDOWN) {
1484 fdctrl_reset(fdctrl, 1);
1485 }
1486 fdctrl->dsr = value;
1487}
1488
1489/* Configuration control register: 0x07 (write) */
1490static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1491{
1492 /* Reset mode */
1493 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1494 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1495 return;
1496 }
1497 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1498
1499 /* Only the rate selection bits used in AT mode, and we
1500 * store those in the DSR.
1501 */
1502 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1503 (value & FD_DSR_DRATEMASK);
1504}
1505
1506static int fdctrl_media_changed(FDrive *drv)
1507{
1508 return drv->media_changed;
1509}
1510
1511/* Digital input register : 0x07 (read-only) */
1512static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1513{
1514 uint32_t retval = 0;
1515
1516 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1517 retval |= FD_DIR_DSKCHG;
1518 }
1519 if (retval != 0) {
1520 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1521 }
1522
1523 return retval;
1524}
1525
1526/* Clear the FIFO and update the state for receiving the next command */
1527static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1528{
1529 fdctrl->phase = FD_PHASE_COMMAND;
1530 fdctrl->data_dir = FD_DIR_WRITE;
1531 fdctrl->data_pos = 0;
1532 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1533 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1534 fdctrl->msr |= FD_MSR_RQM;
1535}
1536
1537/* Update the state to allow the guest to read out the command status.
1538 * @fifo_len is the number of result bytes to be read out. */
1539static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1540{
1541 fdctrl->phase = FD_PHASE_RESULT;
1542 fdctrl->data_dir = FD_DIR_READ;
1543 fdctrl->data_len = fifo_len;
1544 fdctrl->data_pos = 0;
1545 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1546}
1547
1548/* Set an error: unimplemented/unknown command */
1549static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1550{
1551 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1552 fdctrl->fifo[0]);
1553 fdctrl->fifo[0] = FD_SR0_INVCMD;
1554 fdctrl_to_result_phase(fdctrl, 1);
1555}
1556
1557/* Seek to next sector
1558 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1559 * otherwise returns 1
1560 */
1561static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1562{
1563 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1564 cur_drv->head, cur_drv->track, cur_drv->sect,
1565 fd_sector(cur_drv));
1566 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1567 error in fact */
1568 uint8_t new_head = cur_drv->head;
1569 uint8_t new_track = cur_drv->track;
1570 uint8_t new_sect = cur_drv->sect;
1571
1572 int ret = 1;
1573
1574 if (new_sect >= cur_drv->last_sect ||
1575 new_sect == fdctrl->eot) {
1576 new_sect = 1;
1577 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1578 if (new_head == 0 &&
1579 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1580 new_head = 1;
1581 } else {
1582 new_head = 0;
1583 new_track++;
1584 fdctrl->status0 |= FD_SR0_SEEK;
1585 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1586 ret = 0;
1587 }
1588 }
1589 } else {
1590 fdctrl->status0 |= FD_SR0_SEEK;
1591 new_track++;
1592 ret = 0;
1593 }
1594 if (ret == 1) {
1595 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1596 new_head, new_track, new_sect, fd_sector(cur_drv));
1597 }
1598 } else {
1599 new_sect++;
1600 }
1601 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1602 return ret;
1603}
1604
1605/* Callback for transfer end (stop or abort) */
1606static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1607 uint8_t status1, uint8_t status2)
1608{
1609 FDrive *cur_drv;
1610 cur_drv = get_cur_drv(fdctrl);
1611
1612 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1613 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1614 if (cur_drv->head) {
1615 fdctrl->status0 |= FD_SR0_HEAD;
1616 }
1617 fdctrl->status0 |= status0;
1618
1619 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1620 status0, status1, status2, fdctrl->status0);
1621 fdctrl->fifo[0] = fdctrl->status0;
1622 fdctrl->fifo[1] = status1;
1623 fdctrl->fifo[2] = status2;
1624 fdctrl->fifo[3] = cur_drv->track;
1625 fdctrl->fifo[4] = cur_drv->head;
1626 fdctrl->fifo[5] = cur_drv->sect;
1627 fdctrl->fifo[6] = FD_SECTOR_SC;
1628 fdctrl->data_dir = FD_DIR_READ;
1629 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1630 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1631 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1632 }
1633 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1634 fdctrl->msr &= ~FD_MSR_NONDMA;
1635
1636 fdctrl_to_result_phase(fdctrl, 7);
1637 fdctrl_raise_irq(fdctrl);
1638}
1639
1640/* Prepare a data transfer (either DMA or FIFO) */
1641static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1642{
1643 FDrive *cur_drv;
1644 uint8_t kh, kt, ks;
1645
1646 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1647 cur_drv = get_cur_drv(fdctrl);
1648 kt = fdctrl->fifo[2];
1649 kh = fdctrl->fifo[3];
1650 ks = fdctrl->fifo[4];
1651 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1652 GET_CUR_DRV(fdctrl), kh, kt, ks,
1653 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1654 NUM_SIDES(cur_drv)));
1655 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1656 case 2:
