1/*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#include "qemu/osdep.h"
20
21#include "cpu.h"
22#include "internal.h"
23#include "exec/exec-all.h"
24#include "exec/cpu_ldst.h"
25#include "exec/log.h"
26#include "hw/mips/cpudevs.h"
27#include "qapi/qapi-commands-machine-target.h"
28
29enum {
30 TLBRET_XI = -6,
31 TLBRET_RI = -5,
32 TLBRET_DIRTY = -4,
33 TLBRET_INVALID = -3,
34 TLBRET_NOMATCH = -2,
35 TLBRET_BADADDR = -1,
36 TLBRET_MATCH = 0
37};
38
39#if !defined(CONFIG_USER_ONLY)
40
41/* no MMU emulation */
42int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
43 target_ulong address, int rw, int access_type)
44{
45 *physical = address;
46 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
47 return TLBRET_MATCH;
48}
49
50/* fixed mapping MMU emulation */
51int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
52 target_ulong address, int rw, int access_type)
53{
54 if (address <= (int32_t)0x7FFFFFFFUL) {
55 if (!(env->CP0_Status & (1 << CP0St_ERL)))
56 *physical = address + 0x40000000UL;
57 else
58 *physical = address;
59 } else if (address <= (int32_t)0xBFFFFFFFUL)
60 *physical = address & 0x1FFFFFFF;
61 else
62 *physical = address;
63
64 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
65 return TLBRET_MATCH;
66}
67
68/* MIPS32/MIPS64 R4000-style MMU emulation */
69int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
70 target_ulong address, int rw, int access_type)
71{
72 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
73 int i;
74
75 for (i = 0; i < env->tlb->tlb_in_use; i++) {
76 r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
77 /* 1k pages are not supported. */
78 target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
79 target_ulong tag = address & ~mask;
80 target_ulong VPN = tlb->VPN & ~mask;
81#if defined(TARGET_MIPS64)
82 tag &= env->SEGMask;
83#endif
84
85 /* Check ASID, virtual page number & size */
86 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
87 /* TLB match */
88 int n = !!(address & mask & ~(mask >> 1));
89 /* Check access rights */
90 if (!(n ? tlb->V1 : tlb->V0)) {
91 return TLBRET_INVALID;
92 }
93 if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
94 return TLBRET_XI;
95 }
96 if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
97 return TLBRET_RI;
98 }
99 if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
100 *physical = tlb->PFN[n] | (address & (mask >> 1));
101 *prot = PAGE_READ;
102 if (n ? tlb->D1 : tlb->D0)
103 *prot |= PAGE_WRITE;
104 if (!(n ? tlb->XI1 : tlb->XI0)) {
105 *prot |= PAGE_EXEC;
106 }
107 return TLBRET_MATCH;
108 }
109 return TLBRET_DIRTY;
110 }
111 }
112 return TLBRET_NOMATCH;
113}
114
115static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
116{
117 /*
118 * Interpret access control mode and mmu_idx.
119 * AdE? TLB?
120 * AM K S U E K S U E
121 * UK 0 0 1 1 0 0 - - 0
122 * MK 1 0 1 1 0 1 - - !eu
123 * MSK 2 0 0 1 0 1 1 - !eu
124 * MUSK 3 0 0 0 0 1 1 1 !eu
125 * MUSUK 4 0 0 0 0 0 1 1 0
126 * USK 5 0 0 1 0 0 0 - 0
127 * - 6 - - - - - - - -
128 * UUSK 7 0 0 0 0 0 0 0 0
129 */
130 int32_t adetlb_mask;
131
132 switch (mmu_idx) {
133 case 3 /* ERL */:
134 /* If EU is set, always unmapped */
135 if (eu) {
136 return 0;
137 }
138 /* fall through */
139 case MIPS_HFLAG_KM:
140 /* Never AdE, TLB mapped if AM={1,2,3} */
141 adetlb_mask = 0x70000000;
142 goto check_tlb;
143
144 case MIPS_HFLAG_SM:
145 /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
146 adetlb_mask = 0xc0380000;
147 goto check_ade;
148
149 case MIPS_HFLAG_UM:
150 /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
151 adetlb_mask = 0xe4180000;
152 /* fall through */
153 check_ade:
154 /* does this AM cause AdE in current execution mode */
155 if ((adetlb_mask << am) < 0) {
156 return TLBRET_BADADDR;
157 }
158 adetlb_mask <<= 8;
159 /* fall through */
160 check_tlb:
161 /* is this AM mapped in current execution mode */
162 return ((adetlb_mask << am) < 0);
163 default:
164 assert(0);
165 return TLBRET_BADADDR;
166 };
167}
168
169static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
170 int *prot, target_ulong real_address,
171 int rw, int access_type, int mmu_idx,
172 unsigned int am, bool eu,
173 target_ulong segmask,
174 hwaddr physical_base)
175{
176 int mapped = is_seg_am_mapped(am, eu, mmu_idx);
177
178 if (mapped < 0) {
179 /* is_seg_am_mapped can report TLBRET_BADADDR */
180 return mapped;
181 } else if (mapped) {
182 /* The segment is TLB mapped */
183 return env->tlb->map_address(env, physical, prot, real_address, rw,
184 access_type);
185 } else {
186 /* The segment is unmapped */
187 *physical = physical_base | (real_address & segmask);
188 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
189 return TLBRET_MATCH;
190 }
191}
192
193static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
194 int *prot, target_ulong real_address,
195 int rw, int access_type, int mmu_idx,
196 uint16_t segctl, target_ulong segmask)
197{
198 unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
199 bool eu = (segctl >> CP0SC_EU) & 1;
200 hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
201
202 return get_seg_physical_address(env, physical, prot, real_address, rw,
203 access_type, mmu_idx, am, eu, segmask,
204 pa & ~(hwaddr)segmask);
205}
206
207static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
208 int *prot, target_ulong real_address,
209 int rw, int access_type, int mmu_idx)
