| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2018 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2018 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #include "qdrawhelper_p.h" |
| 42 | #include "qdrawhelper_x86_p.h" |
| 43 | #include "qdrawingprimitive_sse2_p.h" |
| 44 | #include "qpixellayout_p.h" |
| 45 | #include "qrgba64_p.h" |
| 46 | |
| 47 | #if defined(QT_COMPILER_SUPPORTS_AVX2) |
| 48 | |
| 49 | QT_BEGIN_NAMESPACE |
| 50 | |
| 51 | enum { |
| 52 | FixedScale = 1 << 16, |
| 53 | HalfPoint = 1 << 15 |
| 54 | }; |
| 55 | |
| 56 | // Vectorized blend functions: |
| 57 | |
| 58 | // See BYTE_MUL_SSE2 for details. |
| 59 | inline static void Q_DECL_VECTORCALL |
| 60 | BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 61 | { |
| 62 | __m256i pixelVectorAG = _mm256_srli_epi16(pixelVector, 8); |
| 63 | __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); |
| 64 | |
| 65 | pixelVectorAG = _mm256_mullo_epi16(pixelVectorAG, alphaChannel); |
| 66 | pixelVectorRB = _mm256_mullo_epi16(pixelVectorRB, alphaChannel); |
| 67 | |
| 68 | pixelVectorRB = _mm256_add_epi16(pixelVectorRB, _mm256_srli_epi16(pixelVectorRB, 8)); |
| 69 | pixelVectorAG = _mm256_add_epi16(pixelVectorAG, _mm256_srli_epi16(pixelVectorAG, 8)); |
| 70 | pixelVectorRB = _mm256_add_epi16(pixelVectorRB, half); |
| 71 | pixelVectorAG = _mm256_add_epi16(pixelVectorAG, half); |
| 72 | |
| 73 | pixelVectorRB = _mm256_srli_epi16(pixelVectorRB, 8); |
| 74 | pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); |
| 75 | |
| 76 | pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); |
| 77 | } |
| 78 | |
| 79 | inline static void Q_DECL_VECTORCALL |
| 80 | BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 81 | { |
| 82 | __m256i pixelVectorAG = _mm256_srli_epi32(pixelVector, 16); |
| 83 | __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); |
| 84 | |
| 85 | pixelVectorAG = _mm256_mullo_epi32(pixelVectorAG, alphaChannel); |
| 86 | pixelVectorRB = _mm256_mullo_epi32(pixelVectorRB, alphaChannel); |
| 87 | |
| 88 | pixelVectorRB = _mm256_add_epi32(pixelVectorRB, _mm256_srli_epi32(pixelVectorRB, 16)); |
| 89 | pixelVectorAG = _mm256_add_epi32(pixelVectorAG, _mm256_srli_epi32(pixelVectorAG, 16)); |
| 90 | pixelVectorRB = _mm256_add_epi32(pixelVectorRB, half); |
| 91 | pixelVectorAG = _mm256_add_epi32(pixelVectorAG, half); |
| 92 | |
| 93 | pixelVectorRB = _mm256_srli_epi32(pixelVectorRB, 16); |
| 94 | pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); |
| 95 | |
| 96 | pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); |
| 97 | } |
| 98 | |
| 99 | // See INTERPOLATE_PIXEL_255_SSE2 for details. |
| 100 | inline static void Q_DECL_VECTORCALL |
| 101 | INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 102 | { |
| 103 | const __m256i srcVectorAG = _mm256_srli_epi16(srcVector, 8); |
| 104 | const __m256i dstVectorAG = _mm256_srli_epi16(dstVector, 8); |
| 105 | const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); |
| 106 | const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); |
| 107 | const __m256i srcVectorAGalpha = _mm256_mullo_epi16(srcVectorAG, alphaChannel); |
| 108 | const __m256i srcVectorRBalpha = _mm256_mullo_epi16(srcVectorRB, alphaChannel); |
| 109 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); |
| 110 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); |
| 111 | __m256i finalAG = _mm256_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlpha); |
| 112 | __m256i finalRB = _mm256_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlpha); |
| 113 | finalAG = _mm256_add_epi16(finalAG, _mm256_srli_epi16(finalAG, 8)); |
| 114 | finalRB = _mm256_add_epi16(finalRB, _mm256_srli_epi16(finalRB, 8)); |
| 115 | finalAG = _mm256_add_epi16(finalAG, half); |
| 116 | finalRB = _mm256_add_epi16(finalRB, half); |
| 117 | finalAG = _mm256_andnot_si256(colorMask, finalAG); |
| 118 | finalRB = _mm256_srli_epi16(finalRB, 8); |
| 119 | |
| 120 | dstVector = _mm256_or_si256(finalAG, finalRB); |
| 121 | } |
| 122 | |
| 123 | inline static void Q_DECL_VECTORCALL |
| 124 | INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 125 | { |
| 126 | const __m256i srcVectorAG = _mm256_srli_epi32(srcVector, 16); |
| 127 | const __m256i dstVectorAG = _mm256_srli_epi32(dstVector, 16); |
| 128 | const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); |
| 129 | const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); |
| 130 | const __m256i srcVectorAGalpha = _mm256_mullo_epi32(srcVectorAG, alphaChannel); |
| 131 | const __m256i srcVectorRBalpha = _mm256_mullo_epi32(srcVectorRB, alphaChannel); |
| 132 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(dstVectorAG, oneMinusAlphaChannel); |
| 133 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(dstVectorRB, oneMinusAlphaChannel); |
| 134 | __m256i finalAG = _mm256_add_epi32(srcVectorAGalpha, dstVectorAGoneMinusAlpha); |
| 135 | __m256i finalRB = _mm256_add_epi32(srcVectorRBalpha, dstVectorRBoneMinusAlpha); |
| 136 | finalAG = _mm256_add_epi32(finalAG, _mm256_srli_epi32(finalAG, 16)); |
| 137 | finalRB = _mm256_add_epi32(finalRB, _mm256_srli_epi32(finalRB, 16)); |
| 138 | finalAG = _mm256_add_epi32(finalAG, half); |
| 139 | finalRB = _mm256_add_epi32(finalRB, half); |
| 140 | finalAG = _mm256_andnot_si256(colorMask, finalAG); |
| 141 | finalRB = _mm256_srli_epi32(finalRB, 16); |
| 142 | |
| 143 | dstVector = _mm256_or_si256(finalAG, finalRB); |
| 144 | } |
| 145 | |
| 146 | |
| 147 | // See BLEND_SOURCE_OVER_ARGB32_SSE2 for details. |
| 148 | inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length) |
| 149 | { |
| 150 | const __m256i half = _mm256_set1_epi16(0x80); |
| 151 | const __m256i one = _mm256_set1_epi16(0xff); |
| 152 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 153 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
| 154 | const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
| 155 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, |
| 156 | char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); |
| 157 | |
| 158 | const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7; |
| 159 | |
| 160 | int x = 0; |
| 161 | // Prologue to handle all pixels until dst is 32-byte aligned in one step. |
| 162 | if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) { |
| 163 | const __m256i prologueMask = _mm256_sub_epi32(_mm256_set1_epi32(minusOffsetToAlignDstOn32Bytes - 1), offsetMask); |
| 164 | const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x - minusOffsetToAlignDstOn32Bytes], prologueMask); |
