1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #ifndef QDRAWHELPER_P_H |
41 | #define QDRAWHELPER_P_H |
42 | |
43 | // |
44 | // W A R N I N G |
45 | // ------------- |
46 | // |
47 | // This file is not part of the Qt API. It exists purely as an |
48 | // implementation detail. This header file may change from version to |
49 | // version without notice, or even be removed. |
50 | // |
51 | // We mean it. |
52 | // |
53 | |
54 | #include <QtGui/private/qtguiglobal_p.h> |
55 | #include "QtCore/qmath.h" |
56 | #include "QtGui/qcolor.h" |
57 | #include "QtGui/qpainter.h" |
58 | #include "QtGui/qimage.h" |
59 | #include "QtGui/qrgba64.h" |
60 | #ifndef QT_FT_BEGIN_HEADER |
61 | #define |
62 | #define |
63 | #endif |
64 | #include "private/qpixellayout_p.h" |
65 | #include "private/qrasterdefs_p.h" |
66 | #include <private/qsimd_p.h> |
67 | |
68 | #include <QtCore/qsharedpointer.h> |
69 | |
70 | QT_BEGIN_NAMESPACE |
71 | |
72 | #if defined(Q_CC_GNU) |
73 | # define Q_DECL_RESTRICT __restrict__ |
74 | # if defined(Q_PROCESSOR_X86_32) && defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL) |
75 | # define Q_DECL_VECTORCALL __attribute__((sseregparm,regparm(3))) |
76 | # else |
77 | # define Q_DECL_VECTORCALL |
78 | # endif |
79 | #elif defined(Q_CC_MSVC) |
80 | # define Q_DECL_RESTRICT __restrict |
81 | # define Q_DECL_VECTORCALL __vectorcall |
82 | #else |
83 | # define Q_DECL_RESTRICT |
84 | # define Q_DECL_VECTORCALL |
85 | #endif |
86 | |
87 | static const uint AMASK = 0xff000000; |
88 | static const uint RMASK = 0x00ff0000; |
89 | static const uint GMASK = 0x0000ff00; |
90 | static const uint BMASK = 0x000000ff; |
91 | |
92 | /******************************************************************************* |
93 | * QSpan |
94 | * |
95 | * duplicate definition of FT_Span |
96 | */ |
97 | typedef QT_FT_Span QSpan; |
98 | |
99 | struct QSolidData; |
100 | struct QTextureData; |
101 | struct QGradientData; |
102 | struct QLinearGradientData; |
103 | struct QRadialGradientData; |
104 | struct QConicalGradientData; |
105 | struct QSpanData; |
106 | class QGradient; |
107 | class QRasterBuffer; |
108 | class QClipData; |
109 | class QRasterPaintEngineState; |
110 | |
111 | typedef QT_FT_SpanFunc ProcessSpans; |
112 | typedef void (*BitmapBlitFunc)(QRasterBuffer *rasterBuffer, |
113 | int x, int y, const QRgba64 &color, |
114 | const uchar *bitmap, |
115 | int mapWidth, int mapHeight, int mapStride); |
116 | |
117 | typedef void (*AlphamapBlitFunc)(QRasterBuffer *rasterBuffer, |
118 | int x, int y, const QRgba64 &color, |
119 | const uchar *bitmap, |
120 | int mapWidth, int mapHeight, int mapStride, |
121 | const QClipData *clip, bool useGammaCorrection); |
122 | |
123 | typedef void (*AlphaRGBBlitFunc)(QRasterBuffer *rasterBuffer, |
124 | int x, int y, const QRgba64 &color, |
125 | const uint *rgbmask, |
126 | int mapWidth, int mapHeight, int mapStride, |
127 | const QClipData *clip, bool useGammaCorrection); |
128 | |
129 | typedef void (*RectFillFunc)(QRasterBuffer *rasterBuffer, |
130 | int x, int y, int width, int height, |
131 | const QRgba64 &color); |
132 | |
133 | typedef void (*SrcOverBlendFunc)(uchar *destPixels, int dbpl, |
134 | const uchar *src, int spbl, |
135 | int w, int h, |
136 | int const_alpha); |
137 | |
138 | typedef void (*SrcOverScaleFunc)(uchar *destPixels, int dbpl, |
139 | const uchar *src, int spbl, int srch, |
140 | const QRectF &targetRect, |
141 | const QRectF &sourceRect, |
142 | const QRect &clipRect, |
143 | int const_alpha); |
144 | |
145 | typedef void (*SrcOverTransformFunc)(uchar *destPixels, int dbpl, |
146 | const uchar *src, int spbl, |
147 | const QRectF &targetRect, |
148 | const QRectF &sourceRect, |
149 | const QRect &clipRect, |
150 | const QTransform &targetRectTransform, |
151 | int const_alpha); |
152 | |
153 | struct DrawHelper { |
154 | ProcessSpans blendColor; |
155 | BitmapBlitFunc bitmapBlit; |
156 | AlphamapBlitFunc alphamapBlit; |
157 | AlphaRGBBlitFunc alphaRGBBlit; |
158 | RectFillFunc fillRect; |
159 | }; |
160 | |
161 | extern SrcOverBlendFunc qBlendFunctions[QImage::NImageFormats][QImage::NImageFormats]; |
162 | extern SrcOverScaleFunc qScaleFunctions[QImage::NImageFormats][QImage::NImageFormats]; |
163 | extern SrcOverTransformFunc qTransformFunctions[QImage::NImageFormats][QImage::NImageFormats]; |
164 | |
165 | extern DrawHelper qDrawHelper[QImage::NImageFormats]; |
166 | |
167 | struct quint24 { |
168 | quint24() = default; |
169 | quint24(uint value) |
170 | { |
171 | data[0] = uchar(value >> 16); |
172 | data[1] = uchar(value >> 8); |
173 | data[2] = uchar(value); |
174 | } |
175 | operator uint() const |
176 | { |
177 | return data[2] | (data[1] << 8) | (data[0] << 16); |
178 | } |
179 | |
180 | uchar data[3]; |
181 | }; |
182 | |
183 | void qBlendGradient(int count, const QSpan *spans, void *userData); |
184 | void qBlendTexture(int count, const QSpan *spans, void *userData); |
185 | #ifdef __SSE2__ |
186 | extern void (*qt_memfill64)(quint64 *dest, quint64 value, qsizetype count); |