210{
211 /* User mode can only access useg/xuseg */
212#if defined(TARGET_MIPS64)
213 int user_mode = mmu_idx == MIPS_HFLAG_UM;
214 int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
215 int kernel_mode = !user_mode && !supervisor_mode;
216 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
217 int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
218 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
219#endif
220 int ret = TLBRET_MATCH;
221 /* effective address (modified for KVM T&E kernel segments) */
222 target_ulong address = real_address;
223
224#define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
225#define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
226#define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
227#define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
228#define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
229
230#define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
231#define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
232
233 if (mips_um_ksegs_enabled()) {
234 /* KVM T&E adds guest kernel segments in useg */
235 if (real_address >= KVM_KSEG0_BASE) {
236 if (real_address < KVM_KSEG2_BASE) {
237 /* kseg0 */
238 address += KSEG0_BASE - KVM_KSEG0_BASE;
239 } else if (real_address <= USEG_LIMIT) {
240 /* kseg2/3 */
241 address += KSEG2_BASE - KVM_KSEG2_BASE;
242 }
243 }
244 }
245
246 if (address <= USEG_LIMIT) {
247 /* useg */
248 uint16_t segctl;
249
250 if (address >= 0x40000000UL) {
251 segctl = env->CP0_SegCtl2;
252 } else {
253 segctl = env->CP0_SegCtl2 >> 16;
254 }
255 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
256 access_type, mmu_idx, segctl,
257 0x3FFFFFFF);
258#if defined(TARGET_MIPS64)
259 } else if (address < 0x4000000000000000ULL) {
260 /* xuseg */
261 if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
262 ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
263 } else {
264 ret = TLBRET_BADADDR;
265 }
266 } else if (address < 0x8000000000000000ULL) {
267 /* xsseg */
268 if ((supervisor_mode || kernel_mode) &&
269 SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
270 ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
271 } else {
272 ret = TLBRET_BADADDR;
273 }
274 } else if (address < 0xC000000000000000ULL) {
275 /* xkphys */
276 if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
277 /* KX/SX/UX bit to check for each xkphys EVA access mode */
278 static const uint8_t am_ksux[8] = {
279 [CP0SC_AM_UK] = (1u << CP0St_KX),
280 [CP0SC_AM_MK] = (1u << CP0St_KX),
281 [CP0SC_AM_MSK] = (1u << CP0St_SX),
282 [CP0SC_AM_MUSK] = (1u << CP0St_UX),
283 [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
284 [CP0SC_AM_USK] = (1u << CP0St_SX),
285 [6] = (1u << CP0St_KX),
286 [CP0SC_AM_UUSK] = (1u << CP0St_UX),
287 };
288 unsigned int am = CP0SC_AM_UK;
289 unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
290
291 if (xr & (1 << ((address >> 59) & 0x7))) {
292 am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
293 }
294 /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
295 if (env->CP0_Status & am_ksux[am]) {
296 ret = get_seg_physical_address(env, physical, prot,
297 real_address, rw, access_type,
298 mmu_idx, am, false, env->PAMask,
299 0);
300 } else {
301 ret = TLBRET_BADADDR;
302 }
303 } else {
304 ret = TLBRET_BADADDR;
305 }
306 } else if (address < 0xFFFFFFFF80000000ULL) {
307 /* xkseg */
308 if (kernel_mode && KX &&
309 address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
310 ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
311 } else {
312 ret = TLBRET_BADADDR;
313 }
314#endif
315 } else if (address < KSEG1_BASE) {
316 /* kseg0 */
317 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
318 access_type, mmu_idx,
319 env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
320 } else if (address < KSEG2_BASE) {
321 /* kseg1 */
322 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
323 access_type, mmu_idx,
324 env->CP0_SegCtl1, 0x1FFFFFFF);
325 } else if (address < KSEG3_BASE) {
326 /* sseg (kseg2) */
327 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
328 access_type, mmu_idx,
329 env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
330 } else {
331 /* kseg3 */
332 /* XXX: debug segment is not emulated */
333 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
334 access_type, mmu_idx,
335 env->CP0_SegCtl0, 0x1FFFFFFF);
336 }
337 return ret;
338}
339
340void cpu_mips_tlb_flush(CPUMIPSState *env)
341{
342 /* Flush qemu's TLB and discard all shadowed entries. */
343 tlb_flush(env_cpu(env));
344 env->tlb->tlb_in_use = env->tlb->nb_tlb;
345}
346
347/* Called for updates to CP0_Status. */
348void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
349{
350 int32_t tcstatus, *tcst;
351 uint32_t v = cpu->CP0_Status;
352 uint32_t cu, mx, asid, ksu;
353 uint32_t mask = ((1 << CP0TCSt_TCU3)
354 | (1 << CP0TCSt_TCU2)
355 | (1 << CP0TCSt_TCU1)
356 | (1 << CP0TCSt_TCU0)
357 | (1 << CP0TCSt_TMX)
358 | (3 << CP0TCSt_TKSU)
359 | (0xff << CP0TCSt_TASID));
360
361 cu = (v >> CP0St_CU0) & 0xf;
362 mx = (v >> CP0St_MX) & 0x1;
363 ksu = (v >> CP0St_KSU) & 0x3;
364 asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
365
366 tcstatus = cu << CP0TCSt_TCU0;
367 tcstatus |= mx << CP0TCSt_TMX;
368 tcstatus |= ksu << CP0TCSt_TKSU;
369 tcstatus |= asid;
370
371 if (tc == cpu->current_tc) {
372 tcst = &cpu->active_tc.CP0_TCStatus;