| 165 | const __m256i prologueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, prologueMask); |
| 166 | if (!_mm256_testz_si256(srcVector, prologueAlphaMask)) { |
| 167 | if (_mm256_testc_si256(srcVector, prologueAlphaMask)) { |
| 168 | _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, srcVector); |
| 169 | } else { |
| 170 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 171 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
| 172 | __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask); |
| 173 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
| 174 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
| 175 | _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, dstVector); |
| 176 | } |
| 177 | } |
| 178 | x += (8 - minusOffsetToAlignDstOn32Bytes); |
| 179 | } |
| 180 | |
| 181 | for (; x < (length - 7); x += 8) { |
| 182 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 183 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 184 | if (_mm256_testc_si256(srcVector, alphaMask)) { |
| 185 | _mm256_store_si256((__m256i *)&dst[x], srcVector); |
| 186 | } else { |
| 187 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 188 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
| 189 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 190 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
| 191 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
| 192 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | // Epilogue to handle all remaining pixels in one step. |
| 198 | if (x < length) { |
| 199 | const __m256i epilogueMask = _mm256_add_epi32(offsetMask, _mm256_set1_epi32(x - length)); |
| 200 | const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x], epilogueMask); |
| 201 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
| 202 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
| 203 | if (_mm256_testc_si256(srcVector, epilogueAlphaMask)) { |
| 204 | _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, srcVector); |
| 205 | } else { |
| 206 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 207 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
| 208 | __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x], epilogueMask); |
| 209 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
| 210 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
| 211 | _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, dstVector); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | |
| 218 | // See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details. |
| 219 | inline static void Q_DECL_VECTORCALL |
| 220 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha) |
| 221 | { |
| 222 | int x = 0; |
| 223 | |
| 224 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 225 | blend_pixel(dst[x], src[x], const_alpha); |
| 226 | |
| 227 | const __m256i half = _mm256_set1_epi16(0x80); |
| 228 | const __m256i one = _mm256_set1_epi16(0xff); |
| 229 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 230 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
| 231 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, |
| 232 | char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); |
| 233 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
| 234 | for (; x < (length - 7); x += 8) { |
| 235 | __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 236 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 237 | BYTE_MUL_AVX2(srcVector, constAlphaVector, colorMask, half); |
| 238 | |
| 239 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 240 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
| 241 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 242 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
| 243 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
| 244 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 245 | } |
| 246 | } |
| 247 | SIMD_EPILOGUE(x, length, 7) |
| 248 | blend_pixel(dst[x], src[x], const_alpha); |
| 249 | } |
| 250 | |
| 251 | void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl, |
| 252 | const uchar *srcPixels, int sbpl, |
| 253 | int w, int h, |
| 254 | int const_alpha) |
| 255 | { |
| 256 | if (const_alpha == 256) { |
| 257 | for (int y = 0; y < h; ++y) { |
| 258 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 259 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 260 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, w); |
| 261 | destPixels += dbpl; |
| 262 | srcPixels += sbpl; |
| 263 | } |
| 264 | } else if (const_alpha != 0) { |
| 265 | const_alpha = (const_alpha * 255) >> 8; |
| 266 | for (int y = 0; y < h; ++y) { |
| 267 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 268 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 269 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, w, const_alpha); |
| 270 | destPixels += dbpl; |
| 271 | srcPixels += sbpl; |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl, |
| 277 | const uchar *srcPixels, int sbpl, |
| 278 | int w, int h, |
| 279 | int const_alpha) |
| 280 | { |
| 281 | if (const_alpha == 256) { |
| 282 | for (int y = 0; y < h; ++y) { |
| 283 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 284 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 285 | ::memcpy(dst, src, w * sizeof(uint)); |
| 286 | srcPixels += sbpl; |
| 287 | destPixels += dbpl; |
| 288 | } |
| 289 | return; |
| 290 | } |
| 291 | if (const_alpha == 0) |
| 292 | return; |
| 293 | |
| 294 | const __m256i half = _mm256_set1_epi16(0x80); |
| 295 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 296 | |
| 297 | const_alpha = (const_alpha * 255) >> 8; |
| 298 | int one_minus_const_alpha = 255 - const_alpha; |
| 299 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
| 300 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(one_minus_const_alpha); |
| 301 | for (int y = 0; y < h; ++y) { |
| 302 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 303 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 304 | int x = 0; |
| 305 | |
| 306 | // First, align dest to 32 bytes: |
| 307 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, w) |
| 308 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); |
| 309 | |
| 310 | // 2) interpolate pixels with AVX2 |
| 311 | for (; x < (w - 7); x += 8) { |
| 312 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 313 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 314 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
| 315 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 316 | } |
