1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | #include "qtransform.h" |
40 | |
41 | #include "qdatastream.h" |
42 | #include "qdebug.h" |
43 | #include "qhashfunctions.h" |
44 | #include "qregion.h" |
45 | #include "qpainterpath.h" |
46 | #include "qpainterpath_p.h" |
47 | #include "qvariant.h" |
48 | #include <qmath.h> |
49 | #include <qnumeric.h> |
50 | |
51 | #include <private/qbezier_p.h> |
52 | |
53 | QT_BEGIN_NAMESPACE |
54 | |
55 | #ifndef QT_NO_DEBUG |
56 | Q_NEVER_INLINE |
57 | static void nanWarning(const char *func) |
58 | { |
59 | qWarning("QTransform::%s with NaN called" , func); |
60 | } |
61 | #endif // QT_NO_DEBUG |
62 | |
63 | #define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
64 | |
65 | #ifdef MAP |
66 | # undef MAP |
67 | #endif |
68 | #define MAP(x, y, nx, ny) \ |
69 | do { \ |
70 | qreal FX_ = x; \ |
71 | qreal FY_ = y; \ |
72 | switch(t) { \ |
73 | case TxNone: \ |
74 | nx = FX_; \ |
75 | ny = FY_; \ |
76 | break; \ |
77 | case TxTranslate: \ |
78 | nx = FX_ + m_matrix[2][0]; \ |
79 | ny = FY_ + m_matrix[2][1]; \ |
80 | break; \ |
81 | case TxScale: \ |
82 | nx = m_matrix[0][0] * FX_ + m_matrix[2][0]; \ |
83 | ny = m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
84 | break; \ |
85 | case TxRotate: \ |
86 | case TxShear: \ |
87 | case TxProject: \ |
88 | nx = m_matrix[0][0] * FX_ + m_matrix[1][0] * FY_ + m_matrix[2][0]; \ |
89 | ny = m_matrix[0][1] * FX_ + m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
90 | if (t == TxProject) { \ |
91 | qreal w = (m_matrix[0][2] * FX_ + m_matrix[1][2] * FY_ + m_matrix[2][2]); \ |
92 | if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \ |
93 | w = 1./w; \ |
94 | nx *= w; \ |
95 | ny *= w; \ |
96 | } \ |
97 | } \ |
98 | } while (0) |
99 | |
100 | /*! |
101 | \class QTransform |
102 | \brief The QTransform class specifies 2D transformations of a coordinate system. |
103 | \since 4.3 |
104 | \ingroup painting |
105 | \inmodule QtGui |
106 | |
107 | A transformation specifies how to translate, scale, shear, rotate |
108 | or project the coordinate system, and is typically used when |
109 | rendering graphics. |
110 | |
111 | A QTransform object can be built using the setMatrix(), scale(), |
112 | rotate(), translate() and shear() functions. Alternatively, it |
113 | can be built by applying \l {QTransform#Basic Matrix |
114 | Operations}{basic matrix operations}. The matrix can also be |
115 | defined when constructed, and it can be reset to the identity |
116 | matrix (the default) using the reset() function. |
117 | |
118 | The QTransform class supports mapping of graphic primitives: A given |
119 | point, line, polygon, region, or painter path can be mapped to the |
120 | coordinate system defined by \e this matrix using the map() |
121 | function. In case of a rectangle, its coordinates can be |
122 | transformed using the mapRect() function. A rectangle can also be |
123 | transformed into a \e polygon (mapped to the coordinate system |
124 | defined by \e this matrix), using the mapToPolygon() function. |
125 | |
126 | QTransform provides the isIdentity() function which returns \c true if |
127 | the matrix is the identity matrix, and the isInvertible() function |
128 | which returns \c true if the matrix is non-singular (i.e. AB = BA = |
129 | I). The inverted() function returns an inverted copy of \e this |
130 | matrix if it is invertible (otherwise it returns the identity |
131 | matrix), and adjoint() returns the matrix's classical adjoint. |
132 | In addition, QTransform provides the determinant() function which |
133 | returns the matrix's determinant. |
134 | |
135 | Finally, the QTransform class supports matrix multiplication, addition |
136 | and subtraction, and objects of the class can be streamed as well |
137 | as compared. |
138 | |
139 | \tableofcontents |
140 | |
141 | \section1 Rendering Graphics |
142 | |
143 | When rendering graphics, the matrix defines the transformations |
144 | but the actual transformation is performed by the drawing routines |
145 | in QPainter. |
146 | |