373 } else {
374 tcst = &cpu->tcs[tc].CP0_TCStatus;
375 }
376
377 *tcst &= ~mask;
378 *tcst |= tcstatus;
379 compute_hflags(cpu);
380}
381
382void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
383{
384 uint32_t mask = env->CP0_Status_rw_bitmask;
385 target_ulong old = env->CP0_Status;
386
387 if (env->insn_flags & ISA_MIPS32R6) {
388 bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
389#if defined(TARGET_MIPS64)
390 uint32_t ksux = (1 << CP0St_KX) & val;
391 ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
392 ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
393 val = (val & ~(7 << CP0St_UX)) | ksux;
394#endif
395 if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
396 mask &= ~(3 << CP0St_KSU);
397 }
398 mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
399 }
400
401 env->CP0_Status = (old & ~mask) | (val & mask);
402#if defined(TARGET_MIPS64)
403 if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
404 /* Access to at least one of the 64-bit segments has been disabled */
405 tlb_flush(env_cpu(env));
406 }
407#endif
408 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
409 sync_c0_status(env, env, env->current_tc);
410 } else {
411 compute_hflags(env);
412 }
413}
414
415void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
416{
417 uint32_t mask = 0x00C00300;
418 uint32_t old = env->CP0_Cause;
419 int i;
420
421 if (env->insn_flags & ISA_MIPS32R2) {
422 mask |= 1 << CP0Ca_DC;
423 }
424 if (env->insn_flags & ISA_MIPS32R6) {
425 mask &= ~((1 << CP0Ca_WP) & val);
426 }
427
428 env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
429
430 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
431 if (env->CP0_Cause & (1 << CP0Ca_DC)) {
432 cpu_mips_stop_count(env);
433 } else {
434 cpu_mips_start_count(env);
435 }
436 }
437
438 /* Set/reset software interrupts */
439 for (i = 0 ; i < 2 ; i++) {
440 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
441 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
442 }
443 }
444}
445#endif
446
447static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
448 int rw, int tlb_error)
449{
450 CPUState *cs = env_cpu(env);
451 int exception = 0, error_code = 0;
452
453 if (rw == MMU_INST_FETCH) {
454 error_code |= EXCP_INST_NOTAVAIL;
455 }
456
457 switch (tlb_error) {
458 default:
459 case TLBRET_BADADDR:
460 /* Reference to kernel address from user mode or supervisor mode */
461 /* Reference to supervisor address from user mode */
462 if (rw == MMU_DATA_STORE) {
463 exception = EXCP_AdES;
464 } else {
465 exception = EXCP_AdEL;
466 }
467 break;
468 case TLBRET_NOMATCH:
469 /* No TLB match for a mapped address */
470 if (rw == MMU_DATA_STORE) {
471 exception = EXCP_TLBS;
472 } else {
473 exception = EXCP_TLBL;
474 }
475 error_code |= EXCP_TLB_NOMATCH;
476 break;
477 case TLBRET_INVALID:
478 /* TLB match with no valid bit */
479 if (rw == MMU_DATA_STORE) {
480 exception = EXCP_TLBS;
481 } else {
482 exception = EXCP_TLBL;
483 }
484 break;
485 case TLBRET_DIRTY:
486 /* TLB match but 'D' bit is cleared */
487 exception = EXCP_LTLBL;
488 break;
489 case TLBRET_XI:
490 /* Execute-Inhibit Exception */
491 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
492 exception = EXCP_TLBXI;
493 } else {
494 exception = EXCP_TLBL;
495 }
496 break;
497 case TLBRET_RI:
498 /* Read-Inhibit Exception */
499 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
500 exception = EXCP_TLBRI;
501 } else {
502 exception = EXCP_TLBL;
503 }
504 break;
505 }
506 /* Raise exception */
507 if (!(env->hflags & MIPS_HFLAG_DM)) {
508 env->CP0_BadVAddr = address;
509 }
510 env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
511 ((address >> 9) & 0x007ffff0);
512 env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
513 (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
514 (address & (TARGET_PAGE_MASK << 1));
515#if defined(TARGET_MIPS64)
516 env->CP0_EntryHi &= env->SEGMask;
517 env->CP0_XContext =
518 /* PTEBase */ (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) |
519 /* R */ (extract64(address, 62, 2) << (env->SEGBITS - 9)) |
520 /* BadVPN2 */ (extract64(address, 13, env->SEGBITS - 13) << 4);
521#endif
522 cs->exception_index = exception;
523 env->error_code = error_code;
524}
525
526#if !defined(CONFIG_USER_ONLY)
527hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
528{
529 MIPSCPU *cpu = MIPS_CPU(cs);
530 CPUMIPSState *env = &cpu->env;
531 hwaddr phys_addr;
532 int prot;
533
534 if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
535 cpu_mmu_index(env, false)) != 0) {
536 return -1;
537 }
538 return phys_addr;
539}
540#endif
541
542#if !defined(CONFIG_USER_ONLY)
543#if !defined(TARGET_MIPS64)
544
545/*
546 * Perform hardware page table walk
547 *
548 * Memory accesses are performed using the KERNEL privilege level.
549 * Synchronous exceptions detected on memory accesses cause a silent exit
550 * from page table walking, resulting in a TLB or XTLB Refill exception.
551 *
552 * Implementations are not required to support page table walk memory
553 * accesses from mapped memory regions. When an unsupported access is
554 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
555 * exception.
556 *
557 * Note that if an exception is caused by AddressTranslation or LoadMemory
558 * functions, the exception is not taken, a silent exit is taken,
559 * resulting in a TLB or XTLB Refill exception.
