| 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
| 2 | #include "qemu/osdep.h" |
| 3 | #include <sys/param.h> |
| 4 | |
| 5 | #include <sys/resource.h> |
| 6 | #include <sys/shm.h> |
| 7 | |
| 8 | #include "qemu.h" |
| 9 | #include "disas/disas.h" |
| 10 | #include "qemu/path.h" |
| 11 | #include "qemu/queue.h" |
| 12 | #include "qemu/guest-random.h" |
| 13 | |
| 14 | #ifdef _ARCH_PPC64 |
| 15 | #undef ARCH_DLINFO |
| 16 | #undef ELF_PLATFORM |
| 17 | #undef ELF_HWCAP |
| 18 | #undef ELF_HWCAP2 |
| 19 | #undef ELF_CLASS |
| 20 | #undef ELF_DATA |
| 21 | #undef ELF_ARCH |
| 22 | #endif |
| 23 | |
| 24 | #define ELF_OSABI ELFOSABI_SYSV |
| 25 | |
| 26 | /* from personality.h */ |
| 27 | |
| 28 | /* |
| 29 | * Flags for bug emulation. |
| 30 | * |
| 31 | * These occupy the top three bytes. |
| 32 | */ |
| 33 | enum { |
| 34 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
| 35 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to |
| 36 | descriptors (signal handling) */ |
| 37 | MMAP_PAGE_ZERO = 0x0100000, |
| 38 | ADDR_COMPAT_LAYOUT = 0x0200000, |
| 39 | READ_IMPLIES_EXEC = 0x0400000, |
| 40 | ADDR_LIMIT_32BIT = 0x0800000, |
| 41 | SHORT_INODE = 0x1000000, |
| 42 | WHOLE_SECONDS = 0x2000000, |
| 43 | STICKY_TIMEOUTS = 0x4000000, |
| 44 | ADDR_LIMIT_3GB = 0x8000000, |
| 45 | }; |
| 46 | |
| 47 | /* |
| 48 | * Personality types. |
| 49 | * |
| 50 | * These go in the low byte. Avoid using the top bit, it will |
| 51 | * conflict with error returns. |
| 52 | */ |
| 53 | enum { |
| 54 | PER_LINUX = 0x0000, |
| 55 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, |
| 56 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, |
| 57 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| 58 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, |
| 59 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, |
| 60 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, |
| 61 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, |
| 62 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, |
| 63 | PER_BSD = 0x0006, |
| 64 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, |
| 65 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, |
| 66 | PER_LINUX32 = 0x0008, |
| 67 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, |
| 68 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ |
| 69 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ |
| 70 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ |
| 71 | PER_RISCOS = 0x000c, |
| 72 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, |
| 73 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| 74 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ |
| 75 | PER_HPUX = 0x0010, |
| 76 | PER_MASK = 0x00ff, |
| 77 | }; |
| 78 | |
| 79 | /* |
| 80 | * Return the base personality without flags. |
| 81 | */ |
| 82 | #define personality(pers) (pers & PER_MASK) |
| 83 | |
| 84 | int info_is_fdpic(struct image_info *info) |
| 85 | { |
| 86 | return info->personality == PER_LINUX_FDPIC; |
| 87 | } |
| 88 | |
| 89 | /* this flag is uneffective under linux too, should be deleted */ |
| 90 | #ifndef MAP_DENYWRITE |
| 91 | #define MAP_DENYWRITE 0 |
| 92 | #endif |
| 93 | |
| 94 | /* should probably go in elf.h */ |
| 95 | #ifndef ELIBBAD |
| 96 | #define ELIBBAD 80 |
| 97 | #endif |
| 98 | |
| 99 | #ifdef TARGET_WORDS_BIGENDIAN |
| 100 | #define ELF_DATA ELFDATA2MSB |
| 101 | #else |
| 102 | #define ELF_DATA ELFDATA2LSB |
| 103 | #endif |
| 104 | |
| 105 | #ifdef TARGET_ABI_MIPSN32 |
| 106 | typedef abi_ullong target_elf_greg_t; |
| 107 | #define tswapreg(ptr) tswap64(ptr) |
| 108 | #else |
| 109 | typedef abi_ulong target_elf_greg_t; |
| 110 | #define tswapreg(ptr) tswapal(ptr) |
| 111 | #endif |
| 112 | |
| 113 | #ifdef USE_UID16 |
| 114 | typedef abi_ushort target_uid_t; |
| 115 | typedef abi_ushort target_gid_t; |
| 116 | #else |
| 117 | typedef abi_uint target_uid_t; |
| 118 | typedef abi_uint target_gid_t; |
| 119 | #endif |
| 120 | typedef abi_int target_pid_t; |
| 121 | |
| 122 | #ifdef TARGET_I386 |
| 123 | |
| 124 | #define ELF_PLATFORM get_elf_platform() |
| 125 | |
| 126 | static const char *get_elf_platform(void) |
| 127 | { |
| 128 | static char elf_platform[] = "i386" ; |
| 129 | int family = object_property_get_int(OBJECT(thread_cpu), "family" , NULL); |
| 130 | if (family > 6) |
| 131 | family = 6; |
| 132 | if (family >= 3) |
| 133 | elf_platform[1] = '0' + family; |
| 134 | return elf_platform; |
| 135 | } |
| 136 | |
| 137 | #define ELF_HWCAP get_elf_hwcap() |
| 138 | |
| 139 | static uint32_t get_elf_hwcap(void) |
| 140 | { |
| 141 | X86CPU *cpu = X86_CPU(thread_cpu); |
| 142 | |
| 143 | return cpu->env.features[FEAT_1_EDX]; |
| 144 | } |
| 145 | |
| 146 | #ifdef TARGET_X86_64 |
| 147 | #define ELF_START_MMAP 0x2aaaaab000ULL |
| 148 | |
| 149 | #define ELF_CLASS ELFCLASS64 |
| 150 | #define ELF_ARCH EM_X86_64 |
| 151 | |
| 152 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 153 | { |
| 154 | regs->rax = 0; |
| 155 | regs->rsp = infop->start_stack; |
| 156 | regs->rip = infop->entry; |
| 157 | } |
| 158 | |
| 159 | #define ELF_NREG 27 |
| 160 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 161 | |
| 162 | /* |
| 163 | * Note that ELF_NREG should be 29 as there should be place for |
| 164 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
| 165 | * those. |
| 166 | * |
| 167 | * See linux kernel: arch/x86/include/asm/elf.h |
| 168 | */ |
| 169 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| 170 | { |
| 171 | (*regs)[0] = env->regs[15]; |
| 172 | (*regs)[1] = env->regs[14]; |
| 173 | (*regs)[2] = env->regs[13]; |
| 174 | (*regs)[3] = env->regs[12]; |
| 175 | (*regs)[4] = env->regs[R_EBP]; |
| 176 | (*regs)[5] = env->regs[R_EBX]; |
| 177 | (*regs)[6] = env->regs[11]; |
| 178 | (*regs)[7] = env->regs[10]; |
| 179 | (*regs)[8] = env->regs[9]; |
| 180 | (*regs)[9] = env->regs[8]; |
| 181 | (*regs)[10] = env->regs[R_EAX]; |
| 182 | (*regs)[11] = env->regs[R_ECX]; |
| 183 | (*regs)[12] = env->regs[R_EDX]; |
| 184 | (*regs)[13] = env->regs[R_ESI]; |
| 185 | (*regs)[14] = env->regs[R_EDI]; |
| 186 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ |
| 187 | (*regs)[16] = env->eip; |
| 188 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; |
| 189 | (*regs)[18] = env->eflags; |
| 190 | (*regs)[19] = env->regs[R_ESP]; |
| 191 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; |
| 192 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; |
| 193 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; |
| 194 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; |
| 195 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; |
| 196 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; |
| 197 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; |
| 198 | } |
| 199 | |
| 200 | #else |
| 201 | |
| 202 | #define ELF_START_MMAP 0x80000000 |
| 203 | |
| 204 | /* |
| 205 | * This is used to ensure we don't load something for the wrong architecture. |
| 206 | */ |
| 207 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) |
| 208 | |
| 209 | /* |
| 210 | * These are used to set parameters in the core dumps. |
| 211 | */ |
| 212 | #define ELF_CLASS ELFCLASS32 |
| 213 | #define ELF_ARCH EM_386 |
| 214 | |
| 215 | static inline void init_thread(struct target_pt_regs *regs, |
| 216 | struct image_info *infop) |
| 217 | { |
| 218 | regs->esp = infop->start_stack; |
| 219 | regs->eip = infop->entry; |
| 220 | |
| 221 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
| 222 | starts %edx contains a pointer to a function which might be |
| 223 | registered using `atexit'. This provides a mean for the |
| 224 | dynamic linker to call DT_FINI functions for shared libraries |
| 225 | that have been loaded before the code runs. |
| 226 | |
| 227 | A value of 0 tells we have no such handler. */ |
| 228 | regs->edx = 0; |
| 229 | } |
| 230 | |
| 231 | #define ELF_NREG 17 |
| 232 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 233 | |
| 234 | /* |
| 235 | * Note that ELF_NREG should be 19 as there should be place for |
| 236 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
| 237 | * those. |
| 238 | * |
| 239 | * See linux kernel: arch/x86/include/asm/elf.h |
| 240 | */ |
| 241 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| 242 | { |
| 243 | (*regs)[0] = env->regs[R_EBX]; |
| 244 | (*regs)[1] = env->regs[R_ECX]; |
| 245 | (*regs)[2] = env->regs[R_EDX]; |
| 246 | (*regs)[3] = env->regs[R_ESI]; |
| 247 | (*regs)[4] = env->regs[R_EDI]; |
| 248 | (*regs)[5] = env->regs[R_EBP]; |
| 249 | (*regs)[6] = env->regs[R_EAX]; |
| 250 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; |
| 251 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; |
| 252 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; |
| 253 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; |
| 254 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ |
| 255 | (*regs)[12] = env->eip; |
| 256 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; |
| 257 | (*regs)[14] = env->eflags; |
| 258 | (*regs)[15] = env->regs[R_ESP]; |
| 259 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; |
| 260 | } |
| 261 | #endif |
| 262 | |
| 263 | #define USE_ELF_CORE_DUMP |
| 264 | #define ELF_EXEC_PAGESIZE 4096 |
| 265 | |
| 266 | #endif |
| 267 | |
| 268 | #ifdef TARGET_ARM |
| 269 | |
| 270 | #ifndef TARGET_AARCH64 |
| 271 | /* 32 bit ARM definitions */ |
| 272 | |
| 273 | #define ELF_START_MMAP 0x80000000 |
| 274 | |
| 275 | #define ELF_ARCH EM_ARM |
| 276 | #define ELF_CLASS ELFCLASS32 |
| 277 | |
| 278 | static inline void init_thread(struct target_pt_regs *regs, |
| 279 | struct image_info *infop) |
| 280 | { |
| 281 | abi_long stack = infop->start_stack; |
| 282 | memset(regs, 0, sizeof(*regs)); |
| 283 | |
| 284 | regs->uregs[16] = ARM_CPU_MODE_USR; |
| 285 | if (infop->entry & 1) { |
| 286 | regs->uregs[16] |= CPSR_T; |
| 287 | } |
| 288 | regs->uregs[15] = infop->entry & 0xfffffffe; |
| 289 | regs->uregs[13] = infop->start_stack; |
| 290 | /* FIXME - what to for failure of get_user()? */ |
| 291 | get_user_ual(regs->uregs[2], stack + 8); /* envp */ |
| 292 | get_user_ual(regs->uregs[1], stack + 4); /* envp */ |
| 293 | /* XXX: it seems that r0 is zeroed after ! */ |
| 294 | regs->uregs[0] = 0; |
| 295 | /* For uClinux PIC binaries. */ |
| 296 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
| 297 | regs->uregs[10] = infop->start_data; |
| 298 | |
| 299 | /* Support ARM FDPIC. */ |
| 300 | if (info_is_fdpic(infop)) { |
| 301 | /* As described in the ABI document, r7 points to the loadmap info |
| 302 | * prepared by the kernel. If an interpreter is needed, r8 points |
| 303 | * to the interpreter loadmap and r9 points to the interpreter |
| 304 | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and |
| 305 | * r9 points to the main program PT_DYNAMIC info. |
| 306 | */ |
| 307 | regs->uregs[7] = infop->loadmap_addr; |
| 308 | if (infop->interpreter_loadmap_addr) { |
| 309 | /* Executable is dynamically loaded. */ |
| 310 | regs->uregs[8] = infop->interpreter_loadmap_addr; |
| 311 | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; |
| 312 | } else { |
| 313 | regs->uregs[8] = 0; |
| 314 | regs->uregs[9] = infop->pt_dynamic_addr; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | #define ELF_NREG 18 |
| 320 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 321 | |
| 322 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
| 323 | { |
| 324 | (*regs)[0] = tswapreg(env->regs[0]); |
| 325 | (*regs)[1] = tswapreg(env->regs[1]); |
| 326 | (*regs)[2] = tswapreg(env->regs[2]); |
| 327 | (*regs)[3] = tswapreg(env->regs[3]); |
| 328 | (*regs)[4] = tswapreg(env->regs[4]); |
| 329 | (*regs)[5] = tswapreg(env->regs[5]); |
| 330 | (*regs)[6] = tswapreg(env->regs[6]); |
| 331 | (*regs)[7] = tswapreg(env->regs[7]); |
| 332 | (*regs)[8] = tswapreg(env->regs[8]); |
| 333 | (*regs)[9] = tswapreg(env->regs[9]); |
| 334 | (*regs)[10] = tswapreg(env->regs[10]); |
| 335 | (*regs)[11] = tswapreg(env->regs[11]); |
| 336 | (*regs)[12] = tswapreg(env->regs[12]); |
| 337 | (*regs)[13] = tswapreg(env->regs[13]); |
| 338 | (*regs)[14] = tswapreg(env->regs[14]); |
| 339 | (*regs)[15] = tswapreg(env->regs[15]); |
| 340 | |
| 341 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); |
| 342 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ |
| 343 | } |
| 344 | |
| 345 | #define USE_ELF_CORE_DUMP |
| 346 | #define ELF_EXEC_PAGESIZE 4096 |
| 347 | |
| 348 | enum |
| 349 | { |
| 350 | ARM_HWCAP_ARM_SWP = 1 << 0, |
| 351 | ARM_HWCAP_ARM_HALF = 1 << 1, |
| 352 | ARM_HWCAP_ARM_THUMB = 1 << 2, |
| 353 | ARM_HWCAP_ARM_26BIT = 1 << 3, |
| 354 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
| 355 | ARM_HWCAP_ARM_FPA = 1 << 5, |
| 356 | ARM_HWCAP_ARM_VFP = 1 << 6, |
| 357 | ARM_HWCAP_ARM_EDSP = 1 << 7, |
| 358 | ARM_HWCAP_ARM_JAVA = 1 << 8, |
| 359 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, |
| 360 | ARM_HWCAP_ARM_CRUNCH = 1 << 10, |
| 361 | ARM_HWCAP_ARM_THUMBEE = 1 << 11, |
| 362 | ARM_HWCAP_ARM_NEON = 1 << 12, |
| 363 | ARM_HWCAP_ARM_VFPv3 = 1 << 13, |
| 364 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, |
| 365 | ARM_HWCAP_ARM_TLS = 1 << 15, |
| 366 | ARM_HWCAP_ARM_VFPv4 = 1 << 16, |
| 367 | ARM_HWCAP_ARM_IDIVA = 1 << 17, |
| 368 | ARM_HWCAP_ARM_IDIVT = 1 << 18, |
| 369 | ARM_HWCAP_ARM_VFPD32 = 1 << 19, |
| 370 | ARM_HWCAP_ARM_LPAE = 1 << 20, |
| 371 | ARM_HWCAP_ARM_EVTSTRM = 1 << 21, |
| 372 | }; |
| 373 | |
| 374 | enum { |
| 375 | ARM_HWCAP2_ARM_AES = 1 << 0, |
| 376 | ARM_HWCAP2_ARM_PMULL = 1 << 1, |
| 377 | ARM_HWCAP2_ARM_SHA1 = 1 << 2, |
| 378 | ARM_HWCAP2_ARM_SHA2 = 1 << 3, |
| 379 | ARM_HWCAP2_ARM_CRC32 = 1 << 4, |
| 380 | }; |
| 381 | |
| 382 | /* The commpage only exists for 32 bit kernels */ |
| 383 | |
| 384 | /* Return 1 if the proposed guest space is suitable for the guest. |
| 385 | * Return 0 if the proposed guest space isn't suitable, but another |
| 386 | * address space should be tried. |
| 387 | * Return -1 if there is no way the proposed guest space can be |
| 388 | * valid regardless of the base. |
| 389 | * The guest code may leave a page mapped and populate it if the |
| 390 | * address is suitable. |
| 391 | */ |
| 392 | static int init_guest_commpage(unsigned long guest_base, |
| 393 | unsigned long guest_size) |
| 394 | { |
| 395 | unsigned long real_start, test_page_addr; |
| 396 | |
| 397 | /* We need to check that we can force a fault on access to the |
| 398 | * commpage at 0xffff0fxx |
| 399 | */ |
| 400 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); |
| 401 | |
| 402 | /* If the commpage lies within the already allocated guest space, |
| 403 | * then there is no way we can allocate it. |
| 404 | * |
| 405 | * You may be thinking that that this check is redundant because |
| 406 | * we already validated the guest size against MAX_RESERVED_VA; |
| 407 | * but if qemu_host_page_mask is unusually large, then |
| 408 | * test_page_addr may be lower. |
| 409 | */ |
| 410 | if (test_page_addr >= guest_base |
| 411 | && test_page_addr < (guest_base + guest_size)) { |
| 412 | return -1; |
| 413 | } |
| 414 | |
| 415 | /* Note it needs to be writeable to let us initialise it */ |
| 416 | real_start = (unsigned long) |
| 417 | mmap((void *)test_page_addr, qemu_host_page_size, |
| 418 | PROT_READ | PROT_WRITE, |
| 419 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| 420 | |
| 421 | /* If we can't map it then try another address */ |
| 422 | if (real_start == -1ul) { |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | if (real_start != test_page_addr) { |
| 427 | /* OS didn't put the page where we asked - unmap and reject */ |
| 428 | munmap((void *)real_start, qemu_host_page_size); |
| 429 | return 0; |
| 430 | } |
| 431 | |
| 432 | /* Leave the page mapped |
| 433 | * Populate it (mmap should have left it all 0'd) |
| 434 | */ |
| 435 | |
| 436 | /* Kernel helper versions */ |
| 437 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); |
| 438 | |
| 439 | /* Now it's populated make it RO */ |
| 440 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { |
| 441 | perror("Protecting guest commpage" ); |
| 442 | exit(-1); |
| 443 | } |
| 444 | |
| 445 | return 1; /* All good */ |
| 446 | } |
| 447 | |
| 448 | #define ELF_HWCAP get_elf_hwcap() |
| 449 | #define ELF_HWCAP2 get_elf_hwcap2() |
| 450 | |
| 451 | static uint32_t get_elf_hwcap(void) |
| 452 | { |
| 453 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
| 454 | uint32_t hwcaps = 0; |
| 455 | |
| 456 | hwcaps |= ARM_HWCAP_ARM_SWP; |
| 457 | hwcaps |= ARM_HWCAP_ARM_HALF; |
| 458 | hwcaps |= ARM_HWCAP_ARM_THUMB; |
| 459 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; |
| 460 | |
| 461 | /* probe for the extra features */ |
| 462 | #define GET_FEATURE(feat, hwcap) \ |
