1/*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * Copyright (C) 2016-2017, IBM Corporation.
5 *
6 * Based on Coldfire Fast Ethernet Controller emulation.
7 *
8 * Copyright (c) 2007 CodeSourcery.
9 *
10 * This code is licensed under the GPL version 2 or later. See the
11 * COPYING file in the top-level directory.
12 */
13
14#include "qemu/osdep.h"
15#include "hw/irq.h"
16#include "hw/net/ftgmac100.h"
17#include "sysemu/dma.h"
18#include "qemu/log.h"
19#include "qemu/module.h"
20#include "net/checksum.h"
21#include "net/eth.h"
22#include "hw/net/mii.h"
23#include "hw/qdev-properties.h"
24#include "migration/vmstate.h"
25
26/* For crc32 */
27#include <zlib.h>
28
29/*
30 * FTGMAC100 registers
31 */
32#define FTGMAC100_ISR 0x00
33#define FTGMAC100_IER 0x04
34#define FTGMAC100_MAC_MADR 0x08
35#define FTGMAC100_MAC_LADR 0x0c
36#define FTGMAC100_MATH0 0x10
37#define FTGMAC100_MATH1 0x14
38#define FTGMAC100_NPTXPD 0x18
39#define FTGMAC100_RXPD 0x1C
40#define FTGMAC100_NPTXR_BADR 0x20
41#define FTGMAC100_RXR_BADR 0x24
42#define FTGMAC100_HPTXPD 0x28
43#define FTGMAC100_HPTXR_BADR 0x2c
44#define FTGMAC100_ITC 0x30
45#define FTGMAC100_APTC 0x34
46#define FTGMAC100_DBLAC 0x38
47#define FTGMAC100_REVR 0x40
48#define FTGMAC100_FEAR1 0x44
49#define FTGMAC100_RBSR 0x4c
50#define FTGMAC100_TPAFCR 0x48
51
52#define FTGMAC100_MACCR 0x50
53#define FTGMAC100_MACSR 0x54
54#define FTGMAC100_PHYCR 0x60
55#define FTGMAC100_PHYDATA 0x64
56#define FTGMAC100_FCR 0x68
57
58/*
59 * Interrupt status register & interrupt enable register
60 */
61#define FTGMAC100_INT_RPKT_BUF (1 << 0)
62#define FTGMAC100_INT_RPKT_FIFO (1 << 1)
63#define FTGMAC100_INT_NO_RXBUF (1 << 2)
64#define FTGMAC100_INT_RPKT_LOST (1 << 3)
65#define FTGMAC100_INT_XPKT_ETH (1 << 4)
66#define FTGMAC100_INT_XPKT_FIFO (1 << 5)
67#define FTGMAC100_INT_NO_NPTXBUF (1 << 6)
68#define FTGMAC100_INT_XPKT_LOST (1 << 7)
69#define FTGMAC100_INT_AHB_ERR (1 << 8)
70#define FTGMAC100_INT_PHYSTS_CHG (1 << 9)
71#define FTGMAC100_INT_NO_HPTXBUF (1 << 10)
72
73/*
74 * Automatic polling timer control register
75 */
76#define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf)
77#define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4)
78#define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf)
79#define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12)
80
81/*
82 * PHY control register
83 */
84#define FTGMAC100_PHYCR_MIIRD (1 << 26)
85#define FTGMAC100_PHYCR_MIIWR (1 << 27)
86
87#define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f)
88#define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f)
89
90/*
91 * PHY data register
92 */
93#define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff)
94#define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff)
95
96/*
97 * PHY control register - New MDC/MDIO interface
98 */
99#define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff)
100#define FTGMAC100_PHYCR_NEW_FIRE (1 << 15)
101#define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12)
102#define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3)
103#define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1
104#define FTGMAC100_PHYCR_NEW_OP_READ 0x2
105#define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f)
106#define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f)
107
108/*
109 * Feature Register
110 */
111#define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31)
112
113/*
114 * MAC control register
115 */
116#define FTGMAC100_MACCR_TXDMA_EN (1 << 0)
117#define FTGMAC100_MACCR_RXDMA_EN (1 << 1)
118#define FTGMAC100_MACCR_TXMAC_EN (1 << 2)
119#define FTGMAC100_MACCR_RXMAC_EN (1 << 3)
120#define FTGMAC100_MACCR_RM_VLAN (1 << 4)
121#define FTGMAC100_MACCR_HPTXR_EN (1 << 5)
122#define FTGMAC100_MACCR_LOOP_EN (1 << 6)
123#define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7)
124#define FTGMAC100_MACCR_FULLDUP (1 << 8)
125#define FTGMAC100_MACCR_GIGA_MODE (1 << 9)
126#define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */
127#define FTGMAC100_MACCR_RX_RUNT (1 << 12)
128#define FTGMAC100_MACCR_JUMBO_LF (1 << 13)
129#define FTGMAC100_MACCR_RX_ALL (1 << 14)
130#define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15)
131#define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16)
132#define FTGMAC100_MACCR_RX_BROADPKT (1 << 17)