147 | By default, QPainter operates on the associated device's own |
148 | coordinate system. The standard coordinate system of a |
149 | QPaintDevice has its origin located at the top-left position. The |
150 | \e x values increase to the right; \e y values increase |
151 | downward. For a complete description, see the \l {Coordinate |
152 | System} {coordinate system} documentation. |
153 | |
154 | QPainter has functions to translate, scale, shear and rotate the |
155 | coordinate system without using a QTransform. For example: |
156 | |
157 | \table 100% |
158 | \row |
159 | \li \inlineimage qtransform-simpletransformation.png |
160 | \li |
161 | \snippet transform/main.cpp 0 |
162 | \endtable |
163 | |
164 | Although these functions are very convenient, it can be more |
165 | efficient to build a QTransform and call QPainter::setTransform() if you |
166 | want to perform more than a single transform operation. For |
167 | example: |
168 | |
169 | \table 100% |
170 | \row |
171 | \li \inlineimage qtransform-combinedtransformation.png |
172 | \li |
173 | \snippet transform/main.cpp 1 |
174 | \endtable |
175 | |
176 | \section1 Basic Matrix Operations |
177 | |
178 | \image qtransform-representation.png |
179 | |
180 | A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
181 | \c m32 (\c dy) elements specify horizontal and vertical translation. |
182 | The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
183 | The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
184 | And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
185 | projection, with \c m33 as an additional projection factor. |
186 | |
187 | QTransform transforms a point in the plane to another point using the |
188 | following formulas: |
189 | |
190 | \snippet code/src_gui_painting_qtransform.cpp 0 |
191 | |
192 | The point \e (x, y) is the original point, and \e (x', y') is the |
193 | transformed point. \e (x', y') can be transformed back to \e (x, |
194 | y) by performing the same operation on the inverted() matrix. |
195 | |
196 | The various matrix elements can be set when constructing the |
197 | matrix, or by using the setMatrix() function later on. They can also |
198 | be manipulated using the translate(), rotate(), scale() and |
199 | shear() convenience functions. The currently set values can be |
200 | retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
201 | m31(), m32(), m33(), dx() and dy() functions. |
202 | |
203 | Translation is the simplest transformation. Setting \c dx and \c |
204 | dy will move the coordinate system \c dx units along the X axis |
205 | and \c dy units along the Y axis. Scaling can be done by setting |
206 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
207 | 1.5 will double the height and increase the width by 50%. The |
208 | identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
209 | to 0) mapping a point to itself. Shearing is controlled by \c m12 |
210 | and \c m21. Setting these elements to values different from zero |
211 | will twist the coordinate system. Rotation is achieved by |
212 | setting both the shearing factors and the scaling factors. Perspective |
213 | transformation is achieved by setting both the projection factors and |
214 | the scaling factors. |
215 | |
216 | Here's the combined transformations example using basic matrix |
217 | operations: |
218 | |
219 | \table 100% |
220 | \row |
221 | \li \inlineimage qtransform-combinedtransformation2.png |
222 | \li |
223 | \snippet transform/main.cpp 2 |
224 | \endtable |
225 | |
226 | \sa QPainter, {Coordinate System}, {painting/affine}{Affine |
227 | Transformations Example}, {Transformations Example} |
228 | */ |
229 | |
230 | /*! |
231 | \enum QTransform::TransformationType |
232 | |
233 | \value TxNone |
234 | \value TxTranslate |
235 | \value TxScale |
236 | \value TxRotate |
237 | \value TxShear |
238 | \value TxProject |
239 | */ |
240 | |
241 | /*! |
242 | \fn QTransform::QTransform(Qt::Initialization) |
243 | \internal |
244 | */ |
245 | |
246 | /*! |
247 | \fn QTransform::QTransform() |
248 | |
249 | Constructs an identity matrix. |
250 | |
