1/*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "qemu/osdep.h"
26#include "cpu.h"
27#include "hw/irq.h"
28#include "hw/ppc/ppc.h"
29#include "hw/ppc/ppc_e500.h"
30#include "qemu/timer.h"
31#include "sysemu/cpus.h"
32#include "qemu/log.h"
33#include "qemu/main-loop.h"
34#include "qemu/error-report.h"
35#include "sysemu/kvm.h"
36#include "sysemu/runstate.h"
37#include "kvm_ppc.h"
38#include "migration/vmstate.h"
39#include "trace.h"
40
41//#define PPC_DEBUG_IRQ
42//#define PPC_DEBUG_TB
43
44#ifdef PPC_DEBUG_IRQ
45# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46#else
47# define LOG_IRQ(...) do { } while (0)
48#endif
49
50
51#ifdef PPC_DEBUG_TB
52# define LOG_TB(...) qemu_log(__VA_ARGS__)
53#else
54# define LOG_TB(...) do { } while (0)
55#endif
56
57static void cpu_ppc_tb_stop (CPUPPCState *env);
58static void cpu_ppc_tb_start (CPUPPCState *env);
59
60void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61{
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
66
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
71 }
72
73 old_pending = env->pending_interrupts;
74
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82 }
83 }
84
85 if (old_pending != env->pending_interrupts) {
86 kvmppc_set_interrupt(cpu, n_IRQ, level);
87 }
88
89
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
93
94 if (locked) {
95 qemu_mutex_unlock_iothread();
96 }
97}
98
99/* PowerPC 6xx / 7xx internal IRQ controller */
100static void ppc6xx_set_irq(void *opaque, int pin, int level)
101{
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
105
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
112
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
122 }
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
126 __func__, level);
127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128 break;
129 case PPC6xx_INPUT_SMI:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132 __func__, level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134 break;
135 case PPC6xx_INPUT_MCP:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
139 */
140 if (cur_level == 1 && level == 0) {
141 LOG_IRQ("%s: raise machine check state\n",
142 __func__);
143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144 }
145 break;
146 case PPC6xx_INPUT_CKSTP_IN:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
150 if (level) {
151 LOG_IRQ("%s: stop the CPU\n", __func__);
152 cs->halted = 1;
153 }
154 break;
155 case PPC6xx_INPUT_HRESET:
156 /* Level sensitive - active low */
157 if (level) {
158 LOG_IRQ("%s: reset the CPU\n", __func__);
159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160 }
161 break;
162 case PPC6xx_INPUT_SRESET:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164 __func__, level);
165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166 break;
167 default:
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170 return;
171 }
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
176 }
177}
178
179void ppc6xx_irq_init(PowerPCCPU *cpu)
180{
181 CPUPPCState *env = &cpu->env;
182
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184 PPC6xx_INPUT_NB);
185}
186
187#if defined(TARGET_PPC64)
188/* PowerPC 970 internal IRQ controller */
189static void ppc970_set_irq(void *opaque, int pin, int level)
190{
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
193 int cur_level;
194
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196 env, pin, level);
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200 CPUState *cs = CPU(cpu);
201
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
206 __func__, level);
207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212 level);
213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
219 */
220 if (cur_level == 1 && level == 0) {
221 LOG_IRQ("%s: raise machine check state\n",
222 __func__);
223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224 }
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
230 LOG_IRQ("%s: stop the CPU\n", __func__);
231 cs->halted = 1;
232 } else {
233 LOG_IRQ("%s: restart the CPU\n", __func__);
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
236 }
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242 }
243 break;
244 case PPC970_INPUT_SRESET:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246 __func__, level);
247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248 break;
249 case PPC970_INPUT_TBEN:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251 level);
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257 return;
258 }
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
263 }
264}
265
266void ppc970_irq_init(PowerPCCPU *cpu)
267{
268 CPUPPCState *env = &cpu->env;
269
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271 PPC970_INPUT_NB);
272}
273
274/* POWER7 internal IRQ controller */
275static void power7_set_irq(void *opaque, int pin, int level)
276{
277 PowerPCCPU *cpu = opaque;
278 CPUPPCState *env = &cpu->env;
279