1657 /* sect too big */
1658 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1659 fdctrl->fifo[3] = kt;
1660 fdctrl->fifo[4] = kh;
1661 fdctrl->fifo[5] = ks;
1662 return;
1663 case 3:
1664 /* track too big */
1665 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1666 fdctrl->fifo[3] = kt;
1667 fdctrl->fifo[4] = kh;
1668 fdctrl->fifo[5] = ks;
1669 return;
1670 case 4:
1671 /* No seek enabled */
1672 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1673 fdctrl->fifo[3] = kt;
1674 fdctrl->fifo[4] = kh;
1675 fdctrl->fifo[5] = ks;
1676 return;
1677 case 1:
1678 fdctrl->status0 |= FD_SR0_SEEK;
1679 break;
1680 default:
1681 break;
1682 }
1683
1684 /* Check the data rate. If the programmed data rate does not match
1685 * the currently inserted medium, the operation has to fail. */
1686 if (fdctrl->check_media_rate &&
1687 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1688 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1689 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1690 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1691 fdctrl->fifo[3] = kt;
1692 fdctrl->fifo[4] = kh;
1693 fdctrl->fifo[5] = ks;
1694 return;
1695 }
1696
1697 /* Set the FIFO state */
1698 fdctrl->data_dir = direction;
1699 fdctrl->data_pos = 0;
1700 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1701 if (fdctrl->fifo[0] & 0x80)
1702 fdctrl->data_state |= FD_STATE_MULTI;
1703 else
1704 fdctrl->data_state &= ~FD_STATE_MULTI;
1705 if (fdctrl->fifo[5] == 0) {
1706 fdctrl->data_len = fdctrl->fifo[8];
1707 } else {
1708 int tmp;
1709 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1710 tmp = (fdctrl->fifo[6] - ks + 1);
1711 if (fdctrl->fifo[0] & 0x80)
1712 tmp += fdctrl->fifo[6];
1713 fdctrl->data_len *= tmp;
1714 }
1715 fdctrl->eot = fdctrl->fifo[6];
1716 if (fdctrl->dor & FD_DOR_DMAEN) {
1717 IsaDmaTransferMode dma_mode;
1718 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1719 bool dma_mode_ok;
1720 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1721 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1722 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1723 dma_mode, direction,
1724 (128 << fdctrl->fifo[5]) *
1725 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1726 switch (direction) {
1727 case FD_DIR_SCANE:
1728 case FD_DIR_SCANL:
1729 case FD_DIR_SCANH:
1730 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1731 break;
1732 case FD_DIR_WRITE:
1733 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1734 break;
1735 case FD_DIR_READ:
1736 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1737 break;
1738 case FD_DIR_VERIFY:
1739 dma_mode_ok = true;
1740 break;
1741 default:
1742 dma_mode_ok = false;
1743 break;
1744 }
1745 if (dma_mode_ok) {
1746 /* No access is allowed until DMA transfer has completed */
1747 fdctrl->msr &= ~FD_MSR_RQM;
1748 if (direction != FD_DIR_VERIFY) {
1749 /* Now, we just have to wait for the DMA controller to
1750 * recall us...
1751 */
1752 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1753 k->schedule(fdctrl->dma);
1754 } else {
1755 /* Start transfer */
1756 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1757 fdctrl->data_len);
1758 }
1759 return;
1760 } else {
1761 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1762 direction);
1763 }
1764 }
1765 FLOPPY_DPRINTF("start non-DMA transfer\n");
1766 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1767 if (direction != FD_DIR_WRITE)
1768 fdctrl->msr |= FD_MSR_DIO;
1769 /* IO based transfer: calculate len */
1770 fdctrl_raise_irq(fdctrl);
1771}
1772
1773/* Prepare a transfer of deleted data */
1774static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1775{
1776 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1777
1778 /* We don't handle deleted data,
1779 * so we don't return *ANYTHING*
1780 */
1781 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1782}
1783
1784/* handlers for DMA transfers */
1785static int fdctrl_transfer_handler (void *opaque, int nchan,
1786 int dma_pos, int dma_len)
1787{
1788 FDCtrl *fdctrl;
1789 FDrive *cur_drv;
1790 int len, start_pos, rel_pos;
1791 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1792 IsaDmaClass *k;
1793
1794 fdctrl = opaque;
1795 if (fdctrl->msr & FD_MSR_RQM) {
1796 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1797 return 0;
1798 }
1799 k = ISADMA_GET_CLASS(fdctrl->dma);
1800 cur_drv = get_cur_drv(fdctrl);
1801 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1802 fdctrl->data_dir == FD_DIR_SCANH)
1803 status2 = FD_SR2_SNS;
1804 if (dma_len > fdctrl->data_len)
1805 dma_len = fdctrl->data_len;
1806 if (cur_drv->blk == NULL) {
1807 if (fdctrl->data_dir == FD_DIR_WRITE)
1808 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1809 else
1810 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1811 len = 0;
1812 goto transfer_error;
1813 }
1814 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1815 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1816 len = dma_len - fdctrl->data_pos;
1817 if (len + rel_pos > FD_SECTOR_LEN)
1818 len = FD_SECTOR_LEN - rel_pos;
1819 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1820 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1821 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1822 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1823 fd_sector(cur_drv) * FD_SECTOR_LEN);