251 | All elements are set to zero except \c m11 and \c m22 (specifying |
252 | the scale) and \c m33 which are set to 1. |
253 | |
254 | \sa reset() |
255 | */ |
256 | |
257 | /*! |
258 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
259 | |
260 | Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
261 | \a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
262 | |
263 | \sa setMatrix() |
264 | */ |
265 | |
266 | /*! |
267 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
268 | |
269 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
270 | |
271 | \sa setMatrix() |
272 | */ |
273 | |
274 | /*! |
275 | Returns the adjoint of this matrix. |
276 | */ |
277 | QTransform QTransform::adjoint() const |
278 | { |
279 | qreal h11, h12, h13, |
280 | h21, h22, h23, |
281 | h31, h32, h33; |
282 | h11 = m_matrix[1][1] * m_matrix[2][2] - m_matrix[1][2] * m_matrix[2][1]; |
283 | h21 = m_matrix[1][2] * m_matrix[2][0] - m_matrix[1][0] * m_matrix[2][2]; |
284 | h31 = m_matrix[1][0] * m_matrix[2][1] - m_matrix[1][1] * m_matrix[2][0]; |
285 | h12 = m_matrix[0][2] * m_matrix[2][1] - m_matrix[0][1] * m_matrix[2][2]; |
286 | h22 = m_matrix[0][0] * m_matrix[2][2] - m_matrix[0][2] * m_matrix[2][0]; |
287 | h32 = m_matrix[0][1] * m_matrix[2][0] - m_matrix[0][0] * m_matrix[2][1]; |
288 | h13 = m_matrix[0][1] * m_matrix[1][2] - m_matrix[0][2] * m_matrix[1][1]; |
289 | h23 = m_matrix[0][2] * m_matrix[1][0] - m_matrix[0][0] * m_matrix[1][2]; |
290 | h33 = m_matrix[0][0] * m_matrix[1][1] - m_matrix[0][1] * m_matrix[1][0]; |
291 | |
292 | return QTransform(h11, h12, h13, |
293 | h21, h22, h23, |
294 | h31, h32, h33); |
295 | } |
296 | |
297 | /*! |
298 | Returns the transpose of this matrix. |
299 | */ |
300 | QTransform QTransform::transposed() const |
301 | { |
302 | QTransform t(m_matrix[0][0], m_matrix[1][0], m_matrix[2][0], |
303 | m_matrix[0][1], m_matrix[1][1], m_matrix[2][1], |
304 | m_matrix[0][2], m_matrix[1][2], m_matrix[2][2]); |
305 | return t; |
306 | } |
307 | |
308 | /*! |
309 | Returns an inverted copy of this matrix. |
310 | |
311 | If the matrix is singular (not invertible), the returned matrix is |
312 | the identity matrix. If \a invertible is valid (i.e. not 0), its |
313 | value is set to true if the matrix is invertible, otherwise it is |
314 | set to false. |
315 | |
316 | \sa isInvertible() |
317 | */ |
318 | QTransform QTransform::inverted(bool *invertible) const |
319 | { |
320 | QTransform invert; |
321 | bool inv = true; |
322 | |
323 | switch(inline_type()) { |
324 | case TxNone: |
325 | break; |
326 | case TxTranslate: |
327 | invert.m_matrix[2][0] = -m_matrix[2][0]; |
328 | invert.m_matrix[2][1] = -m_matrix[2][1]; |
329 | break; |
330 | case TxScale: |
331 | inv = !qFuzzyIsNull(m_matrix[0][0]); |
332 | inv &= !qFuzzyIsNull(m_matrix[1][1]); |
333 | if (inv) { |
334 | invert.m_matrix[0][0] = 1. / m_matrix[0][0]; |
335 | invert.m_matrix[1][1] = 1. / m_matrix[1][1]; |
336 | invert.m_matrix[2][0] = -m_matrix[2][0] * invert.m_matrix[0][0]; |
337 | invert.m_matrix[2][1] = -m_matrix[2][1] * invert.m_matrix[1][1]; |
338 | } |
339 | break; |
340 | // case TxRotate: |
341 | // case TxShear: |
342 | // invert.affine = affine.inverted(&inv); |
343 | // break; |
344 | default: |
345 | // general case |
346 | qreal det = determinant(); |
347 | inv = !qFuzzyIsNull(det); |
348 | if (inv) |
349 | invert = adjoint() / det; |
350 | break; |
351 | } |
352 | |
353 | if (invertible) |
354 | *invertible = inv; |
355 | |
356 | if (inv) { |
357 | // inverting doesn't change the type |
358 | invert.m_type = m_type; |
359 | invert.m_dirty = m_dirty; |
360 | } |
361 | |
362 | return invert; |
363 | } |
364 | |
365 | /*! |
366 | Moves the coordinate system \a dx along the x axis and \a dy along |
367 | the y axis, and returns a reference to the matrix. |
368 | |
369 | \sa setMatrix() |
370 | */ |
371 | QTransform &QTransform::translate(qreal dx, qreal dy) |
372 | { |
373 | if (dx == 0 && dy == 0) |
374 | return *this; |
375 | #ifndef QT_NO_DEBUG |
376 | if (qIsNaN(dx) | qIsNaN(dy)) { |
377 | nanWarning("translate" ); |
378 | return *this; |
379 | } |
