1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qvector4d.h" |
41 | #include "qvector3d.h" |
42 | #include "qvector2d.h" |
43 | #include <QtCore/qdatastream.h> |
44 | #include <QtCore/qdebug.h> |
45 | #include <QtCore/qvariant.h> |
46 | #include <QtCore/qmath.h> |
47 | |
48 | QT_BEGIN_NAMESPACE |
49 | |
50 | #ifndef QT_NO_VECTOR4D |
51 | |
52 | static_assert(std::is_standard_layout<QVector4D>::value, "QVector4D is supposed to be standard layout" ); |
53 | static_assert(sizeof(QVector4D) == sizeof(float) * 4, "QVector4D is not supposed to have padding at the end" ); |
54 | |
55 | /*! |
56 | \class QVector4D |
57 | \brief The QVector4D class represents a vector or vertex in 4D space. |
58 | \since 4.6 |
59 | \ingroup painting-3D |
60 | \inmodule QtGui |
61 | |
62 | The QVector4D class can also be used to represent vertices in 4D space. |
63 | We therefore do not need to provide a separate vertex class. |
64 | |
65 | \sa QQuaternion, QVector2D, QVector3D |
66 | */ |
67 | |
68 | /*! |
69 | \fn QVector4D::QVector4D() |
70 | |
71 | Constructs a null vector, i.e. with coordinates (0, 0, 0, 0). |
72 | */ |
73 | |
74 | /*! |
75 | \fn QVector4D::QVector4D(Qt::Initialization) |
76 | \since 5.5 |
77 | \internal |
78 | |
79 | Constructs a vector without initializing the contents. |
80 | */ |
81 | |
82 | /*! |
83 | \fn QVector4D::QVector4D(float xpos, float ypos, float zpos, float wpos) |
84 | |
85 | Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos, \a wpos). |
86 | */ |
87 | |
88 | /*! |
89 | \fn QVector4D::QVector4D(const QPoint& point) |
90 | |
91 | Constructs a vector with x and y coordinates from a 2D \a point, and |
92 | z and w coordinates of 0. |
93 | */ |
94 | |
95 | /*! |
96 | \fn QVector4D::QVector4D(const QPointF& point) |
97 | |
98 | Constructs a vector with x and y coordinates from a 2D \a point, and |
99 | z and w coordinates of 0. |
100 | */ |
101 | |
102 | #ifndef QT_NO_VECTOR2D |
103 | |
104 | /*! |
105 | Constructs a 4D vector from the specified 2D \a vector. The z |
106 | and w coordinates are set to zero. |
107 | |
108 | \sa toVector2D() |
109 | */ |
110 | QVector4D::QVector4D(const QVector2D& vector) |
111 | { |
112 | v[0] = vector.v[0]; |
113 | v[1] = vector.v[1]; |
114 | v[2] = 0.0f; |
115 | v[3] = 0.0f; |
116 | } |
117 | |
118 | /*! |
119 | Constructs a 4D vector from the specified 2D \a vector. The z |
120 | and w coordinates are set to \a zpos and \a wpos respectively. |
121 | |
122 | \sa toVector2D() |
123 | */ |
124 | QVector4D::QVector4D(const QVector2D& vector, float zpos, float wpos) |
125 | { |
126 | v[0] = vector.v[0]; |
127 | v[1] = vector.v[1]; |
128 | v[2] = zpos; |
129 | v[3] = wpos; |
130 | } |
131 | |
132 | #endif |
133 | |
134 | #ifndef QT_NO_VECTOR3D |
135 | |
136 | /*! |
137 | Constructs a 4D vector from the specified 3D \a vector. The w |
138 | coordinate is set to zero. |
139 | |
140 | \sa toVector3D() |
141 | */ |
142 | QVector4D::QVector4D(const QVector3D& vector) |
143 | { |
144 | v[0] = vector.v[0]; |
145 | v[1] = vector.v[1]; |
146 | v[2] = vector.v[2]; |
147 | v[3] = 0.0f; |
148 | } |
149 | |
150 | /*! |
151 | Constructs a 4D vector from the specified 3D \a vector. The w |
152 | coordinate is set to \a wpos. |
153 | |
154 | \sa toVector3D() |
155 | */ |
156 | QVector4D::QVector4D(const QVector3D& vector, float wpos) |
157 | { |
158 | v[0] = vector.v[0]; |
159 | v[1] = vector.v[1]; |
160 | v[2] = vector.v[2]; |
161 | v[3] = wpos; |
162 | } |