133#define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18)
134#define FTGMAC100_MACCR_FAST_MODE (1 << 19)
135#define FTGMAC100_MACCR_SW_RST (1 << 31)
136
137/*
138 * Transmit descriptor
139 */
140#define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff)
141#define FTGMAC100_TXDES0_EDOTR (1 << 15)
142#define FTGMAC100_TXDES0_CRC_ERR (1 << 19)
143#define FTGMAC100_TXDES0_LTS (1 << 28)
144#define FTGMAC100_TXDES0_FTS (1 << 29)
145#define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30)
146#define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31)
147
148#define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff)
149#define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16)
150#define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17)
151#define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18)
152#define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19)
153#define FTGMAC100_TXDES1_LLC (1 << 22)
154#define FTGMAC100_TXDES1_TX2FIC (1 << 30)
155#define FTGMAC100_TXDES1_TXIC (1 << 31)
156
157/*
158 * Receive descriptor
159 */
160#define FTGMAC100_RXDES0_VDBC 0x3fff
161#define FTGMAC100_RXDES0_EDORR (1 << 15)
162#define FTGMAC100_RXDES0_MULTICAST (1 << 16)
163#define FTGMAC100_RXDES0_BROADCAST (1 << 17)
164#define FTGMAC100_RXDES0_RX_ERR (1 << 18)
165#define FTGMAC100_RXDES0_CRC_ERR (1 << 19)
166#define FTGMAC100_RXDES0_FTL (1 << 20)
167#define FTGMAC100_RXDES0_RUNT (1 << 21)
168#define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22)
169#define FTGMAC100_RXDES0_FIFO_FULL (1 << 23)
170#define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24)
171#define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25)
172#define FTGMAC100_RXDES0_LRS (1 << 28)
173#define FTGMAC100_RXDES0_FRS (1 << 29)
174#define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30)
175#define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31)
176
177#define FTGMAC100_RXDES1_VLANTAG_CI 0xffff
178#define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20)
179#define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20)
180#define FTGMAC100_RXDES1_PROT_IP (0x1 << 20)
181#define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20)
182#define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20)
183#define FTGMAC100_RXDES1_LLC (1 << 22)
184#define FTGMAC100_RXDES1_DF (1 << 23)
185#define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24)
186#define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25)
187#define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26)
188#define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27)
189
190/*
191 * Receive and transmit Buffer Descriptor
192 */
193typedef struct {
194 uint32_t des0;
195 uint32_t des1;
196 uint32_t des2; /* not used by HW */
197 uint32_t des3;
198} FTGMAC100Desc;
199
200/*
201 * Specific RTL8211E MII Registers
202 */
203#define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */
204#define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */
205#define RTL8211E_MII_INER 18 /* Interrupt Enable */
206#define RTL8211E_MII_INSR 19 /* Interrupt Status */
207#define RTL8211E_MII_RXERC 24 /* Receive Error Counter */
208#define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */
209#define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */
210#define RTL8211E_MII_PAGSEL 31 /* Page Select */
211
212/*
213 * RTL8211E Interrupt Status
214 */
215#define PHY_INT_AUTONEG_ERROR (1 << 15)
216#define PHY_INT_PAGE_RECV (1 << 12)
217#define PHY_INT_AUTONEG_COMPLETE (1 << 11)
218#define PHY_INT_LINK_STATUS (1 << 10)
219#define PHY_INT_ERROR (1 << 9)
220#define PHY_INT_DOWN (1 << 8)
221#define PHY_INT_JABBER (1 << 0)
222
223/*
224 * Max frame size for the receiving buffer
225 */
226#define FTGMAC100_MAX_FRAME_SIZE 9220
227
228/* Limits depending on the type of the frame
229 *
230 * 9216 for Jumbo frames (+ 4 for VLAN)
231 * 1518 for other frames (+ 4 for VLAN)
232 */
233static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
234{
235 int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
236
237 return max + (proto == ETH_P_VLAN ? 4 : 0);
238}
239
240static void ftgmac100_update_irq(FTGMAC100State *s)
241{
242 qemu_set_irq(s->irq, s->isr & s->ier);
243}
244
245/*
246 * The MII phy could raise a GPIO to the processor which in turn
247 * could be handled as an interrpt by the OS.