380 | #endif |
381 | |
382 | switch(inline_type()) { |
383 | case TxNone: |
384 | m_matrix[2][0] = dx; |
385 | m_matrix[2][1] = dy; |
386 | break; |
387 | case TxTranslate: |
388 | m_matrix[2][0] += dx; |
389 | m_matrix[2][1] += dy; |
390 | break; |
391 | case TxScale: |
392 | m_matrix[2][0] += dx * m_matrix[0][0]; |
393 | m_matrix[2][1] += dy * m_matrix[1][1]; |
394 | break; |
395 | case TxProject: |
396 | m_matrix[2][2] += dx * m_matrix[0][2] + dy * m_matrix[1][2]; |
397 | Q_FALLTHROUGH(); |
398 | case TxShear: |
399 | case TxRotate: |
400 | m_matrix[2][0] += dx * m_matrix[0][0] + dy * m_matrix[1][0]; |
401 | m_matrix[2][1] += dy * m_matrix[1][1] + dx * m_matrix[0][1]; |
402 | break; |
403 | } |
404 | if (m_dirty < TxTranslate) |
405 | m_dirty = TxTranslate; |
406 | return *this; |
407 | } |
408 | |
409 | /*! |
410 | Creates a matrix which corresponds to a translation of \a dx along |
411 | the x axis and \a dy along the y axis. This is the same as |
412 | QTransform().translate(dx, dy) but slightly faster. |
413 | |
414 | \since 4.5 |
415 | */ |
416 | QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
417 | { |
418 | #ifndef QT_NO_DEBUG |
419 | if (qIsNaN(dx) | qIsNaN(dy)) { |
420 | nanWarning("fromTranslate" ); |
421 | return QTransform(); |
422 | } |
423 | #endif |
424 | QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1); |
425 | if (dx == 0 && dy == 0) |
426 | transform.m_type = TxNone; |
427 | else |
428 | transform.m_type = TxTranslate; |
429 | transform.m_dirty = TxNone; |
430 | return transform; |
431 | } |
432 | |
433 | /*! |
434 | Scales the coordinate system by \a sx horizontally and \a sy |
435 | vertically, and returns a reference to the matrix. |
436 | |
437 | \sa setMatrix() |
438 | */ |
439 | QTransform & QTransform::scale(qreal sx, qreal sy) |
440 | { |
441 | if (sx == 1 && sy == 1) |
442 | return *this; |
443 | #ifndef QT_NO_DEBUG |
444 | if (qIsNaN(sx) | qIsNaN(sy)) { |
445 | nanWarning("scale" ); |
446 | return *this; |
447 | } |
448 | #endif |
449 | |
450 | switch(inline_type()) { |
451 | case TxNone: |
452 | case TxTranslate: |
453 | m_matrix[0][0] = sx; |
454 | m_matrix[1][1] = sy; |
455 | break; |
456 | case TxProject: |
457 | m_matrix[0][2] *= sx; |
458 | m_matrix[1][2] *= sy; |
459 | Q_FALLTHROUGH(); |
460 | case TxRotate: |
461 | case TxShear: |
462 | m_matrix[0][1] *= sx; |
463 | m_matrix[1][0] *= sy; |
464 | Q_FALLTHROUGH(); |
465 | case TxScale: |
466 | m_matrix[0][0] *= sx; |
467 | m_matrix[1][1] *= sy; |
468 | break; |
469 | } |
470 | if (m_dirty < TxScale) |
471 | m_dirty = TxScale; |
472 | return *this; |
473 | } |
474 | |
475 | /*! |
476 | Creates a matrix which corresponds to a scaling of |
477 | \a sx horizontally and \a sy vertically. |
478 | This is the same as QTransform().scale(sx, sy) but slightly faster. |
479 | |
480 | \since 4.5 |
481 | */ |
482 | QTransform QTransform::fromScale(qreal sx, qreal sy) |
483 | { |
484 | #ifndef QT_NO_DEBUG |
485 | if (qIsNaN(sx) | qIsNaN(sy)) { |
486 | nanWarning("fromScale" ); |
487 | return QTransform(); |
488 | } |
489 | #endif |
490 | QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1); |
491 | if (sx == 1. && sy == 1.) |
492 | transform.m_type = TxNone; |
493 | else |
494 | transform.m_type = TxScale; |
495 | transform.m_dirty = TxNone; |
496 | return transform; |
497 | } |
498 | |
499 | /*! |
500 | Shears the coordinate system by \a sh horizontally and \a sv |
501 | vertically, and returns a reference to the matrix. |
502 | |
503 | \sa setMatrix() |
504 | */ |
505 | QTransform & QTransform::shear(qreal sh, qreal sv) |
506 | { |
507 | if (sh == 0 && sv == 0) |
508 | return *this; |
509 | #ifndef QT_NO_DEBUG |
510 | if (qIsNaN(sh) | qIsNaN(sv)) { |
511 | nanWarning("shear" ); |
512 | return *this; |
513 | } |
514 | #endif |
515 | |
516 | switch(inline_type()) { |
517 | case TxNone: |
518 | case TxTranslate: |
519 | m_matrix[0][1] = sv; |
520 | m_matrix[1][0] = sh; |
521 | break; |
522 | case TxScale: |
523 | m_matrix[0][1] = sv*m_matrix[1][1]; |
524 | m_matrix[1][0] = sh*m_matrix[0][0]; |
525 | break; |
526 | case TxProject: { |