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281 env, pin, level);
282
283 switch (pin) {
284 case POWER7_INPUT_INT:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
287 __func__, level);
288 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289 break;
290 default:
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293 return;
294 }
295 if (level) {
296 env->irq_input_state |= 1 << pin;
297 } else {
298 env->irq_input_state &= ~(1 << pin);
299 }
300}
301
302void ppcPOWER7_irq_init(PowerPCCPU *cpu)
303{
304 CPUPPCState *env = &cpu->env;
305
306 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
307 POWER7_INPUT_NB);
308}
309
310/* POWER9 internal IRQ controller */
311static void power9_set_irq(void *opaque, int pin, int level)
312{
313 PowerPCCPU *cpu = opaque;
314 CPUPPCState *env = &cpu->env;
315
316 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317 env, pin, level);
318
319 switch (pin) {
320 case POWER9_INPUT_INT:
321 /* Level sensitive - active high */
322 LOG_IRQ("%s: set the external IRQ state to %d\n",
323 __func__, level);
324 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325 break;
326 case POWER9_INPUT_HINT:
327 /* Level sensitive - active high */
328 LOG_IRQ("%s: set the external IRQ state to %d\n",
329 __func__, level);
330 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331 break;
332 default:
333 /* Unknown pin - do nothing */
334 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335 return;
336 }
337 if (level) {
338 env->irq_input_state |= 1 << pin;
339 } else {
340 env->irq_input_state &= ~(1 << pin);
341 }
342}
343
344void ppcPOWER9_irq_init(PowerPCCPU *cpu)
345{
346 CPUPPCState *env = &cpu->env;
347
348 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349 POWER9_INPUT_NB);
350}
351#endif /* defined(TARGET_PPC64) */
352
353void ppc40x_core_reset(PowerPCCPU *cpu)
354{
355 CPUPPCState *env = &cpu->env;
356 target_ulong dbsr;
357
358 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360 dbsr = env->spr[SPR_40x_DBSR];
361 dbsr &= ~0x00000300;
362 dbsr |= 0x00000100;
363 env->spr[SPR_40x_DBSR] = dbsr;
364}
365
366void ppc40x_chip_reset(PowerPCCPU *cpu)
367{
368 CPUPPCState *env = &cpu->env;
369 target_ulong dbsr;
370
371 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373 /* XXX: TODO reset all internal peripherals */
374 dbsr = env->spr[SPR_40x_DBSR];
375 dbsr &= ~0x00000300;
376 dbsr |= 0x00000200;
377 env->spr[SPR_40x_DBSR] = dbsr;
378}
379
380void ppc40x_system_reset(PowerPCCPU *cpu)
381{
382 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
384}
385
386void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
387{
388 PowerPCCPU *cpu = env_archcpu(env);
389
390 switch ((val >> 28) & 0x3) {
391 case 0x0:
392 /* No action */
393 break;
394 case 0x1:
395 /* Core reset */
396 ppc40x_core_reset(cpu);
397 break;
398 case 0x2:
399 /* Chip reset */
400 ppc40x_chip_reset(cpu);
401 break;
402 case 0x3:
403 /* System reset */
404 ppc40x_system_reset(cpu);
405 break;
406 }
407}
408
409/* PowerPC 40x internal IRQ controller */
410static void ppc40x_set_irq(void *opaque, int pin, int level)
411{
412 PowerPCCPU *cpu = opaque;
413 CPUPPCState *env = &cpu->env;
414 int cur_level;
415
416 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
417 env, pin, level);
418 cur_level = (env->irq_input_state >> pin) & 1;
419 /* Don't generate spurious events */
420 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
421 CPUState *cs = CPU(cpu);
422
423 switch (pin) {
424 case PPC40x_INPUT_RESET_SYS:
425 if (level) {
426 LOG_IRQ("%s: reset the PowerPC system\n",
427 __func__);
428 ppc40x_system_reset(cpu);
429 }
430 break;
431 case PPC40x_INPUT_RESET_CHIP:
432 if (level) {
433 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
434 ppc40x_chip_reset(cpu);
435 }
436 break;
437 case PPC40x_INPUT_RESET_CORE:
438 /* XXX: TODO: update DBSR[MRR] */
439 if (level) {
440 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
441 ppc40x_core_reset(cpu);
442 }
443 break;
444 case PPC40x_INPUT_CINT:
445 /* Level sensitive - active high */
446 LOG_IRQ("%s: set the critical IRQ state to %d\n",
447 __func__, level);
448 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
449 break;
450 case PPC40x_INPUT_INT:
451 /* Level sensitive - active high */
452 LOG_IRQ("%s: set the external IRQ state to %d\n",
453 __func__, level);
454 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
455 break;
456 case PPC40x_INPUT_HALT:
457 /* Level sensitive - active low */
458 if (level) {
459 LOG_IRQ("%s: stop the CPU\n", __func__);
460 cs->halted = 1;
461 } else {
462 LOG_IRQ("%s: restart the CPU\n", __func__);
463 cs->halted = 0;
464 qemu_cpu_kick(cs);
465 }
466 break;
467 case PPC40x_INPUT_DEBUG:
468 /* Level sensitive - active high */
469 LOG_IRQ("%s: set the debug pin state to %d\n",
470 __func__, level);
471 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
472 break;
473 default:
474 /* Unknown pin - do nothing */
475 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
