1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qbezier_p.h" |
41 | #include <qdebug.h> |
42 | #include <qline.h> |
43 | #include <qmath.h> |
44 | #include <qpolygon.h> |
45 | |
46 | #include <private/qnumeric_p.h> |
47 | |
48 | #include <tuple> // for std::tie() |
49 | |
50 | QT_BEGIN_NAMESPACE |
51 | |
52 | //#define QDEBUG_BEZIER |
53 | |
54 | /*! |
55 | \internal |
56 | */ |
57 | QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const |
58 | { |
59 | // flattening is done by splitting the bezier until we can replace the segment by a straight |
60 | // line. We split further until the control points are close enough to the line connecting the |
61 | // boundary points. |
62 | // |
63 | // the Distance of a point p from a line given by the points (a,b) is given by: |
64 | // |
65 | // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length |
66 | // |
67 | // We can stop splitting if both control points are close enough to the line. |
68 | // To make the algorithm faster we use the manhattan length of the line. |
69 | |
70 | QPolygonF polygon; |
71 | polygon.append(QPointF(x1, y1)); |
72 | addToPolygon(&polygon, bezier_flattening_threshold); |
73 | return polygon; |
74 | } |
75 | |
76 | QBezier QBezier::mapBy(const QTransform &transform) const |
77 | { |
78 | return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4())); |
79 | } |
80 | |
81 | QBezier QBezier::getSubRange(qreal t0, qreal t1) const |
82 | { |
83 | QBezier result; |
84 | QBezier temp; |
85 | |
86 | // cut at t1 |
87 | if (qFuzzyIsNull(t1 - qreal(1.))) { |
88 | result = *this; |
89 | } else { |
90 | temp = *this; |
91 | temp.parameterSplitLeft(t1, &result); |
92 | } |
93 | |
94 | // cut at t0 |
95 | if (!qFuzzyIsNull(t0)) |
96 | result.parameterSplitLeft(t0 / t1, &temp); |
97 | |
98 | return result; |
99 | } |
100 | |
101 | void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const |
102 | { |
103 | QBezier beziers[10]; |
104 | int levels[10]; |
105 | beziers[0] = *this; |
106 | levels[0] = 9; |
107 | int top = 0; |
108 | |
109 | while (top >= 0) { |
110 | QBezier *b = &beziers[top]; |
111 | // check if we can pop the top bezier curve from the stack |
112 | qreal y4y1 = b->y4 - b->y1; |
113 | qreal x4x1 = b->x4 - b->x1; |
114 | qreal l = qAbs(x4x1) + qAbs(y4y1); |
115 | qreal d; |
116 | if (l > 1.) { |
117 | d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
118 | + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
119 | } else { |
120 | d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) + |
121 | qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3); |
122 | l = 1.; |
123 | } |
124 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
125 | // good enough, we pop it off and add the endpoint |
126 | polygon->append(QPointF(b->x4, b->y4)); |
127 | --top; |
128 | } else { |
129 | // split, second half of the polygon goes lower into the stack |
130 | std::tie(b[1], b[0]) = b->split(); |
131 | levels[top + 1] = --levels[top]; |
132 | ++top; |
133 | } |
134 | } |
135 | } |
136 | |
137 | void QBezier::addToPolygon(QDataBuffer<QPointF> &polygon, qreal bezier_flattening_threshold) const |
138 | { |
139 | QBezier beziers[10]; |
140 | int levels[10]; |
141 | beziers[0] = *this; |
142 | levels[0] = 9; |
143 | int top = 0; |
144 | |
145 | while (top >= 0) { |
146 | QBezier *b = &beziers[top]; |
147 | // check if we can pop the top bezier curve from the stack |
148 | qreal y4y1 = b->y4 - b->y1; |
149 | qreal x4x1 = b->x4 - b->x1; |
150 | qreal l = qAbs(x4x1) + qAbs(y4y1); |