527 | qreal tm13 = sv * m_matrix[1][2]; |
528 | qreal tm23 = sh * m_matrix[0][2]; |
529 | m_matrix[0][2] += tm13; |
530 | m_matrix[1][2] += tm23; |
531 | } |
532 | Q_FALLTHROUGH(); |
533 | case TxRotate: |
534 | case TxShear: { |
535 | qreal tm11 = sv * m_matrix[1][0]; |
536 | qreal tm22 = sh * m_matrix[0][1]; |
537 | qreal tm12 = sv * m_matrix[1][1]; |
538 | qreal tm21 = sh * m_matrix[0][0]; |
539 | m_matrix[0][0] += tm11; |
540 | m_matrix[0][1] += tm12; |
541 | m_matrix[1][0] += tm21; |
542 | m_matrix[1][1] += tm22; |
543 | break; |
544 | } |
545 | } |
546 | if (m_dirty < TxShear) |
547 | m_dirty = TxShear; |
548 | return *this; |
549 | } |
550 | |
551 | const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
552 | const qreal inv_dist_to_plane = 1. / 1024.; |
553 | |
554 | /*! |
555 | \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis) |
556 | |
557 | Rotates the coordinate system counterclockwise by the given \a angle |
558 | about the specified \a axis and returns a reference to the matrix. |
559 | |
560 | Note that if you apply a QTransform to a point defined in widget |
561 | coordinates, the direction of the rotation will be clockwise |
562 | because the y-axis points downwards. |
563 | |
564 | The angle is specified in degrees. |
565 | |
566 | \sa setMatrix() |
567 | */ |
568 | QTransform & QTransform::rotate(qreal a, Qt::Axis axis) |
569 | { |
570 | if (a == 0) |
571 | return *this; |
572 | #ifndef QT_NO_DEBUG |
573 | if (qIsNaN(a)) { |
574 | nanWarning("rotate" ); |
575 | return *this; |
576 | } |
577 | #endif |
578 | |
579 | qreal sina = 0; |
580 | qreal cosa = 0; |
581 | if (a == 90. || a == -270.) |
582 | sina = 1.; |
583 | else if (a == 270. || a == -90.) |
584 | sina = -1.; |
585 | else if (a == 180.) |
586 | cosa = -1.; |
587 | else{ |
588 | qreal b = deg2rad*a; // convert to radians |
589 | sina = qSin(b); // fast and convenient |
590 | cosa = qCos(b); |
591 | } |
592 | |
593 | if (axis == Qt::ZAxis) { |
594 | switch(inline_type()) { |
595 | case TxNone: |
596 | case TxTranslate: |
597 | m_matrix[0][0] = cosa; |
598 | m_matrix[0][1] = sina; |
599 | m_matrix[1][0] = -sina; |
600 | m_matrix[1][1] = cosa; |
601 | break; |
602 | case TxScale: { |
603 | qreal tm11 = cosa * m_matrix[0][0]; |
604 | qreal tm12 = sina * m_matrix[1][1]; |
605 | qreal tm21 = -sina * m_matrix[0][0]; |
606 | qreal tm22 = cosa * m_matrix[1][1]; |
607 | m_matrix[0][0] = tm11; |
608 | m_matrix[0][1] = tm12; |
609 | m_matrix[1][0] = tm21; |
610 | m_matrix[1][1] = tm22; |
611 | break; |
612 | } |
613 | case TxProject: { |
614 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
615 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
616 | m_matrix[0][2] = tm13; |
617 | m_matrix[1][2] = tm23; |
618 | Q_FALLTHROUGH(); |
619 | } |
620 | case TxRotate: |
621 | case TxShear: { |
622 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
623 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
624 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
625 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
626 | m_matrix[0][0] = tm11; |
627 | m_matrix[0][1] = tm12; |
628 | m_matrix[1][0] = tm21; |
629 | m_matrix[1][1] = tm22; |
630 | break; |
631 | } |
632 | } |
633 | if (m_dirty < TxRotate) |
634 | m_dirty = TxRotate; |
635 | } else { |
636 | QTransform result; |
637 | if (axis == Qt::YAxis) { |
638 | result.m_matrix[0][0] = cosa; |
639 | result.m_matrix[0][2] = -sina * inv_dist_to_plane; |
640 | } else { |
641 | result.m_matrix[1][1] = cosa; |
642 | result.m_matrix[1][2] = -sina * inv_dist_to_plane; |
643 | } |
644 | result.m_type = TxProject; |
645 | *this = result * *this; |
646 | } |
647 | |
648 | return *this; |
649 | } |
650 | |
651 | /*! |
652 | \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis) |
653 | |
654 | Rotates the coordinate system counterclockwise by the given \a angle |
655 | about the specified \a axis and returns a reference to the matrix. |
656 | |
657 | Note that if you apply a QTransform to a point defined in widget |
658 | coordinates, the direction of the rotation will be clockwise |