1824 if (fdctrl->data_dir != FD_DIR_WRITE ||
1825 len < FD_SECTOR_LEN || rel_pos != 0) {
1826 /* READ & SCAN commands and realign to a sector for WRITE */
1827 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1828 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1829 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1830 fd_sector(cur_drv));
1831 /* Sure, image size is too small... */
1832 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1833 }
1834 }
1835 switch (fdctrl->data_dir) {
1836 case FD_DIR_READ:
1837 /* READ commands */
1838 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1839 fdctrl->data_pos, len);
1840 break;
1841 case FD_DIR_WRITE:
1842 /* WRITE commands */
1843 if (cur_drv->ro) {
1844 /* Handle readonly medium early, no need to do DMA, touch the
1845 * LED or attempt any writes. A real floppy doesn't attempt
1846 * to write to readonly media either. */
1847 fdctrl_stop_transfer(fdctrl,
1848 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1849 0x00);
1850 goto transfer_error;
1851 }
1852
1853 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1854 fdctrl->data_pos, len);
1855 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1856 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1857 FLOPPY_DPRINTF("error writing sector %d\n",
1858 fd_sector(cur_drv));
1859 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1860 goto transfer_error;
1861 }
1862 break;
1863 case FD_DIR_VERIFY:
1864 /* VERIFY commands */
1865 break;
1866 default:
1867 /* SCAN commands */
1868 {
1869 uint8_t tmpbuf[FD_SECTOR_LEN];
1870 int ret;
1871 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1872 len);
1873 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1874 if (ret == 0) {
1875 status2 = FD_SR2_SEH;
1876 goto end_transfer;
1877 }
1878 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1879 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1880 status2 = 0x00;
1881 goto end_transfer;
1882 }
1883 }
1884 break;
1885 }
1886 fdctrl->data_pos += len;
1887 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1888 if (rel_pos == 0) {
1889 /* Seek to next sector */
1890 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1891 break;
1892 }
1893 }
1894 end_transfer:
1895 len = fdctrl->data_pos - start_pos;
1896 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1897 fdctrl->data_pos, len, fdctrl->data_len);
1898 if (fdctrl->data_dir == FD_DIR_SCANE ||
1899 fdctrl->data_dir == FD_DIR_SCANL ||
1900 fdctrl->data_dir == FD_DIR_SCANH)
1901 status2 = FD_SR2_SEH;
1902 fdctrl->data_len -= len;
1903 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1904 transfer_error:
1905
1906 return len;
1907}
1908
1909/* Data register : 0x05 */
1910static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1911{
1912 FDrive *cur_drv;
1913 uint32_t retval = 0;
1914 uint32_t pos;
1915
1916 cur_drv = get_cur_drv(fdctrl);
1917 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1918 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1919 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1920 return 0;
1921 }
1922
1923 /* If data_len spans multiple sectors, the current position in the FIFO
1924 * wraps around while fdctrl->data_pos is the real position in the whole
1925 * request. */
1926 pos = fdctrl->data_pos;
1927 pos %= FD_SECTOR_LEN;
1928
1929 switch (fdctrl->phase) {
1930 case FD_PHASE_EXECUTION:
1931 assert(fdctrl->msr & FD_MSR_NONDMA);
1932 if (pos == 0) {
1933 if (fdctrl->data_pos != 0)
1934 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1935 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1936 fd_sector(cur_drv));
1937 return 0;
1938 }
1939 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1940 BDRV_SECTOR_SIZE)
1941 < 0) {
1942 FLOPPY_DPRINTF("error getting sector %d\n",
1943 fd_sector(cur_drv));
1944 /* Sure, image size is too small... */
1945 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1946 }
1947 }
1948
1949 if (++fdctrl->data_pos == fdctrl->data_len) {
1950 fdctrl->msr &= ~FD_MSR_RQM;
1951 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1952 }
1953 break;
1954
1955 case FD_PHASE_RESULT:
1956 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1957 if (++fdctrl->data_pos == fdctrl->data_len) {
1958 fdctrl->msr &= ~FD_MSR_RQM;
1959 fdctrl_to_command_phase(fdctrl);
1960 fdctrl_reset_irq(fdctrl);
1961 }
1962 break;
1963
1964 case FD_PHASE_COMMAND:
1965 default:
1966 abort();
1967 }
1968
1969 retval = fdctrl->fifo[pos];
1970 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1971
1972 return retval;
1973}
1974
1975static void fdctrl_format_sector(FDCtrl *fdctrl)
1976{
1977 FDrive *cur_drv;
1978 uint8_t kh, kt, ks;
1979
1980 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1981 cur_drv = get_cur_drv(fdctrl);
1982 kt = fdctrl->fifo[6];
1983 kh = fdctrl->fifo[7];
1984 ks = fdctrl->fifo[8];
1985 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1986 GET_CUR_DRV(fdctrl), kh, kt, ks,
1987 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1988 NUM_SIDES(cur_drv)));
1989 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1990 case 2:
1991 /* sect too big */
1992 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1993 fdctrl->fifo[3] = kt;
1994 fdctrl->fifo[4] = kh;
1995 fdctrl->fifo[5] = ks;
1996 return;
1997 case 3:
1998 /* track too big */
1999 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