476 return;
477 }
478 if (level)
479 env->irq_input_state |= 1 << pin;
480 else
481 env->irq_input_state &= ~(1 << pin);
482 }
483}
484
485void ppc40x_irq_init(PowerPCCPU *cpu)
486{
487 CPUPPCState *env = &cpu->env;
488
489 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
490 cpu, PPC40x_INPUT_NB);
491}
492
493/* PowerPC E500 internal IRQ controller */
494static void ppce500_set_irq(void *opaque, int pin, int level)
495{
496 PowerPCCPU *cpu = opaque;
497 CPUPPCState *env = &cpu->env;
498 int cur_level;
499
500 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501 env, pin, level);
502 cur_level = (env->irq_input_state >> pin) & 1;
503 /* Don't generate spurious events */
504 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505 switch (pin) {
506 case PPCE500_INPUT_MCK:
507 if (level) {
508 LOG_IRQ("%s: reset the PowerPC system\n",
509 __func__);
510 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
511 }
512 break;
513 case PPCE500_INPUT_RESET_CORE:
514 if (level) {
515 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
516 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
517 }
518 break;
519 case PPCE500_INPUT_CINT:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the critical IRQ state to %d\n",
522 __func__, level);
523 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
524 break;
525 case PPCE500_INPUT_INT:
526 /* Level sensitive - active high */
527 LOG_IRQ("%s: set the core IRQ state to %d\n",
528 __func__, level);
529 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
530 break;
531 case PPCE500_INPUT_DEBUG:
532 /* Level sensitive - active high */
533 LOG_IRQ("%s: set the debug pin state to %d\n",
534 __func__, level);
535 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
536 break;
537 default:
538 /* Unknown pin - do nothing */
539 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540 return;
541 }
542 if (level)
543 env->irq_input_state |= 1 << pin;
544 else
545 env->irq_input_state &= ~(1 << pin);
546 }
547}
548
549void ppce500_irq_init(PowerPCCPU *cpu)
550{
551 CPUPPCState *env = &cpu->env;
552
553 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
554 cpu, PPCE500_INPUT_NB);
555}
556
557/* Enable or Disable the E500 EPR capability */
558void ppce500_set_mpic_proxy(bool enabled)
559{
560 CPUState *cs;
561
562 CPU_FOREACH(cs) {
563 PowerPCCPU *cpu = POWERPC_CPU(cs);
564
565 cpu->env.mpic_proxy = enabled;
566 if (kvm_enabled()) {
567 kvmppc_set_mpic_proxy(cpu, enabled);
568 }
569 }
570}
571
572/*****************************************************************************/
573/* PowerPC time base and decrementer emulation */
574
575uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
576{
577 /* TB time in tb periods */
578 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
579}
580
581uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
582{
583 ppc_tb_t *tb_env = env->tb_env;
584 uint64_t tb;
585
586 if (kvm_enabled()) {
587 return env->spr[SPR_TBL];
588 }
589
590 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592
593 return tb;
594}
595
596static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
597{
598 ppc_tb_t *tb_env = env->tb_env;
599 uint64_t tb;
600
601 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
602 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
603
604 return tb >> 32;
605}
606
607uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
608{
609 if (kvm_enabled()) {
610 return env->spr[SPR_TBU];
611 }
612
613 return _cpu_ppc_load_tbu(env);
614}
615
616static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
617 int64_t *tb_offsetp, uint64_t value)
618{
619 *tb_offsetp = value -
620 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
621
622 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
623 __func__, value, *tb_offsetp);
624}
625
626void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
627{
628 ppc_tb_t *tb_env = env->tb_env;
629 uint64_t tb;
630
631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632 tb &= 0xFFFFFFFF00000000ULL;
633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634 &tb_env->tb_offset, tb | (uint64_t)value);
635}
636
637static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
638{
639 ppc_tb_t *tb_env = env->tb_env;
640 uint64_t tb;
641
642 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
643 tb &= 0x00000000FFFFFFFFULL;
644 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
646}
647
648void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
649{
650 _cpu_ppc_store_tbu(env, value);
651}
652
653uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
654{
655 ppc_tb_t *tb_env = env->tb_env;
656 uint64_t tb;
657
658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660
661 return tb;
662}
663
664uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
665{
666 ppc_tb_t *tb_env = env->tb_env;
667 uint64_t tb;
668
669 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
671
672 return tb >> 32;
673}
674
675void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
