1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qvector3d.h" |
41 | #include "qvector2d.h" |
42 | #include "qvector4d.h" |
43 | #include "qmatrix4x4.h" |
44 | #include <QtCore/qdatastream.h> |
45 | #include <QtCore/qmath.h> |
46 | #include <QtCore/qvariant.h> |
47 | #include <QtCore/qdebug.h> |
48 | #include <QtCore/qrect.h> |
49 | |
50 | QT_BEGIN_NAMESPACE |
51 | |
52 | #ifndef QT_NO_VECTOR3D |
53 | |
54 | static_assert(std::is_standard_layout<QVector3D>::value, "QVector3D is supposed to be standard layout" ); |
55 | static_assert(sizeof(QVector3D) == sizeof(float) * 3, "QVector3D is not supposed to have padding at the end" ); |
56 | |
57 | /*! |
58 | \class QVector3D |
59 | \brief The QVector3D class represents a vector or vertex in 3D space. |
60 | \since 4.6 |
61 | \ingroup painting-3D |
62 | \inmodule QtGui |
63 | |
64 | Vectors are one of the main building blocks of 3D representation and |
65 | drawing. They consist of three coordinates, traditionally called |
66 | x, y, and z. |
67 | |
68 | The QVector3D class can also be used to represent vertices in 3D space. |
69 | We therefore do not need to provide a separate vertex class. |
70 | |
71 | \sa QVector2D, QVector4D, QQuaternion |
72 | */ |
73 | |
74 | /*! |
75 | \fn QVector3D::QVector3D() |
76 | |
77 | Constructs a null vector, i.e. with coordinates (0, 0, 0). |
78 | */ |
79 | |
80 | /*! |
81 | \fn QVector3D::QVector3D(Qt::Initialization) |
82 | \since 5.5 |
83 | \internal |
84 | |
85 | Constructs a vector without initializing the contents. |
86 | */ |
87 | |
88 | /*! |
89 | \fn QVector3D::QVector3D(float xpos, float ypos, float zpos) |
90 | |
91 | Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). |
92 | */ |
93 | |
94 | /*! |
95 | \fn QVector3D::QVector3D(const QPoint& point) |
96 | |
97 | Constructs a vector with x and y coordinates from a 2D \a point, and a |
98 | z coordinate of 0. |
99 | */ |
100 | |
101 | /*! |
102 | \fn QVector3D::QVector3D(const QPointF& point) |
103 | |
104 | Constructs a vector with x and y coordinates from a 2D \a point, and a |
105 | z coordinate of 0. |
106 | */ |
107 | |
108 | #ifndef QT_NO_VECTOR2D |
109 | |
110 | /*! |
111 | Constructs a 3D vector from the specified 2D \a vector. The z |
112 | coordinate is set to zero. |
113 | |
114 | \sa toVector2D() |
115 | */ |
116 | QVector3D::QVector3D(const QVector2D& vector) |
117 | { |
118 | v[0] = vector.v[0]; |
119 | v[1] = vector.v[1]; |
120 | v[2] = 0.0f; |
121 | } |
122 | |
123 | /*! |
124 | Constructs a 3D vector from the specified 2D \a vector. The z |
125 | coordinate is set to \a zpos. |
126 | |
127 | \sa toVector2D() |
128 | */ |
129 | QVector3D::QVector3D(const QVector2D& vector, float zpos) |
130 | { |
131 | v[0] = vector.v[0]; |
132 | v[1] = vector.v[1]; |
133 | v[2] = zpos; |
134 | } |
135 | |
136 | #endif |
137 | |
138 | #ifndef QT_NO_VECTOR4D |
139 | |
140 | /*! |
141 | Constructs a 3D vector from the specified 4D \a vector. The w |
142 | coordinate is dropped. |
143 | |
144 | \sa toVector4D() |
145 | */ |
146 | QVector3D::QVector3D(const QVector4D& vector) |
147 | { |
148 | v[0] = vector.v[0]; |
149 | v[1] = vector.v[1]; |
150 | v[2] = vector.v[2]; |
151 | } |
152 | |
153 | #endif |
154 | |
155 | /*! |
156 | \fn bool QVector3D::isNull() const |
157 | |
158 | Returns \c true if the x, y, and z coordinates are set to 0.0, |
159 | otherwise returns \c false. |
160 | */ |
161 | |
162 | /*! |
163 | \fn float QVector3D::x() const |
164 | |
165 | Returns the x coordinate of this point. |
166 | |
167 | \sa setX(), y(), z() |
168 | */ |
169 | |
170 | /*! |
171 | \fn float QVector3D::y() const |
172 | |
