1/*
2 * ARM IoTKit system control element
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12/*
13 * This is a model of the "system control element" which is part of the
14 * Arm IoTKit and documented in
15 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
16 * Specifically, it implements the "system control register" blocks.
17 */
18
19#include "qemu/osdep.h"
20#include "qemu/bitops.h"
21#include "qemu/log.h"
22#include "qemu/module.h"
23#include "sysemu/runstate.h"
24#include "trace.h"
25#include "qapi/error.h"
26#include "hw/sysbus.h"
27#include "migration/vmstate.h"
28#include "hw/registerfields.h"
29#include "hw/misc/iotkit-sysctl.h"
30#include "hw/qdev-properties.h"
31#include "target/arm/arm-powerctl.h"
32#include "target/arm/cpu.h"
33
34REG32(SECDBGSTAT, 0x0)
35REG32(SECDBGSET, 0x4)
36REG32(SECDBGCLR, 0x8)
37REG32(SCSECCTRL, 0xc)
38REG32(FCLK_DIV, 0x10)
39REG32(SYSCLK_DIV, 0x14)
40REG32(CLOCK_FORCE, 0x18)
41REG32(RESET_SYNDROME, 0x100)
42REG32(RESET_MASK, 0x104)
43REG32(SWRESET, 0x108)
44 FIELD(SWRESET, SWRESETREQ, 9, 1)
45REG32(GRETREG, 0x10c)
46REG32(INITSVTOR0, 0x110)
47REG32(INITSVTOR1, 0x114)
48REG32(CPUWAIT, 0x118)
49REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
50REG32(WICCTRL, 0x120)
51REG32(EWCTRL, 0x124)
52REG32(PDCM_PD_SYS_SENSE, 0x200)
53REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
54REG32(PDCM_PD_SRAM1_SENSE, 0x210)
55REG32(PDCM_PD_SRAM2_SENSE, 0x214)
56REG32(PDCM_PD_SRAM3_SENSE, 0x218)
57REG32(PID4, 0xfd0)
58REG32(PID5, 0xfd4)
59REG32(PID6, 0xfd8)
60REG32(PID7, 0xfdc)
61REG32(PID0, 0xfe0)
62REG32(PID1, 0xfe4)
63REG32(PID2, 0xfe8)
64REG32(PID3, 0xfec)
65REG32(CID0, 0xff0)
66REG32(CID1, 0xff4)
67REG32(CID2, 0xff8)
68REG32(CID3, 0xffc)
69
70/* PID/CID values */
71static const int sysctl_id[] = {
72 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
73 0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
74 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
75};
76
77/*
78 * Set the initial secure vector table offset address for the core.
79 * This will take effect when the CPU next resets.
80 */
81static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
82{
83 Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
84
85 if (cpuobj) {
86 if (object_property_find(cpuobj, "init-svtor", NULL)) {
87 object_property_set_uint(cpuobj, vtor, "init-svtor", &error_abort);
88 }
89 }
90}
91
92static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
93 unsigned size)
94{
95 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
96 uint64_t r;
97
98 switch (offset) {
99 case A_SECDBGSTAT:
100 r = s->secure_debug;
101 break;
102 case A_SCSECCTRL:
103 if (!s->is_sse200) {
104 goto bad_offset;
105 }
106 r = s->scsecctrl;
107 break;
108 case A_FCLK_DIV:
109 if (!s->is_sse200) {
110 goto bad_offset;
111 }
112 r = s->fclk_div;
113 break;
114 case A_SYSCLK_DIV:
115 if (!s->is_sse200) {
116 goto bad_offset;
117 }
118 r = s->sysclk_div;
119 break;
120 case A_CLOCK_FORCE:
121 if (!s->is_sse200) {
122 goto bad_offset;
123 }
124 r = s->clock_force;
