1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2018 The Qt Company Ltd. |
4 | ** Copyright (C) 2018 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtGui module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #include "qdrawhelper_p.h" |
42 | #include "qdrawhelper_x86_p.h" |
43 | #include "qdrawingprimitive_sse2_p.h" |
44 | #include "qpixellayout_p.h" |
45 | #include "qrgba64_p.h" |
46 | |
47 | #if defined(QT_COMPILER_SUPPORTS_AVX2) |
48 | |
49 | QT_BEGIN_NAMESPACE |
50 | |
51 | enum { |
52 | FixedScale = 1 << 16, |
53 | HalfPoint = 1 << 15 |
54 | }; |
55 | |
56 | // Vectorized blend functions: |
57 | |
58 | // See BYTE_MUL_SSE2 for details. |
59 | inline static void Q_DECL_VECTORCALL |
60 | BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
61 | { |
62 | __m256i pixelVectorAG = _mm256_srli_epi16(pixelVector, 8); |
63 | __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); |
64 | |
65 | pixelVectorAG = _mm256_mullo_epi16(pixelVectorAG, alphaChannel); |
66 | pixelVectorRB = _mm256_mullo_epi16(pixelVectorRB, alphaChannel); |
67 | |
68 | pixelVectorRB = _mm256_add_epi16(pixelVectorRB, _mm256_srli_epi16(pixelVectorRB, 8)); |
69 | pixelVectorAG = _mm256_add_epi16(pixelVectorAG, _mm256_srli_epi16(pixelVectorAG, 8)); |
70 | pixelVectorRB = _mm256_add_epi16(pixelVectorRB, half); |
71 | pixelVectorAG = _mm256_add_epi16(pixelVectorAG, half); |
72 | |
73 | pixelVectorRB = _mm256_srli_epi16(pixelVectorRB, 8); |
74 | pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); |
75 | |
76 | pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); |
77 | } |
78 | |
79 | inline static void Q_DECL_VECTORCALL |
80 | BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
81 | { |
82 | __m256i pixelVectorAG = _mm256_srli_epi32(pixelVector, 16); |
83 | __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask); |
84 | |
85 | pixelVectorAG = _mm256_mullo_epi32(pixelVectorAG, alphaChannel); |
86 | pixelVectorRB = _mm256_mullo_epi32(pixelVectorRB, alphaChannel); |
87 | |
88 | pixelVectorRB = _mm256_add_epi32(pixelVectorRB, _mm256_srli_epi32(pixelVectorRB, 16)); |
89 | pixelVectorAG = _mm256_add_epi32(pixelVectorAG, _mm256_srli_epi32(pixelVectorAG, 16)); |
90 | pixelVectorRB = _mm256_add_epi32(pixelVectorRB, half); |
91 | pixelVectorAG = _mm256_add_epi32(pixelVectorAG, half); |
92 | |
93 | pixelVectorRB = _mm256_srli_epi32(pixelVectorRB, 16); |
94 | pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG); |
95 | |
96 | pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB); |
97 | } |
98 | |
99 | // See INTERPOLATE_PIXEL_255_SSE2 for details. |
100 | inline static void Q_DECL_VECTORCALL |
101 | INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
102 | { |
103 | const __m256i srcVectorAG = _mm256_srli_epi16(srcVector, 8); |
104 | const __m256i dstVectorAG = _mm256_srli_epi16(dstVector, 8); |
105 | const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); |
106 | const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); |
107 | const __m256i srcVectorAGalpha = _mm256_mullo_epi16(srcVectorAG, alphaChannel); |
108 | const __m256i srcVectorRBalpha = _mm256_mullo_epi16(srcVectorRB, alphaChannel); |
109 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); |
110 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); |
111 | __m256i finalAG = _mm256_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlpha); |
112 | __m256i finalRB = _mm256_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlpha); |
113 | finalAG = _mm256_add_epi16(finalAG, _mm256_srli_epi16(finalAG, 8)); |
114 | finalRB = _mm256_add_epi16(finalRB, _mm256_srli_epi16(finalRB, 8)); |
115 | finalAG = _mm256_add_epi16(finalAG, half); |
116 | finalRB = _mm256_add_epi16(finalRB, half); |
117 | finalAG = _mm256_andnot_si256(colorMask, finalAG); |
118 | finalRB = _mm256_srli_epi16(finalRB, 8); |
119 | |
120 | dstVector = _mm256_or_si256(finalAG, finalRB); |
121 | } |
122 | |
123 | inline static void Q_DECL_VECTORCALL |
124 | INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
125 | { |
126 | const __m256i srcVectorAG = _mm256_srli_epi32(srcVector, 16); |
127 | const __m256i dstVectorAG = _mm256_srli_epi32(dstVector, 16); |
128 | const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask); |
129 | const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask); |
130 | const __m256i srcVectorAGalpha = _mm256_mullo_epi32(srcVectorAG, alphaChannel); |
131 | const __m256i srcVectorRBalpha = _mm256_mullo_epi32(srcVectorRB, alphaChannel); |
132 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(dstVectorAG, oneMinusAlphaChannel); |
133 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(dstVectorRB, oneMinusAlphaChannel); |
134 | __m256i finalAG = _mm256_add_epi32(srcVectorAGalpha, dstVectorAGoneMinusAlpha); |
135 | __m256i finalRB = _mm256_add_epi32(srcVectorRBalpha, dstVectorRBoneMinusAlpha); |
136 | finalAG = _mm256_add_epi32(finalAG, _mm256_srli_epi32(finalAG, 16)); |
137 | finalRB = _mm256_add_epi32(finalRB, _mm256_srli_epi32(finalRB, 16)); |
138 | finalAG = _mm256_add_epi32(finalAG, half); |
139 | finalRB = _mm256_add_epi32(finalRB, half); |
140 | finalAG = _mm256_andnot_si256(colorMask, finalAG); |
141 | finalRB = _mm256_srli_epi32(finalRB, 16); |
142 | |
143 | dstVector = _mm256_or_si256(finalAG, finalRB); |
144 | } |
145 | |
146 | |
147 | // See BLEND_SOURCE_OVER_ARGB32_SSE2 for details. |
148 | inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length) |
149 | { |
150 | const __m256i half = _mm256_set1_epi16(0x80); |
151 | const __m256i one = _mm256_set1_epi16(0xff); |
152 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
153 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
154 | const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
155 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, |
156 | char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); |
157 | |
158 | const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7; |
159 | |
160 | int x = 0; |
161 | // Prologue to handle all pixels until dst is 32-byte aligned in one step. |
162 | if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) { |
163 | const __m256i prologueMask = _mm256_sub_epi32(_mm256_set1_epi32(minusOffsetToAlignDstOn32Bytes - 1), offsetMask); |
164 | const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x - minusOffsetToAlignDstOn32Bytes], prologueMask); |