| 463 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
| 464 | |
| 465 | #define GET_FEATURE_ID(feat, hwcap) \ |
| 466 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) |
| 467 | |
| 468 | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ |
| 469 | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); |
| 470 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); |
| 471 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); |
| 472 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); |
| 473 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); |
| 474 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); |
| 475 | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); |
| 476 | GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); |
| 477 | GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); |
| 478 | GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); |
| 479 | /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. |
| 480 | * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of |
| 481 | * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated |
| 482 | * to our VFP_FP16 feature bit. |
| 483 | */ |
| 484 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); |
| 485 | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); |
| 486 | |
| 487 | return hwcaps; |
| 488 | } |
| 489 | |
| 490 | static uint32_t get_elf_hwcap2(void) |
| 491 | { |
| 492 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
| 493 | uint32_t hwcaps = 0; |
| 494 | |
| 495 | GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); |
| 496 | GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); |
| 497 | GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); |
| 498 | GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); |
| 499 | GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); |
| 500 | return hwcaps; |
| 501 | } |
| 502 | |
| 503 | #undef GET_FEATURE |
| 504 | #undef GET_FEATURE_ID |
| 505 | |
| 506 | #define ELF_PLATFORM get_elf_platform() |
| 507 | |
| 508 | static const char *get_elf_platform(void) |
| 509 | { |
| 510 | CPUARMState *env = thread_cpu->env_ptr; |
| 511 | |
| 512 | #ifdef TARGET_WORDS_BIGENDIAN |
| 513 | # define END "b" |
| 514 | #else |
| 515 | # define END "l" |
| 516 | #endif |
| 517 | |
| 518 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 519 | return "v8" END; |
| 520 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 521 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 522 | return "v7m" END; |
| 523 | } else { |
| 524 | return "v7" END; |
| 525 | } |
| 526 | } else if (arm_feature(env, ARM_FEATURE_V6)) { |
| 527 | return "v6" END; |
| 528 | } else if (arm_feature(env, ARM_FEATURE_V5)) { |
| 529 | return "v5" END; |
| 530 | } else { |
| 531 | return "v4" END; |
| 532 | } |
| 533 | |
| 534 | #undef END |
| 535 | } |
| 536 | |
| 537 | #else |
| 538 | /* 64 bit ARM definitions */ |
| 539 | #define ELF_START_MMAP 0x80000000 |
| 540 | |
| 541 | #define ELF_ARCH EM_AARCH64 |
| 542 | #define ELF_CLASS ELFCLASS64 |
| 543 | #ifdef TARGET_WORDS_BIGENDIAN |
| 544 | # define ELF_PLATFORM "aarch64_be" |
| 545 | #else |
| 546 | # define ELF_PLATFORM "aarch64" |
| 547 | #endif |
| 548 | |
| 549 | static inline void init_thread(struct target_pt_regs *regs, |
| 550 | struct image_info *infop) |
| 551 | { |
| 552 | abi_long stack = infop->start_stack; |
| 553 | memset(regs, 0, sizeof(*regs)); |
| 554 | |
| 555 | regs->pc = infop->entry & ~0x3ULL; |
| 556 | regs->sp = stack; |
| 557 | } |
| 558 | |
| 559 | #define ELF_NREG 34 |
| 560 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 561 | |
| 562 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 563 | const CPUARMState *env) |
| 564 | { |
| 565 | int i; |
| 566 | |
| 567 | for (i = 0; i < 32; i++) { |
| 568 | (*regs)[i] = tswapreg(env->xregs[i]); |
| 569 | } |
| 570 | (*regs)[32] = tswapreg(env->pc); |
| 571 | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); |
| 572 | } |
| 573 | |
| 574 | #define USE_ELF_CORE_DUMP |
| 575 | #define ELF_EXEC_PAGESIZE 4096 |
| 576 | |
| 577 | enum { |
| 578 | ARM_HWCAP_A64_FP = 1 << 0, |
| 579 | ARM_HWCAP_A64_ASIMD = 1 << 1, |
| 580 | ARM_HWCAP_A64_EVTSTRM = 1 << 2, |
| 581 | ARM_HWCAP_A64_AES = 1 << 3, |
| 582 | ARM_HWCAP_A64_PMULL = 1 << 4, |
| 583 | ARM_HWCAP_A64_SHA1 = 1 << 5, |
| 584 | ARM_HWCAP_A64_SHA2 = 1 << 6, |
| 585 | ARM_HWCAP_A64_CRC32 = 1 << 7, |
| 586 | ARM_HWCAP_A64_ATOMICS = 1 << 8, |
| 587 | ARM_HWCAP_A64_FPHP = 1 << 9, |
| 588 | ARM_HWCAP_A64_ASIMDHP = 1 << 10, |
| 589 | ARM_HWCAP_A64_CPUID = 1 << 11, |
| 590 | ARM_HWCAP_A64_ASIMDRDM = 1 << 12, |
| 591 | ARM_HWCAP_A64_JSCVT = 1 << 13, |
| 592 | ARM_HWCAP_A64_FCMA = 1 << 14, |
| 593 | ARM_HWCAP_A64_LRCPC = 1 << 15, |
| 594 | ARM_HWCAP_A64_DCPOP = 1 << 16, |
| 595 | ARM_HWCAP_A64_SHA3 = 1 << 17, |
| 596 | ARM_HWCAP_A64_SM3 = 1 << 18, |
| 597 | ARM_HWCAP_A64_SM4 = 1 << 19, |
| 598 | ARM_HWCAP_A64_ASIMDDP = 1 << 20, |
| 599 | ARM_HWCAP_A64_SHA512 = 1 << 21, |
| 600 | ARM_HWCAP_A64_SVE = 1 << 22, |
| 601 | ARM_HWCAP_A64_ASIMDFHM = 1 << 23, |
| 602 | ARM_HWCAP_A64_DIT = 1 << 24, |
| 603 | ARM_HWCAP_A64_USCAT = 1 << 25, |
| 604 | ARM_HWCAP_A64_ILRCPC = 1 << 26, |
| 605 | ARM_HWCAP_A64_FLAGM = 1 << 27, |
| 606 | ARM_HWCAP_A64_SSBS = 1 << 28, |
| 607 | ARM_HWCAP_A64_SB = 1 << 29, |
| 608 | ARM_HWCAP_A64_PACA = 1 << 30, |
| 609 | ARM_HWCAP_A64_PACG = 1UL << 31, |
| 610 | }; |
| 611 | |
| 612 | #define ELF_HWCAP get_elf_hwcap() |
| 613 | |
| 614 | static uint32_t get_elf_hwcap(void) |
| 615 | { |
| 616 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
| 617 | uint32_t hwcaps = 0; |
| 618 | |
| 619 | hwcaps |= ARM_HWCAP_A64_FP; |
| 620 | hwcaps |= ARM_HWCAP_A64_ASIMD; |
| 621 | hwcaps |= ARM_HWCAP_A64_CPUID; |
| 622 | |
| 623 | /* probe for the extra features */ |
| 624 | #define GET_FEATURE_ID(feat, hwcap) \ |
| 625 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) |
| 626 | |
| 627 | GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); |
| 628 | GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); |
| 629 | GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); |
| 630 | GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); |
| 631 | GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); |
| 632 | GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); |
| 633 | GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); |
| 634 | GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); |
| 635 | GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); |
| 636 | GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); |
| 637 | GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); |
| 638 | GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); |
| 639 | GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); |
| 640 | GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); |
| 641 | GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); |
| 642 | GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); |
| 643 | GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); |
| 644 | GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); |
| 645 | GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); |
| 646 | GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); |
| 647 | |
| 648 | #undef GET_FEATURE_ID |
| 649 | |
| 650 | return hwcaps; |
| 651 | } |
| 652 | |
| 653 | #endif /* not TARGET_AARCH64 */ |
| 654 | #endif /* TARGET_ARM */ |
| 655 | |
| 656 | #ifdef TARGET_SPARC |
| 657 | #ifdef TARGET_SPARC64 |
| 658 | |
| 659 | #define ELF_START_MMAP 0x80000000 |
| 660 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
| 661 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) |
| 662 | #ifndef TARGET_ABI32 |
| 663 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
| 664 | #else |
| 665 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) |
| 666 | #endif |
| 667 | |
| 668 | #define ELF_CLASS ELFCLASS64 |
| 669 | #define ELF_ARCH EM_SPARCV9 |
| 670 | |
| 671 | #define STACK_BIAS 2047 |
| 672 | |
| 673 | static inline void init_thread(struct target_pt_regs *regs, |
| 674 | struct image_info *infop) |
| 675 | { |
| 676 | #ifndef TARGET_ABI32 |
| 677 | regs->tstate = 0; |
| 678 | #endif |
| 679 | regs->pc = infop->entry; |
| 680 | regs->npc = regs->pc + 4; |
| 681 | regs->y = 0; |
| 682 | #ifdef TARGET_ABI32 |
| 683 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 684 | #else |
| 685 | if (personality(infop->personality) == PER_LINUX32) |
| 686 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 687 | else |
| 688 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; |
| 689 | #endif |
| 690 | } |
| 691 | |
| 692 | #else |
| 693 | #define ELF_START_MMAP 0x80000000 |
| 694 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
| 695 | | HWCAP_SPARC_MULDIV) |
| 696 | |
| 697 | #define ELF_CLASS ELFCLASS32 |
| 698 | #define ELF_ARCH EM_SPARC |
| 699 | |
| 700 | static inline void init_thread(struct target_pt_regs *regs, |
| 701 | struct image_info *infop) |
| 702 | { |
| 703 | regs->psr = 0; |
| 704 | regs->pc = infop->entry; |
| 705 | regs->npc = regs->pc + 4; |
| 706 | regs->y = 0; |
| 707 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 708 | } |
| 709 | |
| 710 | #endif |
| 711 | #endif |
| 712 | |
| 713 | #ifdef TARGET_PPC |
| 714 | |
| 715 | #define ELF_MACHINE PPC_ELF_MACHINE |
| 716 | #define ELF_START_MMAP 0x80000000 |
| 717 | |
| 718 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| 719 | |
| 720 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) |
| 721 | |
| 722 | #define ELF_CLASS ELFCLASS64 |
| 723 | |
| 724 | #else |
| 725 | |
| 726 | #define ELF_CLASS ELFCLASS32 |
| 727 | |
| 728 | #endif |
| 729 | |
| 730 | #define ELF_ARCH EM_PPC |
| 731 | |
| 732 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
| 733 | See arch/powerpc/include/asm/cputable.h. */ |
| 734 | enum { |
| 735 | QEMU_PPC_FEATURE_32 = 0x80000000, |
| 736 | QEMU_PPC_FEATURE_64 = 0x40000000, |
| 737 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, |
| 738 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, |
| 739 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, |
| 740 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, |
| 741 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, |
| 742 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, |
| 743 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, |
| 744 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, |
| 745 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, |
| 746 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, |
| 747 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, |
| 748 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, |
| 749 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, |
| 750 | QEMU_PPC_FEATURE_CELL = 0x00010000, |
| 751 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, |
| 752 | QEMU_PPC_FEATURE_SMT = 0x00004000, |
| 753 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, |
| 754 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, |
| 755 | QEMU_PPC_FEATURE_PA6T = 0x00000800, |
| 756 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, |
| 757 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, |
| 758 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, |
| 759 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, |
| 760 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, |
| 761 | |
| 762 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, |
| 763 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, |
| 764 | |
| 765 | /* Feature definitions in AT_HWCAP2. */ |
| 766 | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ |
| 767 | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ |
| 768 | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ |
| 769 | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ |
| 770 | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ |
| 771 | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ |
| 772 | QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, |
| 773 | QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, |
| 774 | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ |
| 775 | QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ |
| 776 | QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ |
| 777 | QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ |
| 778 | QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ |
| 779 | }; |
| 780 | |
| 781 | #define ELF_HWCAP get_elf_hwcap() |
| 782 | |
| 783 | static uint32_t get_elf_hwcap(void) |
| 784 | { |
| 785 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
| 786 | uint32_t features = 0; |
| 787 | |
| 788 | /* We don't have to be terribly complete here; the high points are |
| 789 | Altivec/FP/SPE support. Anything else is just a bonus. */ |
| 790 | #define GET_FEATURE(flag, feature) \ |
| 791 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
| 792 | #define GET_FEATURE2(flags, feature) \ |
| 793 | do { \ |
| 794 | if ((cpu->env.insns_flags2 & flags) == flags) { \ |
| 795 | features |= feature; \ |
| 796 | } \ |
| 797 | } while (0) |
| 798 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
| 799 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); |
| 800 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); |
| 801 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); |
| 802 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); |
| 803 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); |
| 804 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); |
| 805 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); |
| 806 | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); |
| 807 | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); |
| 808 | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | |
| 809 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), |
| 810 | QEMU_PPC_FEATURE_ARCH_2_06); |
| 811 | #undef GET_FEATURE |
| 812 | #undef GET_FEATURE2 |
| 813 | |
| 814 | return features; |
| 815 | } |
| 816 | |
| 817 | #define ELF_HWCAP2 get_elf_hwcap2() |
| 818 | |
| 819 | static uint32_t get_elf_hwcap2(void) |
| 820 | { |
| 821 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
| 822 | uint32_t features = 0; |
| 823 | |
| 824 | #define GET_FEATURE(flag, feature) \ |
| 825 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
| 826 | #define GET_FEATURE2(flag, feature) \ |
| 827 | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) |
| 828 | |
| 829 | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); |
| 830 | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); |
| 831 | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | |
| 832 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | |
| 833 | QEMU_PPC_FEATURE2_VEC_CRYPTO); |
| 834 | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | |
| 835 | QEMU_PPC_FEATURE2_DARN); |
| 836 | |
| 837 | #undef GET_FEATURE |
| 838 | #undef GET_FEATURE2 |
| 839 | |
| 840 | return features; |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * The requirements here are: |
| 845 | * - keep the final alignment of sp (sp & 0xf) |
| 846 | * - make sure the 32-bit value at the first 16 byte aligned position of |
| 847 | * AUXV is greater than 16 for glibc compatibility. |
| 848 | * AT_IGNOREPPC is used for that. |
| 849 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
| 850 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
| 851 | */ |
| 852 | #define DLINFO_ARCH_ITEMS 5 |
| 853 | #define ARCH_DLINFO \ |
| 854 | do { \ |
| 855 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ |
| 856 | /* \ |
| 857 | * Handle glibc compatibility: these magic entries must \ |
| 858 | * be at the lowest addresses in the final auxv. \ |
| 859 | */ \ |
| 860 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| 861 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| 862 | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ |
| 863 | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ |
| 864 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ |
| 865 | } while (0) |
| 866 | |
| 867 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
| 868 | { |
| 869 | _regs->gpr[1] = infop->start_stack; |
| 870 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| 871 | if (get_ppc64_abi(infop) < 2) { |
| 872 | uint64_t val; |
| 873 | get_user_u64(val, infop->entry + 8); |
| 874 | _regs->gpr[2] = val + infop->load_bias; |
| 875 | get_user_u64(val, infop->entry); |
| 876 | infop->entry = val + infop->load_bias; |
| 877 | } else { |
| 878 | _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ |
| 879 | } |
| 880 | #endif |
| 881 | _regs->nip = infop->entry; |
| 882 | } |
| 883 | |
| 884 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
| 885 | #define ELF_NREG 48 |
| 886 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 887 | |