| 317 | |
| 318 | // 3) Epilogue |
| 319 | SIMD_EPILOGUE(x, w, 7) |
| 320 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); |
| 321 | |
| 322 | srcPixels += sbpl; |
| 323 | destPixels += dbpl; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | static Q_NEVER_INLINE |
| 328 | void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes) |
| 329 | { |
| 330 | __m128i value128 = _mm256_castsi256_si128(value256); |
| 331 | |
| 332 | // main body |
| 333 | __m256i *dst256 = reinterpret_cast<__m256i *>(dest); |
| 334 | uchar *end = dest + bytes; |
| 335 | while (reinterpret_cast<uchar *>(dst256 + 4) <= end) { |
| 336 | _mm256_storeu_si256(dst256 + 0, value256); |
| 337 | _mm256_storeu_si256(dst256 + 1, value256); |
| 338 | _mm256_storeu_si256(dst256 + 2, value256); |
| 339 | _mm256_storeu_si256(dst256 + 3, value256); |
| 340 | dst256 += 4; |
| 341 | } |
| 342 | |
| 343 | // first epilogue: fewer than 128 bytes / 32 entries |
| 344 | bytes = end - reinterpret_cast<uchar *>(dst256); |
| 345 | switch (bytes / sizeof(value256)) { |
| 346 | case 3: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); |
| 347 | case 2: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); |
| 348 | case 1: _mm256_storeu_si256(dst256++, value256); |
| 349 | } |
| 350 | |
| 351 | // second epilogue: fewer than 32 bytes |
| 352 | __m128i *dst128 = reinterpret_cast<__m128i *>(dst256); |
| 353 | if (bytes & sizeof(value128)) |
| 354 | _mm_storeu_si128(dst128++, value128); |
| 355 | |
| 356 | // third epilogue: fewer than 16 bytes |
| 357 | if (bytes & 8) |
| 358 | _mm_storel_epi64(reinterpret_cast<__m128i *>(end - 8), value128); |
| 359 | } |
| 360 | |
| 361 | void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count) |
| 362 | { |
| 363 | #if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL) |
| 364 | // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820 |
| 365 | __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value); |
| 366 | # ifdef Q_PROCESSOR_X86_64 |
| 367 | asm ("" : "+x" (value64)); |
| 368 | # endif |
| 369 | __m256i value256 = _mm256_broadcastq_epi64(value64); |
| 370 | #else |
| 371 | __m256i value256 = _mm256_set1_epi64x(value); |
| 372 | #endif |
| 373 | |
| 374 | qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), value256, count * sizeof(quint64)); |
| 375 | } |
| 376 | |
| 377 | void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count) |
| 378 | { |
| 379 | if (count % 2) { |
| 380 | // odd number of pixels, round to even |
| 381 | *dest++ = value; |
| 382 | --count; |
| 383 | } |
| 384 | qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), _mm256_set1_epi32(value), count * sizeof(quint32)); |
| 385 | } |
| 386 | |
| 387 | void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) |
| 388 | { |
| 389 | Q_ASSERT(const_alpha < 256); |
| 390 | |
| 391 | const quint32 *src = (const quint32 *) srcPixels; |
| 392 | quint32 *dst = (quint32 *) destPixels; |
| 393 | |
| 394 | if (const_alpha == 255) |
| 395 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length); |
| 396 | else |
| 397 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha); |
| 398 | } |
| 399 | |
| 400 | #if QT_CONFIG(raster_64bit) |
| 401 | void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 402 | { |
| 403 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 404 | const __m256i half = _mm256_set1_epi32(0x8000); |
| 405 | const __m256i one = _mm256_set1_epi32(0xffff); |
| 406 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
| 407 | __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
| 408 | alphaMask = _mm256_unpacklo_epi8(alphaMask, alphaMask); |
| 409 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6, |
| 410 | char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6); |
| 411 | |
| 412 | if (const_alpha == 255) { |
| 413 | int x = 0; |
| 414 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 415 | blend_pixel(dst[x], src[x]); |
| 416 | for (; x < length - 3; x += 4) { |
| 417 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 418 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 419 | // Not all transparent |
| 420 | if (_mm256_testc_si256(srcVector, alphaMask)) { |
| 421 | // All opaque |
| 422 | _mm256_store_si256((__m256i *)&dst[x], srcVector); |
| 423 | } else { |
| 424 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 425 | alphaChannel = _mm256_sub_epi32(one, alphaChannel); |
| 426 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 427 | BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); |
| 428 | dstVector = _mm256_add_epi16(dstVector, srcVector); |
| 429 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | SIMD_EPILOGUE(x, length, 3) |
| 434 | blend_pixel(dst[x], src[x]); |
| 435 | } else { |
| 436 | const __m256i constAlphaVector = _mm256_set1_epi32(const_alpha | (const_alpha << 8)); |
| 437 | int x = 0; |
| 438 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 439 | blend_pixel(dst[x], src[x], const_alpha); |
| 440 | for (; x < length - 3; x += 4) { |
| 441 | __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 442 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 443 | // Not all transparent |
| 444 | BYTE_MUL_RGB64_AVX2(srcVector, constAlphaVector, colorMask, half); |
| 445 | |
| 446 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
| 447 | alphaChannel = _mm256_sub_epi32(one, alphaChannel); |
| 448 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 449 | BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); |
| 450 | dstVector = _mm256_add_epi16(dstVector, srcVector); |
| 451 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 452 | } |
| 453 | } |
| 454 | SIMD_EPILOGUE(x, length, 3) |
| 455 | blend_pixel(dst[x], src[x], const_alpha); |
| 456 | } |
| 457 | } |
| 458 | #endif |
| 459 | |
| 460 | void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha) |
| 461 | { |
| 462 | if (const_alpha == 255) { |
| 463 | ::memcpy(dst, src, length * sizeof(uint)); |
| 464 | } else { |
| 465 | const int ialpha = 255 - const_alpha; |
| 466 | |
| 467 | int x = 0; |
| 468 | |
| 469 | // 1) prologue, align on 32 bytes |
| 470 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 471 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); |
| 472 | |
| 473 | // 2) interpolate pixels with AVX2 |
| 474 | const __m256i half = _mm256_set1_epi16(0x80); |
| 475 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 476 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
| 477 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(ialpha); |