173 | Returns the y coordinate of this point. |
174 | |
175 | \sa setY(), x(), z() |
176 | */ |
177 | |
178 | /*! |
179 | \fn float QVector3D::z() const |
180 | |
181 | Returns the z coordinate of this point. |
182 | |
183 | \sa setZ(), x(), y() |
184 | */ |
185 | |
186 | /*! |
187 | \fn void QVector3D::setX(float x) |
188 | |
189 | Sets the x coordinate of this point to the given \a x coordinate. |
190 | |
191 | \sa x(), setY(), setZ() |
192 | */ |
193 | |
194 | /*! |
195 | \fn void QVector3D::setY(float y) |
196 | |
197 | Sets the y coordinate of this point to the given \a y coordinate. |
198 | |
199 | \sa y(), setX(), setZ() |
200 | */ |
201 | |
202 | /*! |
203 | \fn void QVector3D::setZ(float z) |
204 | |
205 | Sets the z coordinate of this point to the given \a z coordinate. |
206 | |
207 | \sa z(), setX(), setY() |
208 | */ |
209 | |
210 | /*! \fn float &QVector3D::operator[](int i) |
211 | \since 5.2 |
212 | |
213 | Returns the component of the vector at index position \a i |
214 | as a modifiable reference. |
215 | |
216 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
217 | < 3). |
218 | */ |
219 | |
220 | /*! \fn float QVector3D::operator[](int i) const |
221 | \since 5.2 |
222 | |
223 | Returns the component of the vector at index position \a i. |
224 | |
225 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
226 | < 3). |
227 | */ |
228 | |
229 | /*! |
230 | Returns the normalized unit vector form of this vector. |
231 | |
232 | If this vector is null, then a null vector is returned. If the length |
233 | of the vector is very close to 1, then the vector will be returned as-is. |
234 | Otherwise the normalized form of the vector of length 1 will be returned. |
235 | |
236 | \sa length(), normalize() |
237 | */ |
238 | QVector3D QVector3D::normalized() const |
239 | { |
240 | // Need some extra precision if the length is very small. |
241 | double len = double(v[0]) * double(v[0]) + |
242 | double(v[1]) * double(v[1]) + |
243 | double(v[2]) * double(v[2]); |
244 | if (qFuzzyIsNull(len - 1.0f)) { |
245 | return *this; |
246 | } else if (!qFuzzyIsNull(len)) { |
247 | double sqrtLen = std::sqrt(len); |
248 | return QVector3D(float(double(v[0]) / sqrtLen), |
249 | float(double(v[1]) / sqrtLen), |
250 | float(double(v[2]) / sqrtLen)); |
251 | } else { |
252 | return QVector3D(); |
253 | } |
254 | } |
255 | |
256 | /*! |
257 | Normalizes the currect vector in place. Nothing happens if this |
258 | vector is a null vector or the length of the vector is very close to 1. |
259 | |
260 | \sa length(), normalized() |
261 | */ |
262 | void QVector3D::normalize() |
263 | { |
264 | // Need some extra precision if the length is very small. |
265 | double len = double(v[0]) * double(v[0]) + |
266 | double(v[1]) * double(v[1]) + |
267 | double(v[2]) * double(v[2]); |
268 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) |
269 | return; |
270 | |
271 | len = std::sqrt(len); |
272 | |
273 | v[0] = float(double(v[0]) / len); |
274 | v[1] = float(double(v[1]) / len); |
275 | v[2] = float(double(v[2]) / len); |
276 | } |
277 | |
278 | /*! |
279 | \fn QVector3D &QVector3D::operator+=(const QVector3D &vector) |
280 | |
281 | Adds the given \a vector to this vector and returns a reference to |
282 | this vector. |
283 | |
284 | \sa operator-=() |
285 | */ |
286 | |
287 | /*! |
288 | \fn QVector3D &QVector3D::operator-=(const QVector3D &vector) |
289 | |
290 | Subtracts the given \a vector from this vector and returns a reference to |
291 | this vector. |
292 | |
293 | \sa operator+=() |
294 | */ |
295 | |
296 | /*! |
297 | \fn QVector3D &QVector3D::operator*=(float factor) |