187 | extern void (*qt_memfill32)(quint32 *dest, quint32 value, qsizetype count); |
188 | #else |
189 | extern void qt_memfill64(quint64 *dest, quint64 value, qsizetype count); |
190 | extern void qt_memfill32(quint32 *dest, quint32 value, qsizetype count); |
191 | #endif |
192 | extern void qt_memfill24(quint24 *dest, quint24 value, qsizetype count); |
193 | extern void qt_memfill16(quint16 *dest, quint16 value, qsizetype count); |
194 | |
195 | typedef void (QT_FASTCALL *CompositionFunction)(uint *Q_DECL_RESTRICT dest, const uint *Q_DECL_RESTRICT src, int length, uint const_alpha); |
196 | typedef void (QT_FASTCALL *CompositionFunction64)(QRgba64 *Q_DECL_RESTRICT dest, const QRgba64 *Q_DECL_RESTRICT src, int length, uint const_alpha); |
197 | typedef void (QT_FASTCALL *CompositionFunctionSolid)(uint *dest, int length, uint color, uint const_alpha); |
198 | typedef void (QT_FASTCALL *CompositionFunctionSolid64)(QRgba64 *dest, int length, QRgba64 color, uint const_alpha); |
199 | |
200 | struct LinearGradientValues |
201 | { |
202 | qreal dx; |
203 | qreal dy; |
204 | qreal l; |
205 | qreal off; |
206 | }; |
207 | |
208 | struct RadialGradientValues |
209 | { |
210 | qreal dx; |
211 | qreal dy; |
212 | qreal dr; |
213 | qreal sqrfr; |
214 | qreal a; |
215 | qreal inv2a; |
216 | bool extended; |
217 | }; |
218 | |
219 | struct Operator; |
220 | typedef uint* (QT_FASTCALL *DestFetchProc)(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length); |
221 | typedef QRgba64* (QT_FASTCALL *DestFetchProc64)(QRgba64 *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length); |
222 | typedef void (QT_FASTCALL *DestStoreProc)(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length); |
223 | typedef void (QT_FASTCALL *DestStoreProc64)(QRasterBuffer *rasterBuffer, int x, int y, const QRgba64 *buffer, int length); |
224 | typedef const uint* (QT_FASTCALL *SourceFetchProc)(uint *buffer, const Operator *o, const QSpanData *data, int y, int x, int length); |
225 | typedef const QRgba64* (QT_FASTCALL *SourceFetchProc64)(QRgba64 *buffer, const Operator *o, const QSpanData *data, int y, int x, int length); |
226 | |
227 | struct Operator |
228 | { |
229 | QPainter::CompositionMode mode; |
230 | DestFetchProc destFetch; |
231 | DestStoreProc destStore; |
232 | SourceFetchProc srcFetch; |
233 | CompositionFunctionSolid funcSolid; |
234 | CompositionFunction func; |
235 | |
236 | DestFetchProc64 destFetch64; |
237 | DestStoreProc64 destStore64; |
238 | SourceFetchProc64 srcFetch64; |
239 | CompositionFunctionSolid64 funcSolid64; |
240 | CompositionFunction64 func64; |
241 | |
242 | union { |
243 | LinearGradientValues linear; |
244 | RadialGradientValues radial; |
245 | }; |
246 | }; |
247 | |
248 | class QRasterPaintEngine; |
249 | |
250 | struct QLinearGradientData |
251 | { |
252 | struct { |
253 | qreal x; |
254 | qreal y; |
255 | } origin; |
256 | struct { |
257 | qreal x; |
258 | qreal y; |
259 | } end; |
260 | }; |
261 | |
262 | struct QRadialGradientData |
263 | { |
264 | struct { |
265 | qreal x; |
266 | qreal y; |
267 | qreal radius; |
268 | } center; |
269 | struct { |
270 | qreal x; |
271 | qreal y; |
272 | qreal radius; |
273 | } focal; |
274 | }; |
275 | |
276 | struct QConicalGradientData |
277 | { |
278 | struct { |
279 | qreal x; |
280 | qreal y; |
281 | } center; |
282 | qreal angle; |
283 | }; |
284 | |
285 | struct QGradientData |
286 | { |
287 | QGradient::Spread spread; |
288 | |
289 | union { |
290 | QLinearGradientData linear; |
291 | QRadialGradientData radial; |
292 | QConicalGradientData conical; |
293 | }; |
294 | |
295 | #define GRADIENT_STOPTABLE_SIZE 1024 |
296 | #define GRADIENT_STOPTABLE_SIZE_SHIFT 10 |
297 | |
298 | #if QT_CONFIG(raster_64bit) |
299 | const QRgba64 *colorTable64; //[GRADIENT_STOPTABLE_SIZE]; |
300 | #endif |
301 | const QRgb *colorTable32; //[GRADIENT_STOPTABLE_SIZE]; |
302 | |
303 | uint alphaColor : 1; |
304 | }; |
305 | |
306 | struct QTextureData |
307 | { |
308 | const uchar *imageData; |
309 | const uchar *scanLine(int y) const { return imageData + y*bytesPerLine; } |
310 | |
311 | int width; |
312 | int height; |
313 | // clip rect |
314 | int x1; |
315 | int y1; |
316 | int x2; |
317 | int y2; |
318 | qsizetype bytesPerLine; |
319 | QImage::Format format; |
320 | const QList<QRgb> *colorTable; |
321 | bool hasAlpha; |
322 | enum Type { |
323 | Plain, |
324 | Tiled |
325 | }; |
326 | Type type; |
327 | int const_alpha; |
328 | }; |
329 | |
330 | struct QSpanData |
331 | { |
332 | QSpanData() : tempImage(nullptr) {} |
333 | ~QSpanData() { delete tempImage; } |
334 | |
335 | QRasterBuffer *rasterBuffer; |
336 | ProcessSpans blend; |
337 | ProcessSpans unclipped_blend; |
338 | BitmapBlitFunc bitmapBlit; |
339 | AlphamapBlitFunc alphamapBlit; |
340 | AlphaRGBBlitFunc alphaRGBBlit; |
341 | RectFillFunc fillRect; |
342 | qreal m11, m12, m13, m21, m22, m23, m33, dx, dy; // inverse xform matrix |
343 | const QClipData *clip; |
344 | enum Type { |
345 | None, |
346 | Solid, |
347 | LinearGradient, |