125 break;
126 case A_RESET_SYNDROME:
127 r = s->reset_syndrome;
128 break;
129 case A_RESET_MASK:
130 r = s->reset_mask;
131 break;
132 case A_GRETREG:
133 r = s->gretreg;
134 break;
135 case A_INITSVTOR0:
136 r = s->initsvtor0;
137 break;
138 case A_INITSVTOR1:
139 if (!s->is_sse200) {
140 goto bad_offset;
141 }
142 r = s->initsvtor1;
143 break;
144 case A_CPUWAIT:
145 r = s->cpuwait;
146 break;
147 case A_NMI_ENABLE:
148 /* In IoTKit this is named BUSWAIT but is marked reserved, R/O, zero */
149 if (!s->is_sse200) {
150 r = 0;
151 break;
152 }
153 r = s->nmi_enable;
154 break;
155 case A_WICCTRL:
156 r = s->wicctrl;
157 break;
158 case A_EWCTRL:
159 if (!s->is_sse200) {
160 goto bad_offset;
161 }
162 r = s->ewctrl;
163 break;
164 case A_PDCM_PD_SYS_SENSE:
165 if (!s->is_sse200) {
166 goto bad_offset;
167 }
168 r = s->pdcm_pd_sys_sense;
169 break;
170 case A_PDCM_PD_SRAM0_SENSE:
171 if (!s->is_sse200) {
172 goto bad_offset;
173 }
174 r = s->pdcm_pd_sram0_sense;
175 break;
176 case A_PDCM_PD_SRAM1_SENSE:
177 if (!s->is_sse200) {
178 goto bad_offset;
179 }
180 r = s->pdcm_pd_sram1_sense;
181 break;
182 case A_PDCM_PD_SRAM2_SENSE:
183 if (!s->is_sse200) {
184 goto bad_offset;
185 }
186 r = s->pdcm_pd_sram2_sense;
187 break;
188 case A_PDCM_PD_SRAM3_SENSE:
189 if (!s->is_sse200) {
190 goto bad_offset;
191 }
192 r = s->pdcm_pd_sram3_sense;
193 break;
194 case A_PID4 ... A_CID3:
195 r = sysctl_id[(offset - A_PID4) / 4];
196 break;
197 case A_SECDBGSET:
198 case A_SECDBGCLR:
199 case A_SWRESET:
200 qemu_log_mask(LOG_GUEST_ERROR,
201 "IoTKit SysCtl read: read of WO offset %x\n",
202 (int)offset);
203 r = 0;
204 break;
205 default:
206 bad_offset:
207 qemu_log_mask(LOG_GUEST_ERROR,
208 "IoTKit SysCtl read: bad offset %x\n", (int)offset);
209 r = 0;
210 break;
211 }
212 trace_iotkit_sysctl_read(offset, r, size);
213 return r;
214}
215
216static void iotkit_sysctl_write(void *opaque, hwaddr offset,
217 uint64_t value, unsigned size)
218{
219 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
220
221 trace_iotkit_sysctl_write(offset, value, size);
222
223 /*
224 * Most of the state here has to do with control of reset and
225 * similar kinds of power up -- for instance the guest can ask
226 * what the reason for the last reset was, or forbid reset for
227 * some causes (like the non-secure watchdog). Most of this is
228 * not relevant to QEMU, which doesn't really model anything other
229 * than a full power-on reset.
230 * We just model the registers as reads-as-written.
231 */
232
233 switch (offset) {
234 case A_RESET_SYNDROME:
235 qemu_log_mask(LOG_UNIMP,
236 "IoTKit SysCtl RESET_SYNDROME unimplemented\n");
237 s->reset_syndrome = value;
238 break;
239 case A_RESET_MASK:
240 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
241 s->reset_mask = value;
242 break;
243 case A_GRETREG:
244 /*
245 * General retention register, which is only reset by a power-on
246 * reset. Technically this implementation is complete, since
247 * QEMU only supports power-on resets...