298 | |
299 | Multiplies this vector's coordinates by the given \a factor, and |
300 | returns a reference to this vector. |
301 | |
302 | \sa operator/=() |
303 | */ |
304 | |
305 | /*! |
306 | \fn QVector3D &QVector3D::operator*=(const QVector3D& vector) |
307 | \overload |
308 | |
309 | Multiplies the components of this vector by the corresponding |
310 | components in \a vector. |
311 | |
312 | Note: this is not the same as the crossProduct() of this |
313 | vector and \a vector. |
314 | |
315 | \sa crossProduct() |
316 | */ |
317 | |
318 | /*! |
319 | \fn QVector3D &QVector3D::operator/=(float divisor) |
320 | |
321 | Divides this vector's coordinates by the given \a divisor, and |
322 | returns a reference to this vector. |
323 | |
324 | \sa operator*=() |
325 | */ |
326 | |
327 | /*! |
328 | \fn QVector3D &QVector3D::operator/=(const QVector3D &vector) |
329 | \since 5.5 |
330 | |
331 | Divides the components of this vector by the corresponding |
332 | components in \a vector. |
333 | |
334 | \sa operator*=() |
335 | */ |
336 | |
337 | /*! |
338 | Returns the dot product of \a v1 and \a v2. |
339 | */ |
340 | float QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2) |
341 | { |
342 | return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2]; |
343 | } |
344 | |
345 | /*! |
346 | Returns the cross-product of vectors \a v1 and \a v2, which corresponds |
347 | to the normal vector of a plane defined by \a v1 and \a v2. |
348 | |
349 | \sa normal() |
350 | */ |
351 | QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2) |
352 | { |
353 | return QVector3D(v1.v[1] * v2.v[2] - v1.v[2] * v2.v[1], |
354 | v1.v[2] * v2.v[0] - v1.v[0] * v2.v[2], |
355 | v1.v[0] * v2.v[1] - v1.v[1] * v2.v[0]); |
356 | } |
357 | |
358 | /*! |
359 | Returns the normal vector of a plane defined by vectors \a v1 and \a v2, |
360 | normalized to be a unit vector. |
361 | |
362 | Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you |
363 | do not need the result to be normalized to a unit vector. |
364 | |
365 | \sa crossProduct(), distanceToPlane() |
366 | */ |
367 | QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2) |
368 | { |
369 | return crossProduct(v1, v2).normalized(); |
370 | } |
371 | |
372 | /*! |
373 | \overload |
374 | |
375 | Returns the normal vector of a plane defined by vectors |
376 | \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector. |
377 | |
378 | Use crossProduct() to compute the cross-product of \a v2 - \a v1 and |
379 | \a v3 - \a v1 if you do not need the result to be normalized to a |
380 | unit vector. |
381 | |
382 | \sa crossProduct(), distanceToPlane() |
383 | */ |
384 | QVector3D QVector3D::normal |
385 | (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3) |
386 | { |
387 | return crossProduct((v2 - v1), (v3 - v1)).normalized(); |
388 | } |
389 | |
390 | /*! |
391 | \since 5.5 |
392 | |
393 | Returns the window coordinates of this vector initially in object/model |
394 | coordinates using the model view matrix \a modelView, the projection matrix |
395 | \a projection and the viewport dimensions \a viewport. |
396 | |
397 | When transforming from clip to normalized space, a division by the w |
398 | component on the vector components takes place. To prevent dividing by 0 if |
399 | w equals to 0, it is set to 1. |
400 | |
401 | \note the returned y coordinates are in OpenGL orientation. OpenGL expects |
402 | the bottom to be 0 whereas for Qt top is 0. |
403 | |
404 | \sa unproject() |
405 | */ |
406 | QVector3D QVector3D::project(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const |
407 | { |