348 | RadialGradient, |
349 | ConicalGradient, |
350 | Texture |
351 | } type : 8; |
352 | signed int txop : 8; |
353 | uint fast_matrix : 1; |
354 | bool bilinear; |
355 | QImage *tempImage; |
356 | QRgba64 solidColor; |
357 | union { |
358 | QGradientData gradient; |
359 | QTextureData texture; |
360 | }; |
361 | class Pinnable { |
362 | protected: |
363 | ~Pinnable() {} |
364 | }; // QSharedPointer<const void> is not supported |
365 | QSharedPointer<const Pinnable> cachedGradient; |
366 | |
367 | |
368 | void init(QRasterBuffer *rb, const QRasterPaintEngine *pe); |
369 | void setup(const QBrush &brush, int alpha, QPainter::CompositionMode compositionMode); |
370 | void setupMatrix(const QTransform &matrix, int bilinear); |
371 | void initTexture(const QImage *image, int alpha, QTextureData::Type = QTextureData::Plain, const QRect &sourceRect = QRect()); |
372 | void adjustSpanMethods(); |
373 | }; |
374 | |
375 | static inline uint qt_gradient_clamp(const QGradientData *data, int ipos) |
376 | { |
377 | if (ipos < 0 || ipos >= GRADIENT_STOPTABLE_SIZE) { |
378 | if (data->spread == QGradient::RepeatSpread) { |
379 | ipos = ipos % GRADIENT_STOPTABLE_SIZE; |
380 | ipos = ipos < 0 ? GRADIENT_STOPTABLE_SIZE + ipos : ipos; |
381 | } else if (data->spread == QGradient::ReflectSpread) { |
382 | const int limit = GRADIENT_STOPTABLE_SIZE * 2; |
383 | ipos = ipos % limit; |
384 | ipos = ipos < 0 ? limit + ipos : ipos; |
385 | ipos = ipos >= GRADIENT_STOPTABLE_SIZE ? limit - 1 - ipos : ipos; |
386 | } else { |
387 | if (ipos < 0) |
388 | ipos = 0; |
389 | else if (ipos >= GRADIENT_STOPTABLE_SIZE) |
390 | ipos = GRADIENT_STOPTABLE_SIZE-1; |
391 | } |
392 | } |
393 | |
394 | Q_ASSERT(ipos >= 0); |
395 | Q_ASSERT(ipos < GRADIENT_STOPTABLE_SIZE); |
396 | |
397 | return ipos; |
398 | } |
399 | |
400 | static inline uint qt_gradient_pixel(const QGradientData *data, qreal pos) |
401 | { |
402 | int ipos = int(pos * (GRADIENT_STOPTABLE_SIZE - 1) + qreal(0.5)); |
403 | return data->colorTable32[qt_gradient_clamp(data, ipos)]; |
404 | } |
405 | |
406 | #if QT_CONFIG(raster_64bit) |
407 | static inline const QRgba64& qt_gradient_pixel64(const QGradientData *data, qreal pos) |
408 | { |
409 | int ipos = int(pos * (GRADIENT_STOPTABLE_SIZE - 1) + qreal(0.5)); |
410 | return data->colorTable64[qt_gradient_clamp(data, ipos)]; |
411 | } |
412 | #endif |
413 | |
414 | static inline qreal qRadialDeterminant(qreal a, qreal b, qreal c) |
415 | { |
416 | return (b * b) - (4 * a * c); |
417 | } |
418 | |
419 | template <class RadialFetchFunc, typename BlendType> static |
420 | const BlendType * QT_FASTCALL qt_fetch_radial_gradient_template(BlendType *buffer, const Operator *op, |
421 | const QSpanData *data, int y, int x, int length) |
422 | { |
423 | // avoid division by zero |
424 | if (qFuzzyIsNull(op->radial.a)) { |
425 | RadialFetchFunc::memfill(buffer, RadialFetchFunc::null(), length); |
426 | return buffer; |
427 | } |
428 | |
429 | const BlendType *b = buffer; |
430 | qreal rx = data->m21 * (y + qreal(0.5)) |
431 | + data->dx + data->m11 * (x + qreal(0.5)); |
432 | qreal ry = data->m22 * (y + qreal(0.5)) |
433 | + data->dy + data->m12 * (x + qreal(0.5)); |
434 | bool affine = !data->m13 && !data->m23; |
435 | |
436 | BlendType *end = buffer + length; |
437 | if (affine) { |
438 | rx -= data->gradient.radial.focal.x; |
439 | ry -= data->gradient.radial.focal.y; |
440 | |
441 | qreal inv_a = 1 / qreal(2 * op->radial.a); |
442 | |
443 | const qreal delta_rx = data->m11; |
444 | const qreal delta_ry = data->m12; |
445 | |
446 | qreal b = 2*(op->radial.dr*data->gradient.radial.focal.radius + rx * op->radial.dx + ry * op->radial.dy); |
447 | qreal delta_b = 2*(delta_rx * op->radial.dx + delta_ry * op->radial.dy); |
448 | const qreal b_delta_b = 2 * b * delta_b; |
449 | const qreal delta_b_delta_b = 2 * delta_b * delta_b; |
450 | |
451 | const qreal bb = b * b; |
452 | const qreal delta_bb = delta_b * delta_b; |
453 | |
454 | b *= inv_a; |
455 | delta_b *= inv_a; |
456 | |
457 | const qreal rxrxryry = rx * rx + ry * ry; |
458 | const qreal delta_rxrxryry = delta_rx * delta_rx + delta_ry * delta_ry; |
459 | const qreal rx_plus_ry = 2*(rx * delta_rx + ry * delta_ry); |
460 | const qreal delta_rx_plus_ry = 2 * delta_rxrxryry; |
461 | |
462 | inv_a *= inv_a; |
463 | |
464 | qreal det = (bb - 4 * op->radial.a * (op->radial.sqrfr - rxrxryry)) * inv_a; |
465 | qreal delta_det = (b_delta_b + delta_bb + 4 * op->radial.a * (rx_plus_ry + delta_rxrxryry)) * inv_a; |
466 | const qreal delta_delta_det = (delta_b_delta_b + 4 * op->radial.a * delta_rx_plus_ry) * inv_a; |
467 | |
468 | RadialFetchFunc::fetch(buffer, end, op, data, det, delta_det, delta_delta_det, b, delta_b); |
469 | } else { |
470 | qreal rw = data->m23 * (y + qreal(0.5)) |
471 | + data->m33 + data->m13 * (x + qreal(0.5)); |
472 | |
473 | while (buffer < end) { |
474 | if (rw == 0) { |
475 | *buffer = 0; |
476 | } else { |
477 | qreal invRw = 1 / rw; |
478 | qreal gx = rx * invRw - data->gradient.radial.focal.x; |