248 * For now we don't handle any GPIO/interrupt line, so the OS will
249 * have to poll for the PHY status.
250 */
251static void phy_update_irq(FTGMAC100State *s)
252{
253 ftgmac100_update_irq(s);
254}
255
256static void phy_update_link(FTGMAC100State *s)
257{
258 /* Autonegotiation status mirrors link status. */
259 if (qemu_get_queue(s->nic)->link_down) {
260 s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
261 s->phy_int |= PHY_INT_DOWN;
262 } else {
263 s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
264 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
265 }
266 phy_update_irq(s);
267}
268
269static void ftgmac100_set_link(NetClientState *nc)
270{
271 phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
272}
273
274static void phy_reset(FTGMAC100State *s)
275{
276 s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
277 MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
278 MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
279 MII_BMSR_EXTCAP);
280 s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
281 s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
282 MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
283 MII_ANAR_CSMACD);
284 s->phy_int_mask = 0;
285 s->phy_int = 0;
286}
287
288static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
289{
290 uint16_t val;
291
292 switch (reg) {
293 case MII_BMCR: /* Basic Control */
294 val = s->phy_control;
295 break;
296 case MII_BMSR: /* Basic Status */
297 val = s->phy_status;
298 break;
299 case MII_PHYID1: /* ID1 */
300 val = RTL8211E_PHYID1;
301 break;
302 case MII_PHYID2: /* ID2 */
303 val = RTL8211E_PHYID2;
304 break;
305 case MII_ANAR: /* Auto-neg advertisement */
306 val = s->phy_advertise;
307 break;
308 case MII_ANLPAR: /* Auto-neg Link Partner Ability */
309 val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
310 MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
311 MII_ANLPAR_CSMACD);
312 break;
313 case MII_ANER: /* Auto-neg Expansion */
314 val = MII_ANER_NWAY;
315 break;
316 case MII_CTRL1000: /* 1000BASE-T control */
317 val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
318 break;
319 case MII_STAT1000: /* 1000BASE-T status */
320 val = MII_STAT1000_FULL;
321 break;
322 case RTL8211E_MII_INSR: /* Interrupt status. */
323 val = s->phy_int;
324 s->phy_int = 0;
325 phy_update_irq(s);
326 break;
327 case RTL8211E_MII_INER: /* Interrupt enable */
328 val = s->phy_int_mask;
329 break;
330 case RTL8211E_MII_PHYCR:
331 case RTL8211E_MII_PHYSR:
332 case RTL8211E_MII_RXERC:
333 case RTL8211E_MII_LDPSR:
334 case RTL8211E_MII_EPAGSR:
335 case RTL8211E_MII_PAGSEL:
336 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
337 __func__, reg);
338 val = 0;
339 break;
340 default:
341 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
342 __func__, reg);
343 val = 0;
344 break;
345 }
346
347 return val;
348}
349
350#define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \
351 MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
352 MII_BMCR_FD | MII_BMCR_CTST)
353#define MII_ANAR_MASK 0x2d7f
354
355static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
356{
357 switch (reg) {
358 case MII_BMCR: /* Basic Control */
359 if (val & MII_BMCR_RESET) {
360 phy_reset(s);
361 } else {
362 s->phy_control = val & MII_BMCR_MASK;
363 /* Complete autonegotiation immediately. */
364 if (val & MII_BMCR_AUTOEN) {
365 s->phy_status |= MII_BMSR_AN_COMP;
366 }
367 }
368 break;
369 case MII_ANAR: /* Auto-neg advertisement */
370 s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
371 break;
372 case RTL8211E_MII_INER: /* Interrupt enable */
373 s->phy_int_mask = val & 0xff;
374 phy_update_irq(s);
375 break;
376 case RTL8211E_MII_PHYCR:
377 case RTL8211E_MII_PHYSR:
378 case RTL8211E_MII_RXERC:
379 case RTL8211E_MII_LDPSR:
380 case RTL8211E_MII_EPAGSR:
381 case RTL8211E_MII_PAGSEL:
382 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
383 __func__, reg);
384 break;
385 default:
386 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