408 | QVector4D tmp(*this, 1.0f); |
409 | tmp = projection * modelView * tmp; |
410 | if (qFuzzyIsNull(tmp.w())) |
411 | tmp.setW(1.0f); |
412 | tmp /= tmp.w(); |
413 | |
414 | tmp = tmp * 0.5f + QVector4D(0.5f, 0.5f, 0.5f, 0.5f); |
415 | tmp.setX(tmp.x() * viewport.width() + viewport.x()); |
416 | tmp.setY(tmp.y() * viewport.height() + viewport.y()); |
417 | |
418 | return tmp.toVector3D(); |
419 | } |
420 | |
421 | /*! |
422 | \since 5.5 |
423 | |
424 | Returns the object/model coordinates of this vector initially in window |
425 | coordinates using the model view matrix \a modelView, the projection matrix |
426 | \a projection and the viewport dimensions \a viewport. |
427 | |
428 | When transforming from clip to normalized space, a division by the w |
429 | component of the vector components takes place. To prevent dividing by 0 if |
430 | w equals to 0, it is set to 1. |
431 | |
432 | \note y coordinates in \a viewport should use OpenGL orientation. OpenGL |
433 | expects the bottom to be 0 whereas for Qt top is 0. |
434 | |
435 | \sa project() |
436 | */ |
437 | QVector3D QVector3D::unproject(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const |
438 | { |
439 | QMatrix4x4 inverse = QMatrix4x4( projection * modelView ).inverted(); |
440 | |
441 | QVector4D tmp(*this, 1.0f); |
442 | tmp.setX((tmp.x() - float(viewport.x())) / float(viewport.width())); |
443 | tmp.setY((tmp.y() - float(viewport.y())) / float(viewport.height())); |
444 | tmp = tmp * 2.0f - QVector4D(1.0f, 1.0f, 1.0f, 1.0f); |
445 | |
446 | QVector4D obj = inverse * tmp; |
447 | if (qFuzzyIsNull(obj.w())) |
448 | obj.setW(1.0f); |
449 | obj /= obj.w(); |
450 | return obj.toVector3D(); |
451 | } |
452 | |
453 | /*! |
454 | \since 5.1 |
455 | |
456 | Returns the distance from this vertex to a point defined by |
457 | the vertex \a point. |
458 | |
459 | \sa distanceToPlane(), distanceToLine() |
460 | */ |
461 | float QVector3D::distanceToPoint(const QVector3D& point) const |
462 | { |
463 | return (*this - point).length(); |
464 | } |
465 | |
466 | /*! |
467 | Returns the distance from this vertex to a plane defined by |
468 | the vertex \a plane and a \a normal unit vector. The \a normal |
469 | parameter is assumed to have been normalized to a unit vector. |
470 | |
471 | The return value will be negative if the vertex is below the plane, |
472 | or zero if it is on the plane. |
473 | |
474 | \sa normal(), distanceToLine() |
475 | */ |
476 | float QVector3D::distanceToPlane |
477 | (const QVector3D& plane, const QVector3D& normal) const |
478 | { |
479 | return dotProduct(*this - plane, normal); |
480 | } |
481 | |
482 | /*! |
483 | \overload |
484 | |
485 | Returns the distance from this vertex to a plane defined by |
486 | the vertices \a plane1, \a plane2 and \a plane3. |
487 | |
488 | The return value will be negative if the vertex is below the plane, |
489 | or zero if it is on the plane. |
490 | |
491 | The two vectors that define the plane are \a plane2 - \a plane1 |
492 | and \a plane3 - \a plane1. |
493 | |
494 | \sa normal(), distanceToLine() |
495 | */ |
496 | float QVector3D::distanceToPlane |
497 | (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const |
498 | { |
499 | QVector3D n = normal(plane2 - plane1, plane3 - plane1); |
500 | return dotProduct(*this - plane1, n); |
501 | } |
502 | |
503 | /*! |
504 | Returns the distance that this vertex is from a line defined |
505 | by \a point and the unit vector \a direction. |
506 | |
507 | If \a direction is a null vector, then it does not define a line. |
508 | In that case, the distance from \a point to this vertex is returned. |
509 | |