479 | qreal gy = ry * invRw - data->gradient.radial.focal.y; |
480 | qreal b = 2*(op->radial.dr*data->gradient.radial.focal.radius + gx*op->radial.dx + gy*op->radial.dy); |
481 | qreal det = qRadialDeterminant(op->radial.a, b, op->radial.sqrfr - (gx*gx + gy*gy)); |
482 | |
483 | BlendType result = RadialFetchFunc::null(); |
484 | if (det >= 0) { |
485 | qreal detSqrt = qSqrt(det); |
486 | |
487 | qreal s0 = (-b - detSqrt) * op->radial.inv2a; |
488 | qreal s1 = (-b + detSqrt) * op->radial.inv2a; |
489 | |
490 | qreal s = qMax(s0, s1); |
491 | |
492 | if (data->gradient.radial.focal.radius + op->radial.dr * s >= 0) |
493 | result = RadialFetchFunc::fetchSingle(data->gradient, s); |
494 | } |
495 | |
496 | *buffer = result; |
497 | } |
498 | |
499 | rx += data->m11; |
500 | ry += data->m12; |
501 | rw += data->m13; |
502 | |
503 | ++buffer; |
504 | } |
505 | } |
506 | |
507 | return b; |
508 | } |
509 | |
510 | template <class Simd> |
511 | class QRadialFetchSimd |
512 | { |
513 | public: |
514 | static uint null() { return 0; } |
515 | static uint fetchSingle(const QGradientData& gradient, qreal v) |
516 | { |
517 | return qt_gradient_pixel(&gradient, v); |
518 | } |
519 | static void memfill(uint *buffer, uint fill, int length) |
520 | { |
521 | qt_memfill32(buffer, fill, length); |
522 | } |
523 | static void fetch(uint *buffer, uint *end, const Operator *op, const QSpanData *data, qreal det, |
524 | qreal delta_det, qreal delta_delta_det, qreal b, qreal delta_b) |
525 | { |
526 | typename Simd::Vect_buffer_f det_vec; |
527 | typename Simd::Vect_buffer_f delta_det4_vec; |
528 | typename Simd::Vect_buffer_f b_vec; |
529 | |
530 | for (int i = 0; i < 4; ++i) { |
531 | det_vec.f[i] = det; |
532 | delta_det4_vec.f[i] = 4 * delta_det; |
533 | b_vec.f[i] = b; |
534 | |
535 | det += delta_det; |
536 | delta_det += delta_delta_det; |
537 | b += delta_b; |
538 | } |
539 | |
540 | const typename Simd::Float32x4 v_delta_delta_det16 = Simd::v_dup(16 * delta_delta_det); |
541 | const typename Simd::Float32x4 v_delta_delta_det6 = Simd::v_dup(6 * delta_delta_det); |
542 | const typename Simd::Float32x4 v_delta_b4 = Simd::v_dup(4 * delta_b); |
543 | |
544 | const typename Simd::Float32x4 v_r0 = Simd::v_dup(data->gradient.radial.focal.radius); |
545 | const typename Simd::Float32x4 v_dr = Simd::v_dup(op->radial.dr); |
546 | |
547 | #if defined(__ARM_NEON__) |
548 | // NEON doesn't have SIMD sqrt, but uses rsqrt instead that can't be taken of 0. |
549 | const typename Simd::Float32x4 v_min = Simd::v_dup(std::numeric_limits<float>::epsilon()); |
550 | #else |
551 | const typename Simd::Float32x4 v_min = Simd::v_dup(0.0f); |
552 | #endif |
553 | const typename Simd::Float32x4 v_max = Simd::v_dup(float(GRADIENT_STOPTABLE_SIZE-1)); |
554 | const typename Simd::Float32x4 v_half = Simd::v_dup(0.5f); |
555 | |
556 | const typename Simd::Int32x4 v_repeat_mask = Simd::v_dup(~(uint(0xffffff) << GRADIENT_STOPTABLE_SIZE_SHIFT)); |
557 | const typename Simd::Int32x4 v_reflect_mask = Simd::v_dup(~(uint(0xffffff) << (GRADIENT_STOPTABLE_SIZE_SHIFT+1))); |
558 | |
559 | const typename Simd::Int32x4 v_reflect_limit = Simd::v_dup(2 * GRADIENT_STOPTABLE_SIZE - 1); |
560 | |
561 | const int extended_mask = op->radial.extended ? 0x0 : ~0x0; |
562 | |
563 | #define FETCH_RADIAL_LOOP_PROLOGUE \ |
564 | while (buffer < end) { \ |
565 | typename Simd::Vect_buffer_i v_buffer_mask; \ |
566 | v_buffer_mask.v = Simd::v_greaterOrEqual(det_vec.v, v_min); \ |
567 | const typename Simd::Float32x4 v_index_local = Simd::v_sub(Simd::v_sqrt(Simd::v_max(v_min, det_vec.v)), b_vec.v); \ |
568 | const typename Simd::Float32x4 v_index = Simd::v_add(Simd::v_mul(v_index_local, v_max), v_half); \ |
569 | v_buffer_mask.v = Simd::v_and(v_buffer_mask.v, Simd::v_greaterOrEqual(Simd::v_add(v_r0, Simd::v_mul(v_dr, v_index_local)), v_min)); \ |
570 | typename Simd::Vect_buffer_i index_vec; |
571 | #define FETCH_RADIAL_LOOP_CLAMP_REPEAT \ |
572 | index_vec.v = Simd::v_and(v_repeat_mask, Simd::v_toInt(v_index)); |
573 | #define FETCH_RADIAL_LOOP_CLAMP_REFLECT \ |
574 | const typename Simd::Int32x4 v_index_i = Simd::v_and(v_reflect_mask, Simd::v_toInt(v_index)); \ |
575 | const typename Simd::Int32x4 v_index_i_inv = Simd::v_sub(v_reflect_limit, v_index_i); \ |
576 | index_vec.v = Simd::v_min_16(v_index_i, v_index_i_inv); |
577 | #define FETCH_RADIAL_LOOP_CLAMP_PAD \ |
578 | index_vec.v = Simd::v_toInt(Simd::v_min(v_max, Simd::v_max(v_min, v_index))); |
579 | #define FETCH_RADIAL_LOOP_EPILOGUE \ |
580 | det_vec.v = Simd::v_add(Simd::v_add(det_vec.v, delta_det4_vec.v), v_delta_delta_det6); \ |
581 | delta_det4_vec.v = Simd::v_add(delta_det4_vec.v, v_delta_delta_det16); \ |
582 | b_vec.v = Simd::v_add(b_vec.v, v_delta_b4); \ |
583 | for (int i = 0; i < 4; ++i) \ |
584 | *buffer++ = (extended_mask | v_buffer_mask.i[i]) & data->gradient.colorTable32[index_vec.i[i]]; \ |
585 | } |
586 | |
587 | #define FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP) \ |
588 | FETCH_RADIAL_LOOP_PROLOGUE \ |
589 | FETCH_RADIAL_LOOP_CLAMP \ |
590 | FETCH_RADIAL_LOOP_EPILOGUE |