165 | const __m256i prologueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, prologueMask); |
166 | if (!_mm256_testz_si256(srcVector, prologueAlphaMask)) { |
167 | if (_mm256_testc_si256(srcVector, prologueAlphaMask)) { |
168 | _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, srcVector); |
169 | } else { |
170 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
171 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
172 | __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask); |
173 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
174 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
175 | _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, dstVector); |
176 | } |
177 | } |
178 | x += (8 - minusOffsetToAlignDstOn32Bytes); |
179 | } |
180 | |
181 | for (; x < (length - 7); x += 8) { |
182 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
183 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
184 | if (_mm256_testc_si256(srcVector, alphaMask)) { |
185 | _mm256_store_si256((__m256i *)&dst[x], srcVector); |
186 | } else { |
187 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
188 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
189 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
190 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
191 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
192 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
193 | } |
194 | } |
195 | } |
196 | |
197 | // Epilogue to handle all remaining pixels in one step. |
198 | if (x < length) { |
199 | const __m256i epilogueMask = _mm256_add_epi32(offsetMask, _mm256_set1_epi32(x - length)); |
200 | const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x], epilogueMask); |
201 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
202 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
203 | if (_mm256_testc_si256(srcVector, epilogueAlphaMask)) { |
204 | _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, srcVector); |
205 | } else { |
206 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
207 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
208 | __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x], epilogueMask); |
209 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
210 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
211 | _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, dstVector); |
212 | } |
213 | } |
214 | } |
215 | } |
216 | |
217 | |
218 | // See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details. |
219 | inline static void Q_DECL_VECTORCALL |
220 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha) |
221 | { |
222 | int x = 0; |
223 | |
224 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
225 | blend_pixel(dst[x], src[x], const_alpha); |
226 | |
227 | const __m256i half = _mm256_set1_epi16(0x80); |
228 | const __m256i one = _mm256_set1_epi16(0xff); |
229 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
230 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
231 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3, |
232 | char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3); |
233 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
234 | for (; x < (length - 7); x += 8) { |
235 | __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
236 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
237 | BYTE_MUL_AVX2(srcVector, constAlphaVector, colorMask, half); |
238 | |
239 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
240 | alphaChannel = _mm256_sub_epi16(one, alphaChannel); |
241 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
242 | BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half); |
243 | dstVector = _mm256_add_epi8(dstVector, srcVector); |
244 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
245 | } |
246 | } |
247 | SIMD_EPILOGUE(x, length, 7) |
248 | blend_pixel(dst[x], src[x], const_alpha); |
249 | } |
250 | |
251 | void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl, |
252 | const uchar *srcPixels, int sbpl, |
253 | int w, int h, |
254 | int const_alpha) |
255 | { |
256 | if (const_alpha == 256) { |
257 | for (int y = 0; y < h; ++y) { |
258 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
259 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
260 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, w); |
261 | destPixels += dbpl; |
262 | srcPixels += sbpl; |
263 | } |
264 | } else if (const_alpha != 0) { |
265 | const_alpha = (const_alpha * 255) >> 8; |
266 | for (int y = 0; y < h; ++y) { |
267 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
268 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
269 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, w, const_alpha); |
270 | destPixels += dbpl; |
271 | srcPixels += sbpl; |
272 | } |
273 | } |
274 | } |
275 | |
276 | void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl, |
277 | const uchar *srcPixels, int sbpl, |
278 | int w, int h, |
279 | int const_alpha) |
280 | { |
281 | if (const_alpha == 256) { |
282 | for (int y = 0; y < h; ++y) { |
283 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
284 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
285 | ::memcpy(dst, src, w * sizeof(uint)); |
286 | srcPixels += sbpl; |
287 | destPixels += dbpl; |
288 | } |
289 | return; |
290 | } |
291 | if (const_alpha == 0) |
292 | return; |
293 | |
294 | const __m256i half = _mm256_set1_epi16(0x80); |
295 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
296 | |
297 | const_alpha = (const_alpha * 255) >> 8; |
298 | int one_minus_const_alpha = 255 - const_alpha; |
299 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
300 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(one_minus_const_alpha); |
301 | for (int y = 0; y < h; ++y) { |
302 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
303 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
304 | int x = 0; |
305 | |
306 | // First, align dest to 32 bytes: |
307 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, w) |
308 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); |
309 | |
310 | // 2) interpolate pixels with AVX2 |
311 | for (; x < (w - 7); x += 8) { |
312 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
313 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