510 | \sa distanceToPlane() |
511 | */ |
512 | float QVector3D::distanceToLine |
513 | (const QVector3D& point, const QVector3D& direction) const |
514 | { |
515 | if (direction.isNull()) |
516 | return (*this - point).length(); |
517 | QVector3D p = point + dotProduct(*this - point, direction) * direction; |
518 | return (*this - p).length(); |
519 | } |
520 | |
521 | /*! |
522 | \fn bool operator==(const QVector3D &v1, const QVector3D &v2) |
523 | \relates QVector3D |
524 | |
525 | Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. |
526 | This operator uses an exact floating-point comparison. |
527 | */ |
528 | |
529 | /*! |
530 | \fn bool operator!=(const QVector3D &v1, const QVector3D &v2) |
531 | \relates QVector3D |
532 | |
533 | Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. |
534 | This operator uses an exact floating-point comparison. |
535 | */ |
536 | |
537 | /*! |
538 | \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2) |
539 | \relates QVector3D |
540 | |
541 | Returns a QVector3D object that is the sum of the given vectors, \a v1 |
542 | and \a v2; each component is added separately. |
543 | |
544 | \sa QVector3D::operator+=() |
545 | */ |
546 | |
547 | /*! |
548 | \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2) |
549 | \relates QVector3D |
550 | |
551 | Returns a QVector3D object that is formed by subtracting \a v2 from \a v1; |
552 | each component is subtracted separately. |
553 | |
554 | \sa QVector3D::operator-=() |
555 | */ |
556 | |
557 | /*! |
558 | \fn const QVector3D operator*(float factor, const QVector3D &vector) |
559 | \relates QVector3D |
560 | |
561 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
562 | |
563 | \sa QVector3D::operator*=() |
564 | */ |
565 | |
566 | /*! |
567 | \fn const QVector3D operator*(const QVector3D &vector, float factor) |
568 | \relates QVector3D |
569 | |
570 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
571 | |
572 | \sa QVector3D::operator*=() |
573 | */ |
574 | |
575 | /*! |
576 | \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2) |
577 | \relates QVector3D |
578 | |
579 | Multiplies the components of \a v1 by the corresponding components in \a v2. |
580 | |
581 | Note: this is not the same as the crossProduct() of \a v1 and \a v2. |
582 | |
583 | \sa QVector3D::crossProduct() |
584 | */ |
585 | |
586 | /*! |
587 | \fn const QVector3D operator-(const QVector3D &vector) |
588 | \relates QVector3D |
589 | \overload |
590 | |
591 | Returns a QVector3D object that is formed by changing the sign of |
592 | all three components of the given \a vector. |
593 | |
594 | Equivalent to \c {QVector3D(0,0,0) - vector}. |
595 | */ |
596 | |
597 | /*! |
598 | \fn const QVector3D operator/(const QVector3D &vector, float divisor) |
599 | \relates QVector3D |
600 | |
601 | Returns the QVector3D object formed by dividing all three components of |
602 | the given \a vector by the given \a divisor. |
603 | |
604 | \sa QVector3D::operator/=() |
605 | */ |
606 | |
607 | /*! |
608 | \fn const QVector3D operator/(const QVector3D &vector, const QVector3D &divisor) |
609 | \relates QVector3D |
610 | \since 5.5 |
611 | |
612 | Returns the QVector3D object formed by dividing components of the given |
613 | \a vector by a respective components of the given \a divisor. |
614 | |
615 | \sa QVector3D::operator/=() |
616 | */ |
617 | |
618 | /*! |
619 | \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2) |
620 | \relates QVector3D |
621 | |
622 | Returns \c true if \a v1 and \a v2 are equal, allowing for a small |
623 | fuzziness factor for floating-point comparisons; false otherwise. |