591 | |
592 | switch (data->gradient.spread) { |
593 | case QGradient::RepeatSpread: |
594 | FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_REPEAT) |
595 | break; |
596 | case QGradient::ReflectSpread: |
597 | FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_REFLECT) |
598 | break; |
599 | case QGradient::PadSpread: |
600 | FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_PAD) |
601 | break; |
602 | default: |
603 | Q_UNREACHABLE(); |
604 | } |
605 | } |
606 | }; |
607 | |
608 | static inline uint INTERPOLATE_PIXEL_255(uint x, uint a, uint y, uint b) { |
609 | uint t = (x & 0xff00ff) * a + (y & 0xff00ff) * b; |
610 | t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8; |
611 | t &= 0xff00ff; |
612 | |
613 | x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b; |
614 | x = (x + ((x >> 8) & 0xff00ff) + 0x800080); |
615 | x &= 0xff00ff00; |
616 | x |= t; |
617 | return x; |
618 | } |
619 | |
620 | #if Q_PROCESSOR_WORDSIZE == 8 // 64-bit versions |
621 | |
622 | static inline uint INTERPOLATE_PIXEL_256(uint x, uint a, uint y, uint b) { |
623 | quint64 t = (((quint64(x)) | ((quint64(x)) << 24)) & 0x00ff00ff00ff00ff) * a; |
624 | t += (((quint64(y)) | ((quint64(y)) << 24)) & 0x00ff00ff00ff00ff) * b; |
625 | t >>= 8; |
626 | t &= 0x00ff00ff00ff00ff; |
627 | return (uint(t)) | (uint(t >> 24)); |
628 | } |
629 | |
630 | static inline uint BYTE_MUL(uint x, uint a) { |
631 | quint64 t = (((quint64(x)) | ((quint64(x)) << 24)) & 0x00ff00ff00ff00ff) * a; |
632 | t = (t + ((t >> 8) & 0xff00ff00ff00ff) + 0x80008000800080) >> 8; |
633 | t &= 0x00ff00ff00ff00ff; |
634 | return (uint(t)) | (uint(t >> 24)); |
635 | } |
636 | |
637 | #else // 32-bit versions |
638 | |
639 | static inline uint INTERPOLATE_PIXEL_256(uint x, uint a, uint y, uint b) { |
640 | uint t = (x & 0xff00ff) * a + (y & 0xff00ff) * b; |
641 | t >>= 8; |
642 | t &= 0xff00ff; |
643 | |
644 | x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b; |
645 | x &= 0xff00ff00; |
646 | x |= t; |
647 | return x; |
648 | } |
649 | |
650 | static inline uint BYTE_MUL(uint x, uint a) { |
651 | uint t = (x & 0xff00ff) * a; |
652 | t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8; |
653 | t &= 0xff00ff; |
654 | |
655 | x = ((x >> 8) & 0xff00ff) * a; |
656 | x = (x + ((x >> 8) & 0xff00ff) + 0x800080); |
657 | x &= 0xff00ff00; |
658 | x |= t; |
659 | return x; |
660 | } |
661 | #endif |
662 | |
663 | static inline void blend_pixel(quint32 &dst, const quint32 src) |
664 | { |
665 | if (src >= 0xff000000) |
666 | dst = src; |
667 | else if (src != 0) |
668 | dst = src + BYTE_MUL(dst, qAlpha(~src)); |
669 | } |
670 | |
671 | static inline void blend_pixel(quint32 &dst, const quint32 src, const int const_alpha) |
672 | { |
673 | if (const_alpha == 255) |
674 | return blend_pixel(dst, src); |
675 | if (src != 0) { |
676 | const quint32 s = BYTE_MUL(src, const_alpha); |
677 | dst = s + BYTE_MUL(dst, qAlpha(~s)); |
678 | } |
679 | } |
680 | |
681 | #if defined(__SSE2__) |
682 | static inline uint Q_DECL_VECTORCALL interpolate_4_pixels_sse2(__m128i vt, __m128i vb, uint distx, uint disty) |
683 | { |
684 | // First interpolate top and bottom pixels in parallel. |
685 | vt = _mm_unpacklo_epi8(vt, _mm_setzero_si128()); |
686 | vb = _mm_unpacklo_epi8(vb, _mm_setzero_si128()); |
687 | vt = _mm_mullo_epi16(vt, _mm_set1_epi16(256 - disty)); |
688 | vb = _mm_mullo_epi16(vb, _mm_set1_epi16(disty)); |
689 | __m128i vlr = _mm_add_epi16(vt, vb); |
690 | vlr = _mm_srli_epi16(vlr, 8); |
691 | // vlr now contains the result of the first two interpolate calls vlr = unpacked((xright << 64) | xleft) |
692 | |
693 | // Now the last interpolate between left and right.. |
694 | const __m128i vidistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(256 - distx), _MM_SHUFFLE(0, 0, 0, 0)); |
695 | const __m128i vdistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(distx), _MM_SHUFFLE(0, 0, 0, 0)); |
696 | const __m128i vmulx = _mm_unpacklo_epi16(vidistx, vdistx); |
697 | vlr = _mm_unpacklo_epi16(vlr, _mm_srli_si128(vlr, 8)); |
698 | // vlr now contains the colors of left and right interleaved { la, ra, lr, rr, lg, rg, lb, rb } |
699 | vlr = _mm_madd_epi16(vlr, vmulx); // Multiply and horizontal add. |
700 | vlr = _mm_srli_epi32(vlr, 8); |
701 | vlr = _mm_packs_epi32(vlr, vlr); |
702 | vlr = _mm_packus_epi16(vlr, vlr); |
703 | return _mm_cvtsi128_si32(vlr); |
704 | } |
705 | |
706 | static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty) |
707 | { |
708 | __m128i vt = _mm_unpacklo_epi32(_mm_cvtsi32_si128(tl), _mm_cvtsi32_si128(tr)); |
709 | __m128i vb = _mm_unpacklo_epi32(_mm_cvtsi32_si128(bl), _mm_cvtsi32_si128(br)); |
710 | return interpolate_4_pixels_sse2(vt, vb, distx, disty); |
711 | } |
712 | |
713 | static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty) |
714 | { |
715 | __m128i vt = _mm_loadl_epi64((const __m128i*)t); |
716 | __m128i vb = _mm_loadl_epi64((const __m128i*)b); |
717 | return interpolate_4_pixels_sse2(vt, vb, distx, disty); |
718 | } |
719 | |