560 */
561
562static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
563 uint64_t *pte)
564{
565 if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
566 return false;
567 }
568 if (entry_size == 64) {
569 *pte = cpu_ldq_code(env, vaddr);
570 } else {
571 *pte = cpu_ldl_code(env, vaddr);
572 }
573 return true;
574}
575
576static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
577 int entry_size, int ptei)
578{
579 uint64_t result = entry;
580 uint64_t rixi;
581 if (ptei > entry_size) {
582 ptei -= 32;
583 }
584 result >>= (ptei - 2);
585 rixi = result & 3;
586 result >>= 2;
587 result |= rixi << CP0EnLo_XI;
588 return result;
589}
590
591static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
592 int directory_index, bool *huge_page, bool *hgpg_directory_hit,
593 uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
594{
595 int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
596 int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
597 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
598 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
599 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
600 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
601 int directory_shift = (ptew > 1) ? -1 :
602 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
603 int leaf_shift = (ptew > 1) ? -1 :
604 (ptew == 1) ? native_shift + 1 : native_shift;
605 uint32_t direntry_size = 1 << (directory_shift + 3);
606 uint32_t leafentry_size = 1 << (leaf_shift + 3);
607 uint64_t entry;
608 uint64_t paddr;
609 int prot;
610 uint64_t lsb = 0;
611 uint64_t w = 0;
612
613 if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
614 ACCESS_INT, cpu_mmu_index(env, false)) !=
615 TLBRET_MATCH) {
616 /* wrong base address */
617 return 0;
618 }
619 if (!get_pte(env, *vaddr, direntry_size, &entry)) {
620 return 0;
621 }
622
623 if ((entry & (1 << psn)) && hugepg) {
624 *huge_page = true;
625 *hgpg_directory_hit = true;
626 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
627 w = directory_index - 1;
628 if (directory_index & 0x1) {
629 /* Generate adjacent page from same PTE for odd TLB page */
630 lsb = (1 << w) >> 6;
631 *pw_entrylo0 = entry & ~lsb; /* even page */
632 *pw_entrylo1 = entry | lsb; /* odd page */
633 } else if (dph) {
634 int oddpagebit = 1 << leaf_shift;
635 uint64_t vaddr2 = *vaddr ^ oddpagebit;
636 if (*vaddr & oddpagebit) {
637 *pw_entrylo1 = entry;
638 } else {
639 *pw_entrylo0 = entry;
640 }
641 if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
642 ACCESS_INT, cpu_mmu_index(env, false)) !=
643 TLBRET_MATCH) {
644 return 0;
645 }
646 if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
647 return 0;
648 }
649 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
650 if (*vaddr & oddpagebit) {
651 *pw_entrylo0 = entry;
652 } else {
653 *pw_entrylo1 = entry;
654 }
655 } else {
656 return 0;
657 }
658 return 1;
659 } else {
660 *vaddr = entry;
661 return 2;
662 }
663}
664
665static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
666 int mmu_idx)
667{
668 int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
669 int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
670 int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
671 int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
672 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
673
674 /* Initial values */
675 bool huge_page = false;
676 bool hgpg_bdhit = false;
677 bool hgpg_gdhit = false;
678 bool hgpg_udhit = false;
679 bool hgpg_mdhit = false;
680
681 int32_t pw_pagemask = 0;
682 target_ulong pw_entryhi = 0;
683 uint64_t pw_entrylo0 = 0;
684 uint64_t pw_entrylo1 = 0;
685
686 /* Native pointer size */
687 /*For the 32-bit architectures, this bit is fixed to 0.*/
688 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
689
690 /* Indices from PWField */
691 int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
692 int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
693 int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
694 int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
695 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
696
697 /* Indices computed from faulting address */
698 int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
699 int uindex = (address >> pf_udw) & ((1 << udw) - 1);
700 int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
701 int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
702
703 /* Other HTW configs */
704 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
705
706 /* HTW Shift values (depend on entry size) */
707 int directory_shift = (ptew > 1) ? -1 :
708 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
709 int leaf_shift = (ptew > 1) ? -1 :
710 (ptew == 1) ? native_shift + 1 : native_shift;
711
712 /* Offsets into tables */
713 int goffset = gindex << directory_shift;
714 int uoffset = uindex << directory_shift;
715 int moffset = mindex << directory_shift;
716 int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
717 int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
718
719 uint32_t leafentry_size = 1 << (leaf_shift + 3);
720
721 /* Starting address - Page Table Base */
722 uint64_t vaddr = env->CP0_PWBase;
723
724 uint64_t dir_entry;
725 uint64_t paddr;
726 int prot;
727 int m;
728
729 if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
730 /* walker is unimplemented */
731 return false;
732 }
733 if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
734 /* walker is disabled */
735 return false;
736 }
737 if (!(gdw > 0 || udw > 0 || mdw > 0)) {
738 /* no structure to walk */
739 return false;
740 }
741 if ((directory_shift == -1) || (leaf_shift == -1)) {
742 return false;
743 }
744
745 /* Global Directory */
746 if (gdw > 0) {
747 vaddr |= goffset;
748 switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
749 &pw_entrylo0, &pw_entrylo1))
750 {
751 case 0:
752 return false;
753 case 1:
754 goto refill;
755 case 2:
756 default:
757 break;
758 }
759 }
760
761 /* Upper directory */
762 if (udw > 0) {
763 vaddr |= uoffset;
764 switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
765 &pw_entrylo0, &pw_entrylo1))
766 {
767 case 0:
768 return false;
769 case 1:
770 goto refill;
771 case 2:
772 default:
773 break;
774 }
775 }
776
777 /* Middle directory */
778 if (mdw > 0) {
779 vaddr |= moffset;
780 switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
781 &pw_entrylo0, &pw_entrylo1))
782 {
783 case 0:
784 return false;
785 case 1:
786 goto refill;
787 case 2:
788 default:
789 break;
790 }
791 }
792
793 /* Leaf Level Page Table - First half of PTE pair */
794 vaddr |= ptoffset0;
795 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
796 ACCESS_INT, cpu_mmu_index(env, false)) !=
797 TLBRET_MATCH) {
798 return false;
799 }
800 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
801 return false;
802 }
803 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
804 pw_entrylo0 = dir_entry;
805
806 /* Leaf Level Page Table - Second half of PTE pair */
807 vaddr |= ptoffset1;
808 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
809 ACCESS_INT, cpu_mmu_index(env, false)) !=
810 TLBRET_MATCH) {
811 return false;
812 }
813 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
814 return false;
815 }
816 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
817 pw_entrylo1 = dir_entry;
818
819refill:
820
821 m = (1 << pf_ptw) - 1;
822
823 if (huge_page) {
824 switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
825 hgpg_mdhit)
826 {
827 case 4:
828 m = (1 << pf_gdw) - 1;
829 if (pf_gdw & 1) {
830 m >>= 1;
831 }
832 break;
833 case 2:
834 m = (1 << pf_udw) - 1;
835 if (pf_udw & 1) {
836 m >>= 1;
837 }
838 break;
839 case 1:
840 m = (1 << pf_mdw) - 1;
841 if (pf_mdw & 1) {
842 m >>= 1;
843 }
844 break;
845 }
846 }
847 pw_pagemask = m >> 12;
848 update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
849 pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
850 {
851 target_ulong tmp_entryhi = env->CP0_EntryHi;
852 int32_t tmp_pagemask = env->CP0_PageMask;
853 uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
854 uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
855
856 env->CP0_EntryHi = pw_entryhi;
857 env->CP0_PageMask = pw_pagemask;
858 env->CP0_EntryLo0 = pw_entrylo0;
859 env->CP0_EntryLo1 = pw_entrylo1;
860
861 /*
862 * The hardware page walker inserts a page into the TLB in a manner
863 * identical to a TLBWR instruction as executed by the software refill
864 * handler.