314 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
315 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
316 | } |
317 | |
318 | // 3) Epilogue |
319 | SIMD_EPILOGUE(x, w, 7) |
320 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha); |
321 | |
322 | srcPixels += sbpl; |
323 | destPixels += dbpl; |
324 | } |
325 | } |
326 | |
327 | static Q_NEVER_INLINE |
328 | void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes) |
329 | { |
330 | __m128i value128 = _mm256_castsi256_si128(value256); |
331 | |
332 | // main body |
333 | __m256i *dst256 = reinterpret_cast<__m256i *>(dest); |
334 | uchar *end = dest + bytes; |
335 | while (reinterpret_cast<uchar *>(dst256 + 4) <= end) { |
336 | _mm256_storeu_si256(dst256 + 0, value256); |
337 | _mm256_storeu_si256(dst256 + 1, value256); |
338 | _mm256_storeu_si256(dst256 + 2, value256); |
339 | _mm256_storeu_si256(dst256 + 3, value256); |
340 | dst256 += 4; |
341 | } |
342 | |
343 | // first epilogue: fewer than 128 bytes / 32 entries |
344 | bytes = end - reinterpret_cast<uchar *>(dst256); |
345 | switch (bytes / sizeof(value256)) { |
346 | case 3: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); |
347 | case 2: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH(); |
348 | case 1: _mm256_storeu_si256(dst256++, value256); |
349 | } |
350 | |
351 | // second epilogue: fewer than 32 bytes |
352 | __m128i *dst128 = reinterpret_cast<__m128i *>(dst256); |
353 | if (bytes & sizeof(value128)) |
354 | _mm_storeu_si128(dst128++, value128); |
355 | |
356 | // third epilogue: fewer than 16 bytes |
357 | if (bytes & 8) |
358 | _mm_storel_epi64(reinterpret_cast<__m128i *>(end - 8), value128); |
359 | } |
360 | |
361 | void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count) |
362 | { |
363 | #if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL) |
364 | // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820 |
365 | __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value); |
366 | # ifdef Q_PROCESSOR_X86_64 |
367 | asm ("" : "+x" (value64)); |
368 | # endif |
369 | __m256i value256 = _mm256_broadcastq_epi64(value64); |
370 | #else |
371 | __m256i value256 = _mm256_set1_epi64x(value); |
372 | #endif |
373 | |
374 | qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), value256, count * sizeof(quint64)); |
375 | } |
376 | |
377 | void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count) |
378 | { |
379 | if (count % 2) { |
380 | // odd number of pixels, round to even |
381 | *dest++ = value; |
382 | --count; |
383 | } |
384 | qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), _mm256_set1_epi32(value), count * sizeof(quint32)); |
385 | } |
386 | |
387 | void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) |
388 | { |
389 | Q_ASSERT(const_alpha < 256); |
390 | |
391 | const quint32 *src = (const quint32 *) srcPixels; |
392 | quint32 *dst = (quint32 *) destPixels; |
393 | |
394 | if (const_alpha == 255) |
395 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length); |
396 | else |
397 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha); |
398 | } |
399 | |
400 | #if QT_CONFIG(raster_64bit) |
401 | void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
402 | { |
403 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
404 | const __m256i half = _mm256_set1_epi32(0x8000); |
405 | const __m256i one = _mm256_set1_epi32(0xffff); |
406 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
407 | __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
408 | alphaMask = _mm256_unpacklo_epi8(alphaMask, alphaMask); |
409 | const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6, |
410 | char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6); |
411 | |
412 | if (const_alpha == 255) { |
413 | int x = 0; |
414 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
415 | blend_pixel(dst[x], src[x]); |
416 | for (; x < length - 3; x += 4) { |
417 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
418 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
419 | // Not all transparent |
420 | if (_mm256_testc_si256(srcVector, alphaMask)) { |
421 | // All opaque |
422 | _mm256_store_si256((__m256i *)&dst[x], srcVector); |
423 | } else { |
424 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
425 | alphaChannel = _mm256_sub_epi32(one, alphaChannel); |
426 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
427 | BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); |
428 | dstVector = _mm256_add_epi16(dstVector, srcVector); |
429 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
430 | } |
431 | } |
432 | } |
433 | SIMD_EPILOGUE(x, length, 3) |
434 | blend_pixel(dst[x], src[x]); |
435 | } else { |
436 | const __m256i constAlphaVector = _mm256_set1_epi32(const_alpha | (const_alpha << 8)); |
437 | int x = 0; |
438 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
439 | blend_pixel(dst[x], src[x], const_alpha); |
440 | for (; x < length - 3; x += 4) { |
441 | __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
442 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
443 | // Not all transparent |
444 | BYTE_MUL_RGB64_AVX2(srcVector, constAlphaVector, colorMask, half); |
445 | |
446 | __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask); |
447 | alphaChannel = _mm256_sub_epi32(one, alphaChannel); |
448 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
449 | BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half); |
450 | dstVector = _mm256_add_epi16(dstVector, srcVector); |
451 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
452 | } |
453 | } |
454 | SIMD_EPILOGUE(x, length, 3) |
455 | blend_pixel(dst[x], src[x], const_alpha); |
456 | } |
457 | } |
458 | #endif |
459 | |
460 | void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha) |
461 | { |
462 | if (const_alpha == 255) { |
463 | ::memcpy(dst, src, length * sizeof(uint)); |
464 | } else { |
465 | const int ialpha = 255 - const_alpha; |
466 | |
467 | int x = 0; |
468 | |
469 | // 1) prologue, align on 32 bytes |
470 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
471 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); |
472 | |
473 | // 2) interpolate pixels with AVX2 |
474 | const __m256i half = _mm256_set1_epi16(0x80); |
475 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
476 | const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha); |