659 | because the y-axis points downwards. |
660 | |
661 | The angle is specified in radians. |
662 | |
663 | \sa setMatrix() |
664 | */ |
665 | QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis) |
666 | { |
667 | #ifndef QT_NO_DEBUG |
668 | if (qIsNaN(a)) { |
669 | nanWarning("rotateRadians" ); |
670 | return *this; |
671 | } |
672 | #endif |
673 | qreal sina = qSin(a); |
674 | qreal cosa = qCos(a); |
675 | |
676 | if (axis == Qt::ZAxis) { |
677 | switch(inline_type()) { |
678 | case TxNone: |
679 | case TxTranslate: |
680 | m_matrix[0][0] = cosa; |
681 | m_matrix[0][1] = sina; |
682 | m_matrix[1][0] = -sina; |
683 | m_matrix[1][1] = cosa; |
684 | break; |
685 | case TxScale: { |
686 | qreal tm11 = cosa * m_matrix[0][0]; |
687 | qreal tm12 = sina * m_matrix[1][1]; |
688 | qreal tm21 = -sina * m_matrix[0][0]; |
689 | qreal tm22 = cosa * m_matrix[1][1]; |
690 | m_matrix[0][0] = tm11; |
691 | m_matrix[0][1] = tm12; |
692 | m_matrix[1][0] = tm21; |
693 | m_matrix[1][1] = tm22; |
694 | break; |
695 | } |
696 | case TxProject: { |
697 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
698 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
699 | m_matrix[0][2] = tm13; |
700 | m_matrix[1][2] = tm23; |
701 | Q_FALLTHROUGH(); |
702 | } |
703 | case TxRotate: |
704 | case TxShear: { |
705 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
706 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
707 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
708 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
709 | m_matrix[0][0] = tm11; |
710 | m_matrix[0][1] = tm12; |
711 | m_matrix[1][0] = tm21; |
712 | m_matrix[1][1] = tm22; |
713 | break; |
714 | } |
715 | } |
716 | if (m_dirty < TxRotate) |
717 | m_dirty = TxRotate; |
718 | } else { |
719 | QTransform result; |
720 | if (axis == Qt::YAxis) { |
721 | result.m_matrix[0][0] = cosa; |
722 | result.m_matrix[0][2] = -sina * inv_dist_to_plane; |
723 | } else { |
724 | result.m_matrix[1][1] = cosa; |
725 | result.m_matrix[1][2] = -sina * inv_dist_to_plane; |
726 | } |
727 | result.m_type = TxProject; |
728 | *this = result * *this; |
729 | } |
730 | return *this; |
731 | } |
732 | |
733 | /*! |
734 | \fn bool QTransform::operator==(const QTransform &matrix) const |
735 | Returns \c true if this matrix is equal to the given \a matrix, |
736 | otherwise returns \c false. |
737 | */ |
738 | bool QTransform::operator==(const QTransform &o) const |
739 | { |
740 | return m_matrix[0][0] == o.m_matrix[0][0] && |
741 | m_matrix[0][1] == o.m_matrix[0][1] && |
742 | m_matrix[1][0] == o.m_matrix[1][0] && |
743 | m_matrix[1][1] == o.m_matrix[1][1] && |
744 | m_matrix[2][0] == o.m_matrix[2][0] && |
745 | m_matrix[2][1] == o.m_matrix[2][1] && |
746 | m_matrix[0][2] == o.m_matrix[0][2] && |
747 | m_matrix[1][2] == o.m_matrix[1][2] && |
748 | m_matrix[2][2] == o.m_matrix[2][2]; |
749 | } |
750 | |
751 | /*! |
752 | \since 5.6 |
753 | \relates QTransform |
754 | |
755 | Returns the hash value for \a key, using |
756 | \a seed to seed the calculation. |
757 | */ |
758 | size_t qHash(const QTransform &key, size_t seed) noexcept |
759 | { |
760 | QtPrivate::QHashCombine hash; |
761 | seed = hash(seed, key.m11()); |
762 | seed = hash(seed, key.m12()); |
763 | seed = hash(seed, key.m21()); |
764 | seed = hash(seed, key.m22()); |
765 | seed = hash(seed, key.dx()); |
766 | seed = hash(seed, key.dy()); |
767 | seed = hash(seed, key.m13()); |
768 | seed = hash(seed, key.m23()); |
769 | seed = hash(seed, key.m33()); |
770 | return seed; |
771 | } |
772 | |
773 | |
774 | /*! |
775 | \fn bool QTransform::operator!=(const QTransform &matrix) const |
776 | Returns \c true if this matrix is not equal to the given \a matrix, |
777 | otherwise returns \c false. |
778 | */ |
779 | bool QTransform::operator!=(const QTransform &o) const |
780 | { |
781 | return !operator==(o); |
782 | } |
783 | |
784 | /*! |
785 | \fn QTransform & QTransform::operator*=(const QTransform &matrix) |
786 | \overload |
787 | |
788 | Returns the result of multiplying this matrix by the given \a |
789 | matrix. |
790 | */ |