151 | qreal d; |
152 | if (l > 1.) { |
153 | d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
154 | + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
155 | } else { |
156 | d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) + |
157 | qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3); |
158 | l = 1.; |
159 | } |
160 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
161 | // good enough, we pop it off and add the endpoint |
162 | polygon.add(QPointF(b->x4, b->y4)); |
163 | --top; |
164 | } else { |
165 | // split, second half of the polygon goes lower into the stack |
166 | std::tie(b[1], b[0]) = b->split(); |
167 | levels[top + 1] = --levels[top]; |
168 | ++top; |
169 | } |
170 | } |
171 | } |
172 | |
173 | QRectF QBezier::bounds() const |
174 | { |
175 | qreal xmin = x1; |
176 | qreal xmax = x1; |
177 | if (x2 < xmin) |
178 | xmin = x2; |
179 | else if (x2 > xmax) |
180 | xmax = x2; |
181 | if (x3 < xmin) |
182 | xmin = x3; |
183 | else if (x3 > xmax) |
184 | xmax = x3; |
185 | if (x4 < xmin) |
186 | xmin = x4; |
187 | else if (x4 > xmax) |
188 | xmax = x4; |
189 | |
190 | qreal ymin = y1; |
191 | qreal ymax = y1; |
192 | if (y2 < ymin) |
193 | ymin = y2; |
194 | else if (y2 > ymax) |
195 | ymax = y2; |
196 | if (y3 < ymin) |
197 | ymin = y3; |
198 | else if (y3 > ymax) |
199 | ymax = y3; |
200 | if (y4 < ymin) |
201 | ymin = y4; |
202 | else if (y4 > ymax) |
203 | ymax = y4; |
204 | return QRectF(xmin, ymin, xmax-xmin, ymax-ymin); |
205 | } |
206 | |
207 | |
208 | enum ShiftResult { |
209 | Ok, |
210 | Discard, |
211 | Split, |
212 | Circle |
213 | }; |
214 | |
215 | static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold) |
216 | { |
217 | const qreal o2 = offset*offset; |
218 | const qreal max_dist_line = threshold*offset*offset; |
219 | const qreal max_dist_normal = threshold*offset; |
220 | const qreal spacing = qreal(0.25); |
221 | for (qreal i = spacing; i < qreal(0.99); i += spacing) { |
222 | QPointF p1 = b1->pointAt(i); |
223 | QPointF p2 = b2->pointAt(i); |
224 | qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y()); |
225 | if (qAbs(d - o2) > max_dist_line) |
226 | return Split; |
227 | |
228 | QPointF normalPoint = b1->normalVector(i); |
229 | qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y()); |
230 | if (l != qreal(0.0)) { |
231 | d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l; |
232 | if (d > max_dist_normal) |
233 | return Split; |
234 | } |
235 | } |
236 | return Ok; |
237 | } |
238 | |
239 | QT_WARNING_DISABLE_FLOAT_COMPARE |
240 | |
241 | static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold) |
242 | { |
243 | int map[4]; |
244 | bool p1_p2_equal = qFuzzyCompare(orig->x1, orig->x2) && qFuzzyCompare(orig->y1, orig->y2); |
245 | bool p2_p3_equal = qFuzzyCompare(orig->x2, orig->x3) && qFuzzyCompare(orig->y2, orig->y3); |
246 | bool p3_p4_equal = qFuzzyCompare(orig->x3, orig->x4) && qFuzzyCompare(orig->y3, orig->y4); |
247 | |
248 | QPointF points[4]; |
249 | int np = 0; |
250 | points[np] = QPointF(orig->x1, orig->y1); |
251 | map[0] = 0; |
252 | ++np; |
253 | if (!p1_p2_equal) { |
254 | points[np] = QPointF(orig->x2, orig->y2); |
255 | ++np; |
256 | } |
257 | map[1] = np - 1; |
258 | if (!p2_p3_equal) { |
259 | points[np] = QPointF(orig->x3, orig->y3); |
260 | ++np; |
261 | } |
262 | map[2] = np - 1; |
263 | if (!p3_p4_equal) { |
264 | points[np] = QPointF(orig->x4, orig->y4); |
265 | ++np; |
266 | } |
267 | map[3] = np - 1; |
268 | if (np == 1) |
269 | return Discard; |
270 | |