865 */
866 r4k_helper_tlbwr(env);
867
868 env->CP0_EntryHi = tmp_entryhi;
869 env->CP0_PageMask = tmp_pagemask;
870 env->CP0_EntryLo0 = tmp_entrylo0;
871 env->CP0_EntryLo1 = tmp_entrylo1;
872 }
873 return true;
874}
875#endif
876#endif
877
878bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
879 MMUAccessType access_type, int mmu_idx,
880 bool probe, uintptr_t retaddr)
881{
882 MIPSCPU *cpu = MIPS_CPU(cs);
883 CPUMIPSState *env = &cpu->env;
884#if !defined(CONFIG_USER_ONLY)
885 hwaddr physical;
886 int prot;
887 int mips_access_type;
888#endif
889 int ret = TLBRET_BADADDR;
890
891 /* data access */
892#if !defined(CONFIG_USER_ONLY)
893 /* XXX: put correct access by using cpu_restore_state() correctly */
894 mips_access_type = ACCESS_INT;
895 ret = get_physical_address(env, &physical, &prot, address,
896 access_type, mips_access_type, mmu_idx);
897 switch (ret) {
898 case TLBRET_MATCH:
899 qemu_log_mask(CPU_LOG_MMU,
900 "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
901 " prot %d\n", __func__, address, physical, prot);
902 break;
903 default:
904 qemu_log_mask(CPU_LOG_MMU,
905 "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
906 ret);
907 break;
908 }
909 if (ret == TLBRET_MATCH) {
910 tlb_set_page(cs, address & TARGET_PAGE_MASK,
911 physical & TARGET_PAGE_MASK, prot,
912 mmu_idx, TARGET_PAGE_SIZE);
913 return true;
914 }
915#if !defined(TARGET_MIPS64)
916 if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
917 /*
918 * Memory reads during hardware page table walking are performed
919 * as if they were kernel-mode load instructions.
920 */
921 int mode = (env->hflags & MIPS_HFLAG_KSU);
922 bool ret_walker;
923 env->hflags &= ~MIPS_HFLAG_KSU;
924 ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
925 env->hflags |= mode;
926 if (ret_walker) {
927 ret = get_physical_address(env, &physical, &prot, address,
928 access_type, mips_access_type, mmu_idx);
929 if (ret == TLBRET_MATCH) {
930 tlb_set_page(cs, address & TARGET_PAGE_MASK,
931 physical & TARGET_PAGE_MASK, prot,
932 mmu_idx, TARGET_PAGE_SIZE);
933 return true;
934 }
935 }
936 }
937#endif
938 if (probe) {
939 return false;
940 }
941#endif
942
943 raise_mmu_exception(env, address, access_type, ret);
944 do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
945}
946
947#ifndef CONFIG_USER_ONLY
948hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw)
949{
950 hwaddr physical;
951 int prot;
952 int access_type;
953 int ret = 0;
954
955 /* data access */
956 access_type = ACCESS_INT;
957 ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
958 cpu_mmu_index(env, false));
959 if (ret != TLBRET_MATCH) {
960 raise_mmu_exception(env, address, rw, ret);
961 return -1LL;
962 } else {
963 return physical;
964 }
965}
966
967static const char * const excp_names[EXCP_LAST + 1] = {
968 [EXCP_RESET] = "reset",
969 [EXCP_SRESET] = "soft reset",
970 [EXCP_DSS] = "debug single step",
971 [EXCP_DINT] = "debug interrupt",
972 [EXCP_NMI] = "non-maskable interrupt",
973 [EXCP_MCHECK] = "machine check",
974 [EXCP_EXT_INTERRUPT] = "interrupt",
975 [EXCP_DFWATCH] = "deferred watchpoint",
976 [EXCP_DIB] = "debug instruction breakpoint",
977 [EXCP_IWATCH] = "instruction fetch watchpoint",
978 [EXCP_AdEL] = "address error load",
979 [EXCP_AdES] = "address error store",
980 [EXCP_TLBF] = "TLB refill",
981 [EXCP_IBE] = "instruction bus error",
982 [EXCP_DBp] = "debug breakpoint",
983 [EXCP_SYSCALL] = "syscall",
984 [EXCP_BREAK] = "break",
985 [EXCP_CpU] = "coprocessor unusable",
986 [EXCP_RI] = "reserved instruction",
987 [EXCP_OVERFLOW] = "arithmetic overflow",
988 [EXCP_TRAP] = "trap",
989 [EXCP_FPE] = "floating point",
990 [EXCP_DDBS] = "debug data break store",
991 [EXCP_DWATCH] = "data watchpoint",
992 [EXCP_LTLBL] = "TLB modify",
993 [EXCP_TLBL] = "TLB load",
994 [EXCP_TLBS] = "TLB store",
995 [EXCP_DBE] = "data bus error",
996 [EXCP_DDBL] = "debug data break load",
997 [EXCP_THREAD] = "thread",
998 [EXCP_MDMX] = "MDMX",
999 [EXCP_C2E] = "precise coprocessor 2",
1000 [EXCP_CACHE] = "cache error",
1001 [EXCP_TLBXI] = "TLB execute-inhibit",
1002 [EXCP_TLBRI] = "TLB read-inhibit",
1003 [EXCP_MSADIS] = "MSA disabled",
1004 [EXCP_MSAFPE] = "MSA floating point",
1005};
1006#endif
1007
1008target_ulong exception_resume_pc (CPUMIPSState *env)
1009{
1010 target_ulong bad_pc;
1011 target_ulong isa_mode;
1012
1013 isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
1014 bad_pc = env->active_tc.PC | isa_mode;
1015 if (env->hflags & MIPS_HFLAG_BMASK) {
1016 /* If the exception was raised from a delay slot, come back to
1017 the jump. */
1018 bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1019 }
1020