676{
677 ppc_tb_t *tb_env = env->tb_env;
678 uint64_t tb;
679
680 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681 tb &= 0xFFFFFFFF00000000ULL;
682 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683 &tb_env->atb_offset, tb | (uint64_t)value);
684}
685
686void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
687{
688 ppc_tb_t *tb_env = env->tb_env;
689 uint64_t tb;
690
691 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
692 tb &= 0x00000000FFFFFFFFULL;
693 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
694 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
695}
696
697static void cpu_ppc_tb_stop (CPUPPCState *env)
698{
699 ppc_tb_t *tb_env = env->tb_env;
700 uint64_t tb, atb, vmclk;
701
702 /* If the time base is already frozen, do nothing */
703 if (tb_env->tb_freq != 0) {
704 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705 /* Get the time base */
706 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707 /* Get the alternate time base */
708 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709 /* Store the time base value (ie compute the current offset) */
710 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711 /* Store the alternate time base value (compute the current offset) */
712 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713 /* Set the time base frequency to zero */
714 tb_env->tb_freq = 0;
715 /* Now, the time bases are frozen to tb_offset / atb_offset value */
716 }
717}
718
719static void cpu_ppc_tb_start (CPUPPCState *env)
720{
721 ppc_tb_t *tb_env = env->tb_env;
722 uint64_t tb, atb, vmclk;
723
724 /* If the time base is not frozen, do nothing */
725 if (tb_env->tb_freq == 0) {
726 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
727 /* Get the time base from tb_offset */
728 tb = tb_env->tb_offset;
729 /* Get the alternate time base from atb_offset */
730 atb = tb_env->atb_offset;
731 /* Restore the tb frequency from the decrementer frequency */
732 tb_env->tb_freq = tb_env->decr_freq;
733 /* Store the time base value */
734 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735 /* Store the alternate time base value */
736 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737 }
738}
739
740bool ppc_decr_clear_on_delivery(CPUPPCState *env)
741{
742 ppc_tb_t *tb_env = env->tb_env;
743 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
745}
746
747static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
748{
749 ppc_tb_t *tb_env = env->tb_env;
750 int64_t decr, diff;
751
752 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
753 if (diff >= 0) {
754 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
755 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
756 decr = 0;
757 } else {
758 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759 }
760 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
761
762 return decr;
763}
764
765target_ulong cpu_ppc_load_decr(CPUPPCState *env)
766{
767 ppc_tb_t *tb_env = env->tb_env;
768 uint64_t decr;
769
770 if (kvm_enabled()) {
771 return env->spr[SPR_DECR];
772 }
773
774 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
775
776 /*
777 * If large decrementer is enabled then the decrementer is signed extened
778 * to 64 bits, otherwise it is a 32 bit value.
779 */
780 if (env->spr[SPR_LPCR] & LPCR_LD) {
781 return decr;
782 }
783 return (uint32_t) decr;
784}
785
786target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
787{
788 PowerPCCPU *cpu = env_archcpu(env);
789 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
790 ppc_tb_t *tb_env = env->tb_env;
791 uint64_t hdecr;
792
793 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
794
795 /*
796 * If we have a large decrementer (POWER9 or later) then hdecr is sign
797 * extended to 64 bits, otherwise it is 32 bits.
798 */
799 if (pcc->lrg_decr_bits > 32) {
800 return hdecr;
801 }
802 return (uint32_t) hdecr;
803}
804
805uint64_t cpu_ppc_load_purr (CPUPPCState *env)
806{
807 ppc_tb_t *tb_env = env->tb_env;
808 uint64_t diff;
809
810 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
811
812 return tb_env->purr_load +
813 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
814}
815
816/* When decrementer expires,
817 * all we need to do is generate or queue a CPU exception
818 */
819static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
820{
821 /* Raise it */
822 LOG_TB("raise decrementer exception\n");
823 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
824}
825
826static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
827{
828 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
829}
830
831static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
832{
833 CPUPPCState *env = &cpu->env;
834
835 /* Raise it */
836 LOG_TB("raise hv decrementer exception\n");
837
838 /* The architecture specifies that we don't deliver HDEC
839 * interrupts in a PM state. Not only they don't cause a
840 * wakeup but they also get effectively discarded.