271 | QRectF b = orig->bounds(); |
272 | if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) { |
273 | qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) + |
274 | (orig->y1 - orig->y2)*(orig->y1 - orig->y2) * |
275 | (orig->x3 - orig->x4)*(orig->x3 - orig->x4) + |
276 | (orig->y3 - orig->y4)*(orig->y3 - orig->y4); |
277 | qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) + |
278 | (orig->y1 - orig->y2)*(orig->y3 - orig->y4); |
279 | if (dot < 0 && dot*dot < 0.8*l) |
280 | // the points are close and reverse dirction. Approximate the whole |
281 | // thing by a semi circle |
282 | return Circle; |
283 | } |
284 | |
285 | QPointF points_shifted[4]; |
286 | |
287 | QLineF prev = QLineF(QPointF(), points[1] - points[0]); |
288 | if (!prev.length()) |
289 | return Discard; |
290 | QPointF prev_normal = prev.normalVector().unitVector().p2(); |
291 | |
292 | points_shifted[0] = points[0] + offset * prev_normal; |
293 | |
294 | for (int i = 1; i < np - 1; ++i) { |
295 | QLineF next = QLineF(QPointF(), points[i + 1] - points[i]); |
296 | QPointF next_normal = next.normalVector().unitVector().p2(); |
297 | |
298 | QPointF normal_sum = prev_normal + next_normal; |
299 | |
300 | qreal r = qreal(1.0) + prev_normal.x() * next_normal.x() |
301 | + prev_normal.y() * next_normal.y(); |
302 | |
303 | if (qFuzzyIsNull(r)) { |
304 | points_shifted[i] = points[i] + offset * prev_normal; |
305 | } else { |
306 | qreal k = offset / r; |
307 | points_shifted[i] = points[i] + k * normal_sum; |
308 | } |
309 | |
310 | prev_normal = next_normal; |
311 | } |
312 | |
313 | points_shifted[np - 1] = points[np - 1] + offset * prev_normal; |
314 | |
315 | *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]], |
316 | points_shifted[map[2]], points_shifted[map[3]]); |
317 | |
318 | if (np > 2) |
319 | return good_offset(orig, shifted, offset, threshold); |
320 | return Ok; |
321 | } |
322 | |
323 | // This value is used to determine the length of control point vectors |
324 | // when approximating arc segments as curves. The factor is multiplied |
325 | // with the radius of the circle. |
326 | #define KAPPA qreal(0.5522847498) |
327 | |
328 | |
329 | static bool addCircle(const QBezier *b, qreal offset, QBezier *o) |
330 | { |
331 | QPointF normals[3]; |
332 | |
333 | normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2); |
334 | qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y()); |
335 | if (qFuzzyIsNull(dist)) |
336 | return false; |
337 | normals[0] /= dist; |
338 | normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4); |
339 | dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y()); |
340 | if (qFuzzyIsNull(dist)) |
341 | return false; |
342 | normals[2] /= dist; |
343 | |
344 | normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4); |
345 | normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y()); |
346 | |
347 | qreal angles[2]; |
348 | qreal sign = 1.; |
349 | for (int i = 0; i < 2; ++i) { |
350 | qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y(); |
351 | if (cos_a > 1.) |
352 | cos_a = 1.; |
353 | if (cos_a < -1.) |
354 | cos_a = -1; |
355 | angles[i] = qAcos(cos_a) * qreal(M_1_PI); |
356 | } |
357 | |
358 | if (angles[0] + angles[1] > 1.) { |
359 | // more than 180 degrees |
360 | normals[1] = -normals[1]; |
361 | angles[0] = 1. - angles[0]; |
362 | angles[1] = 1. - angles[1]; |
363 | sign = -1.; |
364 | |
365 | } |
366 | |
367 | QPointF circle[3]; |
368 | circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset; |