477 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(ialpha); |
478 | for (; x < length - 7; x += 8) { |
479 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
480 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
481 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
482 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
483 | } |
484 | |
485 | // 3) Epilogue |
486 | SIMD_EPILOGUE(x, length, 7) |
487 | dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha); |
488 | } |
489 | } |
490 | |
491 | #if QT_CONFIG(raster_64bit) |
492 | void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
493 | { |
494 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
495 | if (const_alpha == 255) { |
496 | ::memcpy(dst, src, length * sizeof(QRgba64)); |
497 | } else { |
498 | const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535] |
499 | const uint cia = 65535 - ca; |
500 | |
501 | int x = 0; |
502 | |
503 | // 1) prologue, align on 32 bytes |
504 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
505 | dst[x] = interpolate65535(src[x], ca, dst[x], cia); |
506 | |
507 | // 2) interpolate pixels with AVX2 |
508 | const __m256i half = _mm256_set1_epi32(0x8000); |
509 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
510 | const __m256i constAlphaVector = _mm256_set1_epi32(ca); |
511 | const __m256i oneMinusConstAlpha = _mm256_set1_epi32(cia); |
512 | for (; x < length - 3; x += 4) { |
513 | const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]); |
514 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
515 | INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); |
516 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
517 | } |
518 | |
519 | // 3) Epilogue |
520 | SIMD_EPILOGUE(x, length, 3) |
521 | dst[x] = interpolate65535(src[x], ca, dst[x], cia); |
522 | } |
523 | } |
524 | #endif |
525 | |
526 | void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha) |
527 | { |
528 | if ((const_alpha & qAlpha(color)) == 255) { |
529 | qt_memfill32(destPixels, color, length); |
530 | } else { |
531 | if (const_alpha != 255) |
532 | color = BYTE_MUL(color, const_alpha); |
533 | |
534 | const quint32 minusAlphaOfColor = qAlpha(~color); |
535 | int x = 0; |
536 | |
537 | quint32 *dst = (quint32 *) destPixels; |
538 | const __m256i colorVector = _mm256_set1_epi32(color); |
539 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
540 | const __m256i half = _mm256_set1_epi16(0x80); |
541 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(minusAlphaOfColor); |
542 | |
543 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
544 | destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); |
545 | |
546 | for (; x < length - 7; x += 8) { |
547 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
548 | BYTE_MUL_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); |
549 | dstVector = _mm256_add_epi8(colorVector, dstVector); |
550 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
551 | } |
552 | SIMD_EPILOGUE(x, length, 7) |
553 | destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); |
554 | } |
555 | } |
556 | |
557 | #if QT_CONFIG(raster_64bit) |
558 | void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha) |
559 | { |
560 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
561 | if (const_alpha == 255 && color.isOpaque()) { |
562 | qt_memfill64((quint64*)destPixels, color, length); |
563 | } else { |
564 | if (const_alpha != 255) |
565 | color = multiplyAlpha255(color, const_alpha); |
566 | |
567 | const uint minusAlphaOfColor = 65535 - color.alpha(); |
568 | int x = 0; |
569 | quint64 *dst = (quint64 *) destPixels; |
570 | const __m256i colorVector = _mm256_set1_epi64x(color); |
571 | const __m256i colorMask = _mm256_set1_epi32(0x0000ffff); |
572 | const __m256i half = _mm256_set1_epi32(0x8000); |
573 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(minusAlphaOfColor); |
574 | |
575 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
576 | destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); |
577 | |
578 | for (; x < length - 3; x += 4) { |
579 | __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]); |
580 | BYTE_MUL_RGB64_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half); |
581 | dstVector = _mm256_add_epi16(colorVector, dstVector); |
582 | _mm256_store_si256((__m256i *)&dst[x], dstVector); |
583 | } |
584 | SIMD_EPILOGUE(x, length, 3) |
585 | destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor); |
586 | } |
587 | } |
588 | #endif |
589 | |
590 | #define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b) \ |
591 | { \ |
592 | /* Correct for later unpack */ \ |
593 | const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \ |
594 | const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \ |
595 | \ |
596 | __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \ |
597 | const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \ |
598 | const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \ |
599 | __m256i idxidy = _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \ |
600 | __m256i dxidy = _mm256_sub_epi16(distx_, dxdy); \ |
601 | __m256i idxdy = _mm256_sub_epi16(disty_, dxdy); \ |
602 | \ |
603 | __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \ |
604 | __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \ |
605 | __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \ |
606 | __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \ |
607 | __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \ |
608 | __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \ |
609 | __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \ |
610 | __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \ |
611 | \ |
612 | __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \ |
613 | __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \ |
614 | tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \ |
615 | tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \ |
616 | tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \ |
617 | tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \ |
618 | __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \ |
619 | __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \ |
620 | blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \ |
621 | blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \ |
622 | blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \ |
623 | blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \ |
624 | \ |
625 | /* Add the values, and shift to only keep 8 significant bits per colors */ \ |
626 | __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \ |
627 | __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \ |
628 | __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \ |
629 | __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \ |
630 | __m256i rAG = _mm256_add_epi16(topAG, botAG); \ |
631 | __m256i rRB = _mm256_add_epi16(topRB, botRB); \ |
632 | rRB = _mm256_srli_epi16(rRB, 8); \ |
633 | /* Correct for hadd */ \ |
634 | rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \ |
635 | rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \ |
636 | _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \ |
637 | } |
638 | |
639 | inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2) |
640 | { |
641 | if (v1 < l1) |
642 | v2 = v1 = l1; |
643 | else if (v1 >= l2) |
644 | v2 = v1 = l2; |
645 | else |
646 | v2 = v1 + 1; |
647 | Q_ASSERT(v1 >= l1 && v1 <= l2); |
648 | Q_ASSERT(v2 >= l1 && v2 <= l2); |
649 | } |
650 | |
651 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx); |
652 | |
653 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
654 | int &fx, int &fy, int fdx, int /*fdy*/) |
655 | { |
656 | int y1 = (fy >> 16); |
657 | int y2; |
658 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
659 | const uint *s1 = (const uint *)image.scanLine(y1); |
660 | const uint *s2 = (const uint *)image.scanLine(y2); |
661 | |
662 | const int disty = (fy & 0x0000ffff) >> 8; |
663 | const int idisty = 256 - disty; |
664 | const int length = end - b; |
665 | |
666 | // The intermediate buffer is generated in the positive direction |
667 | const int adjust = (fdx < 0) ? fdx * length : 0; |
668 | const int offset = (fx + adjust) >> 16; |
669 | int x = offset; |
670 | |
671 | IntermediateBuffer intermediate; |
672 | // count is the size used in the intermediate_buffer. |
673 | int count = (qint64(length) * qAbs(fdx) + FixedScale - 1) / FixedScale + 2; |
674 | // length is supposed to be <= BufferSize either because data->m11 < 1 or |
675 | // data->m11 < 2, and any larger buffers split |
676 | Q_ASSERT(count <= BufferSize + 2); |
677 | int f = 0; |
678 | int lim = qMin(count, image.x2 - x); |
679 | if (x < image.x1) { |
680 | Q_ASSERT(x < image.x2); |
681 | uint t = s1[image.x1]; |
682 | uint b = s2[image.x1]; |
683 | quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
684 | quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
685 | do { |
686 | intermediate.buffer_rb[f] = rb; |
687 | intermediate.buffer_ag[f] = ag; |
688 | f++; |
689 | x++; |
690 | } while (x < image.x1 && f < lim); |
691 | } |
692 | |
693 | const __m256i disty_ = _mm256_set1_epi16(disty); |
694 | const __m256i idisty_ = _mm256_set1_epi16(idisty); |
695 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
696 | |
697 | lim -= 7; |
698 | for (; f < lim; x += 8, f += 8) { |
699 | // Load 8 pixels from s1, and split the alpha-green and red-blue component |
700 | __m256i top = _mm256_loadu_si256((const __m256i*)((const uint *)(s1)+x)); |
701 | __m256i topAG = _mm256_srli_epi16(top, 8); |
702 | __m256i topRB = _mm256_and_si256(top, colorMask); |
703 | // Multiplies each color component by idisty |
704 | topAG = _mm256_mullo_epi16 (topAG, idisty_); |
705 | topRB = _mm256_mullo_epi16 (topRB, idisty_); |
706 | |
707 | // Same for the s2 vector |
708 | __m256i bottom = _mm256_loadu_si256((const __m256i*)((const uint *)(s2)+x)); |
709 | __m256i bottomAG = _mm256_srli_epi16(bottom, 8); |
710 | __m256i bottomRB = _mm256_and_si256(bottom, colorMask); |
711 | bottomAG = _mm256_mullo_epi16 (bottomAG, disty_); |
712 | bottomRB = _mm256_mullo_epi16 (bottomRB, disty_); |
713 | |
714 | // Add the values, and shift to only keep 8 significant bits per colors |
715 | __m256i rAG =_mm256_add_epi16(topAG, bottomAG); |
716 | rAG = _mm256_srli_epi16(rAG, 8); |
717 | _mm256_storeu_si256((__m256i*)(&intermediate.buffer_ag[f]), rAG); |
718 | __m256i rRB =_mm256_add_epi16(topRB, bottomRB); |
719 | rRB = _mm256_srli_epi16(rRB, 8); |
720 | _mm256_storeu_si256((__m256i*)(&intermediate.buffer_rb[f]), rRB); |
721 | } |
722 | |
723 | for (; f < count; f++) { // Same as above but without simd |
724 | x = qMin(x, image.x2 - 1); |
725 | |
726 | uint t = s1[x]; |
727 | uint b = s2[x]; |
728 | |
729 | intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
730 | intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
731 | x++; |
732 | } |
733 | |
734 | // Now interpolate the values from the intermediate_buffer to get the final result. |
735 | intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx); |
736 | } |
737 | |
738 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx) |
739 | { |
740 | fx -= offset * FixedScale; |
741 | |
742 | const __m128i v_fdx = _mm_set1_epi32(fdx * 4); |
743 | const __m128i v_blend = _mm_set1_epi32(0x00800080); |
744 | const __m128i vdx_shuffle = _mm_set_epi8(char(0x80), 13, char(0x80), 13, char(0x80), 9, char(0x80), 9, |
745 | char(0x80), 5, char(0x80), 5, char(0x80), 1, char(0x80), 1); |
746 | __m128i v_fx = _mm_setr_epi32(fx, fx + fdx, fx + fdx + fdx, fx + fdx + fdx + fdx); |
747 | |
748 | while (b < end - 3) { |
749 | const __m128i offset = _mm_srli_epi32(v_fx, 16); |
750 | __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4); |
751 | __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4); |
752 | |
753 | __m128i vdx = _mm_shuffle_epi8(v_fx, vdx_shuffle); |
754 | __m128i vidx = _mm_sub_epi16(_mm_set1_epi16(256), vdx); |
755 | __m256i vmulx = _mm256_castsi128_si256(_mm_unpacklo_epi32(vidx, vdx)); |
756 | vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1); |
757 | |
758 | vrb = _mm256_mullo_epi16(vrb, vmulx); |
759 | vag = _mm256_mullo_epi16(vag, vmulx); |
760 | |
761 | __m256i vrbag = _mm256_hadd_epi32(vrb, vag); |
762 | vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0)); |
763 | |
764 | __m128i rb = _mm256_castsi256_si128(vrbag); |
765 | __m128i ag = _mm256_extracti128_si256(vrbag, 1); |
766 | rb = _mm_srli_epi16(rb, 8); |
767 | |
768 | _mm_storeu_si128((__m128i*)b, _mm_blendv_epi8(ag, rb, v_blend)); |
769 | |
770 | b += 4; |
771 | v_fx = _mm_add_epi32(v_fx, v_fdx); |