387 __func__, reg);
388 break;
389 }
390}
391
392static void do_phy_new_ctl(FTGMAC100State *s)
393{
394 uint8_t reg;
395 uint16_t data;
396
397 if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
398 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
399 return;
400 }
401
402 /* Nothing to do */
403 if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
404 return;
405 }
406
407 reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
408 data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
409
410 switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
411 case FTGMAC100_PHYCR_NEW_OP_WRITE:
412 do_phy_write(s, reg, data);
413 break;
414 case FTGMAC100_PHYCR_NEW_OP_READ:
415 s->phydata = do_phy_read(s, reg) & 0xffff;
416 break;
417 default:
418 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
419 __func__, s->phycr);
420 }
421
422 s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
423}
424
425static void do_phy_ctl(FTGMAC100State *s)
426{
427 uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
428
429 if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
430 do_phy_write(s, reg, s->phydata & 0xffff);
431 s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
432 } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
433 s->phydata = do_phy_read(s, reg) << 16;
434 s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
435 } else {
436 qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
437 __func__, s->phycr);
438 }
439}
440
441static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
442{
443 if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd))) {
444 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
445 HWADDR_PRIx "\n", __func__, addr);
446 return -1;
447 }
448 bd->des0 = le32_to_cpu(bd->des0);
449 bd->des1 = le32_to_cpu(bd->des1);
450 bd->des2 = le32_to_cpu(bd->des2);
451 bd->des3 = le32_to_cpu(bd->des3);
452 return 0;
453}
454
455static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
456{
457 FTGMAC100Desc lebd;
458
459 lebd.des0 = cpu_to_le32(bd->des0);
460 lebd.des1 = cpu_to_le32(bd->des1);
461 lebd.des2 = cpu_to_le32(bd->des2);
462 lebd.des3 = cpu_to_le32(bd->des3);
463 if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd))) {
464 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
465 HWADDR_PRIx "\n", __func__, addr);
466 return -1;
467 }
468 return 0;
469}
470
471static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
472 uint32_t tx_descriptor)
473{
474 int frame_size = 0;
475 uint8_t *ptr = s->frame;
476 uint32_t addr = tx_descriptor;
477 uint32_t flags = 0;
478
479 while (1) {
480 FTGMAC100Desc bd;
481 int len;
482
483 if (ftgmac100_read_bd(&bd, addr) ||
484 ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
485 /* Run out of descriptors to transmit. */
486 s->isr |= FTGMAC100_INT_NO_NPTXBUF;
487 break;
488 }
489
490 /* record transmit flags as they are valid only on the first
491 * segment */
492 if (bd.des0 & FTGMAC100_TXDES0_FTS) {
493 flags = bd.des1;
494 }
495
496 len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
497 if (frame_size + len > sizeof(s->frame)) {
498 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
499 __func__, len);
500 s->isr |= FTGMAC100_INT_XPKT_LOST;
501 len = sizeof(s->frame) - frame_size;
502 }
503
504 if (dma_memory_read(&address_space_memory, bd.des3, ptr, len)) {
505 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
506 __func__, bd.des3);
507 s->isr |= FTGMAC100_INT_NO_NPTXBUF;
508 break;
509 }
510
511 /* Check for VLAN */
512 if (bd.des0 & FTGMAC100_TXDES0_FTS &&
513 bd.des1 & FTGMAC100_TXDES1_INS_VLANTAG &&
514 be16_to_cpu(PKT_GET_ETH_HDR(ptr)->h_proto) != ETH_P_VLAN) {
515 if (frame_size + len + 4 > sizeof(s->frame)) {
516 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
517 __func__, len);
518 s->isr |= FTGMAC100_INT_XPKT_LOST;
519 len = sizeof(s->frame) - frame_size - 4;
520 }
521 memmove(ptr + 16, ptr + 12, len - 12);
522 stw_be_p(ptr + 12, ETH_P_VLAN);
523 stw_be_p(ptr + 14, bd.des1);
524 len += 4;
525 }
526
527 ptr += len;