369 | circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset; |
370 | circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset; |
371 | |
372 | for (int i = 0; i < 2; ++i) { |
373 | qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i]; |
374 | |
375 | o->x1 = circle[i].x(); |
376 | o->y1 = circle[i].y(); |
377 | o->x2 = circle[i].x() - normals[i].y()*kappa; |
378 | o->y2 = circle[i].y() + normals[i].x()*kappa; |
379 | o->x3 = circle[i+1].x() + normals[i+1].y()*kappa; |
380 | o->y3 = circle[i+1].y() - normals[i+1].x()*kappa; |
381 | o->x4 = circle[i+1].x(); |
382 | o->y4 = circle[i+1].y(); |
383 | |
384 | ++o; |
385 | } |
386 | return true; |
387 | } |
388 | |
389 | int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const |
390 | { |
391 | Q_ASSERT(curveSegments); |
392 | Q_ASSERT(maxSegments > 0); |
393 | |
394 | if (qFuzzyCompare(x1, x2) && qFuzzyCompare(x1, x3) && qFuzzyCompare(x1, x4) && |
395 | qFuzzyCompare(y1, y2) && qFuzzyCompare(y1, y3) && qFuzzyCompare(y1, y4)) |
396 | return 0; |
397 | |
398 | --maxSegments; |
399 | QBezier beziers[10]; |
400 | redo: |
401 | beziers[0] = *this; |
402 | QBezier *b = beziers; |
403 | QBezier *o = curveSegments; |
404 | |
405 | while (b >= beziers) { |
406 | int stack_segments = b - beziers + 1; |
407 | if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) { |
408 | threshold *= qreal(1.5); |
409 | if (threshold > qreal(2.0)) |
410 | goto give_up; |
411 | goto redo; |
412 | } |
413 | ShiftResult res = shift(b, o, offset, threshold); |
414 | if (res == Discard) { |
415 | --b; |
416 | } else if (res == Ok) { |
417 | ++o; |
418 | --b; |
419 | } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) { |
420 | // add semi circle |
421 | if (addCircle(b, offset, o)) |
422 | o += 2; |
423 | --b; |
424 | } else { |
425 | std::tie(b[1], b[0]) = b->split(); |
426 | ++b; |
427 | } |
428 | } |
429 | |
430 | give_up: |
431 | while (b >= beziers) { |
432 | ShiftResult res = shift(b, o, offset, threshold); |
433 | |
434 | // if res isn't Ok or Split then *o is undefined |
435 | if (res == Ok || res == Split) |
436 | ++o; |
437 | |
438 | --b; |
439 | } |
440 | |
441 | Q_ASSERT(o - curveSegments <= maxSegments); |
442 | return o - curveSegments; |
443 | } |
444 | |
445 | #ifdef QDEBUG_BEZIER |
446 | static QDebug operator<<(QDebug dbg, const QBezier &bz) |
447 | { |
448 | dbg << '[' << bz.x1<< ", " << bz.y1 << "], " |
449 | << '[' << bz.x2 <<", " << bz.y2 << "], " |
450 | << '[' << bz.x3 <<", " << bz.y3 << "], " |
451 | << '[' << bz.x4 <<", " << bz.y4 << ']'; |
452 | return dbg; |
453 | } |
454 | #endif |
455 | |
456 | qreal QBezier::length(qreal error) const |
457 | { |
458 | qreal length = qreal(0.0); |
459 | |
460 | addIfClose(&length, error); |
461 | |
462 | return length; |
463 | } |
464 | |
465 | void QBezier::addIfClose(qreal *length, qreal error) const |
466 | { |
467 | qreal len = qreal(0.0); /* arc length */ |
468 | qreal chord; /* chord length */ |
469 | |
470 | len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length(); |
471 | len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length(); |
472 | len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length(); |
473 | |
474 | chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length(); |
475 | |
476 | if((len-chord) > error) { |
477 | const auto halves = split(); /* split in two */ |
478 | halves.first.addIfClose(length, error); /* try left side */ |
479 | halves.second.addIfClose(length, error); /* try right side */ |
480 | return; |
481 | } |
482 | |