163 | |
164 | #endif |
165 | |
166 | /*! |
167 | \fn bool QVector4D::isNull() const |
168 | |
169 | Returns \c true if the x, y, z, and w coordinates are set to 0.0, |
170 | otherwise returns \c false. |
171 | */ |
172 | |
173 | /*! |
174 | \fn float QVector4D::x() const |
175 | |
176 | Returns the x coordinate of this point. |
177 | |
178 | \sa setX(), y(), z(), w() |
179 | */ |
180 | |
181 | /*! |
182 | \fn float QVector4D::y() const |
183 | |
184 | Returns the y coordinate of this point. |
185 | |
186 | \sa setY(), x(), z(), w() |
187 | */ |
188 | |
189 | /*! |
190 | \fn float QVector4D::z() const |
191 | |
192 | Returns the z coordinate of this point. |
193 | |
194 | \sa setZ(), x(), y(), w() |
195 | */ |
196 | |
197 | /*! |
198 | \fn float QVector4D::w() const |
199 | |
200 | Returns the w coordinate of this point. |
201 | |
202 | \sa setW(), x(), y(), z() |
203 | */ |
204 | |
205 | /*! |
206 | \fn void QVector4D::setX(float x) |
207 | |
208 | Sets the x coordinate of this point to the given \a x coordinate. |
209 | |
210 | \sa x(), setY(), setZ(), setW() |
211 | */ |
212 | |
213 | /*! |
214 | \fn void QVector4D::setY(float y) |
215 | |
216 | Sets the y coordinate of this point to the given \a y coordinate. |
217 | |
218 | \sa y(), setX(), setZ(), setW() |
219 | */ |
220 | |
221 | /*! |
222 | \fn void QVector4D::setZ(float z) |
223 | |
224 | Sets the z coordinate of this point to the given \a z coordinate. |
225 | |
226 | \sa z(), setX(), setY(), setW() |
227 | */ |
228 | |
229 | /*! |
230 | \fn void QVector4D::setW(float w) |
231 | |
232 | Sets the w coordinate of this point to the given \a w coordinate. |
233 | |
234 | \sa w(), setX(), setY(), setZ() |
235 | */ |
236 | |
237 | /*! \fn float &QVector4D::operator[](int i) |
238 | \since 5.2 |
239 | |
240 | Returns the component of the vector at index position \a i |
241 | as a modifiable reference. |
242 | |
243 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
244 | < 4). |
245 | */ |
246 | |
247 | /*! \fn float QVector4D::operator[](int i) const |
248 | \since 5.2 |
249 | |
250 | Returns the component of the vector at index position \a i. |
251 | |
252 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
253 | < 4). |
254 | */ |
255 | |
256 | /*! |
257 | Returns the length of the vector from the origin. |
258 | |
259 | \sa lengthSquared(), normalized() |
260 | */ |
261 | float QVector4D::length() const |
262 | { |
263 | // Need some extra precision if the length is very small. |
264 | double len = double(v[0]) * double(v[0]) + |
265 | double(v[1]) * double(v[1]) + |
266 | double(v[2]) * double(v[2]) + |
267 | double(v[3]) * double(v[3]); |
268 | return float(std::sqrt(len)); |
269 | } |
270 | |
271 | /*! |
272 | Returns the squared length of the vector from the origin. |
273 | This is equivalent to the dot product of the vector with itself. |
274 | |
275 | \sa length(), dotProduct() |
276 | */ |
277 | float QVector4D::lengthSquared() const |
278 | { |
279 | return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3]; |
280 | } |
281 | |
282 | /*! |
283 | Returns the normalized unit vector form of this vector. |
284 | |
285 | If this vector is null, then a null vector is returned. If the length |
286 | of the vector is very close to 1, then the vector will be returned as-is. |
287 | Otherwise the normalized form of the vector of length 1 will be returned. |
288 | |
289 | \sa length(), normalize() |
290 | */ |