| 888 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
| 889 | { |
| 890 | int i; |
| 891 | target_ulong ccr = 0; |
| 892 | |
| 893 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| 894 | (*regs)[i] = tswapreg(env->gpr[i]); |
| 895 | } |
| 896 | |
| 897 | (*regs)[32] = tswapreg(env->nip); |
| 898 | (*regs)[33] = tswapreg(env->msr); |
| 899 | (*regs)[35] = tswapreg(env->ctr); |
| 900 | (*regs)[36] = tswapreg(env->lr); |
| 901 | (*regs)[37] = tswapreg(env->xer); |
| 902 | |
| 903 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| 904 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| 905 | } |
| 906 | (*regs)[38] = tswapreg(ccr); |
| 907 | } |
| 908 | |
| 909 | #define USE_ELF_CORE_DUMP |
| 910 | #define ELF_EXEC_PAGESIZE 4096 |
| 911 | |
| 912 | #endif |
| 913 | |
| 914 | #ifdef TARGET_MIPS |
| 915 | |
| 916 | #define ELF_START_MMAP 0x80000000 |
| 917 | |
| 918 | #ifdef TARGET_MIPS64 |
| 919 | #define ELF_CLASS ELFCLASS64 |
| 920 | #else |
| 921 | #define ELF_CLASS ELFCLASS32 |
| 922 | #endif |
| 923 | #define ELF_ARCH EM_MIPS |
| 924 | |
| 925 | #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) |
| 926 | |
| 927 | static inline void init_thread(struct target_pt_regs *regs, |
| 928 | struct image_info *infop) |
| 929 | { |
| 930 | regs->cp0_status = 2 << CP0St_KSU; |
| 931 | regs->cp0_epc = infop->entry; |
| 932 | regs->regs[29] = infop->start_stack; |
| 933 | } |
| 934 | |
| 935 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
| 936 | #define ELF_NREG 45 |
| 937 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 938 | |
| 939 | /* See linux kernel: arch/mips/include/asm/reg.h. */ |
| 940 | enum { |
| 941 | #ifdef TARGET_MIPS64 |
| 942 | TARGET_EF_R0 = 0, |
| 943 | #else |
| 944 | TARGET_EF_R0 = 6, |
| 945 | #endif |
| 946 | TARGET_EF_R26 = TARGET_EF_R0 + 26, |
| 947 | TARGET_EF_R27 = TARGET_EF_R0 + 27, |
| 948 | TARGET_EF_LO = TARGET_EF_R0 + 32, |
| 949 | TARGET_EF_HI = TARGET_EF_R0 + 33, |
| 950 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, |
| 951 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, |
| 952 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, |
| 953 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 |
| 954 | }; |
| 955 | |
| 956 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| 957 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
| 958 | { |
| 959 | int i; |
| 960 | |
| 961 | for (i = 0; i < TARGET_EF_R0; i++) { |
| 962 | (*regs)[i] = 0; |
| 963 | } |
| 964 | (*regs)[TARGET_EF_R0] = 0; |
| 965 | |
| 966 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { |
| 967 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); |
| 968 | } |
| 969 | |
| 970 | (*regs)[TARGET_EF_R26] = 0; |
| 971 | (*regs)[TARGET_EF_R27] = 0; |
| 972 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); |
| 973 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); |
| 974 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); |
| 975 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); |
| 976 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); |
| 977 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); |
| 978 | } |
| 979 | |
| 980 | #define USE_ELF_CORE_DUMP |
| 981 | #define ELF_EXEC_PAGESIZE 4096 |
| 982 | |
| 983 | /* See arch/mips/include/uapi/asm/hwcap.h. */ |
| 984 | enum { |
| 985 | HWCAP_MIPS_R6 = (1 << 0), |
| 986 | HWCAP_MIPS_MSA = (1 << 1), |
| 987 | }; |
| 988 | |
| 989 | #define ELF_HWCAP get_elf_hwcap() |
| 990 | |
| 991 | static uint32_t get_elf_hwcap(void) |
| 992 | { |
| 993 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); |
| 994 | uint32_t hwcaps = 0; |
| 995 | |
| 996 | #define GET_FEATURE(flag, hwcap) \ |
| 997 | do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) |
| 998 | |
| 999 | GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); |
| 1000 | GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); |
| 1001 | |
| 1002 | #undef GET_FEATURE |
| 1003 | |
| 1004 | return hwcaps; |
| 1005 | } |
| 1006 | |
| 1007 | #endif /* TARGET_MIPS */ |
| 1008 | |
| 1009 | #ifdef TARGET_MICROBLAZE |
| 1010 | |
| 1011 | #define ELF_START_MMAP 0x80000000 |
| 1012 | |
| 1013 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
| 1014 | |
| 1015 | #define ELF_CLASS ELFCLASS32 |
| 1016 | #define ELF_ARCH EM_MICROBLAZE |
| 1017 | |
| 1018 | static inline void init_thread(struct target_pt_regs *regs, |
| 1019 | struct image_info *infop) |
| 1020 | { |
| 1021 | regs->pc = infop->entry; |
| 1022 | regs->r1 = infop->start_stack; |
| 1023 | |
| 1024 | } |
| 1025 | |
| 1026 | #define ELF_EXEC_PAGESIZE 4096 |
| 1027 | |
| 1028 | #define USE_ELF_CORE_DUMP |
| 1029 | #define ELF_NREG 38 |
| 1030 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1031 | |
| 1032 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| 1033 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
| 1034 | { |
| 1035 | int i, pos = 0; |
| 1036 | |
| 1037 | for (i = 0; i < 32; i++) { |
| 1038 | (*regs)[pos++] = tswapreg(env->regs[i]); |
| 1039 | } |
| 1040 | |
| 1041 | for (i = 0; i < 6; i++) { |
| 1042 | (*regs)[pos++] = tswapreg(env->sregs[i]); |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | #endif /* TARGET_MICROBLAZE */ |
| 1047 | |
| 1048 | #ifdef TARGET_NIOS2 |
| 1049 | |
| 1050 | #define ELF_START_MMAP 0x80000000 |
| 1051 | |
| 1052 | #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) |
| 1053 | |
| 1054 | #define ELF_CLASS ELFCLASS32 |
| 1055 | #define ELF_ARCH EM_ALTERA_NIOS2 |
| 1056 | |
| 1057 | static void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 1058 | { |
| 1059 | regs->ea = infop->entry; |
| 1060 | regs->sp = infop->start_stack; |
| 1061 | regs->estatus = 0x3; |
| 1062 | } |
| 1063 | |
| 1064 | #define ELF_EXEC_PAGESIZE 4096 |
| 1065 | |
| 1066 | #define USE_ELF_CORE_DUMP |
| 1067 | #define ELF_NREG 49 |
| 1068 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1069 | |
| 1070 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| 1071 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 1072 | const CPUNios2State *env) |
| 1073 | { |
| 1074 | int i; |
| 1075 | |
| 1076 | (*regs)[0] = -1; |
| 1077 | for (i = 1; i < 8; i++) /* r0-r7 */ |
| 1078 | (*regs)[i] = tswapreg(env->regs[i + 7]); |
| 1079 | |
| 1080 | for (i = 8; i < 16; i++) /* r8-r15 */ |
| 1081 | (*regs)[i] = tswapreg(env->regs[i - 8]); |
| 1082 | |
| 1083 | for (i = 16; i < 24; i++) /* r16-r23 */ |
| 1084 | (*regs)[i] = tswapreg(env->regs[i + 7]); |
| 1085 | (*regs)[24] = -1; /* R_ET */ |
| 1086 | (*regs)[25] = -1; /* R_BT */ |
| 1087 | (*regs)[26] = tswapreg(env->regs[R_GP]); |
| 1088 | (*regs)[27] = tswapreg(env->regs[R_SP]); |
| 1089 | (*regs)[28] = tswapreg(env->regs[R_FP]); |
| 1090 | (*regs)[29] = tswapreg(env->regs[R_EA]); |
| 1091 | (*regs)[30] = -1; /* R_SSTATUS */ |
| 1092 | (*regs)[31] = tswapreg(env->regs[R_RA]); |
| 1093 | |
| 1094 | (*regs)[32] = tswapreg(env->regs[R_PC]); |
| 1095 | |
| 1096 | (*regs)[33] = -1; /* R_STATUS */ |
| 1097 | (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); |
| 1098 | |
| 1099 | for (i = 35; i < 49; i++) /* ... */ |
| 1100 | (*regs)[i] = -1; |
| 1101 | } |
| 1102 | |
| 1103 | #endif /* TARGET_NIOS2 */ |
| 1104 | |
| 1105 | #ifdef TARGET_OPENRISC |
| 1106 | |
| 1107 | #define ELF_START_MMAP 0x08000000 |
| 1108 | |
| 1109 | #define ELF_ARCH EM_OPENRISC |
| 1110 | #define ELF_CLASS ELFCLASS32 |
| 1111 | #define ELF_DATA ELFDATA2MSB |
| 1112 | |
| 1113 | static inline void init_thread(struct target_pt_regs *regs, |
| 1114 | struct image_info *infop) |
| 1115 | { |
| 1116 | regs->pc = infop->entry; |
| 1117 | regs->gpr[1] = infop->start_stack; |
| 1118 | } |
| 1119 | |
| 1120 | #define USE_ELF_CORE_DUMP |
| 1121 | #define ELF_EXEC_PAGESIZE 8192 |
| 1122 | |
| 1123 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ |
| 1124 | #define ELF_NREG 34 /* gprs and pc, sr */ |
| 1125 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1126 | |
| 1127 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 1128 | const CPUOpenRISCState *env) |
| 1129 | { |
| 1130 | int i; |
| 1131 | |
| 1132 | for (i = 0; i < 32; i++) { |
| 1133 | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); |
| 1134 | } |
| 1135 | (*regs)[32] = tswapreg(env->pc); |
| 1136 | (*regs)[33] = tswapreg(cpu_get_sr(env)); |
| 1137 | } |
| 1138 | #define ELF_HWCAP 0 |
| 1139 | #define ELF_PLATFORM NULL |
| 1140 | |
| 1141 | #endif /* TARGET_OPENRISC */ |
| 1142 | |
| 1143 | #ifdef TARGET_SH4 |
| 1144 | |
| 1145 | #define ELF_START_MMAP 0x80000000 |
| 1146 | |
| 1147 | #define ELF_CLASS ELFCLASS32 |
| 1148 | #define ELF_ARCH EM_SH |
| 1149 | |
| 1150 | static inline void init_thread(struct target_pt_regs *regs, |
| 1151 | struct image_info *infop) |
| 1152 | { |
| 1153 | /* Check other registers XXXXX */ |
| 1154 | regs->pc = infop->entry; |
| 1155 | regs->regs[15] = infop->start_stack; |
| 1156 | } |
| 1157 | |
| 1158 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
| 1159 | #define ELF_NREG 23 |
| 1160 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1161 | |
| 1162 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ |
| 1163 | enum { |
| 1164 | TARGET_REG_PC = 16, |
| 1165 | TARGET_REG_PR = 17, |
| 1166 | TARGET_REG_SR = 18, |
| 1167 | TARGET_REG_GBR = 19, |
| 1168 | TARGET_REG_MACH = 20, |
| 1169 | TARGET_REG_MACL = 21, |
| 1170 | TARGET_REG_SYSCALL = 22 |
| 1171 | }; |
| 1172 | |
| 1173 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 1174 | const CPUSH4State *env) |
| 1175 | { |
| 1176 | int i; |
| 1177 | |
| 1178 | for (i = 0; i < 16; i++) { |
| 1179 | (*regs)[i] = tswapreg(env->gregs[i]); |
| 1180 | } |
| 1181 | |
| 1182 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
| 1183 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); |
| 1184 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); |
| 1185 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); |
| 1186 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); |
| 1187 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); |
| 1188 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
| 1189 | } |
| 1190 | |
| 1191 | #define USE_ELF_CORE_DUMP |
| 1192 | #define ELF_EXEC_PAGESIZE 4096 |
| 1193 | |
| 1194 | enum { |
| 1195 | SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ |
| 1196 | SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ |
| 1197 | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ |
| 1198 | SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ |
| 1199 | SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ |
| 1200 | SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ |
| 1201 | SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ |
| 1202 | SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ |
| 1203 | SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ |
| 1204 | SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ |
| 1205 | }; |
| 1206 | |
| 1207 | #define ELF_HWCAP get_elf_hwcap() |
| 1208 | |
| 1209 | static uint32_t get_elf_hwcap(void) |
| 1210 | { |
| 1211 | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); |
| 1212 | uint32_t hwcap = 0; |
| 1213 | |
| 1214 | hwcap |= SH_CPU_HAS_FPU; |
| 1215 | |
| 1216 | if (cpu->env.features & SH_FEATURE_SH4A) { |
| 1217 | hwcap |= SH_CPU_HAS_LLSC; |
| 1218 | } |
| 1219 | |
| 1220 | return hwcap; |
| 1221 | } |
| 1222 | |
| 1223 | #endif |
| 1224 | |
| 1225 | #ifdef TARGET_CRIS |
| 1226 | |
| 1227 | #define ELF_START_MMAP 0x80000000 |
| 1228 | |
| 1229 | #define ELF_CLASS ELFCLASS32 |
| 1230 | #define ELF_ARCH EM_CRIS |
| 1231 | |
| 1232 | static inline void init_thread(struct target_pt_regs *regs, |
| 1233 | struct image_info *infop) |
| 1234 | { |
| 1235 | regs->erp = infop->entry; |
| 1236 | } |
| 1237 | |
| 1238 | #define ELF_EXEC_PAGESIZE 8192 |
| 1239 | |
| 1240 | #endif |
| 1241 | |
| 1242 | #ifdef TARGET_M68K |
| 1243 | |
| 1244 | #define ELF_START_MMAP 0x80000000 |
| 1245 | |
| 1246 | #define ELF_CLASS ELFCLASS32 |
| 1247 | #define ELF_ARCH EM_68K |
| 1248 | |
| 1249 | /* ??? Does this need to do anything? |
| 1250 | #define ELF_PLAT_INIT(_r) */ |
| 1251 | |
| 1252 | static inline void init_thread(struct target_pt_regs *regs, |
| 1253 | struct image_info *infop) |
| 1254 | { |
| 1255 | regs->usp = infop->start_stack; |
| 1256 | regs->sr = 0; |
| 1257 | regs->pc = infop->entry; |
| 1258 | } |
| 1259 | |
| 1260 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
| 1261 | #define ELF_NREG 20 |
| 1262 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1263 | |
| 1264 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
| 1265 | { |
| 1266 | (*regs)[0] = tswapreg(env->dregs[1]); |
| 1267 | (*regs)[1] = tswapreg(env->dregs[2]); |
| 1268 | (*regs)[2] = tswapreg(env->dregs[3]); |
| 1269 | (*regs)[3] = tswapreg(env->dregs[4]); |
| 1270 | (*regs)[4] = tswapreg(env->dregs[5]); |
| 1271 | (*regs)[5] = tswapreg(env->dregs[6]); |
| 1272 | (*regs)[6] = tswapreg(env->dregs[7]); |
| 1273 | (*regs)[7] = tswapreg(env->aregs[0]); |
| 1274 | (*regs)[8] = tswapreg(env->aregs[1]); |
| 1275 | (*regs)[9] = tswapreg(env->aregs[2]); |
| 1276 | (*regs)[10] = tswapreg(env->aregs[3]); |
| 1277 | (*regs)[11] = tswapreg(env->aregs[4]); |
| 1278 | (*regs)[12] = tswapreg(env->aregs[5]); |
| 1279 | (*regs)[13] = tswapreg(env->aregs[6]); |
| 1280 | (*regs)[14] = tswapreg(env->dregs[0]); |
| 1281 | (*regs)[15] = tswapreg(env->aregs[7]); |
| 1282 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ |
| 1283 | (*regs)[17] = tswapreg(env->sr); |
| 1284 | (*regs)[18] = tswapreg(env->pc); |
| 1285 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
| 1286 | } |
| 1287 | |
| 1288 | #define USE_ELF_CORE_DUMP |
| 1289 | #define ELF_EXEC_PAGESIZE 8192 |
| 1290 | |
| 1291 | #endif |
| 1292 | |
| 1293 | #ifdef TARGET_ALPHA |
| 1294 | |
| 1295 | #define ELF_START_MMAP (0x30000000000ULL) |
| 1296 | |
| 1297 | #define ELF_CLASS ELFCLASS64 |
| 1298 | #define ELF_ARCH EM_ALPHA |
| 1299 | |
| 1300 | static inline void init_thread(struct target_pt_regs *regs, |
| 1301 | struct image_info *infop) |
| 1302 | { |
| 1303 | regs->pc = infop->entry; |
| 1304 | regs->ps = 8; |
| 1305 | regs->usp = infop->start_stack; |
| 1306 | } |
| 1307 | |
| 1308 | #define ELF_EXEC_PAGESIZE 8192 |
| 1309 | |
| 1310 | #endif /* TARGET_ALPHA */ |
| 1311 | |
| 1312 | #ifdef TARGET_S390X |
| 1313 | |
| 1314 | #define ELF_START_MMAP (0x20000000000ULL) |
| 1315 | |
| 1316 | #define ELF_CLASS ELFCLASS64 |
| 1317 | #define ELF_DATA ELFDATA2MSB |
| 1318 | #define ELF_ARCH EM_S390 |
| 1319 | |
| 1320 | #include "elf.h" |
| 1321 | |
| 1322 | #define ELF_HWCAP get_elf_hwcap() |
| 1323 | |
| 1324 | #define GET_FEATURE(_feat, _hwcap) \ |
| 1325 | do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) |
| 1326 | |
| 1327 | static uint32_t get_elf_hwcap(void) |
| 1328 | { |
| 1329 | /* |
| 1330 | * Let's assume we always have esan3 and zarch. |
| 1331 | * 31-bit processes can use 64-bit registers (high gprs). |
| 1332 | */ |
| 1333 | uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; |
| 1334 | |
| 1335 | GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); |
| 1336 | GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); |
| 1337 | GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); |
| 1338 | GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); |
| 1339 | if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && |
| 1340 | s390_has_feat(S390_FEAT_ETF3_ENH)) { |
| 1341 | hwcap |= HWCAP_S390_ETF3EH; |
| 1342 | } |
| 1343 | GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); |
| 1344 | |
| 1345 | return hwcap; |
| 1346 | } |
| 1347 | |
| 1348 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 1349 | { |
| 1350 | regs->psw.addr = infop->entry; |
| 1351 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; |
| 1352 | regs->gprs[15] = infop->start_stack; |
| 1353 | } |
| 1354 | |
| 1355 | #endif /* TARGET_S390X */ |
| 1356 | |
| 1357 | #ifdef TARGET_TILEGX |
| 1358 | |
| 1359 | /* 42 bits real used address, a half for user mode */ |
| 1360 | #define ELF_START_MMAP (0x00000020000000000ULL) |
| 1361 | |
| 1362 | #define elf_check_arch(x) ((x) == EM_TILEGX) |
| 1363 | |
| 1364 | #define ELF_CLASS ELFCLASS64 |
| 1365 | #define ELF_DATA ELFDATA2LSB |
| 1366 | #define ELF_ARCH EM_TILEGX |
| 1367 | |
| 1368 | static inline void init_thread(struct target_pt_regs *regs, |
| 1369 | struct image_info *infop) |
| 1370 | { |
| 1371 | regs->pc = infop->entry; |
| 1372 | regs->sp = infop->start_stack; |
| 1373 | |
| 1374 | } |
| 1375 | |
| 1376 | #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ |
| 1377 | |
| 1378 | #endif /* TARGET_TILEGX */ |
| 1379 | |
| 1380 | #ifdef TARGET_RISCV |
| 1381 | |
| 1382 | #define ELF_START_MMAP 0x80000000 |
| 1383 | #define ELF_ARCH EM_RISCV |
| 1384 | |
| 1385 | #ifdef TARGET_RISCV32 |
| 1386 | #define ELF_CLASS ELFCLASS32 |