624 | */ |
625 | |
626 | #ifndef QT_NO_VECTOR2D |
627 | |
628 | /*! |
629 | Returns the 2D vector form of this 3D vector, dropping the z coordinate. |
630 | |
631 | \sa toVector4D(), toPoint() |
632 | */ |
633 | QVector2D QVector3D::toVector2D() const |
634 | { |
635 | return QVector2D(v[0], v[1]); |
636 | } |
637 | |
638 | #endif |
639 | |
640 | #ifndef QT_NO_VECTOR4D |
641 | |
642 | /*! |
643 | Returns the 4D form of this 3D vector, with the w coordinate set to zero. |
644 | |
645 | \sa toVector2D(), toPoint() |
646 | */ |
647 | QVector4D QVector3D::toVector4D() const |
648 | { |
649 | return QVector4D(v[0], v[1], v[2], 0.0f); |
650 | } |
651 | |
652 | #endif |
653 | |
654 | /*! |
655 | \fn QPoint QVector3D::toPoint() const |
656 | |
657 | Returns the QPoint form of this 3D vector. The z coordinate |
658 | is dropped. |
659 | |
660 | \sa toPointF(), toVector2D() |
661 | */ |
662 | |
663 | /*! |
664 | \fn QPointF QVector3D::toPointF() const |
665 | |
666 | Returns the QPointF form of this 3D vector. The z coordinate |
667 | is dropped. |
668 | |
669 | \sa toPoint(), toVector2D() |
670 | */ |
671 | |
672 | /*! |
673 | Returns the 3D vector as a QVariant. |
674 | */ |
675 | QVector3D::operator QVariant() const |
676 | { |
677 | return QVariant::fromValue(*this); |
678 | } |
679 | |
680 | /*! |
681 | Returns the length of the vector from the origin. |
682 | |
683 | \sa lengthSquared(), normalized() |
684 | */ |
685 | float QVector3D::length() const |
686 | { |
687 | // Need some extra precision if the length is very small. |
688 | double len = double(v[0]) * double(v[0]) + |
689 | double(v[1]) * double(v[1]) + |
690 | double(v[2]) * double(v[2]); |
691 | return float(std::sqrt(len)); |
692 | } |
693 | |
694 | /*! |
695 | Returns the squared length of the vector from the origin. |
696 | This is equivalent to the dot product of the vector with itself. |
697 | |
698 | \sa length(), dotProduct() |
699 | */ |
700 | float QVector3D::lengthSquared() const |
701 | { |
702 | return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; |
703 | } |
704 | |
705 | #ifndef QT_NO_DEBUG_STREAM |
706 | |
707 | QDebug operator<<(QDebug dbg, const QVector3D &vector) |
708 | { |
709 | QDebugStateSaver saver(dbg); |
710 | dbg.nospace() << "QVector3D(" |
711 | << vector.x() << ", " << vector.y() << ", " << vector.z() << ')'; |
712 | return dbg; |
713 | } |
714 | |
715 | #endif |
716 | |
717 | #ifndef QT_NO_DATASTREAM |
718 | |
719 | /*! |
720 | \fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector) |
721 | \relates QVector3D |
722 | |
723 | Writes the given \a vector to the given \a stream and returns a |
724 | reference to the stream. |
725 | |
726 | \sa {Serializing Qt Data Types} |
727 | */ |
728 | |
729 | QDataStream &operator<<(QDataStream &stream, const QVector3D &vector) |
730 | { |
731 | stream << vector.x() << vector.y() << vector.z(); |
732 | return stream; |
733 | } |
734 | |
735 | /*! |
736 | \fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector) |
737 | \relates QVector3D |
738 | |
739 | Reads a 3D vector from the given \a stream into the given \a vector |
740 | and returns a reference to the stream. |
741 | |
742 | \sa {Serializing Qt Data Types} |
743 | */ |
744 | |
745 | QDataStream &operator>>(QDataStream &stream, QVector3D &vector) |
746 | { |
747 | float x, y, z; |
748 | stream >> x; |
749 | stream >> y; |
750 | stream >> z; |
751 | vector.setX(x); |
752 | vector.setY(y); |
753 | vector.setZ(z); |
754 | return stream; |
755 | } |
756 | |
757 | #endif // QT_NO_DATASTREAM |
758 | |
759 | #endif // QT_NO_VECTOR3D |
760 | |
761 | QT_END_NAMESPACE |
762 | |