291 | QVector4D QVector4D::normalized() const |
292 | { |
293 | // Need some extra precision if the length is very small. |
294 | double len = double(v[0]) * double(v[0]) + |
295 | double(v[1]) * double(v[1]) + |
296 | double(v[2]) * double(v[2]) + |
297 | double(v[3]) * double(v[3]); |
298 | if (qFuzzyIsNull(len - 1.0f)) { |
299 | return *this; |
300 | } else if (!qFuzzyIsNull(len)) { |
301 | double sqrtLen = std::sqrt(len); |
302 | return QVector4D(float(double(v[0]) / sqrtLen), |
303 | float(double(v[1]) / sqrtLen), |
304 | float(double(v[2]) / sqrtLen), |
305 | float(double(v[3]) / sqrtLen)); |
306 | } else { |
307 | return QVector4D(); |
308 | } |
309 | } |
310 | |
311 | /*! |
312 | Normalizes the currect vector in place. Nothing happens if this |
313 | vector is a null vector or the length of the vector is very close to 1. |
314 | |
315 | \sa length(), normalized() |
316 | */ |
317 | void QVector4D::normalize() |
318 | { |
319 | // Need some extra precision if the length is very small. |
320 | double len = double(v[0]) * double(v[0]) + |
321 | double(v[1]) * double(v[1]) + |
322 | double(v[2]) * double(v[2]) + |
323 | double(v[3]) * double(v[3]); |
324 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) |
325 | return; |
326 | |
327 | len = std::sqrt(len); |
328 | |
329 | v[0] = float(double(v[0]) / len); |
330 | v[1] = float(double(v[1]) / len); |
331 | v[2] = float(double(v[2]) / len); |
332 | v[3] = float(double(v[3]) / len); |
333 | } |
334 | |
335 | /*! |
336 | \fn QVector4D &QVector4D::operator+=(const QVector4D &vector) |
337 | |
338 | Adds the given \a vector to this vector and returns a reference to |
339 | this vector. |
340 | |
341 | \sa operator-=() |
342 | */ |
343 | |
344 | /*! |
345 | \fn QVector4D &QVector4D::operator-=(const QVector4D &vector) |
346 | |
347 | Subtracts the given \a vector from this vector and returns a reference to |
348 | this vector. |
349 | |
350 | \sa operator+=() |
351 | */ |
352 | |
353 | /*! |
354 | \fn QVector4D &QVector4D::operator*=(float factor) |
355 | |
356 | Multiplies this vector's coordinates by the given \a factor, and |
357 | returns a reference to this vector. |
358 | |
359 | \sa operator/=() |
360 | */ |
361 | |
362 | /*! |
363 | \fn QVector4D &QVector4D::operator*=(const QVector4D &vector) |
364 | |
365 | Multiplies the components of this vector by the corresponding |
366 | components in \a vector. |
367 | */ |
368 | |
369 | /*! |
370 | \fn QVector4D &QVector4D::operator/=(float divisor) |
371 | |
372 | Divides this vector's coordinates by the given \a divisor, and |
373 | returns a reference to this vector. |
374 | |
375 | \sa operator*=() |
376 | */ |
377 | |
378 | /*! |
379 | \fn QVector4D &QVector4D::operator/=(const QVector4D &vector) |
380 | \since 5.5 |
381 | |
382 | Divides the components of this vector by the corresponding |
383 | components in \a vector. |
384 | |
385 | \sa operator*=() |
386 | */ |
387 | |
388 | /*! |
389 | Returns the dot product of \a v1 and \a v2. |
390 | */ |
391 | float QVector4D::dotProduct(const QVector4D& v1, const QVector4D& v2) |
392 | { |
393 | return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2] + v1.v[3] * v2.v[3]; |
394 | } |
395 | |
396 | /*! |
397 | \fn bool operator==(const QVector4D &v1, const QVector4D &v2) |
398 | \relates QVector4D |
399 | |
400 | Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. |
401 | This operator uses an exact floating-point comparison. |
402 | */ |
403 | |