| 1387 | #else |
| 1388 | #define ELF_CLASS ELFCLASS64 |
| 1389 | #endif |
| 1390 | |
| 1391 | static inline void init_thread(struct target_pt_regs *regs, |
| 1392 | struct image_info *infop) |
| 1393 | { |
| 1394 | regs->sepc = infop->entry; |
| 1395 | regs->sp = infop->start_stack; |
| 1396 | } |
| 1397 | |
| 1398 | #define ELF_EXEC_PAGESIZE 4096 |
| 1399 | |
| 1400 | #endif /* TARGET_RISCV */ |
| 1401 | |
| 1402 | #ifdef TARGET_HPPA |
| 1403 | |
| 1404 | #define ELF_START_MMAP 0x80000000 |
| 1405 | #define ELF_CLASS ELFCLASS32 |
| 1406 | #define ELF_ARCH EM_PARISC |
| 1407 | #define ELF_PLATFORM "PARISC" |
| 1408 | #define STACK_GROWS_DOWN 0 |
| 1409 | #define STACK_ALIGNMENT 64 |
| 1410 | |
| 1411 | static inline void init_thread(struct target_pt_regs *regs, |
| 1412 | struct image_info *infop) |
| 1413 | { |
| 1414 | regs->iaoq[0] = infop->entry; |
| 1415 | regs->iaoq[1] = infop->entry + 4; |
| 1416 | regs->gr[23] = 0; |
| 1417 | regs->gr[24] = infop->arg_start; |
| 1418 | regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); |
| 1419 | /* The top-of-stack contains a linkage buffer. */ |
| 1420 | regs->gr[30] = infop->start_stack + 64; |
| 1421 | regs->gr[31] = infop->entry; |
| 1422 | } |
| 1423 | |
| 1424 | #endif /* TARGET_HPPA */ |
| 1425 | |
| 1426 | #ifdef TARGET_XTENSA |
| 1427 | |
| 1428 | #define ELF_START_MMAP 0x20000000 |
| 1429 | |
| 1430 | #define ELF_CLASS ELFCLASS32 |
| 1431 | #define ELF_ARCH EM_XTENSA |
| 1432 | |
| 1433 | static inline void init_thread(struct target_pt_regs *regs, |
| 1434 | struct image_info *infop) |
| 1435 | { |
| 1436 | regs->windowbase = 0; |
| 1437 | regs->windowstart = 1; |
| 1438 | regs->areg[1] = infop->start_stack; |
| 1439 | regs->pc = infop->entry; |
| 1440 | } |
| 1441 | |
| 1442 | /* See linux kernel: arch/xtensa/include/asm/elf.h. */ |
| 1443 | #define ELF_NREG 128 |
| 1444 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 1445 | |
| 1446 | enum { |
| 1447 | TARGET_REG_PC, |
| 1448 | TARGET_REG_PS, |
| 1449 | TARGET_REG_LBEG, |
| 1450 | TARGET_REG_LEND, |
| 1451 | TARGET_REG_LCOUNT, |
| 1452 | TARGET_REG_SAR, |
| 1453 | TARGET_REG_WINDOWSTART, |
| 1454 | TARGET_REG_WINDOWBASE, |
| 1455 | TARGET_REG_THREADPTR, |
| 1456 | TARGET_REG_AR0 = 64, |
| 1457 | }; |
| 1458 | |
| 1459 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 1460 | const CPUXtensaState *env) |
| 1461 | { |
| 1462 | unsigned i; |
| 1463 | |
| 1464 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
| 1465 | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); |
| 1466 | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); |
| 1467 | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); |
| 1468 | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); |
| 1469 | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); |
| 1470 | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); |
| 1471 | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); |
| 1472 | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); |
| 1473 | xtensa_sync_phys_from_window((CPUXtensaState *)env); |
| 1474 | for (i = 0; i < env->config->nareg; ++i) { |
| 1475 | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | #define USE_ELF_CORE_DUMP |
| 1480 | #define ELF_EXEC_PAGESIZE 4096 |
| 1481 | |
| 1482 | #endif /* TARGET_XTENSA */ |
| 1483 | |
| 1484 | #ifndef ELF_PLATFORM |
| 1485 | #define ELF_PLATFORM (NULL) |
| 1486 | #endif |
| 1487 | |
| 1488 | #ifndef ELF_MACHINE |
| 1489 | #define ELF_MACHINE ELF_ARCH |
| 1490 | #endif |
| 1491 | |
| 1492 | #ifndef elf_check_arch |
| 1493 | #define elf_check_arch(x) ((x) == ELF_ARCH) |
| 1494 | #endif |
| 1495 | |
| 1496 | #ifndef ELF_HWCAP |
| 1497 | #define ELF_HWCAP 0 |
| 1498 | #endif |
| 1499 | |
| 1500 | #ifndef STACK_GROWS_DOWN |
| 1501 | #define STACK_GROWS_DOWN 1 |
| 1502 | #endif |
| 1503 | |
| 1504 | #ifndef STACK_ALIGNMENT |
| 1505 | #define STACK_ALIGNMENT 16 |
| 1506 | #endif |
| 1507 | |
| 1508 | #ifdef TARGET_ABI32 |
| 1509 | #undef ELF_CLASS |
| 1510 | #define ELF_CLASS ELFCLASS32 |
| 1511 | #undef bswaptls |
| 1512 | #define bswaptls(ptr) bswap32s(ptr) |
| 1513 | #endif |
| 1514 | |
| 1515 | #include "elf.h" |
| 1516 | |
| 1517 | struct exec |
| 1518 | { |
| 1519 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
| 1520 | unsigned int a_text; /* length of text, in bytes */ |
| 1521 | unsigned int a_data; /* length of data, in bytes */ |
| 1522 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
| 1523 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
| 1524 | unsigned int a_entry; /* start address */ |
| 1525 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
| 1526 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
| 1527 | }; |
| 1528 | |
| 1529 | |
| 1530 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) |
| 1531 | #define OMAGIC 0407 |
| 1532 | #define NMAGIC 0410 |
| 1533 | #define ZMAGIC 0413 |
| 1534 | #define QMAGIC 0314 |
| 1535 | |
| 1536 | /* Necessary parameters */ |
| 1537 | #define TARGET_ELF_EXEC_PAGESIZE \ |
| 1538 | (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ |
| 1539 | TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) |
| 1540 | #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) |
| 1541 | #define TARGET_ELF_PAGESTART(_v) ((_v) & \ |
| 1542 | ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) |
| 1543 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
| 1544 | |
| 1545 | #define DLINFO_ITEMS 15 |
| 1546 | |
| 1547 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
| 1548 | { |
| 1549 | memcpy(to, from, n); |
| 1550 | } |
| 1551 | |
| 1552 | #ifdef BSWAP_NEEDED |
| 1553 | static void bswap_ehdr(struct elfhdr *ehdr) |
| 1554 | { |
| 1555 | bswap16s(&ehdr->e_type); /* Object file type */ |
| 1556 | bswap16s(&ehdr->e_machine); /* Architecture */ |
| 1557 | bswap32s(&ehdr->e_version); /* Object file version */ |
| 1558 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ |
| 1559 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ |
| 1560 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ |
| 1561 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| 1562 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| 1563 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| 1564 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| 1565 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| 1566 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| 1567 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| 1568 | } |
| 1569 | |
| 1570 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
| 1571 | { |
| 1572 | int i; |
| 1573 | for (i = 0; i < phnum; ++i, ++phdr) { |
| 1574 | bswap32s(&phdr->p_type); /* Segment type */ |
| 1575 | bswap32s(&phdr->p_flags); /* Segment flags */ |
| 1576 | bswaptls(&phdr->p_offset); /* Segment file offset */ |
| 1577 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ |
| 1578 | bswaptls(&phdr->p_paddr); /* Segment physical address */ |
| 1579 | bswaptls(&phdr->p_filesz); /* Segment size in file */ |
| 1580 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ |
| 1581 | bswaptls(&phdr->p_align); /* Segment alignment */ |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
| 1586 | { |
| 1587 | int i; |
| 1588 | for (i = 0; i < shnum; ++i, ++shdr) { |
| 1589 | bswap32s(&shdr->sh_name); |
| 1590 | bswap32s(&shdr->sh_type); |
| 1591 | bswaptls(&shdr->sh_flags); |
| 1592 | bswaptls(&shdr->sh_addr); |
| 1593 | bswaptls(&shdr->sh_offset); |
| 1594 | bswaptls(&shdr->sh_size); |
| 1595 | bswap32s(&shdr->sh_link); |
| 1596 | bswap32s(&shdr->sh_info); |
| 1597 | bswaptls(&shdr->sh_addralign); |
| 1598 | bswaptls(&shdr->sh_entsize); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | static void bswap_sym(struct elf_sym *sym) |
| 1603 | { |
| 1604 | bswap32s(&sym->st_name); |
| 1605 | bswaptls(&sym->st_value); |
| 1606 | bswaptls(&sym->st_size); |
| 1607 | bswap16s(&sym->st_shndx); |
| 1608 | } |
| 1609 | |
| 1610 | #ifdef TARGET_MIPS |
| 1611 | static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) |
| 1612 | { |
| 1613 | bswap16s(&abiflags->version); |
| 1614 | bswap32s(&abiflags->ases); |
| 1615 | bswap32s(&abiflags->isa_ext); |
| 1616 | bswap32s(&abiflags->flags1); |
| 1617 | bswap32s(&abiflags->flags2); |
| 1618 | } |
| 1619 | #endif |
| 1620 | #else |
| 1621 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } |
| 1622 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } |
| 1623 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } |
| 1624 | static inline void bswap_sym(struct elf_sym *sym) { } |
| 1625 | #ifdef TARGET_MIPS |
| 1626 | static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } |
| 1627 | #endif |
| 1628 | #endif |
| 1629 | |
| 1630 | #ifdef USE_ELF_CORE_DUMP |
| 1631 | static int elf_core_dump(int, const CPUArchState *); |
| 1632 | #endif /* USE_ELF_CORE_DUMP */ |
| 1633 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
| 1634 | |
| 1635 | /* Verify the portions of EHDR within E_IDENT for the target. |
| 1636 | This can be performed before bswapping the entire header. */ |
| 1637 | static bool elf_check_ident(struct elfhdr *ehdr) |
| 1638 | { |
| 1639 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 |
| 1640 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 |
| 1641 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 |
| 1642 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 |
| 1643 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS |
| 1644 | && ehdr->e_ident[EI_DATA] == ELF_DATA |
| 1645 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); |
| 1646 | } |
| 1647 | |
| 1648 | /* Verify the portions of EHDR outside of E_IDENT for the target. |
| 1649 | This has to wait until after bswapping the header. */ |
| 1650 | static bool elf_check_ehdr(struct elfhdr *ehdr) |
| 1651 | { |
| 1652 | return (elf_check_arch(ehdr->e_machine) |
| 1653 | && ehdr->e_ehsize == sizeof(struct elfhdr) |
| 1654 | && ehdr->e_phentsize == sizeof(struct elf_phdr) |
| 1655 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * 'copy_elf_strings()' copies argument/envelope strings from user |
| 1660 | * memory to free pages in kernel mem. These are in a format ready |
| 1661 | * to be put directly into the top of new user memory. |
| 1662 | * |
| 1663 | */ |
| 1664 | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, |
| 1665 | abi_ulong p, abi_ulong stack_limit) |
| 1666 | { |
| 1667 | char *tmp; |
| 1668 | int len, i; |
| 1669 | abi_ulong top = p; |
| 1670 | |
| 1671 | if (!p) { |
| 1672 | return 0; /* bullet-proofing */ |
| 1673 | } |
| 1674 | |
| 1675 | if (STACK_GROWS_DOWN) { |
| 1676 | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; |
| 1677 | for (i = argc - 1; i >= 0; --i) { |
| 1678 | tmp = argv[i]; |
| 1679 | if (!tmp) { |
| 1680 | fprintf(stderr, "VFS: argc is wrong" ); |
| 1681 | exit(-1); |
| 1682 | } |
| 1683 | len = strlen(tmp) + 1; |
| 1684 | tmp += len; |
| 1685 | |
| 1686 | if (len > (p - stack_limit)) { |
| 1687 | return 0; |
| 1688 | } |
| 1689 | while (len) { |
| 1690 | int bytes_to_copy = (len > offset) ? offset : len; |
| 1691 | tmp -= bytes_to_copy; |
| 1692 | p -= bytes_to_copy; |
| 1693 | offset -= bytes_to_copy; |
| 1694 | len -= bytes_to_copy; |
| 1695 | |
| 1696 | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); |
| 1697 | |
| 1698 | if (offset == 0) { |
| 1699 | memcpy_to_target(p, scratch, top - p); |
| 1700 | top = p; |
| 1701 | offset = TARGET_PAGE_SIZE; |
| 1702 | } |
| 1703 | } |
| 1704 | } |
| 1705 | if (p != top) { |
| 1706 | memcpy_to_target(p, scratch + offset, top - p); |
| 1707 | } |
| 1708 | } else { |
| 1709 | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); |
| 1710 | for (i = 0; i < argc; ++i) { |
| 1711 | tmp = argv[i]; |
| 1712 | if (!tmp) { |
| 1713 | fprintf(stderr, "VFS: argc is wrong" ); |
| 1714 | exit(-1); |
| 1715 | } |
| 1716 | len = strlen(tmp) + 1; |
| 1717 | if (len > (stack_limit - p)) { |
| 1718 | return 0; |
| 1719 | } |
| 1720 | while (len) { |
| 1721 | int bytes_to_copy = (len > remaining) ? remaining : len; |
| 1722 | |
| 1723 | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); |
| 1724 | |
| 1725 | tmp += bytes_to_copy; |
| 1726 | remaining -= bytes_to_copy; |
| 1727 | p += bytes_to_copy; |
| 1728 | len -= bytes_to_copy; |
| 1729 | |
| 1730 | if (remaining == 0) { |
| 1731 | memcpy_to_target(top, scratch, p - top); |
| 1732 | top = p; |
| 1733 | remaining = TARGET_PAGE_SIZE; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | if (p != top) { |
| 1738 | memcpy_to_target(top, scratch, p - top); |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | return p; |
| 1743 | } |
| 1744 | |
| 1745 | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of |
| 1746 | * argument/environment space. Newer kernels (>2.6.33) allow more, |
| 1747 | * dependent on stack size, but guarantee at least 32 pages for |
| 1748 | * backwards compatibility. |
| 1749 | */ |
| 1750 | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) |
| 1751 | |
| 1752 | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, |
| 1753 | struct image_info *info) |
| 1754 | { |
| 1755 | abi_ulong size, error, guard; |
| 1756 | |
| 1757 | size = guest_stack_size; |
| 1758 | if (size < STACK_LOWER_LIMIT) { |
| 1759 | size = STACK_LOWER_LIMIT; |
| 1760 | } |
| 1761 | guard = TARGET_PAGE_SIZE; |
| 1762 | if (guard < qemu_real_host_page_size) { |
| 1763 | guard = qemu_real_host_page_size; |
| 1764 | } |
| 1765 | |
| 1766 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, |
| 1767 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| 1768 | if (error == -1) { |
| 1769 | perror("mmap stack" ); |
| 1770 | exit(-1); |
| 1771 | } |
| 1772 | |
| 1773 | /* We reserve one extra page at the top of the stack as guard. */ |
| 1774 | if (STACK_GROWS_DOWN) { |
| 1775 | target_mprotect(error, guard, PROT_NONE); |
| 1776 | info->stack_limit = error + guard; |
| 1777 | return info->stack_limit + size - sizeof(void *); |
| 1778 | } else { |
| 1779 | target_mprotect(error + size, guard, PROT_NONE); |
| 1780 | info->stack_limit = error + size; |
| 1781 | return error; |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
| 1786 | after the data section (i.e. bss). */ |
| 1787 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) |
| 1788 | { |
| 1789 | uintptr_t host_start, host_map_start, host_end; |
| 1790 | |
| 1791 | last_bss = TARGET_PAGE_ALIGN(last_bss); |
| 1792 | |
| 1793 | /* ??? There is confusion between qemu_real_host_page_size and |
| 1794 | qemu_host_page_size here and elsewhere in target_mmap, which |
| 1795 | may lead to the end of the data section mapping from the file |
| 1796 | not being mapped. At least there was an explicit test and |
| 1797 | comment for that here, suggesting that "the file size must |
| 1798 | be known". The comment probably pre-dates the introduction |
| 1799 | of the fstat system call in target_mmap which does in fact |
| 1800 | find out the size. What isn't clear is if the workaround |
| 1801 | here is still actually needed. For now, continue with it, |
| 1802 | but merge it with the "normal" mmap that would allocate the bss. */ |
| 1803 | |
| 1804 | host_start = (uintptr_t) g2h(elf_bss); |
| 1805 | host_end = (uintptr_t) g2h(last_bss); |
| 1806 | host_map_start = REAL_HOST_PAGE_ALIGN(host_start); |
| 1807 | |
| 1808 | if (host_map_start < host_end) { |
| 1809 | void *p = mmap((void *)host_map_start, host_end - host_map_start, |
| 1810 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| 1811 | if (p == MAP_FAILED) { |
| 1812 | perror("cannot mmap brk" ); |
| 1813 | exit(-1); |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | /* Ensure that the bss page(s) are valid */ |
| 1818 | if ((page_get_flags(last_bss-1) & prot) != prot) { |
| 1819 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); |
| 1820 | } |
| 1821 | |
| 1822 | if (host_start < host_map_start) { |
| 1823 | memset((void *)host_start, 0, host_map_start - host_start); |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | #ifdef TARGET_ARM |
| 1828 | static int elf_is_fdpic(struct elfhdr *exec) |
| 1829 | { |
| 1830 | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; |
| 1831 | } |
| 1832 | #else |
| 1833 | /* Default implementation, always false. */ |
| 1834 | static int elf_is_fdpic(struct elfhdr *exec) |
| 1835 | { |
| 1836 | return 0; |
| 1837 | } |
| 1838 | #endif |
| 1839 | |
| 1840 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
| 1841 | { |
| 1842 | uint16_t n; |
| 1843 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; |
| 1844 | |
| 1845 | /* elf32_fdpic_loadseg */ |
| 1846 | n = info->nsegs; |
| 1847 | while (n--) { |
| 1848 | sp -= 12; |
| 1849 | put_user_u32(loadsegs[n].addr, sp+0); |
| 1850 | put_user_u32(loadsegs[n].p_vaddr, sp+4); |
| 1851 | put_user_u32(loadsegs[n].p_memsz, sp+8); |
| 1852 | } |