| 478 | for (; x < length - 7; x += 8) { |
| 479 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 480 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 481 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
| 482 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 483 | } |
| 484 | |
| 485 | // 3) Epilogue |
| 486 | SIMD_EPILOGUE(x, length, 7) |
| 487 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | #if QT_CONFIG(raster_64bit) |
| 492 | void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 493 | { |
| 494 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 495 | if (const_alpha == 255) { |
| 496 | ::memcpy(dst, src, length * sizeof(QRgba64)); |
| 497 | } else { |
| 498 | const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535] |
| 499 | const uint cia = 65535 - ca; |
| 500 | |
| 501 | int x = 0; |
| 502 | |
| 503 | // 1) prologue, align on 32 bytes |
| 504 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 505 | dst[x] = interpolate65535(src[x], ca, dst[x], cia); |
| 506 | |
| 507 | // 2) interpolate pixels with AVX2 |
| 508 | const __m256i half = _mm256_set1_epi32(0x8000); |
| 509 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
| 510 | const __m256i constAlphaVector = _mm256_set1_epi32(ca); |
| 511 | const __m256i oneMinusConstAlpha = _mm256_set1_epi32(cia); |
| 512 | for (; x < length - 3; x += 4) { |
| 513 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
| 514 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 515 | INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
| 516 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 517 | } |
| 518 | |
| 519 | // 3) Epilogue |
| 520 | SIMD_EPILOGUE(x, length, 3) |
| 521 | dst[x] = interpolate65535(src[x], ca, dst[x], cia); |
| 522 | } |
| 523 | } |
| 524 | #endif |
| 525 | |
| 526 | void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha) |
| 527 | { |
| 528 | if ((const_alpha & qAlpha(color)) == 255) { |
| 529 | qt_memfill32(destPixels, color, length); |
| 530 | } else { |
| 531 | if (const_alpha != 255) |
| 532 | color = BYTE_MUL(color, const_alpha); |
| 533 | |
| 534 | const quint32 minusAlphaOfColor = qAlpha(~color); |
| 535 | int x = 0; |
| 536 | |
| 537 | quint32 *dst = (quint32 *) destPixels; |
| 538 | const __m256i colorVector = _mm256_set1_epi32(color); |
| 539 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 540 | const __m256i half = _mm256_set1_epi16(0x80); |
| 541 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(minusAlphaOfColor); |
| 542 | |
| 543 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 544 | destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); |
| 545 | |
| 546 | for (; x < length - 7; x += 8) { |
| 547 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 548 | BYTE_MUL_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); |
| 549 | dstVector = _mm256_add_epi8(colorVector, dstVector); |
| 550 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 551 | } |
| 552 | SIMD_EPILOGUE(x, length, 7) |
| 553 | destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | #if QT_CONFIG(raster_64bit) |
| 558 | void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha) |
| 559 | { |
| 560 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 561 | if (const_alpha == 255 && color.isOpaque()) { |
| 562 | qt_memfill64((quint64*)destPixels, color, length); |
| 563 | } else { |
| 564 | if (const_alpha != 255) |
| 565 | color = multiplyAlpha255(color, const_alpha); |
| 566 | |
| 567 | const uint minusAlphaOfColor = 65535 - color.alpha(); |
| 568 | int x = 0; |
| 569 | quint64 *dst = (quint64 *) destPixels; |
| 570 | const __m256i colorVector = _mm256_set1_epi64x(color); |
| 571 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
| 572 | const __m256i half = _mm256_set1_epi32(0x8000); |
| 573 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(minusAlphaOfColor); |
| 574 | |
| 575 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 576 | destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); |
| 577 | |
| 578 | for (; x < length - 3; x += 4) { |
| 579 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
| 580 | BYTE_MUL_RGB64_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); |
| 581 | dstVector = _mm256_add_epi16(colorVector, dstVector); |
| 582 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
| 583 | } |
| 584 | SIMD_EPILOGUE(x, length, 3) |
| 585 | destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); |
| 586 | } |
| 587 | } |
| 588 | #endif |
| 589 | |
| 590 | #define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b) \ |
| 591 | { \ |
| 592 | /* Correct for later unpack */ \ |
| 593 | const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 594 | const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 595 | \ |
| 596 | __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \ |
| 597 | const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \ |
| 598 | const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \ |
| 599 | __m256i idxidy = _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \ |
| 600 | __m256i dxidy = _mm256_sub_epi16(distx_, dxdy); \ |
| 601 | __m256i idxdy = _mm256_sub_epi16(disty_, dxdy); \ |
| 602 | \ |
| 603 | __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \ |
| 604 | __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \ |
| 605 | __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \ |
| 606 | __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \ |
| 607 | __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \ |
| 608 | __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \ |
| 609 | __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \ |
| 610 | __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \ |
| 611 | \ |
| 612 | __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \ |
| 613 | __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \ |
| 614 | tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \ |
| 615 | tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \ |
| 616 | tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \ |
| 617 | tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \ |
| 618 | __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \ |
| 619 | __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \ |
| 620 | blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \ |
| 621 | blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \ |
| 622 | blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \ |
| 623 | blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \ |
| 624 | \ |
| 625 | /* Add the values, and shift to only keep 8 significant bits per colors */ \ |
| 626 | __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \ |
| 627 | __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \ |
| 628 | __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \ |
| 629 | __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \ |
| 630 | __m256i rAG = _mm256_add_epi16(topAG, botAG); \ |
| 631 | __m256i rRB = _mm256_add_epi16(topRB, botRB); \ |
| 632 | rRB = _mm256_srli_epi16(rRB, 8); \ |
| 633 | /* Correct for hadd */ \ |
| 634 | rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 635 | rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 636 | _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \ |
| 637 | } |
| 638 | |
| 639 | inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2) |
| 640 | { |
| 641 | if (v1 < l1) |
| 642 | v2 = v1 = l1; |
| 643 | else if (v1 >= l2) |
| 644 | v2 = v1 = l2; |
| 645 | else |
| 646 | v2 = v1 + 1; |
| 647 | Q_ASSERT(v1 >= l1 && v1 <= l2); |
| 648 | Q_ASSERT(v2 >= l1 && v2 <= l2); |
| 649 | } |
| 650 | |
| 651 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx); |
| 652 | |
| 653 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 654 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 655 | { |
| 656 | int y1 = (fy >> 16); |
| 657 | int y2; |
| 658 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
| 659 | const uint *s1 = (const uint *)image.scanLine(y1); |
| 660 | const uint *s2 = (const uint *)image.scanLine(y2); |
| 661 | |
| 662 | const int disty = (fy & 0x0000ffff) >> 8; |
| 663 | const int idisty = 256 - disty; |
| 664 | const int length = end - b; |
| 665 | |
| 666 | // The intermediate buffer is generated in the positive direction |
| 667 | const int adjust = (fdx < 0) ? fdx * length : 0; |
| 668 | const int offset = (fx + adjust) >> 16; |
| 669 | int x = offset; |
| 670 | |
| 671 | IntermediateBuffer intermediate; |
| 672 | // count is the size used in the intermediate_buffer. |
| 673 | int count = (qint64(length) * qAbs(fdx) + FixedScale - 1) / FixedScale + 2; |
| 674 | // length is supposed to be <= BufferSize either because data->m11 < 1 or |
| 675 | // data->m11 < 2, and any larger buffers split |
| 676 | Q_ASSERT(count <= BufferSize + 2); |
| 677 | int f = 0; |
| 678 | int lim = qMin(count, image.x2 - x); |
| 679 | if (x < image.x1) { |
| 680 | Q_ASSERT(x < image.x2); |
| 681 | uint t = s1[image.x1]; |
| 682 | uint b = s2[image.x1]; |
| 683 | quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 684 | quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 685 | do { |
| 686 | intermediate.buffer_rb[f] = rb; |
| 687 | intermediate.buffer_ag[f] = ag; |
| 688 | f++; |
| 689 | x++; |
| 690 | } while (x < image.x1 && f < lim); |
| 691 | } |
| 692 | |
| 693 | const __m256i disty_ = _mm256_set1_epi16(disty); |
| 694 | const __m256i idisty_ = _mm256_set1_epi16(idisty); |
| 695 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 696 | |
| 697 | lim -= 7; |
| 698 | for (; f < lim; x += 8, f += 8) { |
| 699 | // Load 8 pixels from s1, and split the alpha-green and red-blue component |
| 700 | __m256i top = _mm256_loadu_si256((const __m256i*)((const uint *)(s1)+x)); |
| 701 | __m256i topAG = _mm256_srli_epi16(top, 8); |
| 702 | __m256i topRB = _mm256_and_si256(top, colorMask); |
| 703 | // Multiplies each color component by idisty |
| 704 | topAG = _mm256_mullo_epi16 (topAG, idisty_); |
| 705 | topRB = _mm256_mullo_epi16 (topRB, idisty_); |
| 706 | |
| 707 | // Same for the s2 vector |
| 708 | __m256i bottom = _mm256_loadu_si256((const __m256i*)((const uint *)(s2)+x)); |
| 709 | __m256i bottomAG = _mm256_srli_epi16(bottom, 8); |
| 710 | __m256i bottomRB = _mm256_and_si256(bottom, colorMask); |
| 711 | bottomAG = _mm256_mullo_epi16 (bottomAG, disty_); |
| 712 | bottomRB = _mm256_mullo_epi16 (bottomRB, disty_); |
| 713 | |
| 714 | // Add the values, and shift to only keep 8 significant bits per colors |
| 715 | __m256i rAG =_mm256_add_epi16(topAG, bottomAG); |
| 716 | rAG = _mm256_srli_epi16(rAG, 8); |
| 717 | _mm256_storeu_si256((__m256i*)(&intermediate.buffer_ag[f]), rAG); |
| 718 | __m256i rRB =_mm256_add_epi16(topRB, bottomRB); |
| 719 | rRB = _mm256_srli_epi16(rRB, 8); |
| 720 | _mm256_storeu_si256((__m256i*)(&intermediate.buffer_rb[f]), rRB); |
| 721 | } |
| 722 | |
| 723 | for (; f < count; f++) { // Same as above but without simd |
| 724 | x = qMin(x, image.x2 - 1); |
| 725 | |
| 726 | uint t = s1[x]; |
| 727 | uint b = s2[x]; |
| 728 | |
| 729 | intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 730 | intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 731 | x++; |
| 732 | } |
| 733 | |
| 734 | // Now interpolate the values from the intermediate_buffer to get the final result. |
| 735 | intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx); |
| 736 | } |
| 737 | |
| 738 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx) |
| 739 | { |
| 740 | fx -= offset * FixedScale; |
| 741 | |
| 742 | const __m128i v_fdx = _mm_set1_epi32(fdx * 4); |
| 743 | const __m128i v_blend = _mm_set1_epi32(0x00800080); |
| 744 | const __m128i vdx_shuffle = _mm_set_epi8(char(0x80), 13, char(0x80), 13, char(0x80), 9, char(0x80), 9, |
| 745 | char(0x80), 5, char(0x80), 5, char(0x80), 1, char(0x80), 1); |
| 746 | __m128i v_fx = _mm_setr_epi32(fx, fx + fdx, fx + fdx + fdx, fx + fdx + fdx + fdx); |
| 747 | |
| 748 | while (b < end - 3) { |
| 749 | const __m128i offset = _mm_srli_epi32(v_fx, 16); |
| 750 | __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4); |
| 751 | __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4); |
| 752 | |
| 753 | __m128i vdx = _mm_shuffle_epi8(v_fx, vdx_shuffle); |
| 754 | __m128i vidx = _mm_sub_epi16(_mm_set1_epi16(256), vdx); |
| 755 | __m256i vmulx = _mm256_castsi128_si256(_mm_unpacklo_epi32(vidx, vdx)); |
| 756 | vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1); |
| 757 | |
| 758 | vrb = _mm256_mullo_epi16(vrb, vmulx); |
| 759 | vag = _mm256_mullo_epi16(vag, vmulx); |
| 760 | |
| 761 | __m256i vrbag = _mm256_hadd_epi32(vrb, vag); |
| 762 | vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0)); |
| 763 | |
| 764 | __m128i rb = _mm256_castsi256_si128(vrbag); |
| 765 | __m128i ag = _mm256_extracti128_si256(vrbag, 1); |
| 766 | rb = _mm_srli_epi16(rb, 8); |
| 767 | |
| 768 | _mm_storeu_si128((__m128i*)b, _mm_blendv_epi8(ag, rb, v_blend)); |
| 769 | |
| 770 | b += 4; |
| 771 | v_fx = _mm_add_epi32(v_fx, v_fdx); |
| 772 | } |