2000 fdctrl->fifo[3] = kt;
2001 fdctrl->fifo[4] = kh;
2002 fdctrl->fifo[5] = ks;
2003 return;
2004 case 4:
2005 /* No seek enabled */
2006 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2007 fdctrl->fifo[3] = kt;
2008 fdctrl->fifo[4] = kh;
2009 fdctrl->fifo[5] = ks;
2010 return;
2011 case 1:
2012 fdctrl->status0 |= FD_SR0_SEEK;
2013 break;
2014 default:
2015 break;
2016 }
2017 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2018 if (cur_drv->blk == NULL ||
2019 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2020 BDRV_SECTOR_SIZE, 0) < 0) {
2021 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2022 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2023 } else {
2024 if (cur_drv->sect == cur_drv->last_sect) {
2025 fdctrl->data_state &= ~FD_STATE_FORMAT;
2026 /* Last sector done */
2027 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2028 } else {
2029 /* More to do */
2030 fdctrl->data_pos = 0;
2031 fdctrl->data_len = 4;
2032 }
2033 }
2034}
2035
2036static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2037{
2038 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2039 fdctrl->fifo[0] = fdctrl->lock << 4;
2040 fdctrl_to_result_phase(fdctrl, 1);
2041}
2042
2043static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2044{
2045 FDrive *cur_drv = get_cur_drv(fdctrl);
2046
2047 /* Drives position */
2048 fdctrl->fifo[0] = drv0(fdctrl)->track;
2049 fdctrl->fifo[1] = drv1(fdctrl)->track;
2050#if MAX_FD == 4
2051 fdctrl->fifo[2] = drv2(fdctrl)->track;
2052 fdctrl->fifo[3] = drv3(fdctrl)->track;
2053#else
2054 fdctrl->fifo[2] = 0;
2055 fdctrl->fifo[3] = 0;
2056#endif
2057 /* timers */
2058 fdctrl->fifo[4] = fdctrl->timer0;
2059 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2060 fdctrl->fifo[6] = cur_drv->last_sect;
2061 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2062 (cur_drv->perpendicular << 2);
2063 fdctrl->fifo[8] = fdctrl->config;
2064 fdctrl->fifo[9] = fdctrl->precomp_trk;
2065 fdctrl_to_result_phase(fdctrl, 10);
2066}
2067
2068static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2069{
2070 /* Controller's version */
2071 fdctrl->fifo[0] = fdctrl->version;
2072 fdctrl_to_result_phase(fdctrl, 1);
2073}
2074
2075static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2076{
2077 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2078 fdctrl_to_result_phase(fdctrl, 1);
2079}
2080
2081static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2082{
2083 FDrive *cur_drv = get_cur_drv(fdctrl);
2084
2085 /* Drives position */
2086 drv0(fdctrl)->track = fdctrl->fifo[3];
2087 drv1(fdctrl)->track = fdctrl->fifo[4];
2088#if MAX_FD == 4
2089 drv2(fdctrl)->track = fdctrl->fifo[5];
2090 drv3(fdctrl)->track = fdctrl->fifo[6];
2091#endif
2092 /* timers */
2093 fdctrl->timer0 = fdctrl->fifo[7];
2094 fdctrl->timer1 = fdctrl->fifo[8];
2095 cur_drv->last_sect = fdctrl->fifo[9];
2096 fdctrl->lock = fdctrl->fifo[10] >> 7;
2097 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2098 fdctrl->config = fdctrl->fifo[11];
2099 fdctrl->precomp_trk = fdctrl->fifo[12];
2100 fdctrl->pwrd = fdctrl->fifo[13];
2101 fdctrl_to_command_phase(fdctrl);
2102}
2103
2104static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2105{
2106 FDrive *cur_drv = get_cur_drv(fdctrl);
2107
2108 fdctrl->fifo[0] = 0;
2109 fdctrl->fifo[1] = 0;
2110 /* Drives position */
2111 fdctrl->fifo[2] = drv0(fdctrl)->track;
2112 fdctrl->fifo[3] = drv1(fdctrl)->track;
2113#if MAX_FD == 4
2114 fdctrl->fifo[4] = drv2(fdctrl)->track;
2115 fdctrl->fifo[5] = drv3(fdctrl)->track;
2116#else
2117 fdctrl->fifo[4] = 0;
2118 fdctrl->fifo[5] = 0;
2119#endif
2120 /* timers */
2121 fdctrl->fifo[6] = fdctrl->timer0;
2122 fdctrl->fifo[7] = fdctrl->timer1;
2123 fdctrl->fifo[8] = cur_drv->last_sect;
2124 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2125 (cur_drv->perpendicular << 2);
2126 fdctrl->fifo[10] = fdctrl->config;
2127 fdctrl->fifo[11] = fdctrl->precomp_trk;
2128 fdctrl->fifo[12] = fdctrl->pwrd;
2129 fdctrl->fifo[13] = 0;
2130 fdctrl->fifo[14] = 0;
2131 fdctrl_to_result_phase(fdctrl, 15);
2132}
2133
2134static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2135{
2136 FDrive *cur_drv = get_cur_drv(fdctrl);
2137
2138 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2139 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2140 (NANOSECONDS_PER_SECOND / 50));
2141}
2142
2143static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2144{
2145 FDrive *cur_drv;
2146
2147 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2148 cur_drv = get_cur_drv(fdctrl);
2149 fdctrl->data_state |= FD_STATE_FORMAT;
2150 if (fdctrl->fifo[0] & 0x80)
2151 fdctrl->data_state |= FD_STATE_MULTI;
2152 else
2153 fdctrl->data_state &= ~FD_STATE_MULTI;
2154 cur_drv->bps =
2155 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2156#if 0
2157 cur_drv->last_sect =
2158 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2159 fdctrl->fifo[3] / 2;
2160#else
2161 cur_drv->last_sect = fdctrl->fifo[3];
2162#endif
2163 /* TODO: implement format using DMA expected by the Bochs BIOS
2164 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2165 * the sector with the specified fill byte
2166 */
2167 fdctrl->data_state &= ~FD_STATE_FORMAT;
2168 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2169}
2170
2171static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2172{