| 1853 | |
| 1854 | /* elf32_fdpic_loadmap */ |
| 1855 | sp -= 4; |
| 1856 | put_user_u16(0, sp+0); /* version */ |
| 1857 | put_user_u16(info->nsegs, sp+2); /* nsegs */ |
| 1858 | |
| 1859 | info->personality = PER_LINUX_FDPIC; |
| 1860 | info->loadmap_addr = sp; |
| 1861 | |
| 1862 | return sp; |
| 1863 | } |
| 1864 | |
| 1865 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
| 1866 | struct elfhdr *exec, |
| 1867 | struct image_info *info, |
| 1868 | struct image_info *interp_info) |
| 1869 | { |
| 1870 | abi_ulong sp; |
| 1871 | abi_ulong u_argc, u_argv, u_envp, u_auxv; |
| 1872 | int size; |
| 1873 | int i; |
| 1874 | abi_ulong u_rand_bytes; |
| 1875 | uint8_t k_rand_bytes[16]; |
| 1876 | abi_ulong u_platform; |
| 1877 | const char *k_platform; |
| 1878 | const int n = sizeof(elf_addr_t); |
| 1879 | |
| 1880 | sp = p; |
| 1881 | |
| 1882 | /* Needs to be before we load the env/argc/... */ |
| 1883 | if (elf_is_fdpic(exec)) { |
| 1884 | /* Need 4 byte alignment for these structs */ |
| 1885 | sp &= ~3; |
| 1886 | sp = loader_build_fdpic_loadmap(info, sp); |
| 1887 | info->other_info = interp_info; |
| 1888 | if (interp_info) { |
| 1889 | interp_info->other_info = info; |
| 1890 | sp = loader_build_fdpic_loadmap(interp_info, sp); |
| 1891 | info->interpreter_loadmap_addr = interp_info->loadmap_addr; |
| 1892 | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; |
| 1893 | } else { |
| 1894 | info->interpreter_loadmap_addr = 0; |
| 1895 | info->interpreter_pt_dynamic_addr = 0; |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | u_platform = 0; |
| 1900 | k_platform = ELF_PLATFORM; |
| 1901 | if (k_platform) { |
| 1902 | size_t len = strlen(k_platform) + 1; |
| 1903 | if (STACK_GROWS_DOWN) { |
| 1904 | sp -= (len + n - 1) & ~(n - 1); |
| 1905 | u_platform = sp; |
| 1906 | /* FIXME - check return value of memcpy_to_target() for failure */ |
| 1907 | memcpy_to_target(sp, k_platform, len); |
| 1908 | } else { |
| 1909 | memcpy_to_target(sp, k_platform, len); |
| 1910 | u_platform = sp; |
| 1911 | sp += len + 1; |
| 1912 | } |
| 1913 | } |
| 1914 | |
| 1915 | /* Provide 16 byte alignment for the PRNG, and basic alignment for |
| 1916 | * the argv and envp pointers. |
| 1917 | */ |
| 1918 | if (STACK_GROWS_DOWN) { |
| 1919 | sp = QEMU_ALIGN_DOWN(sp, 16); |
| 1920 | } else { |
| 1921 | sp = QEMU_ALIGN_UP(sp, 16); |
| 1922 | } |
| 1923 | |
| 1924 | /* |
| 1925 | * Generate 16 random bytes for userspace PRNG seeding. |
| 1926 | */ |
| 1927 | qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); |
| 1928 | if (STACK_GROWS_DOWN) { |
| 1929 | sp -= 16; |
| 1930 | u_rand_bytes = sp; |
| 1931 | /* FIXME - check return value of memcpy_to_target() for failure */ |
| 1932 | memcpy_to_target(sp, k_rand_bytes, 16); |
| 1933 | } else { |
| 1934 | memcpy_to_target(sp, k_rand_bytes, 16); |
| 1935 | u_rand_bytes = sp; |
| 1936 | sp += 16; |
| 1937 | } |
| 1938 | |
| 1939 | size = (DLINFO_ITEMS + 1) * 2; |
| 1940 | if (k_platform) |
| 1941 | size += 2; |
| 1942 | #ifdef DLINFO_ARCH_ITEMS |
| 1943 | size += DLINFO_ARCH_ITEMS * 2; |
| 1944 | #endif |
| 1945 | #ifdef ELF_HWCAP2 |
| 1946 | size += 2; |
| 1947 | #endif |
| 1948 | info->auxv_len = size * n; |
| 1949 | |
| 1950 | size += envc + argc + 2; |
| 1951 | size += 1; /* argc itself */ |
| 1952 | size *= n; |
| 1953 | |
| 1954 | /* Allocate space and finalize stack alignment for entry now. */ |
| 1955 | if (STACK_GROWS_DOWN) { |
| 1956 | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); |
| 1957 | sp = u_argc; |
| 1958 | } else { |
| 1959 | u_argc = sp; |
| 1960 | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); |
| 1961 | } |
| 1962 | |
| 1963 | u_argv = u_argc + n; |
| 1964 | u_envp = u_argv + (argc + 1) * n; |
| 1965 | u_auxv = u_envp + (envc + 1) * n; |
| 1966 | info->saved_auxv = u_auxv; |
| 1967 | info->arg_start = u_argv; |
| 1968 | info->arg_end = u_argv + argc * n; |
| 1969 | |
| 1970 | /* This is correct because Linux defines |
| 1971 | * elf_addr_t as Elf32_Off / Elf64_Off |
| 1972 | */ |
| 1973 | #define NEW_AUX_ENT(id, val) do { \ |
| 1974 | put_user_ual(id, u_auxv); u_auxv += n; \ |
| 1975 | put_user_ual(val, u_auxv); u_auxv += n; \ |
| 1976 | } while(0) |
| 1977 | |
| 1978 | #ifdef ARCH_DLINFO |
| 1979 | /* |
| 1980 | * ARCH_DLINFO must come first so platform specific code can enforce |
| 1981 | * special alignment requirements on the AUXV if necessary (eg. PPC). |
| 1982 | */ |
| 1983 | ARCH_DLINFO; |
| 1984 | #endif |
| 1985 | /* There must be exactly DLINFO_ITEMS entries here, or the assert |
| 1986 | * on info->auxv_len will trigger. |
| 1987 | */ |
| 1988 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
| 1989 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
| 1990 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); |
| 1991 | if ((info->alignment & ~qemu_host_page_mask) != 0) { |
| 1992 | /* Target doesn't support host page size alignment */ |
| 1993 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); |
| 1994 | } else { |
| 1995 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, |
| 1996 | qemu_host_page_size))); |
| 1997 | } |
| 1998 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
| 1999 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
| 2000 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
| 2001 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
| 2002 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); |
| 2003 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); |
| 2004 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); |
| 2005 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); |
| 2006 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); |
| 2007 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
| 2008 | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); |
| 2009 | |
| 2010 | #ifdef ELF_HWCAP2 |
| 2011 | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); |
| 2012 | #endif |
| 2013 | |
| 2014 | if (u_platform) { |
| 2015 | NEW_AUX_ENT(AT_PLATFORM, u_platform); |
| 2016 | } |
| 2017 | NEW_AUX_ENT (AT_NULL, 0); |
| 2018 | #undef NEW_AUX_ENT |
| 2019 | |
| 2020 | /* Check that our initial calculation of the auxv length matches how much |
| 2021 | * we actually put into it. |
| 2022 | */ |
| 2023 | assert(info->auxv_len == u_auxv - info->saved_auxv); |
| 2024 | |
| 2025 | put_user_ual(argc, u_argc); |
| 2026 | |
| 2027 | p = info->arg_strings; |
| 2028 | for (i = 0; i < argc; ++i) { |
| 2029 | put_user_ual(p, u_argv); |
| 2030 | u_argv += n; |
| 2031 | p += target_strlen(p) + 1; |
| 2032 | } |
| 2033 | put_user_ual(0, u_argv); |
| 2034 | |
| 2035 | p = info->env_strings; |
| 2036 | for (i = 0; i < envc; ++i) { |
| 2037 | put_user_ual(p, u_envp); |
| 2038 | u_envp += n; |
| 2039 | p += target_strlen(p) + 1; |
| 2040 | } |
| 2041 | put_user_ual(0, u_envp); |
| 2042 | |
| 2043 | return sp; |
| 2044 | } |
| 2045 | |
| 2046 | unsigned long init_guest_space(unsigned long host_start, |
| 2047 | unsigned long host_size, |
| 2048 | unsigned long guest_start, |
| 2049 | bool fixed) |
| 2050 | { |
| 2051 | /* In order to use host shmat, we must be able to honor SHMLBA. */ |
| 2052 | unsigned long align = MAX(SHMLBA, qemu_host_page_size); |
| 2053 | unsigned long current_start, aligned_start; |
| 2054 | int flags; |
| 2055 | |
| 2056 | assert(host_start || host_size); |
| 2057 | |
| 2058 | /* If just a starting address is given, then just verify that |
| 2059 | * address. */ |
| 2060 | if (host_start && !host_size) { |
| 2061 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) |
| 2062 | if (init_guest_commpage(host_start, host_size) != 1) { |
| 2063 | return (unsigned long)-1; |
| 2064 | } |
| 2065 | #endif |
| 2066 | return host_start; |
| 2067 | } |
| 2068 | |
| 2069 | /* Setup the initial flags and start address. */ |
| 2070 | current_start = host_start & -align; |
| 2071 | flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; |
| 2072 | if (fixed) { |
| 2073 | flags |= MAP_FIXED; |
| 2074 | } |
| 2075 | |
| 2076 | /* Otherwise, a non-zero size region of memory needs to be mapped |
| 2077 | * and validated. */ |
| 2078 | |
| 2079 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) |
| 2080 | /* On 32-bit ARM, we need to map not just the usable memory, but |
| 2081 | * also the commpage. Try to find a suitable place by allocating |
| 2082 | * a big chunk for all of it. If host_start, then the naive |
| 2083 | * strategy probably does good enough. |
| 2084 | */ |
| 2085 | if (!host_start) { |
| 2086 | unsigned long guest_full_size, host_full_size, real_start; |
| 2087 | |
| 2088 | guest_full_size = |
| 2089 | (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; |
| 2090 | host_full_size = guest_full_size - guest_start; |
| 2091 | real_start = (unsigned long) |
| 2092 | mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); |
| 2093 | if (real_start == (unsigned long)-1) { |
| 2094 | if (host_size < host_full_size - qemu_host_page_size) { |
| 2095 | /* We failed to map a continous segment, but we're |
| 2096 | * allowed to have a gap between the usable memory and |
| 2097 | * the commpage where other things can be mapped. |
| 2098 | * This sparseness gives us more flexibility to find |
| 2099 | * an address range. |
| 2100 | */ |
| 2101 | goto naive; |
| 2102 | } |
| 2103 | return (unsigned long)-1; |
| 2104 | } |
| 2105 | munmap((void *)real_start, host_full_size); |
| 2106 | if (real_start & (align - 1)) { |
| 2107 | /* The same thing again, but with extra |
| 2108 | * so that we can shift around alignment. |
| 2109 | */ |
| 2110 | unsigned long real_size = host_full_size + qemu_host_page_size; |
| 2111 | real_start = (unsigned long) |
| 2112 | mmap(NULL, real_size, PROT_NONE, flags, -1, 0); |
| 2113 | if (real_start == (unsigned long)-1) { |
| 2114 | if (host_size < host_full_size - qemu_host_page_size) { |
| 2115 | goto naive; |
| 2116 | } |
| 2117 | return (unsigned long)-1; |
| 2118 | } |
| 2119 | munmap((void *)real_start, real_size); |
| 2120 | real_start = ROUND_UP(real_start, align); |
| 2121 | } |
| 2122 | current_start = real_start; |
| 2123 | } |
| 2124 | naive: |
| 2125 | #endif |
| 2126 | |
| 2127 | while (1) { |
| 2128 | unsigned long real_start, real_size, aligned_size; |
| 2129 | aligned_size = real_size = host_size; |
| 2130 | |
| 2131 | /* Do not use mmap_find_vma here because that is limited to the |
| 2132 | * guest address space. We are going to make the |
| 2133 | * guest address space fit whatever we're given. |
| 2134 | */ |
| 2135 | real_start = (unsigned long) |
| 2136 | mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); |
| 2137 | if (real_start == (unsigned long)-1) { |
| 2138 | return (unsigned long)-1; |
| 2139 | } |
| 2140 | |
| 2141 | /* Check to see if the address is valid. */ |
| 2142 | if (host_start && real_start != current_start) { |
| 2143 | goto try_again; |
| 2144 | } |
| 2145 | |
| 2146 | /* Ensure the address is properly aligned. */ |
| 2147 | if (real_start & (align - 1)) { |
| 2148 | /* Ideally, we adjust like |
| 2149 | * |
| 2150 | * pages: [ ][ ][ ][ ][ ] |
| 2151 | * old: [ real ] |
| 2152 | * [ aligned ] |
| 2153 | * new: [ real ] |
| 2154 | * [ aligned ] |
| 2155 | * |
| 2156 | * But if there is something else mapped right after it, |
| 2157 | * then obviously it won't have room to grow, and the |
| 2158 | * kernel will put the new larger real someplace else with |
| 2159 | * unknown alignment (if we made it to here, then |
| 2160 | * fixed=false). Which is why we grow real by a full page |
| 2161 | * size, instead of by part of one; so that even if we get |
| 2162 | * moved, we can still guarantee alignment. But this does |
| 2163 | * mean that there is a padding of < 1 page both before |
| 2164 | * and after the aligned range; the "after" could could |
| 2165 | * cause problems for ARM emulation where it could butt in |
| 2166 | * to where we need to put the commpage. |
| 2167 | */ |
| 2168 | munmap((void *)real_start, host_size); |
| 2169 | real_size = aligned_size + qemu_host_page_size; |
| 2170 | real_start = (unsigned long) |
| 2171 | mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); |
| 2172 | if (real_start == (unsigned long)-1) { |
| 2173 | return (unsigned long)-1; |
| 2174 | } |
| 2175 | aligned_start = ROUND_UP(real_start, align); |
| 2176 | } else { |
| 2177 | aligned_start = real_start; |
| 2178 | } |
| 2179 | |
| 2180 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) |
| 2181 | /* On 32-bit ARM, we need to also be able to map the commpage. */ |
| 2182 | int valid = init_guest_commpage(aligned_start - guest_start, |
| 2183 | aligned_size + guest_start); |
| 2184 | if (valid == -1) { |
| 2185 | munmap((void *)real_start, real_size); |
| 2186 | return (unsigned long)-1; |
| 2187 | } else if (valid == 0) { |
| 2188 | goto try_again; |
| 2189 | } |
| 2190 | #endif |
| 2191 | |
| 2192 | /* If nothing has said `return -1` or `goto try_again` yet, |
| 2193 | * then the address we have is good. |
| 2194 | */ |
| 2195 | break; |
| 2196 | |
| 2197 | try_again: |
| 2198 | /* That address didn't work. Unmap and try a different one. |
| 2199 | * The address the host picked because is typically right at |
| 2200 | * the top of the host address space and leaves the guest with |
| 2201 | * no usable address space. Resort to a linear search. We |
| 2202 | * already compensated for mmap_min_addr, so this should not |
| 2203 | * happen often. Probably means we got unlucky and host |
| 2204 | * address space randomization put a shared library somewhere |
| 2205 | * inconvenient. |
| 2206 | * |
| 2207 | * This is probably a good strategy if host_start, but is |
| 2208 | * probably a bad strategy if not, which means we got here |
| 2209 | * because of trouble with ARM commpage setup. |
| 2210 | */ |
| 2211 | munmap((void *)real_start, real_size); |
| 2212 | current_start += align; |
| 2213 | if (host_start == current_start) { |
| 2214 | /* Theoretically possible if host doesn't have any suitably |
| 2215 | * aligned areas. Normally the first mmap will fail. |
| 2216 | */ |
| 2217 | return (unsigned long)-1; |
| 2218 | } |
| 2219 | } |
| 2220 | |
| 2221 | qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n" , host_size); |
| 2222 | |
| 2223 | return aligned_start; |
| 2224 | } |
| 2225 | |
| 2226 | static void probe_guest_base(const char *image_name, |
| 2227 | abi_ulong loaddr, abi_ulong hiaddr) |
| 2228 | { |
| 2229 | /* Probe for a suitable guest base address, if the user has not set |
| 2230 | * it explicitly, and set guest_base appropriately. |
| 2231 | * In case of error we will print a suitable message and exit. |
| 2232 | */ |
| 2233 | const char *errmsg; |
| 2234 | if (!have_guest_base && !reserved_va) { |
| 2235 | unsigned long host_start, real_start, host_size; |
| 2236 | |
| 2237 | /* Round addresses to page boundaries. */ |
| 2238 | loaddr &= qemu_host_page_mask; |
| 2239 | hiaddr = HOST_PAGE_ALIGN(hiaddr); |
| 2240 | |
| 2241 | if (loaddr < mmap_min_addr) { |
| 2242 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); |
| 2243 | } else { |
| 2244 | host_start = loaddr; |
| 2245 | if (host_start != loaddr) { |
| 2246 | errmsg = "Address overflow loading ELF binary" ; |
| 2247 | goto exit_errmsg; |
| 2248 | } |
| 2249 | } |
| 2250 | host_size = hiaddr - loaddr; |
| 2251 | |
| 2252 | /* Setup the initial guest memory space with ranges gleaned from |
| 2253 | * the ELF image that is being loaded. |
| 2254 | */ |
| 2255 | real_start = init_guest_space(host_start, host_size, loaddr, false); |
| 2256 | if (real_start == (unsigned long)-1) { |
| 2257 | errmsg = "Unable to find space for application" ; |
| 2258 | goto exit_errmsg; |
| 2259 | } |
| 2260 | guest_base = real_start - loaddr; |
| 2261 | |
| 2262 | qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" |
| 2263 | TARGET_ABI_FMT_lx " to 0x%lx\n" , |
| 2264 | loaddr, real_start); |
| 2265 | } |
| 2266 | return; |
| 2267 | |
| 2268 | exit_errmsg: |
| 2269 | fprintf(stderr, "%s: %s\n" , image_name, errmsg); |
| 2270 | exit(-1); |
| 2271 | } |
| 2272 | |
| 2273 | |
| 2274 | /* Load an ELF image into the address space. |
| 2275 | |
| 2276 | IMAGE_NAME is the filename of the image, to use in error messages. |
| 2277 | IMAGE_FD is the open file descriptor for the image. |
| 2278 | |
| 2279 | BPRM_BUF is a copy of the beginning of the file; this of course |
| 2280 | contains the elf file header at offset 0. It is assumed that this |
| 2281 | buffer is sufficiently aligned to present no problems to the host |
| 2282 | in accessing data at aligned offsets within the buffer. |
| 2283 | |
| 2284 | On return: INFO values will be filled in, as necessary or available. */ |
| 2285 | |
| 2286 | static void load_elf_image(const char *image_name, int image_fd, |
| 2287 | struct image_info *info, char **pinterp_name, |