772 | } |
773 | fx = _mm_cvtsi128_si32(v_fx); |
774 | while (b < end) { |
775 | const int x = (fx >> 16); |
776 | |
777 | const uint distx = (fx & 0x0000ffff) >> 8; |
778 | const uint idistx = 256 - distx; |
779 | const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00; |
780 | const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00; |
781 | *b = (rb >> 8) | ag; |
782 | b++; |
783 | fx += fdx; |
784 | } |
785 | fx += offset * FixedScale; |
786 | } |
787 | |
788 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
789 | int &fx, int &fy, int fdx, int /*fdy*/) |
790 | { |
791 | int y1 = (fy >> 16); |
792 | int y2; |
793 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
794 | const uint *s1 = (const uint *)image.scanLine(y1); |
795 | const uint *s2 = (const uint *)image.scanLine(y2); |
796 | const int disty8 = (fy & 0x0000ffff) >> 8; |
797 | const int disty4 = (disty8 + 0x08) >> 4; |
798 | |
799 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
800 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
801 | while (b < end) { |
802 | int x1 = (fx >> 16); |
803 | int x2; |
804 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
805 | if (x1 != x2) |
806 | break; |
807 | uint top = s1[x1]; |
808 | uint bot = s2[x1]; |
809 | *b = INTERPOLATE_PIXEL_256(top, 256 - disty8, bot, disty8); |
810 | fx += fdx; |
811 | ++b; |
812 | } |
813 | uint *boundedEnd = end; |
814 | if (fdx > 0) |
815 | boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); |
816 | else if (fdx < 0) |
817 | boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); |
818 | |
819 | // A fast middle part without boundary checks |
820 | const __m256i vdistShuffle = |
821 | _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), |
822 | 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); |
823 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
824 | const __m256i v_256 = _mm256_set1_epi16(256); |
825 | const __m256i v_disty = _mm256_set1_epi16(disty4); |
826 | const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); |
827 | const __m256i v_fx_r = _mm256_set1_epi32(0x08); |
828 | const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
829 | __m256i v_fx = _mm256_set1_epi32(fx); |
830 | v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); |
831 | |
832 | while (b < boundedEnd - 7) { |
833 | const __m256i offset = _mm256_srli_epi32(v_fx, 16); |
834 | const __m128i offsetLo = _mm256_castsi256_si128(offset); |
835 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
836 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4); |
837 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4); |
838 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4); |
839 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4); |
840 | |
841 | __m256i v_distx = _mm256_srli_epi16(v_fx, 8); |
842 | v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fx_r), 4); |
843 | v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); |
844 | |
845 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
846 | b += 8; |
847 | v_fx = _mm256_add_epi32(v_fx, v_fdx); |
848 | } |
849 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
850 | |
851 | while (b < boundedEnd) { |
852 | int x = (fx >> 16); |
853 | int distx8 = (fx & 0x0000ffff) >> 8; |
854 | *b = interpolate_4_pixels(s1 + x, s2 + x, distx8, disty8); |
855 | fx += fdx; |
856 | ++b; |
857 | } |
858 | |
859 | while (b < end) { |
860 | int x1 = (fx >> 16); |
861 | int x2; |
862 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
863 | uint tl = s1[x1]; |
864 | uint tr = s1[x2]; |
865 | uint bl = s2[x1]; |
866 | uint br = s2[x2]; |
867 | int distx8 = (fx & 0x0000ffff) >> 8; |
868 | *b = interpolate_4_pixels(tl, tr, bl, br, distx8, disty8); |
869 | fx += fdx; |
870 | ++b; |
871 | } |
872 | } |
873 | |
874 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image, |
875 | int &fx, int &fy, int fdx, int fdy) |
876 | { |
877 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
878 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
879 | const qint64 min_fy = qint64(image.y1) * FixedScale; |
880 | const qint64 max_fy = qint64(image.y2 - 1) * FixedScale; |
881 | // first handle the possibly bounded part in the beginning |
882 | while (b < end) { |
883 | int x1 = (fx >> 16); |
884 | int x2; |
885 | int y1 = (fy >> 16); |
886 | int y2; |
887 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
888 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
889 | if (x1 != x2 && y1 != y2) |
890 | break; |
891 | const uint *s1 = (const uint *)image.scanLine(y1); |
892 | const uint *s2 = (const uint *)image.scanLine(y2); |
893 | uint tl = s1[x1]; |
894 | uint tr = s1[x2]; |
895 | uint bl = s2[x1]; |
896 | uint br = s2[x2]; |
897 | int distx = (fx & 0x0000ffff) >> 8; |
898 | int disty = (fy & 0x0000ffff) >> 8; |
899 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
900 | fx += fdx; |
901 | fy += fdy; |
902 | ++b; |
903 | } |
904 | uint *boundedEnd = end; |
905 | if (fdx > 0) |
906 | boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx); |
907 | else if (fdx < 0) |
908 | boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx); |
909 | if (fdy > 0) |
910 | boundedEnd = qMin(boundedEnd, b + (max_fy - fy) / fdy); |
911 | else if (fdy < 0) |
912 | boundedEnd = qMin(boundedEnd, b + (min_fy - fy) / fdy); |
913 | |
914 | // until boundedEnd we can now have a fast middle part without boundary checks |
915 | const __m256i vdistShuffle = |
916 | _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80), |
917 | 0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80)); |
918 | const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff); |
919 | const __m256i v_256 = _mm256_set1_epi16(256); |
920 | const __m256i v_fdx = _mm256_set1_epi32(fdx * 8); |
921 | const __m256i v_fdy = _mm256_set1_epi32(fdy * 8); |
922 | const __m256i v_fxy_r = _mm256_set1_epi32(0x08); |
923 | const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
924 | __m256i v_fx = _mm256_set1_epi32(fx); |
925 | __m256i v_fy = _mm256_set1_epi32(fy); |
926 | v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index)); |
927 | v_fy = _mm256_add_epi32(v_fy, _mm256_mullo_epi32(_mm256_set1_epi32(fdy), v_index)); |
928 | |
929 | const uchar *textureData = image.imageData; |
930 | const qsizetype bytesPerLine = image.bytesPerLine; |