404 | /*! |
405 | \fn bool operator!=(const QVector4D &v1, const QVector4D &v2) |
406 | \relates QVector4D |
407 | |
408 | Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. |
409 | This operator uses an exact floating-point comparison. |
410 | */ |
411 | |
412 | /*! |
413 | \fn const QVector4D operator+(const QVector4D &v1, const QVector4D &v2) |
414 | \relates QVector4D |
415 | |
416 | Returns a QVector4D object that is the sum of the given vectors, \a v1 |
417 | and \a v2; each component is added separately. |
418 | |
419 | \sa QVector4D::operator+=() |
420 | */ |
421 | |
422 | /*! |
423 | \fn const QVector4D operator-(const QVector4D &v1, const QVector4D &v2) |
424 | \relates QVector4D |
425 | |
426 | Returns a QVector4D object that is formed by subtracting \a v2 from \a v1; |
427 | each component is subtracted separately. |
428 | |
429 | \sa QVector4D::operator-=() |
430 | */ |
431 | |
432 | /*! |
433 | \fn const QVector4D operator*(float factor, const QVector4D &vector) |
434 | \relates QVector4D |
435 | |
436 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
437 | |
438 | \sa QVector4D::operator*=() |
439 | */ |
440 | |
441 | /*! |
442 | \fn const QVector4D operator*(const QVector4D &vector, float factor) |
443 | \relates QVector4D |
444 | |
445 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
446 | |
447 | \sa QVector4D::operator*=() |
448 | */ |
449 | |
450 | /*! |
451 | \fn const QVector4D operator*(const QVector4D &v1, const QVector4D& v2) |
452 | \relates QVector4D |
453 | |
454 | Returns the vector consisting of the multiplication of the |
455 | components from \a v1 and \a v2. |
456 | |
457 | \sa QVector4D::operator*=() |
458 | */ |
459 | |
460 | /*! |
461 | \fn const QVector4D operator-(const QVector4D &vector) |
462 | \relates QVector4D |
463 | \overload |
464 | |
465 | Returns a QVector4D object that is formed by changing the sign of |
466 | all three components of the given \a vector. |
467 | |
468 | Equivalent to \c {QVector4D(0,0,0,0) - vector}. |
469 | */ |
470 | |
471 | /*! |
472 | \fn const QVector4D operator/(const QVector4D &vector, float divisor) |
473 | \relates QVector4D |
474 | |
475 | Returns the QVector4D object formed by dividing all four components of |
476 | the given \a vector by the given \a divisor. |
477 | |
478 | \sa QVector4D::operator/=() |
479 | */ |
480 | |
481 | /*! |
482 | \fn const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor) |
483 | \relates QVector4D |
484 | \since 5.5 |
485 | |
486 | Returns the QVector4D object formed by dividing components of the given |
487 | \a vector by a respective components of the given \a divisor. |
488 | |
489 | \sa QVector4D::operator/=() |
490 | */ |
491 | |
492 | /*! |
493 | \fn bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2) |
494 | \relates QVector4D |
495 | |
496 | Returns \c true if \a v1 and \a v2 are equal, allowing for a small |
497 | fuzziness factor for floating-point comparisons; false otherwise. |
498 | */ |
499 | |
500 | #ifndef QT_NO_VECTOR2D |
501 | |
502 | /*! |
503 | Returns the 2D vector form of this 4D vector, dropping the z and w coordinates. |
504 | |
505 | \sa toVector2DAffine(), toVector3D(), toPoint() |
506 | */ |
507 | QVector2D QVector4D::toVector2D() const |
508 | { |
509 | return QVector2D(v[0], v[1]); |
510 | } |
511 | |
512 | /*! |
513 | Returns the 2D vector form of this 4D vector, dividing the x and y |
514 | coordinates by the w coordinate and dropping the z coordinate. |