1021 return bad_pc;
1022}
1023
1024#if !defined(CONFIG_USER_ONLY)
1025static void set_hflags_for_handler (CPUMIPSState *env)
1026{
1027 /* Exception handlers are entered in 32-bit mode. */
1028 env->hflags &= ~(MIPS_HFLAG_M16);
1029 /* ...except that microMIPS lets you choose. */
1030 if (env->insn_flags & ASE_MICROMIPS) {
1031 env->hflags |= (!!(env->CP0_Config3
1032 & (1 << CP0C3_ISA_ON_EXC))
1033 << MIPS_HFLAG_M16_SHIFT);
1034 }
1035}
1036
1037static inline void set_badinstr_registers(CPUMIPSState *env)
1038{
1039 if (env->insn_flags & ISA_NANOMIPS32) {
1040 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1041 uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1042 if ((instr & 0x10000000) == 0) {
1043 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1044 }
1045 env->CP0_BadInstr = instr;
1046
1047 if ((instr & 0xFC000000) == 0x60000000) {
1048 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1049 env->CP0_BadInstrX = instr;
1050 }
1051 }
1052 return;
1053 }
1054
1055 if (env->hflags & MIPS_HFLAG_M16) {
1056 /* TODO: add BadInstr support for microMIPS */
1057 return;
1058 }
1059 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1060 env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1061 }
1062 if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1063 (env->hflags & MIPS_HFLAG_BMASK)) {
1064 env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1065 }
1066}
1067#endif
1068
1069void mips_cpu_do_interrupt(CPUState *cs)
1070{
1071#if !defined(CONFIG_USER_ONLY)
1072 MIPSCPU *cpu = MIPS_CPU(cs);
1073 CPUMIPSState *env = &cpu->env;
1074 bool update_badinstr = 0;
1075 target_ulong offset;
1076 int cause = -1;
1077 const char *name;
1078
1079 if (qemu_loglevel_mask(CPU_LOG_INT)
1080 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1081 if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
1082 name = "unknown";
1083 } else {
1084 name = excp_names[cs->exception_index];
1085 }
1086
1087 qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1088 " %s exception\n",
1089 __func__, env->active_tc.PC, env->CP0_EPC, name);
1090 }
1091 if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1092 (env->hflags & MIPS_HFLAG_DM)) {
1093 cs->exception_index = EXCP_DINT;
1094 }
1095 offset = 0x180;
1096 switch (cs->exception_index) {
1097 case EXCP_DSS:
1098 env->CP0_Debug |= 1 << CP0DB_DSS;
1099 /* Debug single step cannot be raised inside a delay slot and
1100 resume will always occur on the next instruction
1101 (but we assume the pc has always been updated during
1102 code translation). */
1103 env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1104 goto enter_debug_mode;
1105 case EXCP_DINT:
1106 env->CP0_Debug |= 1 << CP0DB_DINT;
1107 goto set_DEPC;
1108 case EXCP_DIB:
1109 env->CP0_Debug |= 1 << CP0DB_DIB;
1110 goto set_DEPC;
1111 case EXCP_DBp:
1112 env->CP0_Debug |= 1 << CP0DB_DBp;
1113 /* Setup DExcCode - SDBBP instruction */
1114 env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | 9 << CP0DB_DEC;
1115 goto set_DEPC;
1116 case EXCP_DDBS:
1117 env->CP0_Debug |= 1 << CP0DB_DDBS;
1118 goto set_DEPC;
1119 case EXCP_DDBL:
1120 env->CP0_Debug |= 1 << CP0DB_DDBL;
1121 set_DEPC:
1122 env->CP0_DEPC = exception_resume_pc(env);
1123 env->hflags &= ~MIPS_HFLAG_BMASK;
1124 enter_debug_mode:
1125 if (env->insn_flags & ISA_MIPS3) {
1126 env->hflags |= MIPS_HFLAG_64;
1127 if (!(env->insn_flags & ISA_MIPS64R6) ||
1128 env->CP0_Status & (1 << CP0St_KX)) {
1129 env->hflags &= ~MIPS_HFLAG_AWRAP;
1130 }
1131 }
1132 env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1133 env->hflags &= ~(MIPS_HFLAG_KSU);
1134 /* EJTAG probe trap enable is not implemented... */
1135 if (!(env->CP0_Status & (1 << CP0St_EXL)))
1136 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1137 env->active_tc.PC = env->exception_base + 0x480;
1138 set_hflags_for_handler(env);
1139 break;
1140 case EXCP_RESET:
1141 cpu_reset(CPU(cpu));
1142 break;
1143 case EXCP_SRESET:
1144 env->CP0_Status |= (1 << CP0St_SR);
1145 memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1146 goto set_error_EPC;
1147 case EXCP_NMI:
1148 env->CP0_Status |= (1 << CP0St_NMI);
1149 set_error_EPC:
1150 env->CP0_ErrorEPC = exception_resume_pc(env);
1151 env->hflags &= ~MIPS_HFLAG_BMASK;
1152 env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1153 if (env->insn_flags & ISA_MIPS3) {
1154 env->hflags |= MIPS_HFLAG_64;
1155 if (!(env->insn_flags & ISA_MIPS64R6) ||
1156 env->CP0_Status & (1 << CP0St_KX)) {
1157 env->hflags &= ~MIPS_HFLAG_AWRAP;
1158 }
1159 }
1160 env->hflags |= MIPS_HFLAG_CP0;
1161 env->hflags &= ~(MIPS_HFLAG_KSU);
1162 if (!(env->CP0_Status & (1 << CP0St_EXL)))