841 */
842 if (!env->resume_as_sreset) {
843 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
844 }
845}
846
847static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
848{
849 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
850}
851
852static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
853 QEMUTimer *timer,
854 void (*raise_excp)(void *),
855 void (*lower_excp)(PowerPCCPU *),
856 target_ulong decr, target_ulong value,
857 int nr_bits)
858{
859 CPUPPCState *env = &cpu->env;
860 ppc_tb_t *tb_env = env->tb_env;
861 uint64_t now, next;
862 bool negative;
863
864 /* Truncate value to decr_width and sign extend for simplicity */
865 value &= ((1ULL << nr_bits) - 1);
866 negative = !!(value & (1ULL << (nr_bits - 1)));
867 if (negative) {
868 value |= (0xFFFFFFFFULL << nr_bits);
869 }
870
871 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
872 decr, value);
873
874 if (kvm_enabled()) {
875 /* KVM handles decrementer exceptions, we don't need our own timer */
876 return;
877 }
878
879 /*
880 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
881 * interrupt.
882 *
883 * If we get a really small DEC value, we can assume that by the time we
884 * handled it we should inject an interrupt already.
885 *
886 * On MSB level based DEC implementations the MSB always means the interrupt
887 * is pending, so raise it on those.
888 *
889 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
890 * an edge interrupt, so raise it here too.
891 */
892 if ((value < 3) ||
893 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
894 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
895 && !(decr & (1ULL << (nr_bits - 1))))) {
896 (*raise_excp)(cpu);
897 return;
898 }
899
900 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
901 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
902 (*lower_excp)(cpu);
903 }
904
905 /* Calculate the next timer event */
906 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
907 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
908 *nextp = next;
909
910 /* Adjust timer */
911 timer_mod(timer, next);
912}
913
914static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
915 target_ulong value, int nr_bits)
916{
917 ppc_tb_t *tb_env = cpu->env.tb_env;
918
919 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
920 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
921 value, nr_bits);
922}
923
924void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
925{
926 PowerPCCPU *cpu = env_archcpu(env);
927 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
928 int nr_bits = 32;
929
930 if (env->spr[SPR_LPCR] & LPCR_LD) {
931 nr_bits = pcc->lrg_decr_bits;
932 }
933
934 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
935}
936
937static void cpu_ppc_decr_cb(void *opaque)
938{
939 PowerPCCPU *cpu = opaque;
940
941 cpu_ppc_decr_excp(cpu);
942}
943
944static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
945 target_ulong value, int nr_bits)
946{
947 ppc_tb_t *tb_env = cpu->env.tb_env;
948
949 if (tb_env->hdecr_timer != NULL) {
950 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
951 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
952 hdecr, value, nr_bits);
953 }
954}
955
956void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
957{
958 PowerPCCPU *cpu = env_archcpu(env);
959 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
960
961 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
962 pcc->lrg_decr_bits);
963}
964
965static void cpu_ppc_hdecr_cb(void *opaque)
966{
967 PowerPCCPU *cpu = opaque;
968
969 cpu_ppc_hdecr_excp(cpu);
970}
971
972static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
973{
974 ppc_tb_t *tb_env = cpu->env.tb_env;
975
976 tb_env->purr_load = value;
977 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
978}
979
980static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
981{
982 CPUPPCState *env = opaque;
983 PowerPCCPU *cpu = env_archcpu(env);
984 ppc_tb_t *tb_env = env->tb_env;
985
986 tb_env->tb_freq = freq;
987 tb_env->decr_freq = freq;
988 /* There is a bug in Linux 2.4 kernels:
989 * if a decrementer exception is pending when it enables msr_ee at startup,
990 * it's not ready to handle it...
991 */
992 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
995}
996
997static void timebase_save(PPCTimebase *tb)
998{
999 uint64_t ticks = cpu_get_host_ticks();
1000 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1001
1002 if (!first_ppc_cpu->env.tb_env) {
1003 error_report("No timebase object");
1004 return;
1005 }
1006
1007 /* not used anymore, we keep it for compatibility */
1008 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1009 /*
1010 * tb_offset is only expected to be changed by QEMU so
1011 * there is no need to update it from KVM here
1012 */
1013 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1014
1015 tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1016}
1017
1018static void timebase_load(PPCTimebase *tb)
1019{
1020 CPUState *cpu;
1021 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1022 int64_t tb_off_adj, tb_off;
1023 unsigned long freq;
1024
1025 if (!first_ppc_cpu->env.tb_env) {
1026 error_report("No timebase object");
1027 return;
1028 }
1029
1030 freq = first_ppc_cpu->env.tb_env->tb_freq;
1031
1032 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1033
1034 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1035 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1036 (tb_off_adj - tb_off) / freq);
1037
1038 /* Set new offset to all CPUs */
1039 CPU_FOREACH(cpu) {
1040 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1041 pcpu->env.tb_env->tb_offset = tb_off_adj;
1042 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1043 }
1044}
1045
1046void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1047 RunState state)
1048{
1049 PPCTimebase *tb = opaque;
1050
1051 if (running) {
1052 timebase_load(tb);
1053 } else {
1054 timebase_save(tb);
1055 }
1056}
1057
1058/*
1059 * When migrating a running guest, read the clock just
1060 * before migration, so that the guest clock counts
1061 * during the events between:
1062 *
1063 * * vm_stop()
1064 * *
1065 * * pre_save()
1066 *
1067 * This reduces clock difference on migration from 5s
1068 * to 0.1s (when max_downtime == 5s), because sending the
1069 * final pages of memory (which happens between vm_stop()
1070 * and pre_save()) takes max_downtime.