515 | Returns a null vector if w is zero. |
516 | |
517 | \sa toVector2D(), toVector3DAffine(), toPoint() |
518 | */ |
519 | QVector2D QVector4D::toVector2DAffine() const |
520 | { |
521 | if (qIsNull(v[3])) |
522 | return QVector2D(); |
523 | return QVector2D(v[0] / v[3], v[1] / v[3]); |
524 | } |
525 | |
526 | #endif |
527 | |
528 | #ifndef QT_NO_VECTOR3D |
529 | |
530 | /*! |
531 | Returns the 3D vector form of this 4D vector, dropping the w coordinate. |
532 | |
533 | \sa toVector3DAffine(), toVector2D(), toPoint() |
534 | */ |
535 | QVector3D QVector4D::toVector3D() const |
536 | { |
537 | return QVector3D(v[0], v[1], v[2]); |
538 | } |
539 | |
540 | /*! |
541 | Returns the 3D vector form of this 4D vector, dividing the x, y, and |
542 | z coordinates by the w coordinate. Returns a null vector if w is zero. |
543 | |
544 | \sa toVector3D(), toVector2DAffine(), toPoint() |
545 | */ |
546 | QVector3D QVector4D::toVector3DAffine() const |
547 | { |
548 | if (qIsNull(v[3])) |
549 | return QVector3D(); |
550 | return QVector3D(v[0] / v[3], v[1] / v[3], v[2] / v[3]); |
551 | } |
552 | |
553 | #endif |
554 | |
555 | /*! |
556 | \fn QPoint QVector4D::toPoint() const |
557 | |
558 | Returns the QPoint form of this 4D vector. The z and w coordinates |
559 | are dropped. |
560 | |
561 | \sa toPointF(), toVector2D() |
562 | */ |
563 | |
564 | /*! |
565 | \fn QPointF QVector4D::toPointF() const |
566 | |
567 | Returns the QPointF form of this 4D vector. The z and w coordinates |
568 | are dropped. |
569 | |
570 | \sa toPoint(), toVector2D() |
571 | */ |
572 | |
573 | /*! |
574 | Returns the 4D vector as a QVariant. |
575 | */ |
576 | QVector4D::operator QVariant() const |
577 | { |
578 | return QVariant::fromValue(*this); |
579 | } |
580 | |
581 | #ifndef QT_NO_DEBUG_STREAM |
582 | |
583 | QDebug operator<<(QDebug dbg, const QVector4D &vector) |
584 | { |
585 | QDebugStateSaver saver(dbg); |
586 | dbg.nospace() << "QVector4D(" |
587 | << vector.x() << ", " << vector.y() << ", " |
588 | << vector.z() << ", " << vector.w() << ')'; |
589 | return dbg; |
590 | } |
591 | |
592 | #endif |
593 | |
594 | #ifndef QT_NO_DATASTREAM |
595 | |
596 | /*! |
597 | \fn QDataStream &operator<<(QDataStream &stream, const QVector4D &vector) |
598 | \relates QVector4D |
599 | |
600 | Writes the given \a vector to the given \a stream and returns a |
601 | reference to the stream. |
602 | |
603 | \sa {Serializing Qt Data Types} |
604 | */ |
605 | |
606 | QDataStream &operator<<(QDataStream &stream, const QVector4D &vector) |
607 | { |
608 | stream << vector.x() << vector.y() |
609 | << vector.z() << vector.w(); |
610 | return stream; |
611 | } |
612 | |
613 | /*! |
614 | \fn QDataStream &operator>>(QDataStream &stream, QVector4D &vector) |
615 | \relates QVector4D |
616 | |
617 | Reads a 4D vector from the given \a stream into the given \a vector |
618 | and returns a reference to the stream. |
619 | |
620 | \sa {Serializing Qt Data Types} |
621 | */ |
622 | |
623 | QDataStream &operator>>(QDataStream &stream, QVector4D &vector) |
624 | { |
625 | float x, y, z, w; |
626 | stream >> x; |
627 | stream >> y; |
628 | stream >> z; |
629 | stream >> w; |
630 | vector.setX(x); |
631 | vector.setY(y); |
632 | vector.setZ(z); |
633 | vector.setW(w); |
634 | return stream; |
635 | } |
636 | |
637 | #endif // QT_NO_DATASTREAM |
638 | |
639 | #endif // QT_NO_VECTOR4D |
640 | |
641 | QT_END_NAMESPACE |
642 | |