791 | QTransform & QTransform::operator*=(const QTransform &o) |
792 | { |
793 | const TransformationType otherType = o.inline_type(); |
794 | if (otherType == TxNone) |
795 | return *this; |
796 | |
797 | const TransformationType thisType = inline_type(); |
798 | if (thisType == TxNone) |
799 | return operator=(o); |
800 | |
801 | TransformationType t = qMax(thisType, otherType); |
802 | switch(t) { |
803 | case TxNone: |
804 | break; |
805 | case TxTranslate: |
806 | m_matrix[2][0] += o.m_matrix[2][0]; |
807 | m_matrix[2][1] += o.m_matrix[2][1]; |
808 | break; |
809 | case TxScale: |
810 | { |
811 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0]; |
812 | qreal m22 = m_matrix[1][1] * o.m_matrix[1][1]; |
813 | |
814 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + o.m_matrix[2][0]; |
815 | qreal m32 = m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
816 | |
817 | m_matrix[0][0] = m11; |
818 | m_matrix[1][1] = m22; |
819 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; |
820 | break; |
821 | } |
822 | case TxRotate: |
823 | case TxShear: |
824 | { |
825 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0]; |
826 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1]; |
827 | |
828 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0]; |
829 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1]; |
830 | |
831 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + o.m_matrix[2][0]; |
832 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
833 | |
834 | m_matrix[0][0] = m11; |
835 | m_matrix[0][1] = m12; |
836 | m_matrix[1][0] = m21; |
837 | m_matrix[1][1] = m22; |
838 | m_matrix[2][0] = m31; |
839 | m_matrix[2][1] = m32; |
840 | break; |
841 | } |
842 | case TxProject: |
843 | { |
844 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0] + m_matrix[0][2] * o.m_matrix[2][0]; |
845 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1] + m_matrix[0][2] * o.m_matrix[2][1]; |
846 | qreal m13 = m_matrix[0][0] * o.m_matrix[0][2] + m_matrix[0][1] * o.m_matrix[1][2] + m_matrix[0][2] * o.m_matrix[2][2]; |
847 | |
848 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0] + m_matrix[1][2] * o.m_matrix[2][0]; |
849 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1] + m_matrix[1][2] * o.m_matrix[2][1]; |
850 | qreal m23 = m_matrix[1][0] * o.m_matrix[0][2] + m_matrix[1][1] * o.m_matrix[1][2] + m_matrix[1][2] * o.m_matrix[2][2]; |
851 | |
852 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + m_matrix[2][2] * o.m_matrix[2][0]; |
853 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + m_matrix[2][2] * o.m_matrix[2][1]; |
854 | qreal m33 = m_matrix[2][0] * o.m_matrix[0][2] + m_matrix[2][1] * o.m_matrix[1][2] + m_matrix[2][2] * o.m_matrix[2][2]; |
855 | |
856 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
857 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
858 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
859 | } |
860 | } |
861 | |
862 | m_dirty = t; |
863 | m_type = t; |
864 | |
865 | return *this; |
866 | } |
867 | |
868 | /*! |
869 | \fn QTransform QTransform::operator*(const QTransform &matrix) const |
870 | Returns the result of multiplying this matrix by the given \a |
871 | matrix. |
872 | |
873 | Note that matrix multiplication is not commutative, i.e. a*b != |
874 | b*a. |
875 | */ |
876 | QTransform QTransform::operator*(const QTransform &m) const |
877 | { |
878 | const TransformationType otherType = m.inline_type(); |
879 | if (otherType == TxNone) |
880 | return *this; |
881 | |
882 | const TransformationType thisType = inline_type(); |
883 | if (thisType == TxNone) |
884 | return m; |
885 | |
886 | QTransform t; |
887 | TransformationType type = qMax(thisType, otherType); |
888 | switch(type) { |
889 | case TxNone: |
890 | break; |
891 | case TxTranslate: |
892 | t.m_matrix[2][0] = m_matrix[2][0] + m.m_matrix[2][0]; |
893 | t.m_matrix[2][1] = m_matrix[2][1] + m.m_matrix[2][1]; |
894 | break; |
895 | case TxScale: |
896 | { |
897 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0]; |
898 | qreal m22 = m_matrix[1][1] * m.m_matrix[1][1]; |
899 | |
900 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m.m_matrix[2][0]; |