2173 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2174 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2175 if (fdctrl->fifo[2] & 1)
2176 fdctrl->dor &= ~FD_DOR_DMAEN;
2177 else
2178 fdctrl->dor |= FD_DOR_DMAEN;
2179 /* No result back */
2180 fdctrl_to_command_phase(fdctrl);
2181}
2182
2183static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2184{
2185 FDrive *cur_drv;
2186
2187 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2188 cur_drv = get_cur_drv(fdctrl);
2189 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2190 /* 1 Byte status back */
2191 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2192 (cur_drv->track == 0 ? 0x10 : 0x00) |
2193 (cur_drv->head << 2) |
2194 GET_CUR_DRV(fdctrl) |
2195 0x28;
2196 fdctrl_to_result_phase(fdctrl, 1);
2197}
2198
2199static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2200{
2201 FDrive *cur_drv;
2202
2203 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2204 cur_drv = get_cur_drv(fdctrl);
2205 fd_recalibrate(cur_drv);
2206 fdctrl_to_command_phase(fdctrl);
2207 /* Raise Interrupt */
2208 fdctrl->status0 |= FD_SR0_SEEK;
2209 fdctrl_raise_irq(fdctrl);
2210}
2211
2212static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2213{
2214 FDrive *cur_drv = get_cur_drv(fdctrl);
2215
2216 if (fdctrl->reset_sensei > 0) {
2217 fdctrl->fifo[0] =
2218 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2219 fdctrl->reset_sensei--;
2220 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2221 fdctrl->fifo[0] = FD_SR0_INVCMD;
2222 fdctrl_to_result_phase(fdctrl, 1);
2223 return;
2224 } else {
2225 fdctrl->fifo[0] =
2226 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2227 | GET_CUR_DRV(fdctrl);
2228 }
2229
2230 fdctrl->fifo[1] = cur_drv->track;
2231 fdctrl_to_result_phase(fdctrl, 2);
2232 fdctrl_reset_irq(fdctrl);
2233 fdctrl->status0 = FD_SR0_RDYCHG;
2234}
2235
2236static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2237{
2238 FDrive *cur_drv;
2239
2240 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2241 cur_drv = get_cur_drv(fdctrl);
2242 fdctrl_to_command_phase(fdctrl);
2243 /* The seek command just sends step pulses to the drive and doesn't care if
2244 * there is a medium inserted of if it's banging the head against the drive.
2245 */
2246 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2247 /* Raise Interrupt */
2248 fdctrl->status0 |= FD_SR0_SEEK;
2249 fdctrl_raise_irq(fdctrl);
2250}
2251
2252static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2253{
2254 FDrive *cur_drv = get_cur_drv(fdctrl);
2255
2256 if (fdctrl->fifo[1] & 0x80)
2257 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2258 /* No result back */
2259 fdctrl_to_command_phase(fdctrl);
2260}
2261
2262static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2263{
2264 fdctrl->config = fdctrl->fifo[2];
2265 fdctrl->precomp_trk = fdctrl->fifo[3];
2266 /* No result back */
2267 fdctrl_to_command_phase(fdctrl);
2268}
2269
2270static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2271{
2272 fdctrl->pwrd = fdctrl->fifo[1];
2273 fdctrl->fifo[0] = fdctrl->fifo[1];
2274 fdctrl_to_result_phase(fdctrl, 1);
2275}
2276
2277static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2278{
2279 /* No result back */
2280 fdctrl_to_command_phase(fdctrl);
2281}
2282
2283static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2284{
2285 FDrive *cur_drv = get_cur_drv(fdctrl);
2286 uint32_t pos;
2287
2288 pos = fdctrl->data_pos - 1;
2289 pos %= FD_SECTOR_LEN;
2290 if (fdctrl->fifo[pos] & 0x80) {
2291 /* Command parameters done */
2292 if (fdctrl->fifo[pos] & 0x40) {
2293 fdctrl->fifo[0] = fdctrl->fifo[1];
2294 fdctrl->fifo[2] = 0;
2295 fdctrl->fifo[3] = 0;
2296 fdctrl_to_result_phase(fdctrl, 4);
2297 } else {
2298 fdctrl_to_command_phase(fdctrl);
2299 }
2300 } else if (fdctrl->data_len > 7) {
2301 /* ERROR */
2302 fdctrl->fifo[0] = 0x80 |
2303 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2304 fdctrl_to_result_phase(fdctrl, 1);
2305 }
2306}
2307
2308static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2309{
2310 FDrive *cur_drv;
2311
2312 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2313 cur_drv = get_cur_drv(fdctrl);
2314 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2315 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2316 cur_drv->sect, 1);
2317 } else {
2318 fd_seek(cur_drv, cur_drv->head,
2319 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2320 }
2321 fdctrl_to_command_phase(fdctrl);
2322 /* Raise Interrupt */
2323 fdctrl->status0 |= FD_SR0_SEEK;
2324 fdctrl_raise_irq(fdctrl);
2325}
2326
2327static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2328{
2329 FDrive *cur_drv;
2330
2331 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2332 cur_drv = get_cur_drv(fdctrl);
2333 if (fdctrl->fifo[2] > cur_drv->track) {
2334 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2335 } else {
2336 fd_seek(cur_drv, cur_drv->head,
2337 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2338 }
2339 fdctrl_to_command_phase(fdctrl);
2340 /* Raise Interrupt */
2341 fdctrl->status0 |= FD_SR0_SEEK;
2342 fdctrl_raise_irq(fdctrl);
2343}
2344
2345/*
2346 * Handlers for the execution phase of each command
2347 */
2348typedef struct FDCtrlCommand {
2349 uint8_t value;
2350 uint8_t mask;
2351 const char* name;
2352 int parameters;
2353 void (*handler)(FDCtrl *fdctrl, int direction);
2354 int direction;