1071 */
1072static int timebase_pre_save(void *opaque)
1073{
1074 PPCTimebase *tb = opaque;
1075
1076 /* guest_timebase won't be overridden in case of paused guest */
1077 if (!tb->runstate_paused) {
1078 timebase_save(tb);
1079 }
1080
1081 return 0;
1082}
1083
1084const VMStateDescription vmstate_ppc_timebase = {
1085 .name = "timebase",
1086 .version_id = 1,
1087 .minimum_version_id = 1,
1088 .minimum_version_id_old = 1,
1089 .pre_save = timebase_pre_save,
1090 .fields = (VMStateField []) {
1091 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1092 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1093 VMSTATE_END_OF_LIST()
1094 },
1095};
1096
1097/* Set up (once) timebase frequency (in Hz) */
1098clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1099{
1100 PowerPCCPU *cpu = env_archcpu(env);
1101 ppc_tb_t *tb_env;
1102
1103 tb_env = g_malloc0(sizeof(ppc_tb_t));
1104 env->tb_env = tb_env;
1105 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1106 if (is_book3s_arch2x(env)) {
1107 /* All Book3S 64bit CPUs implement level based DEC logic */
1108 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1109 }
1110 /* Create new timer */
1111 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1112 if (env->has_hv_mode) {
1113 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1114 cpu);
1115 } else {
1116 tb_env->hdecr_timer = NULL;
1117 }
1118 cpu_ppc_set_tb_clk(env, freq);
1119
1120 return &cpu_ppc_set_tb_clk;
1121}
1122
1123/* Specific helpers for POWER & PowerPC 601 RTC */
1124void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1125{
1126 _cpu_ppc_store_tbu(env, value);
1127}
1128
1129uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1130{
1131 return _cpu_ppc_load_tbu(env);
1132}
1133
1134void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1135{
1136 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1137}
1138
1139uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1140{
1141 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1142}
1143
1144/*****************************************************************************/
1145/* PowerPC 40x timers */
1146
1147/* PIT, FIT & WDT */
1148typedef struct ppc40x_timer_t ppc40x_timer_t;
1149struct ppc40x_timer_t {
1150 uint64_t pit_reload; /* PIT auto-reload value */
1151 uint64_t fit_next; /* Tick for next FIT interrupt */
1152 QEMUTimer *fit_timer;
1153 uint64_t wdt_next; /* Tick for next WDT interrupt */
1154 QEMUTimer *wdt_timer;
1155
1156 /* 405 have the PIT, 440 have a DECR. */
1157 unsigned int decr_excp;
1158};
1159
1160/* Fixed interval timer */
1161static void cpu_4xx_fit_cb (void *opaque)
1162{
1163 PowerPCCPU *cpu;
1164 CPUPPCState *env;
1165 ppc_tb_t *tb_env;
1166 ppc40x_timer_t *ppc40x_timer;
1167 uint64_t now, next;
1168
1169 env = opaque;
1170 cpu = env_archcpu(env);
1171 tb_env = env->tb_env;
1172 ppc40x_timer = tb_env->opaque;
1173 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1174 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1175 case 0:
1176 next = 1 << 9;
1177 break;
1178 case 1:
1179 next = 1 << 13;
1180 break;
1181 case 2:
1182 next = 1 << 17;
1183 break;
1184 case 3:
1185 next = 1 << 21;
1186 break;
1187 default:
1188 /* Cannot occur, but makes gcc happy */
1189 return;
1190 }
1191 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1192 if (next == now)
1193 next++;
1194 timer_mod(ppc40x_timer->fit_timer, next);
1195 env->spr[SPR_40x_TSR] |= 1 << 26;
1196 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1197 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1198 }
1199 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1200 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1201 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1202}
1203
1204/* Programmable interval timer */
1205static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1206{
1207 ppc40x_timer_t *ppc40x_timer;
1208 uint64_t now, next;
1209
1210 ppc40x_timer = tb_env->opaque;
1211 if (ppc40x_timer->pit_reload <= 1 ||