528 frame_size += len;
529 if (bd.des0 & FTGMAC100_TXDES0_LTS) {
530 if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
531 net_checksum_calculate(s->frame, frame_size);
532 }
533 /* Last buffer in frame. */
534 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
535 ptr = s->frame;
536 frame_size = 0;
537 if (flags & FTGMAC100_TXDES1_TXIC) {
538 s->isr |= FTGMAC100_INT_XPKT_ETH;
539 }
540 }
541
542 if (flags & FTGMAC100_TXDES1_TX2FIC) {
543 s->isr |= FTGMAC100_INT_XPKT_FIFO;
544 }
545 bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
546
547 /* Write back the modified descriptor. */
548 ftgmac100_write_bd(&bd, addr);
549 /* Advance to the next descriptor. */
550 if (bd.des0 & s->txdes0_edotr) {
551 addr = tx_ring;
552 } else {
553 addr += sizeof(FTGMAC100Desc);
554 }
555 }
556
557 s->tx_descriptor = addr;
558
559 ftgmac100_update_irq(s);
560}
561
562static int ftgmac100_can_receive(NetClientState *nc)
563{
564 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
565 FTGMAC100Desc bd;
566
567 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
568 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
569 return 0;
570 }
571
572 if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
573 return 0;
574 }
575 return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
576}
577
578/*
579 * This is purely informative. The HW can poll the RW (and RX) ring
580 * buffers for available descriptors but we don't need to trigger a
581 * timer for that in qemu.
582 */
583static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
584{
585 /* Polling times :
586 *
587 * Speed TIME_SEL=0 TIME_SEL=1
588 *
589 * 10 51.2 ms 819.2 ms
590 * 100 5.12 ms 81.92 ms
591 * 1000 1.024 ms 16.384 ms
592 */
593 static const int div[] = { 20, 200, 1000 };
594
595 uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
596 uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
597
598 if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
599 cnt <<= 4;
600 }
601
602 if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
603 speed = 2;
604 }
605
606 return cnt / div[speed];
607}
608
609static void ftgmac100_reset(DeviceState *d)
610{
611 FTGMAC100State *s = FTGMAC100(d);
612
613 /* Reset the FTGMAC100 */
614 s->isr = 0;
615 s->ier = 0;
616 s->rx_enabled = 0;
617 s->rx_ring = 0;
618 s->rbsr = 0x640;
619 s->rx_descriptor = 0;
620 s->tx_ring = 0;
621 s->tx_descriptor = 0;
622 s->math[0] = 0;
623 s->math[1] = 0;
624 s->itc = 0;
625 s->aptcr = 1;
626 s->dblac = 0x00022f00;
627 s->revr = 0;
628 s->fear1 = 0;
629 s->tpafcr = 0xf1;
630
631 s->maccr = 0;
632 s->phycr = 0;
633 s->phydata = 0;
634 s->fcr = 0x400;
635
636 /* and the PHY */
637 phy_reset(s);
638}
639
640static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
641{
642 FTGMAC100State *s = FTGMAC100(opaque);
643
644 switch (addr & 0xff) {
645 case FTGMAC100_ISR:
646 return s->isr;
647 case FTGMAC100_IER:
648 return s->ier;
649 case FTGMAC100_MAC_MADR:
650 return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1];
651 case FTGMAC100_MAC_LADR:
652 return ((uint32_t) s->conf.macaddr.a[2] << 24) |
653 (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
654 s->conf.macaddr.a[5];
655 case FTGMAC100_MATH0:
656 return s->math[0];
657 case FTGMAC100_MATH1:
658 return s->math[1];
659 case FTGMAC100_ITC:
660 return s->itc;
661 case FTGMAC100_DBLAC:
662 return s->dblac;
663 case FTGMAC100_REVR:
664 return s->revr;
665 case FTGMAC100_FEAR1:
666 return s->fear1;
667 case FTGMAC100_TPAFCR:
668 return s->tpafcr;
669 case FTGMAC100_FCR:
670 return s->fcr;
671 case FTGMAC100_MACCR:
672 return s->maccr;
673 case FTGMAC100_PHYCR:
674 return s->phycr;
675 case FTGMAC100_PHYDATA:
676 return s->phydata;
677
678 /* We might want to support these one day */
679 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
680 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
681 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
682 qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
683 HWADDR_PRIx "\n", __func__, addr);