2355} FDCtrlCommand;
2356
2357static const FDCtrlCommand handlers[] = {
2358 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2359 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2360 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2361 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2362 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2363 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2364 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2365 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2366 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2367 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2368 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2369 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2370 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2371 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2372 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2373 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2374 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2375 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2376 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2377 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2378 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2379 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2380 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2381 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2382 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2383 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2384 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2385 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2386 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2387 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2388 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2389 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2390};
2391/* Associate command to an index in the 'handlers' array */
2392static uint8_t command_to_handler[256];
2393
2394static const FDCtrlCommand *get_command(uint8_t cmd)
2395{
2396 int idx;
2397
2398 idx = command_to_handler[cmd];
2399 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2400 return &handlers[idx];
2401}
2402
2403static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2404{
2405 FDrive *cur_drv;
2406 const FDCtrlCommand *cmd;
2407 uint32_t pos;
2408
2409 /* Reset mode */
2410 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2411 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2412 return;
2413 }
2414 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2415 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2416 return;
2417 }
2418 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2419
2420 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2421
2422 /* If data_len spans multiple sectors, the current position in the FIFO
2423 * wraps around while fdctrl->data_pos is the real position in the whole
2424 * request. */
2425 pos = fdctrl->data_pos++;
2426 pos %= FD_SECTOR_LEN;
2427 fdctrl->fifo[pos] = value;
2428
2429 if (fdctrl->data_pos == fdctrl->data_len) {
2430 fdctrl->msr &= ~FD_MSR_RQM;
2431 }
2432
2433 switch (fdctrl->phase) {
2434 case FD_PHASE_EXECUTION:
2435 /* For DMA requests, RQM should be cleared during execution phase, so
2436 * we would have errored out above. */
2437 assert(fdctrl->msr & FD_MSR_NONDMA);
2438
2439 /* FIFO data write */
2440 if (pos == FD_SECTOR_LEN - 1 ||
2441 fdctrl->data_pos == fdctrl->data_len) {
2442 cur_drv = get_cur_drv(fdctrl);
2443 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2444 BDRV_SECTOR_SIZE, 0) < 0) {
2445 FLOPPY_DPRINTF("error writing sector %d\n",
2446 fd_sector(cur_drv));
2447 break;
2448 }
2449 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2450 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2451 fd_sector(cur_drv));
2452 break;
2453 }
2454 }
2455
2456 /* Switch to result phase when done with the transfer */
2457 if (fdctrl->data_pos == fdctrl->data_len) {
2458 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2459 }
2460 break;
2461
2462 case FD_PHASE_COMMAND:
2463 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2464 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2465
2466 if (pos == 0) {
2467 /* The first byte specifies the command. Now we start reading
2468 * as many parameters as this command requires. */
2469 cmd = get_command(value);
2470 fdctrl->data_len = cmd->parameters + 1;
2471 if (cmd->parameters) {
2472 fdctrl->msr |= FD_MSR_RQM;
2473 }
2474 fdctrl->msr |= FD_MSR_CMDBUSY;
2475 }
2476
2477 if (fdctrl->data_pos == fdctrl->data_len) {
2478 /* We have all parameters now, execute the command */
2479 fdctrl->phase = FD_PHASE_EXECUTION;
2480
2481 if (fdctrl->data_state & FD_STATE_FORMAT) {
2482 fdctrl_format_sector(fdctrl);
2483 break;
2484 }
2485
2486 cmd = get_command(fdctrl->fifo[0]);
2487 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2488 cmd->handler(fdctrl, cmd->direction);
2489 }
2490 break;
2491
2492 case FD_PHASE_RESULT:
2493 default:
2494 abort();
2495 }
2496}
2497
2498static void fdctrl_result_timer(void *opaque)
2499{
2500 FDCtrl *fdctrl = opaque;
2501 FDrive *cur_drv = get_cur_drv(fdctrl);
2502
2503 /* Pretend we are spinning.
2504 * This is needed for Coherent, which uses READ ID to check for
2505 * sector interleaving.