720 | static constexpr inline bool hasFastInterpolate4() { return true; } |
721 | |
722 | #elif defined(__ARM_NEON__) |
723 | static inline uint interpolate_4_pixels_neon(uint32x2_t vt32, uint32x2_t vb32, uint distx, uint disty) |
724 | { |
725 | uint16x8_t vt16 = vmovl_u8(vreinterpret_u8_u32(vt32)); |
726 | uint16x8_t vb16 = vmovl_u8(vreinterpret_u8_u32(vb32)); |
727 | vt16 = vmulq_n_u16(vt16, 256 - disty); |
728 | vt16 = vmlaq_n_u16(vt16, vb16, disty); |
729 | vt16 = vshrq_n_u16(vt16, 8); |
730 | uint16x4_t vl16 = vget_low_u16(vt16); |
731 | uint16x4_t vr16 = vget_high_u16(vt16); |
732 | vl16 = vmul_n_u16(vl16, 256 - distx); |
733 | vl16 = vmla_n_u16(vl16, vr16, distx); |
734 | vl16 = vshr_n_u16(vl16, 8); |
735 | uint8x8_t vr = vmovn_u16(vcombine_u16(vl16, vl16)); |
736 | return vget_lane_u32(vreinterpret_u32_u8(vr), 0); |
737 | } |
738 | |
739 | static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty) |
740 | { |
741 | uint32x2_t vt32 = vmov_n_u32(tl); |
742 | uint32x2_t vb32 = vmov_n_u32(bl); |
743 | vt32 = vset_lane_u32(tr, vt32, 1); |
744 | vb32 = vset_lane_u32(br, vb32, 1); |
745 | return interpolate_4_pixels_neon(vt32, vb32, distx, disty); |
746 | } |
747 | |
748 | static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty) |
749 | { |
750 | uint32x2_t vt32 = vld1_u32(t); |
751 | uint32x2_t vb32 = vld1_u32(b); |
752 | return interpolate_4_pixels_neon(vt32, vb32, distx, disty); |
753 | } |
754 | |
755 | static constexpr inline bool hasFastInterpolate4() { return true; } |
756 | |
757 | #else |
758 | static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty) |
759 | { |
760 | uint idistx = 256 - distx; |
761 | uint idisty = 256 - disty; |
762 | uint xtop = INTERPOLATE_PIXEL_256(tl, idistx, tr, distx); |
763 | uint xbot = INTERPOLATE_PIXEL_256(bl, idistx, br, distx); |
764 | return INTERPOLATE_PIXEL_256(xtop, idisty, xbot, disty); |
765 | } |
766 | |
767 | static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty) |
768 | { |
769 | return interpolate_4_pixels(t[0], t[1], b[0], b[1], distx, disty); |
770 | } |
771 | |
772 | static constexpr inline bool hasFastInterpolate4() { return false; } |
773 | |
774 | #endif |
775 | |
776 | static inline QRgba64 multiplyAlpha256(QRgba64 rgba64, uint alpha256) |
777 | { |
778 | return QRgba64::fromRgba64((rgba64.red() * alpha256) >> 8, |
779 | (rgba64.green() * alpha256) >> 8, |
780 | (rgba64.blue() * alpha256) >> 8, |
781 | (rgba64.alpha() * alpha256) >> 8); |
782 | } |
783 | static inline QRgba64 interpolate256(QRgba64 x, uint alpha1, QRgba64 y, uint alpha2) |
784 | { |
785 | return QRgba64::fromRgba64(multiplyAlpha256(x, alpha1) + multiplyAlpha256(y, alpha2)); |
786 | } |
787 | |
788 | #ifdef __SSE2__ |
789 | static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty) |
790 | { |
791 | __m128i vt = _mm_loadu_si128((const __m128i*)t); |
792 | if (disty) { |
793 | __m128i vb = _mm_loadu_si128((const __m128i*)b); |
794 | vt = _mm_mulhi_epu16(vt, _mm_set1_epi16(0x10000 - disty)); |
795 | vb = _mm_mulhi_epu16(vb, _mm_set1_epi16(disty)); |
796 | vt = _mm_add_epi16(vt, vb); |
797 | } |
798 | if (distx) { |
799 | const __m128i vdistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(distx), _MM_SHUFFLE(0, 0, 0, 0)); |
800 | const __m128i vidistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(0x10000 - distx), _MM_SHUFFLE(0, 0, 0, 0)); |
801 | vt = _mm_mulhi_epu16(vt, _mm_unpacklo_epi64(vidistx, vdistx)); |
802 | vt = _mm_add_epi16(vt, _mm_srli_si128(vt, 8)); |
803 | } |
804 | #ifdef Q_PROCESSOR_X86_64 |
805 | return QRgba64::fromRgba64(_mm_cvtsi128_si64(vt)); |
806 | #else |
807 | QRgba64 out; |
808 | _mm_storel_epi64((__m128i*)&out, vt); |
809 | return out; |
810 | #endif // Q_PROCESSOR_X86_64 |
811 | } |
812 | #elif defined(__ARM_NEON__) |
813 | static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty) |
814 | { |
815 | uint64x1x2_t vt = vld2_u64(reinterpret_cast<const uint64_t *>(t)); |
816 | if (disty) { |
817 | uint64x1x2_t vb = vld2_u64(reinterpret_cast<const uint64_t *>(b)); |
818 | uint32x4_t vt0 = vmull_n_u16(vreinterpret_u16_u64(vt.val[0]), 0x10000 - disty); |
819 | uint32x4_t vt1 = vmull_n_u16(vreinterpret_u16_u64(vt.val[1]), 0x10000 - disty); |
820 | vt0 = vmlal_n_u16(vt0, vreinterpret_u16_u64(vb.val[0]), disty); |
821 | vt1 = vmlal_n_u16(vt1, vreinterpret_u16_u64(vb.val[1]), disty); |
822 | vt.val[0] = vreinterpret_u64_u16(vshrn_n_u32(vt0, 16)); |
823 | vt.val[1] = vreinterpret_u64_u16(vshrn_n_u32(vt1, 16)); |
824 | } |
825 | if (distx) { |
826 | uint32x4_t vt0 = vmull_n_u16(vreinterpret_u16_u64(vt.val[0]), 0x10000 - distx); |
827 | vt0 = vmlal_n_u16(vt0, vreinterpret_u16_u64(vt.val[1]), distx); |
828 | vt.val[0] = vreinterpret_u64_u16(vshrn_n_u32(vt0, 16)); |
829 | } |
830 | QRgba64 out; |
831 | vst1_u64(reinterpret_cast<uint64_t *>(&out), vt.val[0]); |
832 | return out; |
833 | } |
834 | #else |
835 | static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty) |
836 | { |
837 | const uint dx = distx>>8; |
838 | const uint dy = disty>>8; |
839 | const uint idx = 256 - dx; |