| 2288 | char bprm_buf[BPRM_BUF_SIZE]) |
| 2289 | { |
| 2290 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
| 2291 | struct elf_phdr *phdr; |
| 2292 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; |
| 2293 | int i, retval; |
| 2294 | const char *errmsg; |
| 2295 | |
| 2296 | /* First of all, some simple consistency checks */ |
| 2297 | errmsg = "Invalid ELF image for this architecture" ; |
| 2298 | if (!elf_check_ident(ehdr)) { |
| 2299 | goto exit_errmsg; |
| 2300 | } |
| 2301 | bswap_ehdr(ehdr); |
| 2302 | if (!elf_check_ehdr(ehdr)) { |
| 2303 | goto exit_errmsg; |
| 2304 | } |
| 2305 | |
| 2306 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
| 2307 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { |
| 2308 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); |
| 2309 | } else { |
| 2310 | phdr = (struct elf_phdr *) alloca(i); |
| 2311 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); |
| 2312 | if (retval != i) { |
| 2313 | goto exit_read; |
| 2314 | } |
| 2315 | } |
| 2316 | bswap_phdr(phdr, ehdr->e_phnum); |
| 2317 | |
| 2318 | info->nsegs = 0; |
| 2319 | info->pt_dynamic_addr = 0; |
| 2320 | |
| 2321 | mmap_lock(); |
| 2322 | |
| 2323 | /* Find the maximum size of the image and allocate an appropriate |
| 2324 | amount of memory to handle that. */ |
| 2325 | loaddr = -1, hiaddr = 0; |
| 2326 | info->alignment = 0; |
| 2327 | for (i = 0; i < ehdr->e_phnum; ++i) { |
| 2328 | if (phdr[i].p_type == PT_LOAD) { |
| 2329 | abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; |
| 2330 | if (a < loaddr) { |
| 2331 | loaddr = a; |
| 2332 | } |
| 2333 | a = phdr[i].p_vaddr + phdr[i].p_memsz; |
| 2334 | if (a > hiaddr) { |
| 2335 | hiaddr = a; |
| 2336 | } |
| 2337 | ++info->nsegs; |
| 2338 | info->alignment |= phdr[i].p_align; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | load_addr = loaddr; |
| 2343 | if (ehdr->e_type == ET_DYN) { |
| 2344 | /* The image indicates that it can be loaded anywhere. Find a |
| 2345 | location that can hold the memory space required. If the |
| 2346 | image is pre-linked, LOADDR will be non-zero. Since we do |
| 2347 | not supply MAP_FIXED here we'll use that address if and |
| 2348 | only if it remains available. */ |
| 2349 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, |
| 2350 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, |
| 2351 | -1, 0); |
| 2352 | if (load_addr == -1) { |
| 2353 | goto exit_perror; |
| 2354 | } |
| 2355 | } else if (pinterp_name != NULL) { |
| 2356 | /* This is the main executable. Make sure that the low |
| 2357 | address does not conflict with MMAP_MIN_ADDR or the |
| 2358 | QEMU application itself. */ |
| 2359 | probe_guest_base(image_name, loaddr, hiaddr); |
| 2360 | } |
| 2361 | load_bias = load_addr - loaddr; |
| 2362 | |
| 2363 | if (elf_is_fdpic(ehdr)) { |
| 2364 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
| 2365 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
| 2366 | |
| 2367 | for (i = 0; i < ehdr->e_phnum; ++i) { |
| 2368 | switch (phdr[i].p_type) { |
| 2369 | case PT_DYNAMIC: |
| 2370 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; |
| 2371 | break; |
| 2372 | case PT_LOAD: |
| 2373 | loadsegs->addr = phdr[i].p_vaddr + load_bias; |
| 2374 | loadsegs->p_vaddr = phdr[i].p_vaddr; |
| 2375 | loadsegs->p_memsz = phdr[i].p_memsz; |
| 2376 | ++loadsegs; |
| 2377 | break; |
| 2378 | } |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | info->load_bias = load_bias; |
| 2383 | info->load_addr = load_addr; |
| 2384 | info->entry = ehdr->e_entry + load_bias; |
| 2385 | info->start_code = -1; |
| 2386 | info->end_code = 0; |
| 2387 | info->start_data = -1; |
| 2388 | info->end_data = 0; |
| 2389 | info->brk = 0; |
| 2390 | info->elf_flags = ehdr->e_flags; |
| 2391 | |
| 2392 | for (i = 0; i < ehdr->e_phnum; i++) { |
| 2393 | struct elf_phdr *eppnt = phdr + i; |
| 2394 | if (eppnt->p_type == PT_LOAD) { |
| 2395 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; |
| 2396 | int elf_prot = 0; |
| 2397 | |
| 2398 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; |
| 2399 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| 2400 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| 2401 | |
| 2402 | vaddr = load_bias + eppnt->p_vaddr; |
| 2403 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); |
| 2404 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); |
| 2405 | vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); |
| 2406 | |
| 2407 | /* |
| 2408 | * Some segments may be completely empty without any backing file |
| 2409 | * segment, in that case just let zero_bss allocate an empty buffer |
| 2410 | * for it. |
| 2411 | */ |
| 2412 | if (eppnt->p_filesz != 0) { |
| 2413 | error = target_mmap(vaddr_ps, vaddr_len, elf_prot, |
| 2414 | MAP_PRIVATE | MAP_FIXED, |
| 2415 | image_fd, eppnt->p_offset - vaddr_po); |
| 2416 | |
| 2417 | if (error == -1) { |
| 2418 | goto exit_perror; |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | vaddr_ef = vaddr + eppnt->p_filesz; |
| 2423 | vaddr_em = vaddr + eppnt->p_memsz; |
| 2424 | |
| 2425 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
| 2426 | if (vaddr_ef < vaddr_em) { |
| 2427 | zero_bss(vaddr_ef, vaddr_em, elf_prot); |
| 2428 | } |
| 2429 | |
| 2430 | /* Find the full program boundaries. */ |
| 2431 | if (elf_prot & PROT_EXEC) { |
| 2432 | if (vaddr < info->start_code) { |
| 2433 | info->start_code = vaddr; |
| 2434 | } |
| 2435 | if (vaddr_ef > info->end_code) { |
| 2436 | info->end_code = vaddr_ef; |
| 2437 | } |
| 2438 | } |
| 2439 | if (elf_prot & PROT_WRITE) { |
| 2440 | if (vaddr < info->start_data) { |
| 2441 | info->start_data = vaddr; |
| 2442 | } |
| 2443 | if (vaddr_ef > info->end_data) { |
| 2444 | info->end_data = vaddr_ef; |
| 2445 | } |
| 2446 | if (vaddr_em > info->brk) { |
| 2447 | info->brk = vaddr_em; |
| 2448 | } |
| 2449 | } |
| 2450 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
| 2451 | char *interp_name; |
| 2452 | |
| 2453 | if (*pinterp_name) { |
| 2454 | errmsg = "Multiple PT_INTERP entries" ; |
| 2455 | goto exit_errmsg; |
| 2456 | } |
| 2457 | interp_name = malloc(eppnt->p_filesz); |
| 2458 | if (!interp_name) { |
| 2459 | goto exit_perror; |
| 2460 | } |
| 2461 | |
| 2462 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { |
| 2463 | memcpy(interp_name, bprm_buf + eppnt->p_offset, |
| 2464 | eppnt->p_filesz); |
| 2465 | } else { |
| 2466 | retval = pread(image_fd, interp_name, eppnt->p_filesz, |
| 2467 | eppnt->p_offset); |
| 2468 | if (retval != eppnt->p_filesz) { |
| 2469 | goto exit_perror; |
| 2470 | } |
| 2471 | } |
| 2472 | if (interp_name[eppnt->p_filesz - 1] != 0) { |
| 2473 | errmsg = "Invalid PT_INTERP entry" ; |
| 2474 | goto exit_errmsg; |
| 2475 | } |
| 2476 | *pinterp_name = interp_name; |
| 2477 | #ifdef TARGET_MIPS |
| 2478 | } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { |
| 2479 | Mips_elf_abiflags_v0 abiflags; |
| 2480 | if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { |
| 2481 | errmsg = "Invalid PT_MIPS_ABIFLAGS entry" ; |
| 2482 | goto exit_errmsg; |
| 2483 | } |
| 2484 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { |
| 2485 | memcpy(&abiflags, bprm_buf + eppnt->p_offset, |
| 2486 | sizeof(Mips_elf_abiflags_v0)); |
| 2487 | } else { |
| 2488 | retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), |
| 2489 | eppnt->p_offset); |
| 2490 | if (retval != sizeof(Mips_elf_abiflags_v0)) { |
| 2491 | goto exit_perror; |
| 2492 | } |
| 2493 | } |
| 2494 | bswap_mips_abiflags(&abiflags); |
| 2495 | info->fp_abi = abiflags.fp_abi; |
| 2496 | #endif |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | if (info->end_data == 0) { |
| 2501 | info->start_data = info->end_code; |
| 2502 | info->end_data = info->end_code; |
| 2503 | info->brk = info->end_code; |
| 2504 | } |
| 2505 | |
| 2506 | if (qemu_log_enabled()) { |
| 2507 | load_symbols(ehdr, image_fd, load_bias); |
| 2508 | } |
| 2509 | |
| 2510 | mmap_unlock(); |
| 2511 | |
| 2512 | close(image_fd); |
| 2513 | return; |
| 2514 | |
| 2515 | exit_read: |
| 2516 | if (retval >= 0) { |
| 2517 | errmsg = "Incomplete read of file header" ; |
| 2518 | goto exit_errmsg; |
| 2519 | } |
| 2520 | exit_perror: |
| 2521 | errmsg = strerror(errno); |
| 2522 | exit_errmsg: |
| 2523 | fprintf(stderr, "%s: %s\n" , image_name, errmsg); |
| 2524 | exit(-1); |
| 2525 | } |
| 2526 | |
| 2527 | static void load_elf_interp(const char *filename, struct image_info *info, |
| 2528 | char bprm_buf[BPRM_BUF_SIZE]) |
| 2529 | { |
| 2530 | int fd, retval; |
| 2531 | |
| 2532 | fd = open(path(filename), O_RDONLY); |
| 2533 | if (fd < 0) { |
| 2534 | goto exit_perror; |
| 2535 | } |
| 2536 | |
| 2537 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
| 2538 | if (retval < 0) { |
| 2539 | goto exit_perror; |
| 2540 | } |
| 2541 | if (retval < BPRM_BUF_SIZE) { |
| 2542 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); |
| 2543 | } |
| 2544 | |
| 2545 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
| 2546 | return; |
| 2547 | |
| 2548 | exit_perror: |
| 2549 | fprintf(stderr, "%s: %s\n" , filename, strerror(errno)); |
| 2550 | exit(-1); |
| 2551 | } |
| 2552 | |
| 2553 | static int symfind(const void *s0, const void *s1) |
| 2554 | { |
| 2555 | target_ulong addr = *(target_ulong *)s0; |
| 2556 | struct elf_sym *sym = (struct elf_sym *)s1; |
| 2557 | int result = 0; |
| 2558 | if (addr < sym->st_value) { |
| 2559 | result = -1; |
| 2560 | } else if (addr >= sym->st_value + sym->st_size) { |
| 2561 | result = 1; |
| 2562 | } |
| 2563 | return result; |
| 2564 | } |
| 2565 | |
| 2566 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) |
| 2567 | { |
| 2568 | #if ELF_CLASS == ELFCLASS32 |
| 2569 | struct elf_sym *syms = s->disas_symtab.elf32; |
| 2570 | #else |
| 2571 | struct elf_sym *syms = s->disas_symtab.elf64; |
| 2572 | #endif |
| 2573 | |
| 2574 | // binary search |
| 2575 | struct elf_sym *sym; |
| 2576 | |
| 2577 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
| 2578 | if (sym != NULL) { |
| 2579 | return s->disas_strtab + sym->st_name; |
| 2580 | } |
| 2581 | |
| 2582 | return "" ; |
| 2583 | } |
| 2584 | |
| 2585 | /* FIXME: This should use elf_ops.h */ |
| 2586 | static int symcmp(const void *s0, const void *s1) |
| 2587 | { |
| 2588 | struct elf_sym *sym0 = (struct elf_sym *)s0; |
| 2589 | struct elf_sym *sym1 = (struct elf_sym *)s1; |
| 2590 | return (sym0->st_value < sym1->st_value) |
| 2591 | ? -1 |
| 2592 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
| 2593 | } |
| 2594 | |
| 2595 | /* Best attempt to load symbols from this ELF object. */ |
| 2596 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
| 2597 | { |
| 2598 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
| 2599 | uint64_t segsz; |
| 2600 | struct elf_shdr *shdr; |
| 2601 | char *strings = NULL; |
| 2602 | struct syminfo *s = NULL; |
| 2603 | struct elf_sym *new_syms, *syms = NULL; |
| 2604 | |
| 2605 | shnum = hdr->e_shnum; |
| 2606 | i = shnum * sizeof(struct elf_shdr); |
| 2607 | shdr = (struct elf_shdr *)alloca(i); |
| 2608 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { |
| 2609 | return; |
| 2610 | } |
| 2611 | |
| 2612 | bswap_shdr(shdr, shnum); |
| 2613 | for (i = 0; i < shnum; ++i) { |
| 2614 | if (shdr[i].sh_type == SHT_SYMTAB) { |
| 2615 | sym_idx = i; |
| 2616 | str_idx = shdr[i].sh_link; |
| 2617 | goto found; |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | /* There will be no symbol table if the file was stripped. */ |
| 2622 | return; |
| 2623 | |
| 2624 | found: |
| 2625 | /* Now know where the strtab and symtab are. Snarf them. */ |
| 2626 | s = g_try_new(struct syminfo, 1); |
| 2627 | if (!s) { |
| 2628 | goto give_up; |
| 2629 | } |
| 2630 | |
| 2631 | segsz = shdr[str_idx].sh_size; |
| 2632 | s->disas_strtab = strings = g_try_malloc(segsz); |
| 2633 | if (!strings || |
| 2634 | pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { |
| 2635 | goto give_up; |
| 2636 | } |
| 2637 | |
| 2638 | segsz = shdr[sym_idx].sh_size; |
| 2639 | syms = g_try_malloc(segsz); |
| 2640 | if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { |
| 2641 | goto give_up; |
| 2642 | } |
| 2643 | |
| 2644 | if (segsz / sizeof(struct elf_sym) > INT_MAX) { |
| 2645 | /* Implausibly large symbol table: give up rather than ploughing |
| 2646 | * on with the number of symbols calculation overflowing |
| 2647 | */ |
| 2648 | goto give_up; |
| 2649 | } |
| 2650 | nsyms = segsz / sizeof(struct elf_sym); |
| 2651 | for (i = 0; i < nsyms; ) { |
| 2652 | bswap_sym(syms + i); |
| 2653 | /* Throw away entries which we do not need. */ |
| 2654 | if (syms[i].st_shndx == SHN_UNDEF |
| 2655 | || syms[i].st_shndx >= SHN_LORESERVE |
| 2656 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { |
| 2657 | if (i < --nsyms) { |
| 2658 | syms[i] = syms[nsyms]; |
| 2659 | } |
| 2660 | } else { |
| 2661 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
| 2662 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
| 2663 | syms[i].st_value &= ~(target_ulong)1; |
| 2664 | #endif |
| 2665 | syms[i].st_value += load_bias; |
| 2666 | i++; |
| 2667 | } |
| 2668 | } |
| 2669 | |
| 2670 | /* No "useful" symbol. */ |
| 2671 | if (nsyms == 0) { |
| 2672 | goto give_up; |
| 2673 | } |
| 2674 | |
| 2675 | /* Attempt to free the storage associated with the local symbols |
| 2676 | that we threw away. Whether or not this has any effect on the |
| 2677 | memory allocation depends on the malloc implementation and how |
| 2678 | many symbols we managed to discard. */ |
| 2679 | new_syms = g_try_renew(struct elf_sym, syms, nsyms); |
| 2680 | if (new_syms == NULL) { |
| 2681 | goto give_up; |
| 2682 | } |
| 2683 | syms = new_syms; |
| 2684 | |
| 2685 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
| 2686 | |
| 2687 | s->disas_num_syms = nsyms; |
| 2688 | #if ELF_CLASS == ELFCLASS32 |
| 2689 | s->disas_symtab.elf32 = syms; |
| 2690 | #else |
| 2691 | s->disas_symtab.elf64 = syms; |
| 2692 | #endif |
| 2693 | s->lookup_symbol = lookup_symbolxx; |
| 2694 | s->next = syminfos; |
| 2695 | syminfos = s; |
| 2696 | |
| 2697 | return; |
| 2698 | |
| 2699 | give_up: |
| 2700 | g_free(s); |
| 2701 | g_free(strings); |
| 2702 | g_free(syms); |
| 2703 | } |
| 2704 | |
| 2705 | uint32_t get_elf_eflags(int fd) |
| 2706 | { |
| 2707 | struct elfhdr ehdr; |
| 2708 | off_t offset; |
| 2709 | int ret; |
| 2710 | |
| 2711 | /* Read ELF header */ |
| 2712 | offset = lseek(fd, 0, SEEK_SET); |
| 2713 | if (offset == (off_t) -1) { |
| 2714 | return 0; |
| 2715 | } |
| 2716 | ret = read(fd, &ehdr, sizeof(ehdr)); |
| 2717 | if (ret < sizeof(ehdr)) { |
| 2718 | return 0; |
| 2719 | } |
| 2720 | offset = lseek(fd, offset, SEEK_SET); |
| 2721 | if (offset == (off_t) -1) { |
| 2722 | return 0; |
| 2723 | } |
| 2724 | |
| 2725 | /* Check ELF signature */ |
| 2726 | if (!elf_check_ident(&ehdr)) { |
| 2727 | return 0; |
| 2728 | } |
| 2729 | |
| 2730 | /* check header */ |
| 2731 | bswap_ehdr(&ehdr); |
| 2732 | if (!elf_check_ehdr(&ehdr)) { |
| 2733 | return 0; |
| 2734 | } |
| 2735 | |
| 2736 | /* return architecture id */ |
| 2737 | return ehdr.e_flags; |
| 2738 | } |
| 2739 | |
| 2740 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
| 2741 | { |
| 2742 | struct image_info interp_info; |
| 2743 | struct elfhdr elf_ex; |
| 2744 | char *elf_interpreter = NULL; |
| 2745 | char *scratch; |
| 2746 | |
| 2747 | memset(&interp_info, 0, sizeof(interp_info)); |
| 2748 | #ifdef TARGET_MIPS |
| 2749 | interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; |
| 2750 | #endif |
| 2751 | |
| 2752 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
| 2753 | |
| 2754 | load_elf_image(bprm->filename, bprm->fd, info, |
| 2755 | &elf_interpreter, bprm->buf); |
| 2756 | |
| 2757 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
| 2758 | If we do nothing, we'll have overwritten this when we re-use bprm->buf |
| 2759 | when we load the interpreter. */ |
| 2760 | elf_ex = *(struct elfhdr *)bprm->buf; |
| 2761 | |
| 2762 | /* Do this so that we can load the interpreter, if need be. We will |
| 2763 | change some of these later */ |
| 2764 | bprm->p = setup_arg_pages(bprm, info); |
| 2765 | |
| 2766 | scratch = g_new0(char, TARGET_PAGE_SIZE); |
| 2767 | if (STACK_GROWS_DOWN) { |
| 2768 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, |
| 2769 | bprm->p, info->stack_limit); |
| 2770 | info->file_string = bprm->p; |
| 2771 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, |
| 2772 | bprm->p, info->stack_limit); |
| 2773 | info->env_strings = bprm->p; |
| 2774 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, |
| 2775 | bprm->p, info->stack_limit); |
| 2776 | info->arg_strings = bprm->p; |
| 2777 | } else { |
| 2778 | info->arg_strings = bprm->p; |