684 return 0;
685 default:
686 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
687 HWADDR_PRIx "\n", __func__, addr);
688 return 0;
689 }
690}
691
692static void ftgmac100_write(void *opaque, hwaddr addr,
693 uint64_t value, unsigned size)
694{
695 FTGMAC100State *s = FTGMAC100(opaque);
696
697 switch (addr & 0xff) {
698 case FTGMAC100_ISR: /* Interrupt status */
699 s->isr &= ~value;
700 break;
701 case FTGMAC100_IER: /* Interrupt control */
702 s->ier = value;
703 break;
704 case FTGMAC100_MAC_MADR: /* MAC */
705 s->conf.macaddr.a[0] = value >> 8;
706 s->conf.macaddr.a[1] = value;
707 break;
708 case FTGMAC100_MAC_LADR:
709 s->conf.macaddr.a[2] = value >> 24;
710 s->conf.macaddr.a[3] = value >> 16;
711 s->conf.macaddr.a[4] = value >> 8;
712 s->conf.macaddr.a[5] = value;
713 break;
714 case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
715 s->math[0] = value;
716 break;
717 case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
718 s->math[1] = value;
719 break;
720 case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
721 s->itc = value;
722 break;
723 case FTGMAC100_RXR_BADR: /* Ring buffer address */
724 s->rx_ring = value;
725 s->rx_descriptor = s->rx_ring;
726 break;
727
728 case FTGMAC100_RBSR: /* DMA buffer size */
729 s->rbsr = value;
730 break;
731
732 case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
733 s->tx_ring = value;
734 s->tx_descriptor = s->tx_ring;
735 break;
736
737 case FTGMAC100_NPTXPD: /* Trigger transmit */
738 if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
739 == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
740 /* TODO: high priority tx ring */
741 ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
742 }
743 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
744 qemu_flush_queued_packets(qemu_get_queue(s->nic));
745 }
746 break;
747
748 case FTGMAC100_RXPD: /* Receive Poll Demand Register */
749 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
750 qemu_flush_queued_packets(qemu_get_queue(s->nic));
751 }
752 break;
753
754 case FTGMAC100_APTC: /* Automatic polling */
755 s->aptcr = value;
756
757 if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
758 ftgmac100_rxpoll(s);
759 }
760
761 if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
762 qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
763 }
764 break;
765
766 case FTGMAC100_MACCR: /* MAC Device control */
767 s->maccr = value;
768 if (value & FTGMAC100_MACCR_SW_RST) {
769 ftgmac100_reset(DEVICE(s));
770 }
771
772 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
773 qemu_flush_queued_packets(qemu_get_queue(s->nic));
774 }
775 break;
776
777 case FTGMAC100_PHYCR: /* PHY Device control */
778 s->phycr = value;
779 if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
780 do_phy_new_ctl(s);
781 } else {
782 do_phy_ctl(s);
783 }
784 break;
785 case FTGMAC100_PHYDATA:
786 s->phydata = value & 0xffff;
787 break;
788 case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
789 s->dblac = value;
790 break;
791 case FTGMAC100_REVR: /* Feature Register */
792 s->revr = value;
793 break;
794 case FTGMAC100_FEAR1: /* Feature Register 1 */
795 s->fear1 = value;
796 break;
797 case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
798 s->tpafcr = value;
799 break;
800 case FTGMAC100_FCR: /* Flow Control */
801 s->fcr = value;
802 break;
803
804 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
805 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
806 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
807 qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
808 HWADDR_PRIx "\n", __func__, addr);
809 break;
810 default:
811 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
812 HWADDR_PRIx "\n", __func__, addr);
813 break;
814 }
815
816 ftgmac100_update_irq(s);
817}
818
819static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
820{
821 unsigned mcast_idx;
822
823 if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
824 return 1;
825 }
826
827 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