840 | const uint idy = 256 - dy; |
841 | QRgba64 xtop = interpolate256(t[0], idx, t[1], dx); |
842 | QRgba64 xbot = interpolate256(b[0], idx, b[1], dx); |
843 | return interpolate256(xtop, idy, xbot, dy); |
844 | } |
845 | #endif // __SSE2__ |
846 | |
847 | static inline uint BYTE_MUL_RGB16(uint x, uint a) { |
848 | a += 1; |
849 | uint t = (((x & 0x07e0)*a) >> 8) & 0x07e0; |
850 | t |= (((x & 0xf81f)*(a>>2)) >> 6) & 0xf81f; |
851 | return t; |
852 | } |
853 | |
854 | static inline uint BYTE_MUL_RGB16_32(uint x, uint a) { |
855 | uint t = (((x & 0xf81f07e0) >> 5)*a) & 0xf81f07e0; |
856 | t |= (((x & 0x07e0f81f)*a) >> 5) & 0x07e0f81f; |
857 | return t; |
858 | } |
859 | |
860 | // qt_div_255 is a fast rounded division by 255 using an approximation that is accurate for all positive 16-bit integers |
861 | static constexpr inline int qt_div_255(int x) { return (x + (x>>8) + 0x80) >> 8; } |
862 | static constexpr inline uint qt_div_257_floor(uint x) { return (x - (x >> 8)) >> 8; } |
863 | static constexpr inline uint qt_div_257(uint x) { return qt_div_257_floor(x + 128); } |
864 | static constexpr inline uint qt_div_65535(uint x) { return (x + (x>>16) + 0x8000U) >> 16; } |
865 | |
866 | template <class T> inline void qt_memfill_template(T *dest, T color, qsizetype count) |
867 | { |
868 | if (!count) |
869 | return; |
870 | |
871 | qsizetype n = (count + 7) / 8; |
872 | switch (count & 0x07) |
873 | { |
874 | case 0: do { *dest++ = color; Q_FALLTHROUGH(); |
875 | case 7: *dest++ = color; Q_FALLTHROUGH(); |
876 | case 6: *dest++ = color; Q_FALLTHROUGH(); |
877 | case 5: *dest++ = color; Q_FALLTHROUGH(); |
878 | case 4: *dest++ = color; Q_FALLTHROUGH(); |
879 | case 3: *dest++ = color; Q_FALLTHROUGH(); |
880 | case 2: *dest++ = color; Q_FALLTHROUGH(); |
881 | case 1: *dest++ = color; |
882 | } while (--n > 0); |
883 | } |
884 | } |
885 | |
886 | template <class T> inline void qt_memfill(T *dest, T value, qsizetype count) |
887 | { |
888 | qt_memfill_template(dest, value, count); |
889 | } |
890 | |
891 | template<> inline void qt_memfill(quint64 *dest, quint64 color, qsizetype count) |
892 | { |
893 | qt_memfill64(dest, color, count); |
894 | } |
895 | |
896 | template<> inline void qt_memfill(quint32 *dest, quint32 color, qsizetype count) |
897 | { |
898 | qt_memfill32(dest, color, count); |
899 | } |
900 | |
901 | template<> inline void qt_memfill(quint24 *dest, quint24 color, qsizetype count) |
902 | { |
903 | qt_memfill24(dest, color, count); |
904 | } |
905 | |
906 | template<> inline void qt_memfill(quint16 *dest, quint16 color, qsizetype count) |
907 | { |
908 | qt_memfill16(dest, color, count); |
909 | } |
910 | |
911 | template<> inline void qt_memfill(quint8 *dest, quint8 color, qsizetype count) |
912 | { |
913 | memset(dest, color, count); |
914 | } |
915 | |
916 | template <class T> static |
917 | inline void qt_rectfill(T *dest, T value, |
918 | int x, int y, int width, int height, qsizetype stride) |
919 | { |
920 | char *d = reinterpret_cast<char*>(dest + x) + y * stride; |
921 | if (uint(stride) == (width * sizeof(T))) { |
922 | qt_memfill(reinterpret_cast<T*>(d), value, qsizetype(width) * height); |
923 | } else { |
924 | for (int j = 0; j < height; ++j) { |
925 | dest = reinterpret_cast<T*>(d); |
926 | qt_memfill(dest, value, width); |
927 | d += stride; |
928 | } |
929 | } |
930 | } |
931 | |
932 | inline ushort qConvertRgb32To16(uint c) |
933 | { |
934 | return (((c) >> 3) & 0x001f) |
935 | | (((c) >> 5) & 0x07e0) |
936 | | (((c) >> 8) & 0xf800); |
937 | } |
938 | |
939 | inline QRgb qConvertRgb16To32(uint c) |
940 | { |
941 | return 0xff000000 |
942 | | ((((c) << 3) & 0xf8) | (((c) >> 2) & 0x7)) |
943 | | ((((c) << 5) & 0xfc00) | (((c) >> 1) & 0x300)) |
944 | | ((((c) << 8) & 0xf80000) | (((c) << 3) & 0x70000)); |
945 | } |
946 | |
947 | const uint qt_bayer_matrix[16][16] = { |
948 | { 0x1, 0xc0, 0x30, 0xf0, 0xc, 0xcc, 0x3c, 0xfc, |
949 | 0x3, 0xc3, 0x33, 0xf3, 0xf, 0xcf, 0x3f, 0xff}, |
950 | { 0x80, 0x40, 0xb0, 0x70, 0x8c, 0x4c, 0xbc, 0x7c, |
951 | 0x83, 0x43, 0xb3, 0x73, 0x8f, 0x4f, 0xbf, 0x7f}, |
952 | { 0x20, 0xe0, 0x10, 0xd0, 0x2c, 0xec, 0x1c, 0xdc, |
953 | 0x23, 0xe3, 0x13, 0xd3, 0x2f, 0xef, 0x1f, 0xdf}, |
954 | { 0xa0, 0x60, 0x90, 0x50, 0xac, 0x6c, 0x9c, 0x5c, |
955 | 0xa3, 0x63, 0x93, 0x53, 0xaf, 0x6f, 0x9f, 0x5f}, |
956 | { 0x8, 0xc8, 0x38, 0xf8, 0x4, 0xc4, 0x34, 0xf4, |
957 | 0xb, 0xcb, 0x3b, 0xfb, 0x7, 0xc7, 0x37, 0xf7}, |
958 | { 0x88, 0x48, 0xb8, 0x78, 0x84, 0x44, 0xb4, 0x74, |
959 | 0x8b, 0x4b, 0xbb, 0x7b, 0x87, 0x47, 0xb7, 0x77}, |
960 | { 0x28, 0xe8, 0x18, 0xd8, 0x24, 0xe4, 0x14, 0xd4, |
961 | 0x2b, 0xeb, 0x1b, 0xdb, 0x27, 0xe7, 0x17, 0xd7}, |
962 | { 0xa8, 0x68, 0x98, 0x58, 0xa4, 0x64, 0x94, 0x54, |
963 | 0xab, 0x6b, 0x9b, 0x5b, 0xa7, 0x67, 0x97, 0x57}, |
964 | { 0x2, 0xc2, 0x32, 0xf2, 0xe, 0xce, 0x3e, 0xfe, |
965 | 0x1, 0xc1, 0x31, 0xf1, 0xd, 0xcd, 0x3d, 0xfd}, |
966 | { 0x82, 0x42, 0xb2, 0x72, 0x8e, 0x4e, 0xbe, 0x7e, |
967 | 0x81, 0x41, 0xb1, 0x71, 0x8d, 0x4d, 0xbd, 0x7d}, |
968 | { 0x22, 0xe2, 0x12, 0xd2, 0x2e, 0xee, 0x1e, 0xde, |