| 773 | fx = _mm_cvtsi128_si32(v_fx); |
| 774 | while (b < end) { |
| 775 | const int x = (fx >> 16); |
| 776 | |
| 777 | const uint distx = (fx & 0x0000ffff) >> 8; |
| 778 | const uint idistx = 256 - distx; |
| 779 | const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00; |
| 780 | const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00; |
| 781 | *b = (rb >> 8) | ag; |
| 782 | b++; |
| 783 | fx += fdx; |
| 784 | } |
| 785 | fx += offset * FixedScale; |
| 786 | } |
| 787 | |
| 788 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 789 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 790 | { |
| 791 | int y1 = (fy >> 16); |
| 792 | int y2; |
| 793 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
| 794 | const uint *s1 = (const uint *)image.scanLine(y1); |
| 795 | const uint *s2 = (const uint *)image.scanLine(y2); |
| 796 | const int disty8 = (fy & 0x0000ffff) >> 8; |
| 797 | const int disty4 = (disty8 + 0x08) >> 4; |
| 798 | |
| 799 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 800 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 801 | while (b < end) { |
| 802 | int x1 = (fx >> 16); |
| 803 | int x2; |
| 804 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
| 805 | if (x1 != x2) |
| 806 | break; |
| 807 | uint top = s1[x1]; |
| 808 | uint bot = s2[x1]; |
| 809 | *b = INTERPOLATE_PIXEL_256(top, 256 - disty8, bot, disty8); |
| 810 | fx += fdx; |
| 811 | ++b; |
| 812 | } |
| 813 | uint *boundedEnd = end; |
| 814 | if (fdx > 0) |
| 815 | boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); |
| 816 | else if (fdx < 0) |
| 817 | boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); |
| 818 | |
| 819 | // A fast middle part without boundary checks |
| 820 | const __m256i vdistShuffle = |
| 821 | _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), |
| 822 | 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); |
| 823 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 824 | const __m256i v_256 = _mm256_set1_epi16(256); |
| 825 | const __m256i v_disty = _mm256_set1_epi16(disty4); |
| 826 | const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); |
| 827 | const __m256i v_fx_r = _mm256_set1_epi32(0x08); |
| 828 | const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
| 829 | __m256i v_fx = _mm256_set1_epi32(fx); |
| 830 | v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); |
| 831 | |
| 832 | while (b < boundedEnd - 7) { |
| 833 | const __m256i offset = _mm256_srli_epi32(v_fx, 16); |
| 834 | const __m128i offsetLo = _mm256_castsi256_si128(offset); |
| 835 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 836 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4); |
| 837 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4); |
| 838 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4); |
| 839 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4); |
| 840 | |
| 841 | __m256i v_distx = _mm256_srli_epi16(v_fx, 8); |
| 842 | v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fx_r), 4); |
| 843 | v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); |
| 844 | |
| 845 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 846 | b += 8; |
| 847 | v_fx = _mm256_add_epi32(v_fx, v_fdx); |
| 848 | } |
| 849 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 850 | |
| 851 | while (b < boundedEnd) { |
| 852 | int x = (fx >> 16); |
| 853 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 854 | *b = interpolate_4_pixels(s1 + x, s2 + x, distx8, disty8); |
| 855 | fx += fdx; |
| 856 | ++b; |
| 857 | } |
| 858 | |
| 859 | while (b < end) { |
| 860 | int x1 = (fx >> 16); |
| 861 | int x2; |
| 862 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
| 863 | uint tl = s1[x1]; |
| 864 | uint tr = s1[x2]; |
| 865 | uint bl = s2[x1]; |
| 866 | uint br = s2[x2]; |
| 867 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 868 | *b = interpolate_4_pixels(tl, tr, bl, br, distx8, disty8); |
| 869 | fx += fdx; |
| 870 | ++b; |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 875 | int &fx, int &fy, int fdx, int fdy) |
| 876 | { |
| 877 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 878 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 879 | const qint64 min_fy = qint64(image.y1) * FixedScale; |
| 880 | const qint64 max_fy = qint64(image.y2 - 1) * FixedScale; |
| 881 | // first handle the possibly bounded part in the beginning |
| 882 | while (b < end) { |
| 883 | int x1 = (fx >> 16); |
| 884 | int x2; |
| 885 | int y1 = (fy >> 16); |
| 886 | int y2; |
| 887 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
| 888 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
| 889 | if (x1 != x2 && y1 != y2) |
| 890 | break; |
| 891 | const uint *s1 = (const uint *)image.scanLine(y1); |
| 892 | const uint *s2 = (const uint *)image.scanLine(y2); |
| 893 | uint tl = s1[x1]; |
| 894 | uint tr = s1[x2]; |
| 895 | uint bl = s2[x1]; |
| 896 | uint br = s2[x2]; |
| 897 | int distx = (fx & 0x0000ffff) >> 8; |
| 898 | int disty = (fy & 0x0000ffff) >> 8; |
| 899 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 900 | fx += fdx; |
| 901 | fy += fdy; |
| 902 | ++b; |
| 903 | } |
| 904 | uint *boundedEnd = end; |
| 905 | if (fdx > 0) |
| 906 | boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); |
| 907 | else if (fdx < 0) |
| 908 | boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); |
| 909 | if (fdy > 0) |
| 910 | boundedEnd = qMin(boundedEnd, b + (max_fy - fy) / fdy); |
| 911 | else if (fdy < 0) |
| 912 | boundedEnd = qMin(boundedEnd, b + (min_fy - fy) / fdy); |
| 913 | |
| 914 | // until boundedEnd we can now have a fast middle part without boundary checks |
| 915 | const __m256i vdistShuffle = |
| 916 | _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), |
| 917 | 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); |
| 918 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
| 919 | const __m256i v_256 = _mm256_set1_epi16(256); |
| 920 | const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); |
| 921 | const __m256i v_fdy = _mm256_set1_epi32(fdy * 8); |
| 922 | const __m256i v_fxy_r = _mm256_set1_epi32(0x08); |
| 923 | const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
| 924 | __m256i v_fx = _mm256_set1_epi32(fx); |
| 925 | __m256i v_fy = _mm256_set1_epi32(fy); |
| 926 | v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); |
| 927 | v_fy = _mm256_add_epi32(v_fy, _mm256_mullo_epi32(_mm256_set1_epi32(fdy), v_index)); |
| 928 | |
| 929 | const uchar *textureData = image.imageData; |