248 */
249 s->gretreg = value;
250 break;
251 case A_INITSVTOR0:
252 s->initsvtor0 = value;
253 set_init_vtor(0, s->initsvtor0);
254 break;
255 case A_CPUWAIT:
256 if ((s->cpuwait & 1) && !(value & 1)) {
257 /* Powering up CPU 0 */
258 arm_set_cpu_on_and_reset(0);
259 }
260 if ((s->cpuwait & 2) && !(value & 2)) {
261 /* Powering up CPU 1 */
262 arm_set_cpu_on_and_reset(1);
263 }
264 s->cpuwait = value;
265 break;
266 case A_WICCTRL:
267 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
268 s->wicctrl = value;
269 break;
270 case A_SECDBGSET:
271 /* write-1-to-set */
272 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
273 s->secure_debug |= value;
274 break;
275 case A_SECDBGCLR:
276 /* write-1-to-clear */
277 s->secure_debug &= ~value;
278 break;
279 case A_SWRESET:
280 /* One w/o bit to request a reset; all other bits reserved */
281 if (value & R_SWRESET_SWRESETREQ_MASK) {
282 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
283 }
284 break;
285 case A_SCSECCTRL:
286 if (!s->is_sse200) {
287 goto bad_offset;
288 }
289 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
290 s->scsecctrl = value;
291 break;
292 case A_FCLK_DIV:
293 if (!s->is_sse200) {
294 goto bad_offset;
295 }
296 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
297 s->fclk_div = value;
298 break;
299 case A_SYSCLK_DIV:
300 if (!s->is_sse200) {
301 goto bad_offset;
302 }
303 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
304 s->sysclk_div = value;
305 break;
306 case A_CLOCK_FORCE:
307 if (!s->is_sse200) {
308 goto bad_offset;
309 }
310 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
311 s->clock_force = value;
312 break;
313 case A_INITSVTOR1:
314 if (!s->is_sse200) {
315 goto bad_offset;
316 }
317 s->initsvtor1 = value;
318 set_init_vtor(1, s->initsvtor1);
319 break;
320 case A_EWCTRL:
321 if (!s->is_sse200) {
322 goto bad_offset;
323 }
324 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
325 s->ewctrl = value;
326 break;
327 case A_PDCM_PD_SYS_SENSE:
328 if (!s->is_sse200) {
329 goto bad_offset;
330 }
331 qemu_log_mask(LOG_UNIMP,
332 "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
333 s->pdcm_pd_sys_sense = value;
334 break;
335 case A_PDCM_PD_SRAM0_SENSE:
336 if (!s->is_sse200) {
337 goto bad_offset;
338 }
339 qemu_log_mask(LOG_UNIMP,
340 "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
341 s->pdcm_pd_sram0_sense = value;
342 break;
343 case A_PDCM_PD_SRAM1_SENSE:
344 if (!s->is_sse200) {
345 goto bad_offset;
346 }
347 qemu_log_mask(LOG_UNIMP,
348 "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
349 s->pdcm_pd_sram1_sense = value;
350 break;
351 case A_PDCM_PD_SRAM2_SENSE:
352 if (!s->is_sse200) {
353 goto bad_offset;
354 }
355 qemu_log_mask(LOG_UNIMP,
356 "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
357 s->pdcm_pd_sram2_sense = value;
358 break;
359 case A_PDCM_PD_SRAM3_SENSE:
360 if (!s->is_sse200) {
361 goto bad_offset;
362 }
363 qemu_log_mask(LOG_UNIMP,
364 "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
365 s->pdcm_pd_sram3_sense = value;
366 break;
367 case A_NMI_ENABLE:
368 /* In IoTKit this is BUSWAIT: reserved, R/O, zero */
369 if (!s->is_sse200) {
370 goto ro_offset;
371 }
372 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
373 s->nmi_enable = value;
374 break;
375 case A_SECDBGSTAT:
376 case A_PID4 ... A_CID3:
377 ro_offset:
378 qemu_log_mask(LOG_GUEST_ERROR,
379 "IoTKit SysCtl write: write of RO offset %x\n",
380 (int)offset);
381 break;
382 default:
383 bad_offset:
384 qemu_log_mask(LOG_GUEST_ERROR,
385 "IoTKit SysCtl write: bad offset %x\n", (int)offset);
386 break;
387 }
388}
389
390static const MemoryRegionOps iotkit_sysctl_ops = {
391 .read = iotkit_sysctl_read,
392 .write = iotkit_sysctl_write,
393 .endianness = DEVICE_LITTLE_ENDIAN,
394 /* byte/halfword accesses are just zero-padded on reads and writes */
395 .impl.min_access_size = 4,
396 .impl.max_access_size = 4,
397 .valid.min_access_size = 1,
398 .valid.max_access_size = 4,
399};
400
401static void iotkit_sysctl_reset(DeviceState *dev)
402{