828 case ETH_PKT_BCAST:
829 if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
830 return 0;
831 }
832 break;
833 case ETH_PKT_MCAST:
834 if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
835 if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
836 return 0;
837 }
838
839 mcast_idx = net_crc32_le(buf, ETH_ALEN);
840 mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
841 if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
842 return 0;
843 }
844 }
845 break;
846 case ETH_PKT_UCAST:
847 if (memcmp(s->conf.macaddr.a, buf, 6)) {
848 return 0;
849 }
850 break;
851 }
852
853 return 1;
854}
855
856static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
857 size_t len)
858{
859 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
860 FTGMAC100Desc bd;
861 uint32_t flags = 0;
862 uint32_t addr;
863 uint32_t crc;
864 uint32_t buf_addr;
865 uint8_t *crc_ptr;
866 uint32_t buf_len;
867 size_t size = len;
868 uint32_t first = FTGMAC100_RXDES0_FRS;
869 uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
870 int max_frame_size = ftgmac100_max_frame_size(s, proto);
871
872 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
873 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
874 return -1;
875 }
876
877 /* TODO : Pad to minimum Ethernet frame length */
878 /* handle small packets. */
879 if (size < 10) {
880 qemu_log_mask(LOG_GUEST_ERROR, "%s: dropped frame of %zd bytes\n",
881 __func__, size);
882 return size;
883 }
884
885 if (!ftgmac100_filter(s, buf, size)) {
886 return size;
887 }
888
889 /* 4 bytes for the CRC. */
890 size += 4;
891 crc = cpu_to_be32(crc32(~0, buf, size));
892 crc_ptr = (uint8_t *) &crc;
893
894 /* Huge frames are truncated. */
895 if (size > max_frame_size) {
896 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
897 __func__, size);
898 size = max_frame_size;
899 flags |= FTGMAC100_RXDES0_FTL;
900 }
901
902 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
903 case ETH_PKT_BCAST:
904 flags |= FTGMAC100_RXDES0_BROADCAST;
905 break;
906 case ETH_PKT_MCAST:
907 flags |= FTGMAC100_RXDES0_MULTICAST;
908 break;
909 case ETH_PKT_UCAST:
910 break;
911 }
912
913 addr = s->rx_descriptor;
914 while (size > 0) {
915 if (!ftgmac100_can_receive(nc)) {
916 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
917 return -1;
918 }
919
920 if (ftgmac100_read_bd(&bd, addr) ||
921 (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
922 /* No descriptors available. Bail out. */
923 qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
924 __func__);
925 s->isr |= FTGMAC100_INT_NO_RXBUF;
926 break;
927 }
928 buf_len = (size <= s->rbsr) ? size : s->rbsr;
929 bd.des0 |= buf_len & 0x3fff;
930 size -= buf_len;
931
932 /* The last 4 bytes are the CRC. */
933 if (size < 4) {
934 buf_len += size - 4;
935 }
936 buf_addr = bd.des3;
937 if (first && proto == ETH_P_VLAN && buf_len >= 18) {
938 bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
939
940 if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
941 dma_memory_write(&address_space_memory, buf_addr, buf, 12);
942 dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16,
943 buf_len - 16);
944 } else {
945 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
946 }
947 } else {
948 bd.des1 = 0;
949 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
950 }
951 buf += buf_len;
952 if (size < 4) {
953 dma_memory_write(&address_space_memory, buf_addr + buf_len,
954 crc_ptr, 4 - size);
955 crc_ptr += 4 - size;
956 }
957
958 bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
959 first = 0;
960 if (size == 0) {
961 /* Last buffer in frame. */
962 bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
963 s->isr |= FTGMAC100_INT_RPKT_BUF;
964 } else {
965 s->isr |= FTGMAC100_INT_RPKT_FIFO;
966 }
967 ftgmac100_write_bd(&bd, addr);
968 if (bd.des0 & s->rxdes0_edorr) {
969 addr = s->rx_ring;
970 } else {
971 addr += sizeof(FTGMAC100Desc);
972 }
973 }
974 s->rx_descriptor = addr;
975
976 ftgmac100_update_irq(s);
977 return len;
978}
979