1163 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1164 env->active_tc.PC = env->exception_base;
1165 set_hflags_for_handler(env);
1166 break;
1167 case EXCP_EXT_INTERRUPT:
1168 cause = 0;
1169 if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1170 uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1171
1172 if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1173 offset = 0x200;
1174 } else {
1175 uint32_t vector = 0;
1176 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1177
1178 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1179 /* For VEIC mode, the external interrupt controller feeds
1180 * the vector through the CP0Cause IP lines. */
1181 vector = pending;
1182 } else {
1183 /* Vectored Interrupts
1184 * Mask with Status.IM7-IM0 to get enabled interrupts. */
1185 pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1186 /* Find the highest-priority interrupt. */
1187 while (pending >>= 1) {
1188 vector++;
1189 }
1190 }
1191 offset = 0x200 + (vector * (spacing << 5));
1192 }
1193 }
1194 goto set_EPC;
1195 case EXCP_LTLBL:
1196 cause = 1;
1197 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1198 goto set_EPC;
1199 case EXCP_TLBL:
1200 cause = 2;
1201 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1202 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1203 !(env->CP0_Status & (1 << CP0St_EXL))) {
1204#if defined(TARGET_MIPS64)
1205 int R = env->CP0_BadVAddr >> 62;
1206 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1207 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1208
1209 if ((R != 0 || UX) && (R != 3 || KX) &&
1210 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1211 offset = 0x080;
1212 } else {
1213#endif
1214 offset = 0x000;
1215#if defined(TARGET_MIPS64)
1216 }
1217#endif
1218 }
1219 goto set_EPC;
1220 case EXCP_TLBS:
1221 cause = 3;
1222 update_badinstr = 1;
1223 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1224 !(env->CP0_Status & (1 << CP0St_EXL))) {
1225#if defined(TARGET_MIPS64)
1226 int R = env->CP0_BadVAddr >> 62;
1227 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1228 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1229
1230 if ((R != 0 || UX) && (R != 3 || KX) &&
1231 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1232 offset = 0x080;
1233 } else {
1234#endif
1235 offset = 0x000;
1236#if defined(TARGET_MIPS64)
1237 }
1238#endif
1239 }
1240 goto set_EPC;
1241 case EXCP_AdEL:
1242 cause = 4;
1243 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1244 goto set_EPC;
1245 case EXCP_AdES:
1246 cause = 5;
1247 update_badinstr = 1;
1248 goto set_EPC;
1249 case EXCP_IBE:
1250 cause = 6;
1251 goto set_EPC;
1252 case EXCP_DBE:
1253 cause = 7;
1254 goto set_EPC;
1255 case EXCP_SYSCALL:
1256 cause = 8;
1257 update_badinstr = 1;
1258 goto set_EPC;
1259 case EXCP_BREAK:
1260 cause = 9;
1261 update_badinstr = 1;
1262 goto set_EPC;
1263 case EXCP_RI:
1264 cause = 10;
1265 update_badinstr = 1;
1266 goto set_EPC;
1267 case EXCP_CpU:
1268 cause = 11;
1269 update_badinstr = 1;
1270 env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1271 (env->error_code << CP0Ca_CE);
1272 goto set_EPC;
1273 case EXCP_OVERFLOW:
1274 cause = 12;
1275 update_badinstr = 1;
1276 goto set_EPC;
1277 case EXCP_TRAP:
1278 cause = 13;
1279 update_badinstr = 1;
1280 goto set_EPC;
1281 case EXCP_MSAFPE:
1282 cause = 14;
1283 update_badinstr = 1;
1284 goto set_EPC;
1285 case EXCP_FPE:
1286 cause = 15;
1287 update_badinstr = 1;
1288 goto set_EPC;
1289 case EXCP_C2E:
1290 cause = 18;
1291 goto set_EPC;
1292 case EXCP_TLBRI:
1293 cause = 19;
1294 update_badinstr = 1;
1295 goto set_EPC;
1296 case EXCP_TLBXI:
1297 cause = 20;
1298 goto set_EPC;
1299 case EXCP_MSADIS:
1300 cause = 21;
1301 update_badinstr = 1;
1302 goto set_EPC;
1303 case EXCP_MDMX:
1304 cause = 22;
1305 goto set_EPC;
1306 case EXCP_DWATCH:
1307 cause = 23;
1308 /* XXX: TODO: manage deferred watch exceptions */
1309 goto set_EPC;
1310 case EXCP_MCHECK:
1311 cause = 24;
1312 goto set_EPC;
1313 case EXCP_THREAD:
1314 cause = 25;
1315 goto set_EPC;
1316 case EXCP_DSPDIS:
1317 cause = 26;
1318 goto set_EPC;
1319 case EXCP_CACHE:
1320 cause = 30;
1321 offset = 0x100;
1322 set_EPC:
1323 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1324 env->CP0_EPC = exception_resume_pc(env);
1325 if (update_badinstr) {
1326 set_badinstr_registers(env);
1327 }
1328 if (env->hflags & MIPS_HFLAG_BMASK) {
1329 env->CP0_Cause |= (1U << CP0Ca_BD);
1330 } else {
1331 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1332 }
1333 env->CP0_Status |= (1 << CP0St_EXL);
1334 if (env->insn_flags & ISA_MIPS3) {
1335 env->hflags |= MIPS_HFLAG_64;