2506 */
2507 if (cur_drv->last_sect != 0) {
2508 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2509 }
2510 /* READ_ID can't automatically succeed! */
2511 if (fdctrl->check_media_rate &&
2512 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2513 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2514 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2515 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2516 } else {
2517 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2518 }
2519}
2520
2521/* Init functions */
2522static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2523 Error **errp)
2524{
2525 unsigned int i;
2526 FDrive *drive;
2527 DeviceState *dev;
2528 BlockBackend *blk;
2529 Error *local_err = NULL;
2530
2531 for (i = 0; i < MAX_FD; i++) {
2532 drive = &fdctrl->drives[i];
2533 drive->fdctrl = fdctrl;
2534
2535 /* If the drive is not present, we skip creating the qdev device, but
2536 * still have to initialise the controller. */
2537 blk = fdctrl->qdev_for_drives[i].blk;
2538 if (!blk) {
2539 fd_init(drive);
2540 fd_revalidate(drive);
2541 continue;
2542 }
2543
2544 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2545 qdev_prop_set_uint32(dev, "unit", i);
2546 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2547
2548 blk_ref(blk);
2549 blk_detach_dev(blk, fdc_dev);
2550 fdctrl->qdev_for_drives[i].blk = NULL;
2551 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2552 blk_unref(blk);
2553
2554 if (local_err) {
2555 error_propagate(errp, local_err);
2556 return;
2557 }
2558
2559 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2560 if (local_err) {
2561 error_propagate(errp, local_err);
2562 return;
2563 }
2564 }
2565}
2566
2567ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2568{
2569 DeviceState *dev;
2570 ISADevice *isadev;
2571
2572 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2573 if (!isadev) {
2574 return NULL;
2575 }
2576 dev = DEVICE(isadev);
2577
2578 if (fds[0]) {
2579 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2580 &error_fatal);
2581 }
2582 if (fds[1]) {
2583 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2584 &error_fatal);
2585 }
2586 qdev_init_nofail(dev);
2587
2588 return isadev;
2589}
2590
2591void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2592 hwaddr mmio_base, DriveInfo **fds)
2593{
2594 FDCtrl *fdctrl;
2595 DeviceState *dev;
2596 SysBusDevice *sbd;
2597 FDCtrlSysBus *sys;
2598
2599 dev = qdev_create(NULL, "sysbus-fdc");
2600 sys = SYSBUS_FDC(dev);
2601 fdctrl = &sys->state;
2602 fdctrl->dma_chann = dma_chann; /* FIXME */
2603 if (fds[0]) {
2604 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2605 &error_fatal);
2606 }
2607 if (fds[1]) {
2608 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2609 &error_fatal);
2610 }
2611 qdev_init_nofail(dev);
2612 sbd = SYS_BUS_DEVICE(dev);
2613 sysbus_connect_irq(sbd, 0, irq);
2614 sysbus_mmio_map(sbd, 0, mmio_base);
2615}
2616
2617void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2618 DriveInfo **fds, qemu_irq *fdc_tc)
2619{
2620 DeviceState *dev;
2621 FDCtrlSysBus *sys;
2622
2623 dev = qdev_create(NULL, "SUNW,fdtwo");
2624 if (fds[0]) {
2625 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2626 &error_fatal);
2627 }
2628 qdev_init_nofail(dev);
2629 sys = SYSBUS_FDC(dev);
2630 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2631 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2632 *fdc_tc = qdev_get_gpio_in(dev, 0);
2633}
2634
2635static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2636 Error **errp)
2637{
2638 int i, j;
2639 static int command_tables_inited = 0;
2640
2641 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2642 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2643 }
2644
2645 /* Fill 'command_to_handler' lookup table */
2646 if (!command_tables_inited) {
2647 command_tables_inited = 1;
2648 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2649 for (j = 0; j < sizeof(command_to_handler); j++) {
2650 if ((j & handlers[i].mask) == handlers[i].value) {
2651 command_to_handler[j] = i;
2652 }
2653 }
2654 }
2655 }
2656
2657 FLOPPY_DPRINTF("init controller\n");
2658 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2659 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2660 fdctrl->fifo_size = 512;
2661 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2662 fdctrl_result_timer, fdctrl);
2663
2664 fdctrl->version = 0x90; /* Intel 82078 controller */
2665 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2666 fdctrl->num_floppies = MAX_FD;
2667
2668 if (fdctrl->dma_chann != -1) {
2669 IsaDmaClass *k;
2670 assert(fdctrl->dma);
2671 k = ISADMA_GET_CLASS(fdctrl->dma);
2672 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2673 &fdctrl_transfer_handler, fdctrl);
2674 }
2675
2676 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2677 fdctrl_connect_drives(fdctrl, dev, errp);
2678}
2679
2680static const MemoryRegionPortio fdc_portio_list[] = {
2681 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2682 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2683 PORTIO_END_OF_LIST(),
2684};
2685
2686static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2687{
2688 ISADevice *isadev = ISA_DEVICE(dev);
2689 FDCtrlISABus *isa = ISA_FDC(dev);
2690 FDCtrl *fdctrl = &isa->state;
2691 Error *err = NULL;
2692
2693 isa_register_portio_list(isadev, &fdctrl->portio_list,
2694 isa->iobase, fdc_portio_list, fdctrl,
2695 "fdc");
2696
2697 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2698 fdctrl->dma_chann = isa->dma;
2699 if (fdctrl->dma_chann != -1) {
2700 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2701 if (!fdctrl->dma) {
2702 error_setg(errp, "ISA controller does not support DMA");
2703 return;
2704 }
2705 }
2706
2707 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2708 fdctrl_realize_common(dev, fdctrl, &err);
2709 if (err != NULL) {
2710 error_propagate(errp, err);
2711 return;
2712 }
2713}
2714
2715static void sysbus_fdc_initfn(Object *obj)
2716{
2717 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2718 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2719 FDCtrl *fdctrl = &sys->state;
2720
2721 fdctrl->dma_chann = -1;
2722
2723 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2724 "fdc", 0x08);
2725 sysbus_init_mmio(sbd, &fdctrl->iomem);
2726}
2727
2728static void sun4m_fdc_initfn(Object *obj)
2729{
2730 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2731 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2732 FDCtrl *fdctrl = &sys->state;
2733
2734 fdctrl->dma_chann = -1;
2735
2736 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2737 fdctrl, "fdctrl", 0x08);