980static const MemoryRegionOps ftgmac100_ops = {
981 .read = ftgmac100_read,
982 .write = ftgmac100_write,
983 .valid.min_access_size = 4,
984 .valid.max_access_size = 4,
985 .endianness = DEVICE_LITTLE_ENDIAN,
986};
987
988static void ftgmac100_cleanup(NetClientState *nc)
989{
990 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
991
992 s->nic = NULL;
993}
994
995static NetClientInfo net_ftgmac100_info = {
996 .type = NET_CLIENT_DRIVER_NIC,
997 .size = sizeof(NICState),
998 .can_receive = ftgmac100_can_receive,
999 .receive = ftgmac100_receive,
1000 .cleanup = ftgmac100_cleanup,
1001 .link_status_changed = ftgmac100_set_link,
1002};
1003
1004static void ftgmac100_realize(DeviceState *dev, Error **errp)
1005{
1006 FTGMAC100State *s = FTGMAC100(dev);
1007 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1008
1009 if (s->aspeed) {
1010 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
1011 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
1012 } else {
1013 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
1014 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
1015 }
1016
1017 memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
1018 TYPE_FTGMAC100, 0x2000);
1019 sysbus_init_mmio(sbd, &s->iomem);
1020 sysbus_init_irq(sbd, &s->irq);
1021 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1022
1023 s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
1024 object_get_typename(OBJECT(dev)), DEVICE(dev)->id,
1025 s);
1026 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1027}
1028
1029static const VMStateDescription vmstate_ftgmac100 = {
1030 .name = TYPE_FTGMAC100,
1031 .version_id = 1,
1032 .minimum_version_id = 1,
1033 .fields = (VMStateField[]) {
1034 VMSTATE_UINT32(irq_state, FTGMAC100State),
1035 VMSTATE_UINT32(isr, FTGMAC100State),
1036 VMSTATE_UINT32(ier, FTGMAC100State),
1037 VMSTATE_UINT32(rx_enabled, FTGMAC100State),
1038 VMSTATE_UINT32(rx_ring, FTGMAC100State),
1039 VMSTATE_UINT32(rbsr, FTGMAC100State),
1040 VMSTATE_UINT32(tx_ring, FTGMAC100State),
1041 VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
1042 VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
1043 VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
1044 VMSTATE_UINT32(itc, FTGMAC100State),
1045 VMSTATE_UINT32(aptcr, FTGMAC100State),
1046 VMSTATE_UINT32(dblac, FTGMAC100State),
1047 VMSTATE_UINT32(revr, FTGMAC100State),
1048 VMSTATE_UINT32(fear1, FTGMAC100State),
1049 VMSTATE_UINT32(tpafcr, FTGMAC100State),
1050 VMSTATE_UINT32(maccr, FTGMAC100State),
1051 VMSTATE_UINT32(phycr, FTGMAC100State),
1052 VMSTATE_UINT32(phydata, FTGMAC100State),
1053 VMSTATE_UINT32(fcr, FTGMAC100State),
1054 VMSTATE_UINT32(phy_status, FTGMAC100State),
1055 VMSTATE_UINT32(phy_control, FTGMAC100State),
1056 VMSTATE_UINT32(phy_advertise, FTGMAC100State),
1057 VMSTATE_UINT32(phy_int, FTGMAC100State),
1058 VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
1059 VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
1060 VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
1061 VMSTATE_END_OF_LIST()
1062 }
1063};
1064
1065static Property ftgmac100_properties[] = {
1066 DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
1067 DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
1068 DEFINE_PROP_END_OF_LIST(),
1069};
1070
1071static void ftgmac100_class_init(ObjectClass *klass, void *data)
1072{
1073 DeviceClass *dc = DEVICE_CLASS(klass);
1074
1075 dc->vmsd = &vmstate_ftgmac100;
1076 dc->reset = ftgmac100_reset;
1077 dc->props = ftgmac100_properties;
1078 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1079 dc->realize = ftgmac100_realize;
1080 dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
1081}
1082
1083static const TypeInfo ftgmac100_info = {
1084 .name = TYPE_FTGMAC100,
1085 .parent = TYPE_SYS_BUS_DEVICE,
1086 .instance_size = sizeof(FTGMAC100State),
1087 .class_init = ftgmac100_class_init,
1088};
1089
1090static void ftgmac100_register_types(void)
1091{
1092 type_register_static(&ftgmac100_info);
1093}
1094
1095type_init(ftgmac100_register_types)
1096