1336 if (!(env->insn_flags & ISA_MIPS64R6) ||
1337 env->CP0_Status & (1 << CP0St_KX)) {
1338 env->hflags &= ~MIPS_HFLAG_AWRAP;
1339 }
1340 }
1341 env->hflags |= MIPS_HFLAG_CP0;
1342 env->hflags &= ~(MIPS_HFLAG_KSU);
1343 }
1344 env->hflags &= ~MIPS_HFLAG_BMASK;
1345 if (env->CP0_Status & (1 << CP0St_BEV)) {
1346 env->active_tc.PC = env->exception_base + 0x200;
1347 } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1348 env->CP0_Config5 & (1 << CP0C5_CV))) {
1349 /* Force KSeg1 for cache errors */
1350 env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1351 } else {
1352 env->active_tc.PC = env->CP0_EBase & ~0xfff;
1353 }
1354
1355 env->active_tc.PC += offset;
1356 set_hflags_for_handler(env);
1357 env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC);
1358 break;
1359 default:
1360 abort();
1361 }
1362 if (qemu_loglevel_mask(CPU_LOG_INT)
1363 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1364 qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1365 " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1366 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1367 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1368 env->CP0_DEPC);
1369 }
1370#endif
1371 cs->exception_index = EXCP_NONE;
1372}
1373
1374bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1375{
1376 if (interrupt_request & CPU_INTERRUPT_HARD) {
1377 MIPSCPU *cpu = MIPS_CPU(cs);
1378 CPUMIPSState *env = &cpu->env;
1379
1380 if (cpu_mips_hw_interrupts_enabled(env) &&
1381 cpu_mips_hw_interrupts_pending(env)) {
1382 /* Raise it */
1383 cs->exception_index = EXCP_EXT_INTERRUPT;
1384 env->error_code = 0;
1385 mips_cpu_do_interrupt(cs);
1386 return true;
1387 }
1388 }
1389 return false;
1390}
1391
1392#if !defined(CONFIG_USER_ONLY)
1393void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra)
1394{
1395 CPUState *cs = env_cpu(env);
1396 r4k_tlb_t *tlb;
1397 target_ulong addr;
1398 target_ulong end;
1399 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1400 target_ulong mask;
1401
1402 tlb = &env->tlb->mmu.r4k.tlb[idx];
1403 /* The qemu TLB is flushed when the ASID changes, so no need to
1404 flush these entries again. */
1405 if (tlb->G == 0 && tlb->ASID != ASID) {
1406 return;
1407 }
1408
1409 if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1410 /* For tlbwr, we can shadow the discarded entry into
1411 a new (fake) TLB entry, as long as the guest can not
1412 tell that it's there. */
1413 env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1414 env->tlb->tlb_in_use++;
1415 return;
1416 }
1417
1418 /* 1k pages are not supported. */
1419 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1420 if (tlb->V0) {
1421 addr = tlb->VPN & ~mask;
1422#if defined(TARGET_MIPS64)
1423 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1424 addr |= 0x3FFFFF0000000000ULL;
1425 }
1426#endif
1427 end = addr | (mask >> 1);
1428 while (addr < end) {
1429 tlb_flush_page(cs, addr);
1430 addr += TARGET_PAGE_SIZE;
1431 }
1432 }
1433 if (tlb->V1) {
1434 addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1435#if defined(TARGET_MIPS64)
1436 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1437 addr |= 0x3FFFFF0000000000ULL;
1438 }
1439#endif
1440 end = addr | mask;
1441 while (addr - 1 < end) {
1442 tlb_flush_page(cs, addr);
1443 addr += TARGET_PAGE_SIZE;
1444 }
1445 }
1446}
1447#endif
1448
1449void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
1450 uint32_t exception,
1451 int error_code,
1452 uintptr_t pc)
1453{
1454 CPUState *cs = env_cpu(env);
1455
1456 qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
1457 __func__, exception, error_code);
1458 cs->exception_index = exception;
1459 env->error_code = error_code;
1460
1461 cpu_loop_exit_restore(cs, pc);
1462}
1463
1464static void mips_cpu_add_definition(gpointer data, gpointer user_data)
1465{
1466 ObjectClass *oc = data;
1467 CpuDefinitionInfoList **cpu_list = user_data;
1468 CpuDefinitionInfoList *entry;
1469 CpuDefinitionInfo *info;
1470 const char *typename;
1471
1472 typename = object_class_get_name(oc);
1473 info = g_malloc0(sizeof(*info));
1474 info->name = g_strndup(typename,
1475 strlen(typename) - strlen("-" TYPE_MIPS_CPU));
1476 info->q_typename = g_strdup(typename);
1477
1478 entry = g_malloc0(sizeof(*entry));
1479 entry->value = info;
1480 entry->next = *cpu_list;
1481 *cpu_list = entry;
1482}
1483
1484CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
1485{
1486 CpuDefinitionInfoList *cpu_list = NULL;
1487 GSList *list;
1488
1489 list = object_class_get_list(TYPE_MIPS_CPU, false);
1490 g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
1491 g_slist_free(list);
1492
1493 return cpu_list;
1494}
1495