2738 sysbus_init_mmio(sbd, &fdctrl->iomem);
2739}
2740
2741static void sysbus_fdc_common_initfn(Object *obj)
2742{
2743 DeviceState *dev = DEVICE(obj);
2744 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2745 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2746 FDCtrl *fdctrl = &sys->state;
2747
2748 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2749
2750 sysbus_init_irq(sbd, &fdctrl->irq);
2751 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2752}
2753
2754static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2755{
2756 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2757 FDCtrl *fdctrl = &sys->state;
2758
2759 fdctrl_realize_common(dev, fdctrl, errp);
2760}
2761
2762FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2763{
2764 FDCtrlISABus *isa = ISA_FDC(fdc);
2765
2766 return isa->state.drives[i].drive;
2767}
2768
2769void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2770 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2771{
2772 const FDFormat *fdf;
2773
2774 *maxc = *maxh = *maxs = 0;
2775 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2776 if (fdf->drive != type) {
2777 continue;
2778 }
2779 if (*maxc < fdf->max_track) {
2780 *maxc = fdf->max_track;
2781 }
2782 if (*maxh < fdf->max_head) {
2783 *maxh = fdf->max_head;
2784 }
2785 if (*maxs < fdf->last_sect) {
2786 *maxs = fdf->last_sect;
2787 }
2788 }
2789 (*maxc)--;
2790}
2791
2792static const VMStateDescription vmstate_isa_fdc ={
2793 .name = "fdc",
2794 .version_id = 2,
2795 .minimum_version_id = 2,
2796 .fields = (VMStateField[]) {
2797 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2798 VMSTATE_END_OF_LIST()
2799 }
2800};
2801
2802static Property isa_fdc_properties[] = {
2803 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2804 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2805 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2806 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2807 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2808 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2809 0, true),
2810 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2811 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2812 FloppyDriveType),
2813 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2814 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2815 FloppyDriveType),
2816 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2817 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2818 FloppyDriveType),
2819 DEFINE_PROP_END_OF_LIST(),
2820};
2821
2822static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2823{
2824 DeviceClass *dc = DEVICE_CLASS(klass);
2825
2826 dc->realize = isabus_fdc_realize;
2827 dc->fw_name = "fdc";
2828 dc->reset = fdctrl_external_reset_isa;
2829 dc->vmsd = &vmstate_isa_fdc;
2830 dc->props = isa_fdc_properties;
2831 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2832}
2833
2834static void isabus_fdc_instance_init(Object *obj)
2835{
2836 FDCtrlISABus *isa = ISA_FDC(obj);
2837
2838 device_add_bootindex_property(obj, &isa->bootindexA,
2839 "bootindexA", "/floppy@0",
2840 DEVICE(obj), NULL);
2841 device_add_bootindex_property(obj, &isa->bootindexB,
2842 "bootindexB", "/floppy@1",
2843 DEVICE(obj), NULL);
2844}
2845
2846static const TypeInfo isa_fdc_info = {
2847 .name = TYPE_ISA_FDC,
2848 .parent = TYPE_ISA_DEVICE,
2849 .instance_size = sizeof(FDCtrlISABus),
2850 .class_init = isabus_fdc_class_init,
2851 .instance_init = isabus_fdc_instance_init,
2852};
2853
2854static const VMStateDescription vmstate_sysbus_fdc ={
2855 .name = "fdc",
2856 .version_id = 2,
2857 .minimum_version_id = 2,
2858 .fields = (VMStateField[]) {
2859 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2860 VMSTATE_END_OF_LIST()
2861 }
2862};
2863
2864static Property sysbus_fdc_properties[] = {
2865 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2866 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2867 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2868 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2869 FloppyDriveType),
2870 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2871 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2872 FloppyDriveType),
2873 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2874 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2875 FloppyDriveType),
2876 DEFINE_PROP_END_OF_LIST(),
2877};
2878
2879static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2880{
2881 DeviceClass *dc = DEVICE_CLASS(klass);
2882
2883 dc->props = sysbus_fdc_properties;
2884 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2885}
2886
2887static const TypeInfo sysbus_fdc_info = {
2888 .name = "sysbus-fdc",
2889 .parent = TYPE_SYSBUS_FDC,
2890 .instance_init = sysbus_fdc_initfn,
2891 .class_init = sysbus_fdc_class_init,
2892};
2893
2894static Property sun4m_fdc_properties[] = {
2895 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2896 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2897 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2898 FloppyDriveType),
2899 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2900 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2901 FloppyDriveType),
2902 DEFINE_PROP_END_OF_LIST(),
2903};
2904
2905static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2906{
2907 DeviceClass *dc = DEVICE_CLASS(klass);
2908
2909 dc->props = sun4m_fdc_properties;
2910 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2911}
2912
2913static const TypeInfo sun4m_fdc_info = {
2914 .name = "SUNW,fdtwo",
2915 .parent = TYPE_SYSBUS_FDC,
2916 .instance_init = sun4m_fdc_initfn,
2917 .class_init = sun4m_fdc_class_init,
2918};
2919
2920static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2921{
2922 DeviceClass *dc = DEVICE_CLASS(klass);
2923
2924 dc->realize = sysbus_fdc_common_realize;
2925 dc->reset = fdctrl_external_reset_sysbus;
2926 dc->vmsd = &vmstate_sysbus_fdc;
2927}
2928
2929static const TypeInfo sysbus_fdc_type_info = {
2930 .name = TYPE_SYSBUS_FDC,
2931 .parent = TYPE_SYS_BUS_DEVICE,
2932 .instance_size = sizeof(FDCtrlSysBus),
2933 .instance_init = sysbus_fdc_common_initfn,
2934 .abstract = true,
2935 .class_init = sysbus_fdc_common_class_init,
2936};
2937
2938static void fdc_register_types(void)
2939{
2940 type_register_static(&isa_fdc_info);
2941 type_register_static(&sysbus_fdc_type_info);
2942 type_register_static(&sysbus_fdc_info);
2943 type_register_static(&sun4m_fdc_info);
2944 type_register_static(&floppy_bus_info);
2945 type_register_static(&floppy_drive_info);
2946}
2947
2948type_init(fdc_register_types)
2949