1212 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1213 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1214 /* Stop PIT */
1215 LOG_TB("%s: stop PIT\n", __func__);
1216 timer_del(tb_env->decr_timer);
1217 } else {
1218 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1219 __func__, ppc40x_timer->pit_reload);
1220 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1221 next = now + muldiv64(ppc40x_timer->pit_reload,
1222 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1223 if (is_excp)
1224 next += tb_env->decr_next - now;
1225 if (next == now)
1226 next++;
1227 timer_mod(tb_env->decr_timer, next);
1228 tb_env->decr_next = next;
1229 }
1230}
1231
1232static void cpu_4xx_pit_cb (void *opaque)
1233{
1234 PowerPCCPU *cpu;
1235 CPUPPCState *env;
1236 ppc_tb_t *tb_env;
1237 ppc40x_timer_t *ppc40x_timer;
1238
1239 env = opaque;
1240 cpu = env_archcpu(env);
1241 tb_env = env->tb_env;
1242 ppc40x_timer = tb_env->opaque;
1243 env->spr[SPR_40x_TSR] |= 1 << 27;
1244 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1245 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1246 }
1247 start_stop_pit(env, tb_env, 1);
1248 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1249 "%016" PRIx64 "\n", __func__,
1250 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1251 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1252 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1253 ppc40x_timer->pit_reload);
1254}
1255
1256/* Watchdog timer */
1257static void cpu_4xx_wdt_cb (void *opaque)
1258{
1259 PowerPCCPU *cpu;
1260 CPUPPCState *env;
1261 ppc_tb_t *tb_env;
1262 ppc40x_timer_t *ppc40x_timer;
1263 uint64_t now, next;
1264
1265 env = opaque;
1266 cpu = env_archcpu(env);
1267 tb_env = env->tb_env;
1268 ppc40x_timer = tb_env->opaque;
1269 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1270 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1271 case 0:
1272 next = 1 << 17;
1273 break;
1274 case 1:
1275 next = 1 << 21;
1276 break;
1277 case 2:
1278 next = 1 << 25;
1279 break;
1280 case 3:
1281 next = 1 << 29;
1282 break;
1283 default:
1284 /* Cannot occur, but makes gcc happy */
1285 return;
1286 }
1287 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1288 if (next == now)
1289 next++;
1290 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1291 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1292 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1293 case 0x0:
1294 case 0x1:
1295 timer_mod(ppc40x_timer->wdt_timer, next);
1296 ppc40x_timer->wdt_next = next;
1297 env->spr[SPR_40x_TSR] |= 1U << 31;
1298 break;
1299 case 0x2:
1300 timer_mod(ppc40x_timer->wdt_timer, next);
1301 ppc40x_timer->wdt_next = next;
1302 env->spr[SPR_40x_TSR] |= 1 << 30;
1303 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1304 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1305 }
1306 break;
1307 case 0x3:
1308 env->spr[SPR_40x_TSR] &= ~0x30000000;
1309 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1310 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1311 case 0x0:
1312 /* No reset */
1313 break;
1314 case 0x1: /* Core reset */
1315 ppc40x_core_reset(cpu);
1316 break;
1317 case 0x2: /* Chip reset */
1318 ppc40x_chip_reset(cpu);
1319 break;
1320 case 0x3: /* System reset */
1321 ppc40x_system_reset(cpu);
1322 break;
1323 }
1324 }
1325}
1326
1327void store_40x_pit (CPUPPCState *env, target_ulong val)
1328{
1329 ppc_tb_t *tb_env;
1330 ppc40x_timer_t *ppc40x_timer;
1331
1332 tb_env = env->tb_env;
1333 ppc40x_timer = tb_env->opaque;
1334 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1335 ppc40x_timer->pit_reload = val;
1336 start_stop_pit(env, tb_env, 0);
1337}
1338
1339target_ulong load_40x_pit (CPUPPCState *env)
1340{
1341 return cpu_ppc_load_decr(env);
1342}
1343
1344static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1345{
1346 CPUPPCState *env = opaque;
1347 ppc_tb_t *tb_env = env->tb_env;
1348
1349 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1350 freq);
1351 tb_env->tb_freq = freq;
1352 tb_env->decr_freq = freq;
1353 /* XXX: we should also update all timers */