| 930 | const qsizetype bytesPerLine = image.bytesPerLine; |
| 931 | const __m256i vbpl = _mm256_set1_epi16(bytesPerLine/4); |
| 932 | |
| 933 | while (b < boundedEnd - 7) { |
| 934 | const __m256i vy = _mm256_packs_epi32(_mm256_srli_epi32(v_fy, 16), _mm256_setzero_si256()); |
| 935 | // 8x16bit * 8x16bit -> 8x32bit |
| 936 | __m256i offset = _mm256_unpacklo_epi16(_mm256_mullo_epi16(vy, vbpl), _mm256_mulhi_epi16(vy, vbpl)); |
| 937 | offset = _mm256_add_epi32(offset, _mm256_srli_epi32(v_fx, 16)); |
| 938 | const __m128i offsetLo = _mm256_castsi256_si128(offset); |
| 939 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 940 | const uint *topData = (const uint *)(textureData); |
| 941 | const uint *botData = (const uint *)(textureData + bytesPerLine); |
| 942 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4); |
| 943 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4); |
| 944 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4); |
| 945 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4); |
| 946 | |
| 947 | __m256i v_distx = _mm256_srli_epi16(v_fx, 8); |
| 948 | __m256i v_disty = _mm256_srli_epi16(v_fy, 8); |
| 949 | v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fxy_r), 4); |
| 950 | v_disty = _mm256_srli_epi16(_mm256_add_epi32(v_disty, v_fxy_r), 4); |
| 951 | v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); |
| 952 | v_disty = _mm256_shuffle_epi8(v_disty, vdistShuffle); |
| 953 | |
| 954 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 955 | b += 8; |
| 956 | v_fx = _mm256_add_epi32(v_fx, v_fdx); |
| 957 | v_fy = _mm256_add_epi32(v_fy, v_fdy); |
| 958 | } |
| 959 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 960 | fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0); |
| 961 | |
| 962 | while (b < boundedEnd) { |
| 963 | int x = (fx >> 16); |
| 964 | int y = (fy >> 16); |
| 965 | |
| 966 | const uint *s1 = (const uint *)image.scanLine(y); |
| 967 | const uint *s2 = (const uint *)image.scanLine(y + 1); |
| 968 | |
| 969 | int distx = (fx & 0x0000ffff) >> 8; |
| 970 | int disty = (fy & 0x0000ffff) >> 8; |
| 971 | *b = interpolate_4_pixels(s1 + x, s2 + x, distx, disty); |
| 972 | |
| 973 | fx += fdx; |
| 974 | fy += fdy; |
| 975 | ++b; |
| 976 | } |
| 977 | |
| 978 | while (b < end) { |
| 979 | int x1 = (fx >> 16); |
| 980 | int x2; |
| 981 | int y1 = (fy >> 16); |
| 982 | int y2; |
| 983 | |
| 984 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
| 985 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
| 986 | |
| 987 | const uint *s1 = (const uint *)image.scanLine(y1); |
| 988 | const uint *s2 = (const uint *)image.scanLine(y2); |
| 989 | |
| 990 | uint tl = s1[x1]; |
| 991 | uint tr = s1[x2]; |
| 992 | uint bl = s2[x1]; |
| 993 | uint br = s2[x2]; |
| 994 | |
| 995 | int distx = (fx & 0x0000ffff) >> 8; |
| 996 | int disty = (fy & 0x0000ffff) >> 8; |
| 997 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 998 | |
| 999 | fx += fdx; |
| 1000 | fy += fdy; |
| 1001 | ++b; |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | static inline __m256i epilogueMaskFromCount(qsizetype count) |
| 1006 | { |
| 1007 | Q_ASSERT(count > 0); |
| 1008 | static const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
| 1009 | return _mm256_add_epi32(offsetMask, _mm256_set1_epi32(-count)); |
| 1010 | } |
| 1011 | |
| 1012 | template<bool RGBA> |
| 1013 | static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count) |
| 1014 | { |
| 1015 | qsizetype i = 0; |
| 1016 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
| 1017 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); |
| 1018 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); |
| 1019 | const __m256i half = _mm256_set1_epi16(0x0080); |
| 1020 | const __m256i zero = _mm256_setzero_si256(); |
| 1021 | |
| 1022 | for (; i < count - 7; i += 8) { |
| 1023 | __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i)); |
| 1024 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 1025 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1026 | bool cf = _mm256_testc_si256(srcVector, alphaMask); |
| 1027 | if (RGBA) |
| 1028 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
| 1029 | if (!cf) { |
| 1030 | __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); |
| 1031 | __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); |
| 1032 | __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
| 1033 | __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
| 1034 | src1 = _mm256_mullo_epi16(src1, alpha1); |
| 1035 | src2 = _mm256_mullo_epi16(src2, alpha2); |
| 1036 | src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); |
| 1037 | src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); |
| 1038 | src1 = _mm256_add_epi16(src1, half); |
| 1039 | src2 = _mm256_add_epi16(src2, half); |
| 1040 | src1 = _mm256_srli_epi16(src1, 8); |
| 1041 | src2 = _mm256_srli_epi16(src2, 8); |
| 1042 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1043 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1044 | srcVector = _mm256_packus_epi16(src1, src2); |
| 1045 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); |
| 1046 | } else { |
| 1047 | if (buffer != src || RGBA) |
| 1048 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); |
| 1049 | } |
| 1050 | } else { |
| 1051 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), zero); |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | if (i < count) { |
| 1056 | const __m256i epilogueMask = epilogueMaskFromCount(count - i); |
| 1057 | __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask); |
| 1058 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
| 1059 | |
| 1060 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
| 1061 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1062 | bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); |
| 1063 | if (RGBA) |
| 1064 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
| 1065 | if (!cf) { |
| 1066 | __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); |
| 1067 | __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); |
| 1068 | __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
| 1069 | __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
| 1070 | src1 = _mm256_mullo_epi16(src1, alpha1); |
| 1071 | src2 = _mm256_mullo_epi16(src2, alpha2); |
| 1072 | src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); |
| 1073 | src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); |
| 1074 | src1 = _mm256_add_epi16(src1, half); |
| 1075 | src2 = _mm256_add_epi16(src2, half); |