969 | 0x21, 0xe1, 0x11, 0xd1, 0x2d, 0xed, 0x1d, 0xdd}, |
970 | { 0xa2, 0x62, 0x92, 0x52, 0xae, 0x6e, 0x9e, 0x5e, |
971 | 0xa1, 0x61, 0x91, 0x51, 0xad, 0x6d, 0x9d, 0x5d}, |
972 | { 0xa, 0xca, 0x3a, 0xfa, 0x6, 0xc6, 0x36, 0xf6, |
973 | 0x9, 0xc9, 0x39, 0xf9, 0x5, 0xc5, 0x35, 0xf5}, |
974 | { 0x8a, 0x4a, 0xba, 0x7a, 0x86, 0x46, 0xb6, 0x76, |
975 | 0x89, 0x49, 0xb9, 0x79, 0x85, 0x45, 0xb5, 0x75}, |
976 | { 0x2a, 0xea, 0x1a, 0xda, 0x26, 0xe6, 0x16, 0xd6, |
977 | 0x29, 0xe9, 0x19, 0xd9, 0x25, 0xe5, 0x15, 0xd5}, |
978 | { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, |
979 | 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55} |
980 | }; |
981 | |
982 | #define ARGB_COMBINE_ALPHA(argb, alpha) \ |
983 | ((((argb >> 24) * alpha) >> 8) << 24) | (argb & 0x00ffffff) |
984 | |
985 | |
986 | #if Q_PROCESSOR_WORDSIZE == 8 // 64-bit versions |
987 | #define AMIX(mask) (qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask))) |
988 | #define MIX(mask) (qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask))) |
989 | #else // 32 bits |
990 | // The mask for alpha can overflow over 32 bits |
991 | #define AMIX(mask) quint32(qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask))) |
992 | #define MIX(mask) (qMin(((quint32(s)&mask) + (quint32(d)&mask)), quint32(mask))) |
993 | #endif |
994 | |
995 | inline uint comp_func_Plus_one_pixel_const_alpha(uint d, const uint s, const uint const_alpha, const uint one_minus_const_alpha) |
996 | { |
997 | const uint result = uint(AMIX(AMASK) | MIX(RMASK) | MIX(GMASK) | MIX(BMASK)); |
998 | return INTERPOLATE_PIXEL_255(result, const_alpha, d, one_minus_const_alpha); |
999 | } |
1000 | |
1001 | inline uint comp_func_Plus_one_pixel(uint d, const uint s) |
1002 | { |
1003 | const uint result = uint(AMIX(AMASK) | MIX(RMASK) | MIX(GMASK) | MIX(BMASK)); |
1004 | return result; |
1005 | } |
1006 | |
1007 | #undef MIX |
1008 | #undef AMIX |
1009 | |
1010 | // must be multiple of 4 for easier SIMD implementations |
1011 | static constexpr int BufferSize = 2048; |
1012 | |
1013 | // A buffer of intermediate results used by simple bilinear scaling. |
1014 | struct IntermediateBuffer |
1015 | { |
1016 | // The idea is first to do the interpolation between the row s1 and the row s2 |
1017 | // into this intermediate buffer, then later interpolate between two pixel of this buffer. |
1018 | // |
1019 | // buffer_rb is a buffer of red-blue component of the pixel, in the form 0x00RR00BB |
1020 | // buffer_ag is the alpha-green component of the pixel, in the form 0x00AA00GG |
1021 | // +1 for the last pixel to interpolate with, and +1 for rounding errors. |
1022 | quint32 buffer_rb[BufferSize+2]; |
1023 | quint32 buffer_ag[BufferSize+2]; |
1024 | }; |
1025 | |
1026 | template <QPixelLayout::BPP bpp> |
1027 | inline uint QT_FASTCALL qFetchPixel(const uchar *, int) |
1028 | { |
1029 | Q_UNREACHABLE(); |
1030 | return 0; |
1031 | } |
1032 | |
1033 | template <> |
1034 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP1LSB>(const uchar *src, int index) |
1035 | { |
1036 | return (src[index >> 3] >> (index & 7)) & 1; |
1037 | } |
1038 | |
1039 | template <> |
1040 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP1MSB>(const uchar *src, int index) |
1041 | { |
1042 | return (src[index >> 3] >> (~index & 7)) & 1; |
1043 | } |
1044 | |
1045 | template <> |
1046 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP8>(const uchar *src, int index) |
1047 | { |
1048 | return src[index]; |
1049 | } |
1050 | |
1051 | template <> |
1052 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP16>(const uchar *src, int index) |
1053 | { |
1054 | return reinterpret_cast<const quint16 *>(src)[index]; |
1055 | } |
1056 | |
1057 | template <> |
1058 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP24>(const uchar *src, int index) |
1059 | { |
1060 | return reinterpret_cast<const quint24 *>(src)[index]; |
1061 | } |
1062 | |
1063 | template <> |
1064 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP32>(const uchar *src, int index) |
1065 | { |
1066 | return reinterpret_cast<const uint *>(src)[index]; |
1067 | } |
1068 | |
1069 | template <> |
1070 | inline uint QT_FASTCALL qFetchPixel<QPixelLayout::BPP64>(const uchar *src, int index) |
1071 | { |
1072 | // We have to do the conversion in fetch to fit into a 32bit uint |
1073 | QRgba64 c = reinterpret_cast<const QRgba64 *>(src)[index]; |
1074 | return c.toArgb32(); |
1075 | } |
1076 | |
1077 | typedef uint (QT_FASTCALL *FetchPixelFunc)(const uchar *src, int index); |
1078 | |
1079 | constexpr FetchPixelFunc qFetchPixelTable[QPixelLayout::BPPCount] = { |
1080 | nullptr, // BPPNone |
1081 | qFetchPixel<QPixelLayout::BPP1MSB>, |
1082 | qFetchPixel<QPixelLayout::BPP1LSB>, |
1083 | qFetchPixel<QPixelLayout::BPP8>, |
1084 | qFetchPixel<QPixelLayout::BPP16>, |
1085 | qFetchPixel<QPixelLayout::BPP24>, |
1086 | qFetchPixel<QPixelLayout::BPP32>, |
1087 | qFetchPixel<QPixelLayout::BPP64>, |
1088 | }; |
1089 | |
1090 | QT_END_NAMESPACE |
1091 | |
1092 | #endif // QDRAWHELPER_P_H |
1093 | |