483 | *length = *length + len; |
484 | |
485 | return; |
486 | } |
487 | |
488 | qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const |
489 | { |
490 | qreal py0 = pointAt(t0).y(); |
491 | qreal py1 = pointAt(t1).y(); |
492 | |
493 | if (py0 > py1) { |
494 | qSwap(py0, py1); |
495 | qSwap(t0, t1); |
496 | } |
497 | |
498 | Q_ASSERT(py0 <= py1); |
499 | |
500 | if (py0 >= y) |
501 | return t0; |
502 | else if (py1 <= y) |
503 | return t1; |
504 | |
505 | Q_ASSERT(py0 < y && y < py1); |
506 | |
507 | qreal lt = t0; |
508 | qreal dt; |
509 | do { |
510 | qreal t = qreal(0.5) * (t0 + t1); |
511 | |
512 | qreal a, b, c, d; |
513 | QBezier::coefficients(t, a, b, c, d); |
514 | qreal yt = a * y1 + b * y2 + c * y3 + d * y4; |
515 | |
516 | if (yt < y) { |
517 | t0 = t; |
518 | py0 = yt; |
519 | } else { |
520 | t1 = t; |
521 | py1 = yt; |
522 | } |
523 | dt = lt - t; |
524 | lt = t; |
525 | } while (qAbs(dt) > qreal(1e-7)); |
526 | |
527 | return t0; |
528 | } |
529 | |
530 | int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const |
531 | { |
532 | // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4 |
533 | // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4) |
534 | // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2)) |
535 | |
536 | const qreal a = -y1 + 3 * y2 - 3 * y3 + y4; |
537 | const qreal b = 2 * y1 - 4 * y2 + 2 * y3; |
538 | const qreal c = -y1 + y2; |
539 | |
540 | if (qFuzzyIsNull(a)) { |
541 | if (qFuzzyIsNull(b)) |
542 | return 0; |
543 | |
544 | t0 = -c / b; |
545 | return t0 > 0 && t0 < 1; |
546 | } |
547 | |
548 | qreal reciprocal = b * b - 4 * a * c; |
549 | |
550 | if (qFuzzyIsNull(reciprocal)) { |
551 | t0 = -b / (2 * a); |
552 | return t0 > 0 && t0 < 1; |
553 | } else if (reciprocal > 0) { |
554 | qreal temp = qSqrt(reciprocal); |
555 | |
556 | t0 = (-b - temp)/(2*a); |
557 | t1 = (-b + temp)/(2*a); |
558 | |
559 | if (t1 < t0) |
560 | qSwap(t0, t1); |
561 | |
562 | int count = 0; |
563 | qreal t[2] = { 0, 1 }; |
564 | |
565 | if (t0 > 0 && t0 < 1) |
566 | t[count++] = t0; |
567 | if (t1 > 0 && t1 < 1) |
568 | t[count++] = t1; |
569 | |
570 | t0 = t[0]; |
571 | t1 = t[1]; |
572 | |
573 | return count; |
574 | } |
575 | |
576 | return 0; |
577 | } |
578 | |
579 | qreal QBezier::tAtLength(qreal l) const |
580 | { |
581 | qreal len = length(); |
582 | qreal t = qreal(1.0); |
583 | const qreal error = qreal(0.01); |
584 | if (l > len || qFuzzyCompare(l, len)) |
585 | return t; |
586 | |
587 | t *= qreal(0.5); |
588 | //int iters = 0; |
589 | //qDebug()<<"LEN is "<<l<<len; |
590 | qreal lastBigger = qreal(1.0); |
591 | while (1) { |
592 | //qDebug()<<"\tt is "<<t; |
593 | QBezier right = *this; |
594 | QBezier left; |
595 | right.parameterSplitLeft(t, &left); |
596 | qreal lLen = left.length(); |
597 | if (qAbs(lLen - l) < error) |
598 | break; |
599 | |
600 | if (lLen < l) { |
601 | t += (lastBigger - t) * qreal(0.5); |
602 | } else { |
603 | lastBigger = t; |
604 | t -= t * qreal(0.5); |
605 | } |
606 | //++iters; |
607 | } |
608 | //qDebug()<<"number of iters is "<<iters; |
609 | return t; |
610 | } |
611 | |
612 | QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const |
613 | { |
614 | if (t0 == 0 && t1 == 1) |
615 | return *this; |
616 | |
617 | QBezier bezier = *this; |
618 | |
619 | QBezier result; |
620 | bezier.parameterSplitLeft(t0, &result); |
621 | qreal trueT = (t1-t0)/(1-t0); |
622 | bezier.parameterSplitLeft(trueT, &result); |
623 | |
624 | return result; |
625 | } |
626 | |
627 | QT_END_NAMESPACE |
628 | |