| 1076 | src1 = _mm256_srli_epi16(src1, 8); |
| 1077 | src2 = _mm256_srli_epi16(src2, 8); |
| 1078 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1079 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1080 | srcVector = _mm256_packus_epi16(src1, src2); |
| 1081 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector); |
| 1082 | } else { |
| 1083 | if (buffer != src || RGBA) |
| 1084 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector); |
| 1085 | } |
| 1086 | } else { |
| 1087 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, zero); |
| 1088 | } |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
| 1093 | { |
| 1094 | convertARGBToARGB32PM_avx2<false>(buffer, buffer, count); |
| 1095 | } |
| 1096 | |
| 1097 | void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
| 1098 | { |
| 1099 | convertARGBToARGB32PM_avx2<true>(buffer, buffer, count); |
| 1100 | } |
| 1101 | |
| 1102 | const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1103 | const QList<QRgb> *, QDitherInfo *) |
| 1104 | { |
| 1105 | convertARGBToARGB32PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
| 1106 | return buffer; |
| 1107 | } |
| 1108 | |
| 1109 | const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1110 | const QList<QRgb> *, QDitherInfo *) |
| 1111 | { |
| 1112 | convertARGBToARGB32PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
| 1113 | return buffer; |
| 1114 | } |
| 1115 | |
| 1116 | template<bool RGBA> |
| 1117 | static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count) |
| 1118 | { |
| 1119 | qsizetype i = 0; |
| 1120 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
| 1121 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); |
| 1122 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); |
| 1123 | const __m256i zero = _mm256_setzero_si256(); |
| 1124 | |
| 1125 | for (; i < count - 7; i += 8) { |
| 1126 | __m256i dst1, dst2; |
| 1127 | __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i)); |
| 1128 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
| 1129 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1130 | bool cf = _mm256_testc_si256(srcVector, alphaMask); |
| 1131 | if (!RGBA) |
| 1132 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
| 1133 | |
| 1134 | // The two unpack instructions unpack the low and upper halves of |
| 1135 | // each 128-bit half of the 256-bit register. Here's the tracking |
| 1136 | // of what's where: (p is 32-bit, P is 64-bit) |
| 1137 | // as loaded: [ p1, p2, p3, p4; p5, p6, p7, p8 ] |
| 1138 | // after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ] |
| 1139 | // after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ] |
| 1140 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1141 | |
| 1142 | const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); |
| 1143 | const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); |
| 1144 | if (!cf) { |
| 1145 | const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
| 1146 | const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
| 1147 | dst1 = _mm256_mulhi_epu16(src1, alpha1); |
| 1148 | dst2 = _mm256_mulhi_epu16(src2, alpha2); |
| 1149 | dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); |
| 1150 | dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); |
| 1151 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1152 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1153 | } else { |
| 1154 | dst1 = src1; |
| 1155 | dst2 = src2; |
| 1156 | } |
| 1157 | } else { |
| 1158 | dst1 = dst2 = zero; |
| 1159 | } |
| 1160 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), dst1); |
| 1161 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i) + 1, dst2); |
| 1162 | } |
| 1163 | |
| 1164 | if (i < count) { |
| 1165 | __m256i epilogueMask = epilogueMaskFromCount(count - i); |
| 1166 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
| 1167 | __m256i dst1, dst2; |
| 1168 | __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask); |
| 1169 | |
| 1170 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
| 1171 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1172 | bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); |
| 1173 | if (!RGBA) |
| 1174 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
| 1175 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1176 | const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); |
| 1177 | const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); |
| 1178 | if (!cf) { |
| 1179 | const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
| 1180 | const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
| 1181 | dst1 = _mm256_mulhi_epu16(src1, alpha1); |
| 1182 | dst2 = _mm256_mulhi_epu16(src2, alpha2); |
| 1183 | dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); |
| 1184 | dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); |
| 1185 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1186 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1187 | } else { |
| 1188 | dst1 = src1; |
| 1189 | dst2 = src2; |
| 1190 | } |
| 1191 | } else { |
| 1192 | dst1 = dst2 = zero; |
| 1193 | } |
| 1194 | epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1195 | _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i), |
| 1196 | _mm256_unpacklo_epi32(epilogueMask, epilogueMask), |
| 1197 | dst1); |
| 1198 | _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i + 4), |
| 1199 | _mm256_unpackhi_epi32(epilogueMask, epilogueMask), |
| 1200 | dst2); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1205 | const QList<QRgb> *, QDitherInfo *) |
| 1206 | { |
| 1207 | convertARGBToRGBA64PM_avx2<false>(buffer, src, count); |
| 1208 | return buffer; |
| 1209 | } |
| 1210 | |
| 1211 | const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1212 | const QList<QRgb> *, QDitherInfo *) |
| 1213 | { |
| 1214 | convertARGBToRGBA64PM_avx2<true>(buffer, src, count); |
| 1215 | return buffer; |
| 1216 | } |
| 1217 | |
| 1218 | const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1219 | const QList<QRgb> *, QDitherInfo *) |
| 1220 | { |
| 1221 | convertARGBToRGBA64PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
| 1222 | return buffer; |
| 1223 | } |
| 1224 | |
| 1225 | const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1226 | const QList<QRgb> *, QDitherInfo *) |
| 1227 | { |
| 1228 | convertARGBToRGBA64PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
| 1229 | return buffer; |
| 1230 | } |
| 1231 | |
| 1232 | QT_END_NAMESPACE |
| 1233 | |
| 1234 | #endif |
| 1235 | |