1354}
1355
1356clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1357 unsigned int decr_excp)
1358{
1359 ppc_tb_t *tb_env;
1360 ppc40x_timer_t *ppc40x_timer;
1361
1362 tb_env = g_malloc0(sizeof(ppc_tb_t));
1363 env->tb_env = tb_env;
1364 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1365 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1366 tb_env->tb_freq = freq;
1367 tb_env->decr_freq = freq;
1368 tb_env->opaque = ppc40x_timer;
1369 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1370 if (ppc40x_timer != NULL) {
1371 /* We use decr timer for PIT */
1372 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1373 ppc40x_timer->fit_timer =
1374 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1375 ppc40x_timer->wdt_timer =
1376 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1377 ppc40x_timer->decr_excp = decr_excp;
1378 }
1379
1380 return &ppc_40x_set_tb_clk;
1381}
1382
1383/*****************************************************************************/
1384/* Embedded PowerPC Device Control Registers */
1385typedef struct ppc_dcrn_t ppc_dcrn_t;
1386struct ppc_dcrn_t {
1387 dcr_read_cb dcr_read;
1388 dcr_write_cb dcr_write;
1389 void *opaque;
1390};
1391
1392/* XXX: on 460, DCR addresses are 32 bits wide,
1393 * using DCRIPR to get the 22 upper bits of the DCR address
1394 */
1395#define DCRN_NB 1024
1396struct ppc_dcr_t {
1397 ppc_dcrn_t dcrn[DCRN_NB];
1398 int (*read_error)(int dcrn);
1399 int (*write_error)(int dcrn);
1400};
1401
1402int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1403{
1404 ppc_dcrn_t *dcr;
1405
1406 if (dcrn < 0 || dcrn >= DCRN_NB)
1407 goto error;
1408 dcr = &dcr_env->dcrn[dcrn];
1409 if (dcr->dcr_read == NULL)
1410 goto error;
1411 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1412
1413 return 0;
1414
1415 error:
1416 if (dcr_env->read_error != NULL)
1417 return (*dcr_env->read_error)(dcrn);
1418
1419 return -1;
1420}
1421
1422int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1423{
1424 ppc_dcrn_t *dcr;
1425
1426 if (dcrn < 0 || dcrn >= DCRN_NB)
1427 goto error;
1428 dcr = &dcr_env->dcrn[dcrn];
1429 if (dcr->dcr_write == NULL)
1430 goto error;
1431 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1432
1433 return 0;
1434
1435 error:
1436 if (dcr_env->write_error != NULL)
1437 return (*dcr_env->write_error)(dcrn);
1438
1439 return -1;
1440}
1441
1442int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1443 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1444{
1445 ppc_dcr_t *dcr_env;
1446 ppc_dcrn_t *dcr;
1447
1448 dcr_env = env->dcr_env;
1449 if (dcr_env == NULL)
1450 return -1;
1451 if (dcrn < 0 || dcrn >= DCRN_NB)
1452 return -1;
1453 dcr = &dcr_env->dcrn[dcrn];
1454 if (dcr->opaque != NULL ||
1455 dcr->dcr_read != NULL ||
1456 dcr->dcr_write != NULL)
1457 return -1;
1458 dcr->opaque = opaque;
1459 dcr->dcr_read = dcr_read;
1460 dcr->dcr_write = dcr_write;
1461
1462 return 0;
1463}
1464
1465int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1466 int (*write_error)(int dcrn))
1467{
1468 ppc_dcr_t *dcr_env;
1469
1470 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1471 dcr_env->read_error = read_error;
1472 dcr_env->write_error = write_error;
1473 env->dcr_env = dcr_env;
1474
1475 return 0;
1476}
1477
1478/*****************************************************************************/
1479/* Debug port */
1480void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1481{
1482 addr &= 0xF;
1483 switch (addr) {
1484 case 0:
1485 printf("%c", val);
1486 break;
1487 case 1:
1488 printf("\n");
1489 fflush(stdout);
1490 break;
1491 case 2:
1492 printf("Set loglevel to %04" PRIx32 "\n", val);
1493 qemu_set_log(val | 0x100);
1494 break;
1495 }
1496}
1497
1498PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1499{
1500 CPUState *cs;
1501
1502 CPU_FOREACH(cs) {
1503 PowerPCCPU *cpu = POWERPC_CPU(cs);
1504 CPUPPCState *env = &cpu->env;
1505
1506 if (env->spr_cb[SPR_PIR].default_value == pir) {
1507 return cpu;
1508 }
1509 }
1510
1511 return NULL;
1512}
1513