| 2779 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, |
| 2780 | bprm->p, info->stack_limit); |
| 2781 | info->env_strings = bprm->p; |
| 2782 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, |
| 2783 | bprm->p, info->stack_limit); |
| 2784 | info->file_string = bprm->p; |
| 2785 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, |
| 2786 | bprm->p, info->stack_limit); |
| 2787 | } |
| 2788 | |
| 2789 | g_free(scratch); |
| 2790 | |
| 2791 | if (!bprm->p) { |
| 2792 | fprintf(stderr, "%s: %s\n" , bprm->filename, strerror(E2BIG)); |
| 2793 | exit(-1); |
| 2794 | } |
| 2795 | |
| 2796 | if (elf_interpreter) { |
| 2797 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); |
| 2798 | |
| 2799 | /* If the program interpreter is one of these two, then assume |
| 2800 | an iBCS2 image. Otherwise assume a native linux image. */ |
| 2801 | |
| 2802 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1" ) == 0 |
| 2803 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1" ) == 0) { |
| 2804 | info->personality = PER_SVR4; |
| 2805 | |
| 2806 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| 2807 | and some applications "depend" upon this behavior. Since |
| 2808 | we do not have the power to recompile these, we emulate |
| 2809 | the SVr4 behavior. Sigh. */ |
| 2810 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, |
| 2811 | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| 2812 | } |
| 2813 | #ifdef TARGET_MIPS |
| 2814 | info->interp_fp_abi = interp_info.fp_abi; |
| 2815 | #endif |
| 2816 | } |
| 2817 | |
| 2818 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
| 2819 | info, (elf_interpreter ? &interp_info : NULL)); |
| 2820 | info->start_stack = bprm->p; |
| 2821 | |
| 2822 | /* If we have an interpreter, set that as the program's entry point. |
| 2823 | Copy the load_bias as well, to help PPC64 interpret the entry |
| 2824 | point as a function descriptor. Do this after creating elf tables |
| 2825 | so that we copy the original program entry point into the AUXV. */ |
| 2826 | if (elf_interpreter) { |
| 2827 | info->load_bias = interp_info.load_bias; |
| 2828 | info->entry = interp_info.entry; |
| 2829 | free(elf_interpreter); |
| 2830 | } |
| 2831 | |
| 2832 | #ifdef USE_ELF_CORE_DUMP |
| 2833 | bprm->core_dump = &elf_core_dump; |
| 2834 | #endif |
| 2835 | |
| 2836 | return 0; |
| 2837 | } |
| 2838 | |
| 2839 | #ifdef USE_ELF_CORE_DUMP |
| 2840 | /* |
| 2841 | * Definitions to generate Intel SVR4-like core files. |
| 2842 | * These mostly have the same names as the SVR4 types with "target_elf_" |
| 2843 | * tacked on the front to prevent clashes with linux definitions, |
| 2844 | * and the typedef forms have been avoided. This is mostly like |
| 2845 | * the SVR4 structure, but more Linuxy, with things that Linux does |
| 2846 | * not support and which gdb doesn't really use excluded. |
| 2847 | * |
| 2848 | * Fields we don't dump (their contents is zero) in linux-user qemu |
| 2849 | * are marked with XXX. |
| 2850 | * |
| 2851 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). |
| 2852 | * |
| 2853 | * Porting ELF coredump for target is (quite) simple process. First you |
| 2854 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
| 2855 | * the target resides): |
| 2856 | * |
| 2857 | * #define USE_ELF_CORE_DUMP |
| 2858 | * |
| 2859 | * Next you define type of register set used for dumping. ELF specification |
| 2860 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. |
| 2861 | * |
| 2862 | * typedef <target_regtype> target_elf_greg_t; |
| 2863 | * #define ELF_NREG <number of registers> |
| 2864 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 2865 | * |
| 2866 | * Last step is to implement target specific function that copies registers |
| 2867 | * from given cpu into just specified register set. Prototype is: |
| 2868 | * |
| 2869 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
| 2870 | * const CPUArchState *env); |
| 2871 | * |
| 2872 | * Parameters: |
| 2873 | * regs - copy register values into here (allocated and zeroed by caller) |
| 2874 | * env - copy registers from here |
| 2875 | * |
| 2876 | * Example for ARM target is provided in this file. |
| 2877 | */ |
| 2878 | |
| 2879 | /* An ELF note in memory */ |
| 2880 | struct memelfnote { |
| 2881 | const char *name; |
| 2882 | size_t namesz; |
| 2883 | size_t namesz_rounded; |
| 2884 | int type; |
| 2885 | size_t datasz; |
| 2886 | size_t datasz_rounded; |
| 2887 | void *data; |
| 2888 | size_t notesz; |
| 2889 | }; |
| 2890 | |
| 2891 | struct target_elf_siginfo { |
| 2892 | abi_int si_signo; /* signal number */ |
| 2893 | abi_int si_code; /* extra code */ |
| 2894 | abi_int si_errno; /* errno */ |
| 2895 | }; |
| 2896 | |
| 2897 | struct target_elf_prstatus { |
| 2898 | struct target_elf_siginfo pr_info; /* Info associated with signal */ |
| 2899 | abi_short pr_cursig; /* Current signal */ |
| 2900 | abi_ulong pr_sigpend; /* XXX */ |
| 2901 | abi_ulong pr_sighold; /* XXX */ |
| 2902 | target_pid_t pr_pid; |
| 2903 | target_pid_t pr_ppid; |
| 2904 | target_pid_t pr_pgrp; |
| 2905 | target_pid_t pr_sid; |
| 2906 | struct target_timeval pr_utime; /* XXX User time */ |
| 2907 | struct target_timeval pr_stime; /* XXX System time */ |
| 2908 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ |
| 2909 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ |
| 2910 | target_elf_gregset_t pr_reg; /* GP registers */ |
| 2911 | abi_int pr_fpvalid; /* XXX */ |
| 2912 | }; |
| 2913 | |
| 2914 | #define ELF_PRARGSZ (80) /* Number of chars for args */ |
| 2915 | |
| 2916 | struct target_elf_prpsinfo { |
| 2917 | char pr_state; /* numeric process state */ |
| 2918 | char pr_sname; /* char for pr_state */ |
| 2919 | char pr_zomb; /* zombie */ |
| 2920 | char pr_nice; /* nice val */ |
| 2921 | abi_ulong pr_flag; /* flags */ |
| 2922 | target_uid_t pr_uid; |
| 2923 | target_gid_t pr_gid; |
| 2924 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; |
| 2925 | /* Lots missing */ |
| 2926 | char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ |
| 2927 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ |
| 2928 | }; |
| 2929 | |
| 2930 | /* Here is the structure in which status of each thread is captured. */ |
| 2931 | struct elf_thread_status { |
| 2932 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
| 2933 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
| 2934 | #if 0 |
| 2935 | elf_fpregset_t fpu; /* NT_PRFPREG */ |
| 2936 | struct task_struct *thread; |
| 2937 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
| 2938 | #endif |
| 2939 | struct memelfnote notes[1]; |
| 2940 | int num_notes; |
| 2941 | }; |
| 2942 | |
| 2943 | struct elf_note_info { |
| 2944 | struct memelfnote *notes; |
| 2945 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
| 2946 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ |
| 2947 | |
| 2948 | QTAILQ_HEAD(, elf_thread_status) thread_list; |
| 2949 | #if 0 |
| 2950 | /* |
| 2951 | * Current version of ELF coredump doesn't support |
| 2952 | * dumping fp regs etc. |
| 2953 | */ |
| 2954 | elf_fpregset_t *fpu; |
| 2955 | elf_fpxregset_t *xfpu; |
| 2956 | int thread_status_size; |
| 2957 | #endif |
| 2958 | int notes_size; |
| 2959 | int numnote; |
| 2960 | }; |
| 2961 | |
| 2962 | struct vm_area_struct { |
| 2963 | target_ulong vma_start; /* start vaddr of memory region */ |
| 2964 | target_ulong vma_end; /* end vaddr of memory region */ |
| 2965 | abi_ulong vma_flags; /* protection etc. flags for the region */ |
| 2966 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
| 2967 | }; |
| 2968 | |
| 2969 | struct mm_struct { |
| 2970 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
| 2971 | int mm_count; /* number of mappings */ |
| 2972 | }; |
| 2973 | |
| 2974 | static struct mm_struct *vma_init(void); |
| 2975 | static void vma_delete(struct mm_struct *); |
| 2976 | static int vma_add_mapping(struct mm_struct *, target_ulong, |
| 2977 | target_ulong, abi_ulong); |
| 2978 | static int vma_get_mapping_count(const struct mm_struct *); |
| 2979 | static struct vm_area_struct *vma_first(const struct mm_struct *); |
| 2980 | static struct vm_area_struct *vma_next(struct vm_area_struct *); |
| 2981 | static abi_ulong vma_dump_size(const struct vm_area_struct *); |
| 2982 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
| 2983 | unsigned long flags); |
| 2984 | |
| 2985 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); |
| 2986 | static void fill_note(struct memelfnote *, const char *, int, |
| 2987 | unsigned int, void *); |
| 2988 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
| 2989 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); |
| 2990 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
| 2991 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); |
| 2992 | static size_t note_size(const struct memelfnote *); |
| 2993 | static void free_note_info(struct elf_note_info *); |
| 2994 | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); |
| 2995 | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); |
| 2996 | static int core_dump_filename(const TaskState *, char *, size_t); |
| 2997 | |
| 2998 | static int dump_write(int, const void *, size_t); |
| 2999 | static int write_note(struct memelfnote *, int); |
| 3000 | static int write_note_info(struct elf_note_info *, int); |
| 3001 | |
| 3002 | #ifdef BSWAP_NEEDED |
| 3003 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
| 3004 | { |
| 3005 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
| 3006 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); |
| 3007 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); |
| 3008 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
| 3009 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
| 3010 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); |
| 3011 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
| 3012 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); |
| 3013 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); |
| 3014 | prstatus->pr_sid = tswap32(prstatus->pr_sid); |
| 3015 | /* cpu times are not filled, so we skip them */ |
| 3016 | /* regs should be in correct format already */ |
| 3017 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); |
| 3018 | } |
| 3019 | |
| 3020 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
| 3021 | { |
| 3022 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
| 3023 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
| 3024 | psinfo->pr_gid = tswap16(psinfo->pr_gid); |
| 3025 | psinfo->pr_pid = tswap32(psinfo->pr_pid); |
| 3026 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); |
| 3027 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); |
| 3028 | psinfo->pr_sid = tswap32(psinfo->pr_sid); |
| 3029 | } |
| 3030 | |
| 3031 | static void bswap_note(struct elf_note *en) |
| 3032 | { |
| 3033 | bswap32s(&en->n_namesz); |
| 3034 | bswap32s(&en->n_descsz); |
| 3035 | bswap32s(&en->n_type); |
| 3036 | } |
| 3037 | #else |
| 3038 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } |
| 3039 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} |
| 3040 | static inline void bswap_note(struct elf_note *en) { } |
| 3041 | #endif /* BSWAP_NEEDED */ |
| 3042 | |
| 3043 | /* |
| 3044 | * Minimal support for linux memory regions. These are needed |
| 3045 | * when we are finding out what memory exactly belongs to |
| 3046 | * emulated process. No locks needed here, as long as |
| 3047 | * thread that received the signal is stopped. |
| 3048 | */ |
| 3049 | |
| 3050 | static struct mm_struct *vma_init(void) |
| 3051 | { |
| 3052 | struct mm_struct *mm; |
| 3053 | |
| 3054 | if ((mm = g_malloc(sizeof (*mm))) == NULL) |
| 3055 | return (NULL); |
| 3056 | |
| 3057 | mm->mm_count = 0; |
| 3058 | QTAILQ_INIT(&mm->mm_mmap); |
| 3059 | |
| 3060 | return (mm); |
| 3061 | } |
| 3062 | |
| 3063 | static void vma_delete(struct mm_struct *mm) |
| 3064 | { |
| 3065 | struct vm_area_struct *vma; |
| 3066 | |
| 3067 | while ((vma = vma_first(mm)) != NULL) { |
| 3068 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
| 3069 | g_free(vma); |
| 3070 | } |
| 3071 | g_free(mm); |
| 3072 | } |
| 3073 | |
| 3074 | static int vma_add_mapping(struct mm_struct *mm, target_ulong start, |
| 3075 | target_ulong end, abi_ulong flags) |
| 3076 | { |
| 3077 | struct vm_area_struct *vma; |
| 3078 | |
| 3079 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
| 3080 | return (-1); |
| 3081 | |
| 3082 | vma->vma_start = start; |
| 3083 | vma->vma_end = end; |
| 3084 | vma->vma_flags = flags; |
| 3085 | |
| 3086 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
| 3087 | mm->mm_count++; |
| 3088 | |
| 3089 | return (0); |
| 3090 | } |
| 3091 | |
| 3092 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) |
| 3093 | { |
| 3094 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
| 3095 | } |
| 3096 | |
| 3097 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) |
| 3098 | { |
| 3099 | return (QTAILQ_NEXT(vma, vma_link)); |
| 3100 | } |
| 3101 | |
| 3102 | static int vma_get_mapping_count(const struct mm_struct *mm) |
| 3103 | { |
| 3104 | return (mm->mm_count); |
| 3105 | } |
| 3106 | |
| 3107 | /* |
| 3108 | * Calculate file (dump) size of given memory region. |
| 3109 | */ |
| 3110 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) |
| 3111 | { |
| 3112 | /* if we cannot even read the first page, skip it */ |
| 3113 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) |
| 3114 | return (0); |
| 3115 | |
| 3116 | /* |
| 3117 | * Usually we don't dump executable pages as they contain |
| 3118 | * non-writable code that debugger can read directly from |
| 3119 | * target library etc. However, thread stacks are marked |
| 3120 | * also executable so we read in first page of given region |
| 3121 | * and check whether it contains elf header. If there is |
| 3122 | * no elf header, we dump it. |
| 3123 | */ |
| 3124 | if (vma->vma_flags & PROT_EXEC) { |
| 3125 | char page[TARGET_PAGE_SIZE]; |
| 3126 | |
| 3127 | copy_from_user(page, vma->vma_start, sizeof (page)); |
| 3128 | if ((page[EI_MAG0] == ELFMAG0) && |
| 3129 | (page[EI_MAG1] == ELFMAG1) && |
| 3130 | (page[EI_MAG2] == ELFMAG2) && |
| 3131 | (page[EI_MAG3] == ELFMAG3)) { |
| 3132 | /* |
| 3133 | * Mappings are possibly from ELF binary. Don't dump |
| 3134 | * them. |
| 3135 | */ |
| 3136 | return (0); |
| 3137 | } |
| 3138 | } |
| 3139 | |
| 3140 | return (vma->vma_end - vma->vma_start); |
| 3141 | } |
| 3142 | |
| 3143 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
| 3144 | unsigned long flags) |
| 3145 | { |
| 3146 | struct mm_struct *mm = (struct mm_struct *)priv; |
| 3147 | |
| 3148 | vma_add_mapping(mm, start, end, flags); |
| 3149 | return (0); |
| 3150 | } |
| 3151 | |
| 3152 | static void fill_note(struct memelfnote *note, const char *name, int type, |
| 3153 | unsigned int sz, void *data) |
| 3154 | { |
| 3155 | unsigned int namesz; |
| 3156 | |
| 3157 | namesz = strlen(name) + 1; |
| 3158 | note->name = name; |
| 3159 | note->namesz = namesz; |
| 3160 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); |
| 3161 | note->type = type; |
| 3162 | note->datasz = sz; |
| 3163 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); |
| 3164 | |
| 3165 | note->data = data; |
| 3166 | |
| 3167 | /* |
| 3168 | * We calculate rounded up note size here as specified by |
| 3169 | * ELF document. |
| 3170 | */ |
| 3171 | note->notesz = sizeof (struct elf_note) + |
| 3172 | note->namesz_rounded + note->datasz_rounded; |
| 3173 | } |
| 3174 | |
| 3175 | static void (struct elfhdr *elf, int segs, uint16_t machine, |
| 3176 | uint32_t flags) |
| 3177 | { |
| 3178 | (void) memset(elf, 0, sizeof(*elf)); |
| 3179 | |
| 3180 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); |
| 3181 | elf->e_ident[EI_CLASS] = ELF_CLASS; |
| 3182 | elf->e_ident[EI_DATA] = ELF_DATA; |
| 3183 | elf->e_ident[EI_VERSION] = EV_CURRENT; |
| 3184 | elf->e_ident[EI_OSABI] = ELF_OSABI; |
| 3185 | |
| 3186 | elf->e_type = ET_CORE; |
| 3187 | elf->e_machine = machine; |
| 3188 | elf->e_version = EV_CURRENT; |
| 3189 | elf->e_phoff = sizeof(struct elfhdr); |
| 3190 | elf->e_flags = flags; |
| 3191 | elf->e_ehsize = sizeof(struct elfhdr); |
| 3192 | elf->e_phentsize = sizeof(struct elf_phdr); |
| 3193 | elf->e_phnum = segs; |
| 3194 | |
| 3195 | bswap_ehdr(elf); |
| 3196 | } |
| 3197 | |
| 3198 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) |
| 3199 | { |
| 3200 | phdr->p_type = PT_NOTE; |
| 3201 | phdr->p_offset = offset; |
| 3202 | phdr->p_vaddr = 0; |
| 3203 | phdr->p_paddr = 0; |
| 3204 | phdr->p_filesz = sz; |
| 3205 | phdr->p_memsz = 0; |
| 3206 | phdr->p_flags = 0; |
| 3207 | phdr->p_align = 0; |
| 3208 | |
| 3209 | bswap_phdr(phdr, 1); |
| 3210 | } |
| 3211 | |
| 3212 | static size_t note_size(const struct memelfnote *note) |