403 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
404
405 trace_iotkit_sysctl_reset();
406 s->secure_debug = 0;
407 s->reset_syndrome = 1;
408 s->reset_mask = 0;
409 s->gretreg = 0;
410 s->initsvtor0 = s->initsvtor0_rst;
411 s->initsvtor1 = s->initsvtor1_rst;
412 s->cpuwait = s->cpuwait_rst;
413 s->wicctrl = 0;
414 s->scsecctrl = 0;
415 s->fclk_div = 0;
416 s->sysclk_div = 0;
417 s->clock_force = 0;
418 s->nmi_enable = 0;
419 s->ewctrl = 0;
420 s->pdcm_pd_sys_sense = 0x7f;
421 s->pdcm_pd_sram0_sense = 0;
422 s->pdcm_pd_sram1_sense = 0;
423 s->pdcm_pd_sram2_sense = 0;
424 s->pdcm_pd_sram3_sense = 0;
425}
426
427static void iotkit_sysctl_init(Object *obj)
428{
429 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
430 IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
431
432 memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
433 s, "iotkit-sysctl", 0x1000);
434 sysbus_init_mmio(sbd, &s->iomem);
435}
436
437static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
438{
439 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
440
441 /* The top 4 bits of the SYS_VERSION register tell us if we're an SSE-200 */
442 if (extract32(s->sys_version, 28, 4) == 2) {
443 s->is_sse200 = true;
444 }
445}
446
447static bool sse200_needed(void *opaque)
448{
449 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
450
451 return s->is_sse200;
452}
453
454static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
455 .name = "iotkit-sysctl/sse-200",
456 .version_id = 1,
457 .minimum_version_id = 1,
458 .needed = sse200_needed,
459 .fields = (VMStateField[]) {
460 VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
461 VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
462 VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
463 VMSTATE_UINT32(clock_force, IoTKitSysCtl),
464 VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
465 VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
466 VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
467 VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
468 VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
469 VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
470 VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
471 VMSTATE_END_OF_LIST()
472 }
473};
474
475static const VMStateDescription iotkit_sysctl_vmstate = {
476 .name = "iotkit-sysctl",
477 .version_id = 1,
478 .minimum_version_id = 1,
479 .fields = (VMStateField[]) {
480 VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
481 VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
482 VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
483 VMSTATE_UINT32(gretreg, IoTKitSysCtl),
484 VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
485 VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
486 VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
487 VMSTATE_END_OF_LIST()
488 },
489 .subsections = (const VMStateDescription*[]) {
490 &iotkit_sysctl_sse200_vmstate,
491 NULL
492 }
493};
494
495static Property iotkit_sysctl_props[] = {
496 DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysCtl, sys_version, 0),
497 DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
498 DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
499 0x10000000),
500 DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
501 0x10000000),
502 DEFINE_PROP_END_OF_LIST()
503};
504
505static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
506{
507 DeviceClass *dc = DEVICE_CLASS(klass);
508
509 dc->vmsd = &iotkit_sysctl_vmstate;
510 dc->reset = iotkit_sysctl_reset;
511 dc->props = iotkit_sysctl_props;
512 dc->realize = iotkit_sysctl_realize;
513}
514
515static const TypeInfo iotkit_sysctl_info = {
516 .name = TYPE_IOTKIT_SYSCTL,
517 .parent = TYPE_SYS_BUS_DEVICE,
518 .instance_size = sizeof(IoTKitSysCtl),
519 .instance_init = iotkit_sysctl_init,
520 .class_init = iotkit_sysctl_class_init,
521};
522
523static void iotkit_sysctl_register_types(void)
524{
525 type_register_static(&iotkit_sysctl_info);
526}
527
528type_init(iotkit_sysctl_register_types);
529