931 | const __m256i vbpl = _mm256_set1_epi16(bytesPerLine/4); |
932 | |
933 | while (b < boundedEnd - 7) { |
934 | const __m256i vy = _mm256_packs_epi32(_mm256_srli_epi32(v_fy, 16), _mm256_setzero_si256()); |
935 | // 8x16bit * 8x16bit -> 8x32bit |
936 | __m256i offset = _mm256_unpacklo_epi16(_mm256_mullo_epi16(vy, vbpl), _mm256_mulhi_epi16(vy, vbpl)); |
937 | offset = _mm256_add_epi32(offset, _mm256_srli_epi32(v_fx, 16)); |
938 | const __m128i offsetLo = _mm256_castsi256_si128(offset); |
939 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
940 | const uint *topData = (const uint *)(textureData); |
941 | const uint *botData = (const uint *)(textureData + bytesPerLine); |
942 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4); |
943 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4); |
944 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4); |
945 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4); |
946 | |
947 | __m256i v_distx = _mm256_srli_epi16(v_fx, 8); |
948 | __m256i v_disty = _mm256_srli_epi16(v_fy, 8); |
949 | v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fxy_r), 4); |
950 | v_disty = _mm256_srli_epi16(_mm256_add_epi32(v_disty, v_fxy_r), 4); |
951 | v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle); |
952 | v_disty = _mm256_shuffle_epi8(v_disty, vdistShuffle); |
953 | |
954 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
955 | b += 8; |
956 | v_fx = _mm256_add_epi32(v_fx, v_fdx); |
957 | v_fy = _mm256_add_epi32(v_fy, v_fdy); |
958 | } |
959 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
960 | fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0); |
961 | |
962 | while (b < boundedEnd) { |
963 | int x = (fx >> 16); |
964 | int y = (fy >> 16); |
965 | |
966 | const uint *s1 = (const uint *)image.scanLine(y); |
967 | const uint *s2 = (const uint *)image.scanLine(y + 1); |
968 | |
969 | int distx = (fx & 0x0000ffff) >> 8; |
970 | int disty = (fy & 0x0000ffff) >> 8; |
971 | *b = interpolate_4_pixels(s1 + x, s2 + x, distx, disty); |
972 | |
973 | fx += fdx; |
974 | fy += fdy; |
975 | ++b; |
976 | } |
977 | |
978 | while (b < end) { |
979 | int x1 = (fx >> 16); |
980 | int x2; |
981 | int y1 = (fy >> 16); |
982 | int y2; |
983 | |
984 | fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2); |
985 | fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2); |
986 | |
987 | const uint *s1 = (const uint *)image.scanLine(y1); |
988 | const uint *s2 = (const uint *)image.scanLine(y2); |
989 | |
990 | uint tl = s1[x1]; |
991 | uint tr = s1[x2]; |
992 | uint bl = s2[x1]; |
993 | uint br = s2[x2]; |
994 | |
995 | int distx = (fx & 0x0000ffff) >> 8; |
996 | int disty = (fy & 0x0000ffff) >> 8; |
997 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
998 | |
999 | fx += fdx; |
1000 | fy += fdy; |
1001 | ++b; |
1002 | } |
1003 | } |
1004 | |
1005 | static inline __m256i epilogueMaskFromCount(qsizetype count) |
1006 | { |
1007 | Q_ASSERT(count > 0); |
1008 | static const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
1009 | return _mm256_add_epi32(offsetMask, _mm256_set1_epi32(-count)); |
1010 | } |
1011 | |
1012 | template<bool RGBA> |
1013 | static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count) |
1014 | { |
1015 | qsizetype i = 0; |
1016 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
1017 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); |
1018 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); |
1019 | const __m256i half = _mm256_set1_epi16(0x0080); |
1020 | const __m256i zero = _mm256_setzero_si256(); |
1021 | |
1022 | for (; i < count - 7; i += 8) { |
1023 | __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i)); |
1024 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
1025 | // keep the two _mm_test[zc]_siXXX next to each other |
1026 | bool cf = _mm256_testc_si256(srcVector, alphaMask); |
1027 | if (RGBA) |
1028 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
1029 | if (!cf) { |
1030 | __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); |
1031 | __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); |
1032 | __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
1033 | __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
1034 | src1 = _mm256_mullo_epi16(src1, alpha1); |
1035 | src2 = _mm256_mullo_epi16(src2, alpha2); |
1036 | src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); |
1037 | src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); |
1038 | src1 = _mm256_add_epi16(src1, half); |
1039 | src2 = _mm256_add_epi16(src2, half); |
1040 | src1 = _mm256_srli_epi16(src1, 8); |
1041 | src2 = _mm256_srli_epi16(src2, 8); |
1042 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
1043 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
1044 | srcVector = _mm256_packus_epi16(src1, src2); |
1045 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); |
1046 | } else { |
1047 | if (buffer != src || RGBA) |
1048 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector); |
1049 | } |
1050 | } else { |
1051 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), zero); |
1052 | } |
1053 | } |
1054 | |
1055 | if (i < count) { |
1056 | const __m256i epilogueMask = epilogueMaskFromCount(count - i); |
1057 | __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask); |
1058 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
1059 | |
1060 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
1061 | // keep the two _mm_test[zc]_siXXX next to each other |
1062 | bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); |
1063 | if (RGBA) |
1064 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
1065 | if (!cf) { |
1066 | __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero); |
1067 | __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero); |
1068 | __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
1069 | __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
1070 | src1 = _mm256_mullo_epi16(src1, alpha1); |
1071 | src2 = _mm256_mullo_epi16(src2, alpha2); |
1072 | src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8)); |
1073 | src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8)); |
1074 | src1 = _mm256_add_epi16(src1, half); |
1075 | src2 = _mm256_add_epi16(src2, half); |
1076 | src1 = _mm256_srli_epi16(src1, 8); |
1077 | src2 = _mm256_srli_epi16(src2, 8); |
1078 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