| 3213 | { |
| 3214 | return (note->notesz); |
| 3215 | } |
| 3216 | |
| 3217 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
| 3218 | const TaskState *ts, int signr) |
| 3219 | { |
| 3220 | (void) memset(prstatus, 0, sizeof (*prstatus)); |
| 3221 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; |
| 3222 | prstatus->pr_pid = ts->ts_tid; |
| 3223 | prstatus->pr_ppid = getppid(); |
| 3224 | prstatus->pr_pgrp = getpgrp(); |
| 3225 | prstatus->pr_sid = getsid(0); |
| 3226 | |
| 3227 | bswap_prstatus(prstatus); |
| 3228 | } |
| 3229 | |
| 3230 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
| 3231 | { |
| 3232 | char *base_filename; |
| 3233 | unsigned int i, len; |
| 3234 | |
| 3235 | (void) memset(psinfo, 0, sizeof (*psinfo)); |
| 3236 | |
| 3237 | len = ts->info->arg_end - ts->info->arg_start; |
| 3238 | if (len >= ELF_PRARGSZ) |
| 3239 | len = ELF_PRARGSZ - 1; |
| 3240 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) |
| 3241 | return -EFAULT; |
| 3242 | for (i = 0; i < len; i++) |
| 3243 | if (psinfo->pr_psargs[i] == 0) |
| 3244 | psinfo->pr_psargs[i] = ' '; |
| 3245 | psinfo->pr_psargs[len] = 0; |
| 3246 | |
| 3247 | psinfo->pr_pid = getpid(); |
| 3248 | psinfo->pr_ppid = getppid(); |
| 3249 | psinfo->pr_pgrp = getpgrp(); |
| 3250 | psinfo->pr_sid = getsid(0); |
| 3251 | psinfo->pr_uid = getuid(); |
| 3252 | psinfo->pr_gid = getgid(); |
| 3253 | |
| 3254 | base_filename = g_path_get_basename(ts->bprm->filename); |
| 3255 | /* |
| 3256 | * Using strncpy here is fine: at max-length, |
| 3257 | * this field is not NUL-terminated. |
| 3258 | */ |
| 3259 | (void) strncpy(psinfo->pr_fname, base_filename, |
| 3260 | sizeof(psinfo->pr_fname)); |
| 3261 | |
| 3262 | g_free(base_filename); |
| 3263 | bswap_psinfo(psinfo); |
| 3264 | return (0); |
| 3265 | } |
| 3266 | |
| 3267 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) |
| 3268 | { |
| 3269 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; |
| 3270 | elf_addr_t orig_auxv = auxv; |
| 3271 | void *ptr; |
| 3272 | int len = ts->info->auxv_len; |
| 3273 | |
| 3274 | /* |
| 3275 | * Auxiliary vector is stored in target process stack. It contains |
| 3276 | * {type, value} pairs that we need to dump into note. This is not |
| 3277 | * strictly necessary but we do it here for sake of completeness. |
| 3278 | */ |
| 3279 | |
| 3280 | /* read in whole auxv vector and copy it to memelfnote */ |
| 3281 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); |
| 3282 | if (ptr != NULL) { |
| 3283 | fill_note(note, "CORE" , NT_AUXV, len, ptr); |
| 3284 | unlock_user(ptr, auxv, len); |
| 3285 | } |
| 3286 | } |
| 3287 | |
| 3288 | /* |
| 3289 | * Constructs name of coredump file. We have following convention |
| 3290 | * for the name: |
| 3291 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core |
| 3292 | * |
| 3293 | * Returns 0 in case of success, -1 otherwise (errno is set). |
| 3294 | */ |
| 3295 | static int core_dump_filename(const TaskState *ts, char *buf, |
| 3296 | size_t bufsize) |
| 3297 | { |
| 3298 | char timestamp[64]; |
| 3299 | char *base_filename = NULL; |
| 3300 | struct timeval tv; |
| 3301 | struct tm tm; |
| 3302 | |
| 3303 | assert(bufsize >= PATH_MAX); |
| 3304 | |
| 3305 | if (gettimeofday(&tv, NULL) < 0) { |
| 3306 | (void) fprintf(stderr, "unable to get current timestamp: %s" , |
| 3307 | strerror(errno)); |
| 3308 | return (-1); |
| 3309 | } |
| 3310 | |
| 3311 | base_filename = g_path_get_basename(ts->bprm->filename); |
| 3312 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S" , |
| 3313 | localtime_r(&tv.tv_sec, &tm)); |
| 3314 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core" , |
| 3315 | base_filename, timestamp, (int)getpid()); |
| 3316 | g_free(base_filename); |
| 3317 | |
| 3318 | return (0); |
| 3319 | } |
| 3320 | |
| 3321 | static int dump_write(int fd, const void *ptr, size_t size) |
| 3322 | { |
| 3323 | const char *bufp = (const char *)ptr; |
| 3324 | ssize_t bytes_written, bytes_left; |
| 3325 | struct rlimit dumpsize; |
| 3326 | off_t pos; |
| 3327 | |
| 3328 | bytes_written = 0; |
| 3329 | getrlimit(RLIMIT_CORE, &dumpsize); |
| 3330 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { |
| 3331 | if (errno == ESPIPE) { /* not a seekable stream */ |
| 3332 | bytes_left = size; |
| 3333 | } else { |
| 3334 | return pos; |
| 3335 | } |
| 3336 | } else { |
| 3337 | if (dumpsize.rlim_cur <= pos) { |
| 3338 | return -1; |
| 3339 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { |
| 3340 | bytes_left = size; |
| 3341 | } else { |
| 3342 | size_t limit_left=dumpsize.rlim_cur - pos; |
| 3343 | bytes_left = limit_left >= size ? size : limit_left ; |
| 3344 | } |
| 3345 | } |
| 3346 | |
| 3347 | /* |
| 3348 | * In normal conditions, single write(2) should do but |
| 3349 | * in case of socket etc. this mechanism is more portable. |
| 3350 | */ |
| 3351 | do { |
| 3352 | bytes_written = write(fd, bufp, bytes_left); |
| 3353 | if (bytes_written < 0) { |
| 3354 | if (errno == EINTR) |
| 3355 | continue; |
| 3356 | return (-1); |
| 3357 | } else if (bytes_written == 0) { /* eof */ |
| 3358 | return (-1); |
| 3359 | } |
| 3360 | bufp += bytes_written; |
| 3361 | bytes_left -= bytes_written; |
| 3362 | } while (bytes_left > 0); |
| 3363 | |
| 3364 | return (0); |
| 3365 | } |
| 3366 | |
| 3367 | static int write_note(struct memelfnote *men, int fd) |
| 3368 | { |
| 3369 | struct elf_note en; |
| 3370 | |
| 3371 | en.n_namesz = men->namesz; |
| 3372 | en.n_type = men->type; |
| 3373 | en.n_descsz = men->datasz; |
| 3374 | |
| 3375 | bswap_note(&en); |
| 3376 | |
| 3377 | if (dump_write(fd, &en, sizeof(en)) != 0) |
| 3378 | return (-1); |
| 3379 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) |
| 3380 | return (-1); |
| 3381 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
| 3382 | return (-1); |
| 3383 | |
| 3384 | return (0); |
| 3385 | } |
| 3386 | |
| 3387 | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) |
| 3388 | { |
| 3389 | CPUState *cpu = env_cpu((CPUArchState *)env); |
| 3390 | TaskState *ts = (TaskState *)cpu->opaque; |
| 3391 | struct elf_thread_status *ets; |
| 3392 | |
| 3393 | ets = g_malloc0(sizeof (*ets)); |
| 3394 | ets->num_notes = 1; /* only prstatus is dumped */ |
| 3395 | fill_prstatus(&ets->prstatus, ts, 0); |
| 3396 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); |
| 3397 | fill_note(&ets->notes[0], "CORE" , NT_PRSTATUS, sizeof (ets->prstatus), |
| 3398 | &ets->prstatus); |
| 3399 | |
| 3400 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
| 3401 | |
| 3402 | info->notes_size += note_size(&ets->notes[0]); |
| 3403 | } |
| 3404 | |
| 3405 | static void init_note_info(struct elf_note_info *info) |
| 3406 | { |
| 3407 | /* Initialize the elf_note_info structure so that it is at |
| 3408 | * least safe to call free_note_info() on it. Must be |
| 3409 | * called before calling fill_note_info(). |
| 3410 | */ |
| 3411 | memset(info, 0, sizeof (*info)); |
| 3412 | QTAILQ_INIT(&info->thread_list); |
| 3413 | } |
| 3414 | |
| 3415 | static int fill_note_info(struct elf_note_info *info, |
| 3416 | long signr, const CPUArchState *env) |
| 3417 | { |
| 3418 | #define NUMNOTES 3 |
| 3419 | CPUState *cpu = env_cpu((CPUArchState *)env); |
| 3420 | TaskState *ts = (TaskState *)cpu->opaque; |
| 3421 | int i; |
| 3422 | |
| 3423 | info->notes = g_new0(struct memelfnote, NUMNOTES); |
| 3424 | if (info->notes == NULL) |
| 3425 | return (-ENOMEM); |
| 3426 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
| 3427 | if (info->prstatus == NULL) |
| 3428 | return (-ENOMEM); |
| 3429 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
| 3430 | if (info->prstatus == NULL) |
| 3431 | return (-ENOMEM); |
| 3432 | |
| 3433 | /* |
| 3434 | * First fill in status (and registers) of current thread |
| 3435 | * including process info & aux vector. |
| 3436 | */ |
| 3437 | fill_prstatus(info->prstatus, ts, signr); |
| 3438 | elf_core_copy_regs(&info->prstatus->pr_reg, env); |
| 3439 | fill_note(&info->notes[0], "CORE" , NT_PRSTATUS, |
| 3440 | sizeof (*info->prstatus), info->prstatus); |
| 3441 | fill_psinfo(info->psinfo, ts); |
| 3442 | fill_note(&info->notes[1], "CORE" , NT_PRPSINFO, |
| 3443 | sizeof (*info->psinfo), info->psinfo); |
| 3444 | fill_auxv_note(&info->notes[2], ts); |
| 3445 | info->numnote = 3; |
| 3446 | |
| 3447 | info->notes_size = 0; |
| 3448 | for (i = 0; i < info->numnote; i++) |
| 3449 | info->notes_size += note_size(&info->notes[i]); |
| 3450 | |
| 3451 | /* read and fill status of all threads */ |
| 3452 | cpu_list_lock(); |
| 3453 | CPU_FOREACH(cpu) { |
| 3454 | if (cpu == thread_cpu) { |
| 3455 | continue; |
| 3456 | } |
| 3457 | fill_thread_info(info, (CPUArchState *)cpu->env_ptr); |
| 3458 | } |
| 3459 | cpu_list_unlock(); |
| 3460 | |
| 3461 | return (0); |
| 3462 | } |
| 3463 | |
| 3464 | static void free_note_info(struct elf_note_info *info) |
| 3465 | { |
| 3466 | struct elf_thread_status *ets; |
| 3467 | |
| 3468 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
| 3469 | ets = QTAILQ_FIRST(&info->thread_list); |
| 3470 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); |
| 3471 | g_free(ets); |
| 3472 | } |
| 3473 | |
| 3474 | g_free(info->prstatus); |
| 3475 | g_free(info->psinfo); |
| 3476 | g_free(info->notes); |
| 3477 | } |
| 3478 | |
| 3479 | static int write_note_info(struct elf_note_info *info, int fd) |
| 3480 | { |
| 3481 | struct elf_thread_status *ets; |
| 3482 | int i, error = 0; |
| 3483 | |
| 3484 | /* write prstatus, psinfo and auxv for current thread */ |
| 3485 | for (i = 0; i < info->numnote; i++) |
| 3486 | if ((error = write_note(&info->notes[i], fd)) != 0) |
| 3487 | return (error); |
| 3488 | |
| 3489 | /* write prstatus for each thread */ |
| 3490 | QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { |
| 3491 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
| 3492 | return (error); |
| 3493 | } |
| 3494 | |
| 3495 | return (0); |
| 3496 | } |
| 3497 | |
| 3498 | /* |
| 3499 | * Write out ELF coredump. |
| 3500 | * |
| 3501 | * See documentation of ELF object file format in: |
| 3502 | * http://www.caldera.com/developers/devspecs/gabi41.pdf |
| 3503 | * |
| 3504 | * Coredump format in linux is following: |
| 3505 | * |
| 3506 | * 0 +----------------------+ \ |
| 3507 | * | ELF header | ET_CORE | |
| 3508 | * +----------------------+ | |
| 3509 | * | ELF program headers | |--- headers |
| 3510 | * | - NOTE section | | |
| 3511 | * | - PT_LOAD sections | | |
| 3512 | * +----------------------+ / |
| 3513 | * | NOTEs: | |
| 3514 | * | - NT_PRSTATUS | |
| 3515 | * | - NT_PRSINFO | |
| 3516 | * | - NT_AUXV | |
| 3517 | * +----------------------+ <-- aligned to target page |
| 3518 | * | Process memory dump | |
| 3519 | * : : |
| 3520 | * . . |
| 3521 | * : : |
| 3522 | * | | |
| 3523 | * +----------------------+ |
| 3524 | * |
| 3525 | * NT_PRSTATUS -> struct elf_prstatus (per thread) |
| 3526 | * NT_PRSINFO -> struct elf_prpsinfo |
| 3527 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). |
| 3528 | * |
| 3529 | * Format follows System V format as close as possible. Current |
| 3530 | * version limitations are as follows: |
| 3531 | * - no floating point registers are dumped |
| 3532 | * |
| 3533 | * Function returns 0 in case of success, negative errno otherwise. |
| 3534 | * |
| 3535 | * TODO: make this work also during runtime: it should be |
| 3536 | * possible to force coredump from running process and then |
| 3537 | * continue processing. For example qemu could set up SIGUSR2 |
| 3538 | * handler (provided that target process haven't registered |
| 3539 | * handler for that) that does the dump when signal is received. |
| 3540 | */ |
| 3541 | static int elf_core_dump(int signr, const CPUArchState *env) |
| 3542 | { |
| 3543 | const CPUState *cpu = env_cpu((CPUArchState *)env); |
| 3544 | const TaskState *ts = (const TaskState *)cpu->opaque; |
| 3545 | struct vm_area_struct *vma = NULL; |
| 3546 | char corefile[PATH_MAX]; |
| 3547 | struct elf_note_info info; |
| 3548 | struct elfhdr elf; |
| 3549 | struct elf_phdr phdr; |
| 3550 | struct rlimit dumpsize; |
| 3551 | struct mm_struct *mm = NULL; |
| 3552 | off_t offset = 0, data_offset = 0; |
| 3553 | int segs = 0; |
| 3554 | int fd = -1; |
| 3555 | |
| 3556 | init_note_info(&info); |
| 3557 | |
| 3558 | errno = 0; |
| 3559 | getrlimit(RLIMIT_CORE, &dumpsize); |
| 3560 | if (dumpsize.rlim_cur == 0) |
| 3561 | return 0; |
| 3562 | |
| 3563 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) |
| 3564 | return (-errno); |
| 3565 | |
| 3566 | if ((fd = open(corefile, O_WRONLY | O_CREAT, |
| 3567 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
| 3568 | return (-errno); |
| 3569 | |
| 3570 | /* |
| 3571 | * Walk through target process memory mappings and |
| 3572 | * set up structure containing this information. After |
| 3573 | * this point vma_xxx functions can be used. |
| 3574 | */ |
| 3575 | if ((mm = vma_init()) == NULL) |
| 3576 | goto out; |
| 3577 | |
| 3578 | walk_memory_regions(mm, vma_walker); |
| 3579 | segs = vma_get_mapping_count(mm); |
| 3580 | |
| 3581 | /* |
| 3582 | * Construct valid coredump ELF header. We also |
| 3583 | * add one more segment for notes. |
| 3584 | */ |
| 3585 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); |
| 3586 | if (dump_write(fd, &elf, sizeof (elf)) != 0) |
| 3587 | goto out; |
| 3588 | |
| 3589 | /* fill in the in-memory version of notes */ |
| 3590 | if (fill_note_info(&info, signr, env) < 0) |
| 3591 | goto out; |
| 3592 | |
| 3593 | offset += sizeof (elf); /* elf header */ |
| 3594 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ |
| 3595 | |
| 3596 | /* write out notes program header */ |
| 3597 | fill_elf_note_phdr(&phdr, info.notes_size, offset); |
| 3598 | |
| 3599 | offset += info.notes_size; |
| 3600 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) |
| 3601 | goto out; |
| 3602 | |
| 3603 | /* |
| 3604 | * ELF specification wants data to start at page boundary so |
| 3605 | * we align it here. |
| 3606 | */ |
| 3607 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
| 3608 | |
| 3609 | /* |
| 3610 | * Write program headers for memory regions mapped in |
| 3611 | * the target process. |
| 3612 | */ |
| 3613 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { |
| 3614 | (void) memset(&phdr, 0, sizeof (phdr)); |
| 3615 | |
| 3616 | phdr.p_type = PT_LOAD; |
| 3617 | phdr.p_offset = offset; |
| 3618 | phdr.p_vaddr = vma->vma_start; |
| 3619 | phdr.p_paddr = 0; |
| 3620 | phdr.p_filesz = vma_dump_size(vma); |
| 3621 | offset += phdr.p_filesz; |
| 3622 | phdr.p_memsz = vma->vma_end - vma->vma_start; |
| 3623 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; |
| 3624 | if (vma->vma_flags & PROT_WRITE) |
| 3625 | phdr.p_flags |= PF_W; |
| 3626 | if (vma->vma_flags & PROT_EXEC) |
| 3627 | phdr.p_flags |= PF_X; |
| 3628 | phdr.p_align = ELF_EXEC_PAGESIZE; |
| 3629 | |
| 3630 | bswap_phdr(&phdr, 1); |
| 3631 | if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { |
| 3632 | goto out; |
| 3633 | } |
| 3634 | } |
| 3635 | |
| 3636 | /* |
| 3637 | * Next we write notes just after program headers. No |
| 3638 | * alignment needed here. |
| 3639 | */ |
| 3640 | if (write_note_info(&info, fd) < 0) |
| 3641 | goto out; |
| 3642 | |
| 3643 | /* align data to page boundary */ |
| 3644 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
| 3645 | goto out; |
| 3646 | |
| 3647 | /* |
| 3648 | * Finally we can dump process memory into corefile as well. |
| 3649 | */ |
| 3650 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { |
| 3651 | abi_ulong addr; |
| 3652 | abi_ulong end; |
| 3653 | |
| 3654 | end = vma->vma_start + vma_dump_size(vma); |
| 3655 | |
| 3656 | for (addr = vma->vma_start; addr < end; |
| 3657 | addr += TARGET_PAGE_SIZE) { |
| 3658 | char page[TARGET_PAGE_SIZE]; |
| 3659 | int error; |
| 3660 | |
| 3661 | /* |
| 3662 | * Read in page from target process memory and |
| 3663 | * write it to coredump file. |
| 3664 | */ |
| 3665 | error = copy_from_user(page, addr, sizeof (page)); |
| 3666 | if (error != 0) { |
| 3667 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n" , |
| 3668 | addr); |
| 3669 | errno = -error; |
| 3670 | goto out; |
| 3671 | } |
| 3672 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) |
| 3673 | goto out; |
| 3674 | } |
| 3675 | } |
| 3676 | |
| 3677 | out: |
| 3678 | free_note_info(&info); |
| 3679 | if (mm != NULL) |
| 3680 | vma_delete(mm); |
| 3681 | (void) close(fd); |
| 3682 | |
| 3683 | if (errno != 0) |
| 3684 | return (-errno); |
| 3685 | return (0); |
| 3686 | } |
| 3687 | #endif /* USE_ELF_CORE_DUMP */ |
| 3688 | |
| 3689 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 3690 | { |
| 3691 | init_thread(regs, infop); |
| 3692 | } |
| 3693 | |