1079 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
1080 | srcVector = _mm256_packus_epi16(src1, src2); |
1081 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector); |
1082 | } else { |
1083 | if (buffer != src || RGBA) |
1084 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector); |
1085 | } |
1086 | } else { |
1087 | _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, zero); |
1088 | } |
1089 | } |
1090 | } |
1091 | |
1092 | void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
1093 | { |
1094 | convertARGBToARGB32PM_avx2<false>(buffer, buffer, count); |
1095 | } |
1096 | |
1097 | void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
1098 | { |
1099 | convertARGBToARGB32PM_avx2<true>(buffer, buffer, count); |
1100 | } |
1101 | |
1102 | const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
1103 | const QList<QRgb> *, QDitherInfo *) |
1104 | { |
1105 | convertARGBToARGB32PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
1106 | return buffer; |
1107 | } |
1108 | |
1109 | const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
1110 | const QList<QRgb> *, QDitherInfo *) |
1111 | { |
1112 | convertARGBToARGB32PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
1113 | return buffer; |
1114 | } |
1115 | |
1116 | template<bool RGBA> |
1117 | static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count) |
1118 | { |
1119 | qsizetype i = 0; |
1120 | const __m256i alphaMask = _mm256_set1_epi32(0xff000000); |
1121 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15)); |
1122 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15)); |
1123 | const __m256i zero = _mm256_setzero_si256(); |
1124 | |
1125 | for (; i < count - 7; i += 8) { |
1126 | __m256i dst1, dst2; |
1127 | __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i)); |
1128 | if (!_mm256_testz_si256(srcVector, alphaMask)) { |
1129 | // keep the two _mm_test[zc]_siXXX next to each other |
1130 | bool cf = _mm256_testc_si256(srcVector, alphaMask); |
1131 | if (!RGBA) |
1132 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
1133 | |
1134 | // The two unpack instructions unpack the low and upper halves of |
1135 | // each 128-bit half of the 256-bit register. Here's the tracking |
1136 | // of what's where: (p is 32-bit, P is 64-bit) |
1137 | // as loaded: [ p1, p2, p3, p4; p5, p6, p7, p8 ] |
1138 | // after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ] |
1139 | // after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ] |
1140 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
1141 | |
1142 | const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); |
1143 | const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); |
1144 | if (!cf) { |
1145 | const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
1146 | const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
1147 | dst1 = _mm256_mulhi_epu16(src1, alpha1); |
1148 | dst2 = _mm256_mulhi_epu16(src2, alpha2); |
1149 | dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); |
1150 | dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); |
1151 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
1152 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
1153 | } else { |
1154 | dst1 = src1; |
1155 | dst2 = src2; |
1156 | } |
1157 | } else { |
1158 | dst1 = dst2 = zero; |
1159 | } |
1160 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), dst1); |
1161 | _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i) + 1, dst2); |
1162 | } |
1163 | |
1164 | if (i < count) { |
1165 | __m256i epilogueMask = epilogueMaskFromCount(count - i); |
1166 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask); |
1167 | __m256i dst1, dst2; |
1168 | __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask); |
1169 | |
1170 | if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) { |
1171 | // keep the two _mm_test[zc]_siXXX next to each other |
1172 | bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask); |
1173 | if (!RGBA) |
1174 | srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask); |
1175 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
1176 | const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector); |
1177 | const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector); |
1178 | if (!cf) { |
1179 | const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask); |
1180 | const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask); |
1181 | dst1 = _mm256_mulhi_epu16(src1, alpha1); |
1182 | dst2 = _mm256_mulhi_epu16(src2, alpha2); |
1183 | dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15)); |
1184 | dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15)); |
1185 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
1186 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
1187 | } else { |
1188 | dst1 = src1; |
1189 | dst2 = src2; |
1190 | } |
1191 | } else { |
1192 | dst1 = dst2 = zero; |
1193 | } |
1194 | epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0)); |
1195 | _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i), |
1196 | _mm256_unpacklo_epi32(epilogueMask, epilogueMask), |
1197 | dst1); |
1198 | _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i + 4), |
1199 | _mm256_unpackhi_epi32(epilogueMask, epilogueMask), |
1200 | dst2); |
1201 | } |
1202 | } |
1203 | |
1204 | const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
1205 | const QList<QRgb> *, QDitherInfo *) |
1206 | { |
1207 | convertARGBToRGBA64PM_avx2<false>(buffer, src, count); |
1208 | return buffer; |
1209 | } |
1210 | |
1211 | const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
1212 | const QList<QRgb> *, QDitherInfo *) |
1213 | { |
1214 | convertARGBToRGBA64PM_avx2<true>(buffer, src, count); |
1215 | return buffer; |
1216 | } |
1217 | |
1218 | const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
1219 | const QList<QRgb> *, QDitherInfo *) |
1220 | { |
1221 | convertARGBToRGBA64PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
1222 | return buffer; |
1223 | } |
1224 | |
1225 | const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
1226 | const QList<QRgb> *, QDitherInfo *) |
1227 | { |
1228 | convertARGBToRGBA64PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count); |
1229 | return buffer; |
1230 | } |
1231 | |
1232 | QT_END_NAMESPACE |
1233 | |
1234 | #endif |
1235 | |