901 | qreal m32 = m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
902 | |
903 | t.m_matrix[0][0] = m11; |
904 | t.m_matrix[1][1] = m22; |
905 | t.m_matrix[2][0] = m31; |
906 | t.m_matrix[2][1] = m32; |
907 | break; |
908 | } |
909 | case TxRotate: |
910 | case TxShear: |
911 | { |
912 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0]; |
913 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1]; |
914 | |
915 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0]; |
916 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1]; |
917 | |
918 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m.m_matrix[2][0]; |
919 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
920 | |
921 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; |
922 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; |
923 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; |
924 | break; |
925 | } |
926 | case TxProject: |
927 | { |
928 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0] + m_matrix[0][2] * m.m_matrix[2][0]; |
929 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1] + m_matrix[0][2] * m.m_matrix[2][1]; |
930 | qreal m13 = m_matrix[0][0] * m.m_matrix[0][2] + m_matrix[0][1] * m.m_matrix[1][2] + m_matrix[0][2] * m.m_matrix[2][2]; |
931 | |
932 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0] + m_matrix[1][2] * m.m_matrix[2][0]; |
933 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1] + m_matrix[1][2] * m.m_matrix[2][1]; |
934 | qreal m23 = m_matrix[1][0] * m.m_matrix[0][2] + m_matrix[1][1] * m.m_matrix[1][2] + m_matrix[1][2] * m.m_matrix[2][2]; |
935 | |
936 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m_matrix[2][2] * m.m_matrix[2][0]; |
937 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m_matrix[2][2] * m.m_matrix[2][1]; |
938 | qreal m33 = m_matrix[2][0] * m.m_matrix[0][2] + m_matrix[2][1] * m.m_matrix[1][2] + m_matrix[2][2] * m.m_matrix[2][2]; |
939 | |
940 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; t.m_matrix[0][2] = m13; |
941 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; t.m_matrix[1][2] = m23; |
942 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; t.m_matrix[2][2] = m33; |
943 | } |
944 | } |
945 | |
946 | t.m_dirty = type; |
947 | t.m_type = type; |
948 | |
949 | return t; |
950 | } |
951 | |
952 | /*! |
953 | \fn QTransform & QTransform::operator*=(qreal scalar) |
954 | \overload |
955 | |
956 | Returns the result of performing an element-wise multiplication of this |
957 | matrix with the given \a scalar. |
958 | */ |
959 | |
960 | /*! |
961 | \fn QTransform & QTransform::operator/=(qreal scalar) |
962 | \overload |
963 | |
964 | Returns the result of performing an element-wise division of this |
965 | matrix by the given \a scalar. |
966 | */ |
967 | |
968 | /*! |
969 | \fn QTransform & QTransform::operator+=(qreal scalar) |
970 | \overload |
971 | |
972 | Returns the matrix obtained by adding the given \a scalar to each |
973 | element of this matrix. |
974 | */ |
975 | |
976 | /*! |
977 | \fn QTransform & QTransform::operator-=(qreal scalar) |
978 | \overload |
979 | |
980 | Returns the matrix obtained by subtracting the given \a scalar from each |
981 | element of this matrix. |
982 | */ |
983 | |
984 | /*! |
985 | \fn QTransform &QTransform::operator=(const QTransform &matrix) noexcept |
986 | |
987 | Assigns the given \a matrix's values to this matrix. |
988 | */ |
989 | |
990 | /*! |
991 | Resets the matrix to an identity matrix, i.e. all elements are set |
992 | to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
993 | which are set to 1. |
994 | |
995 | \sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
996 | Operations}{Basic Matrix Operations} |
997 | */ |
998 | void QTransform::reset() |
999 | { |
1000 | *this = QTransform(); |
1001 | } |
1002 | |
1003 | #ifndef QT_NO_DATASTREAM |
1004 | /*! |
1005 | \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
1006 | \since 4.3 |
1007 | \relates QTransform |
1008 | |
1009 | Writes the given \a matrix to the given \a stream and returns a |
1010 | reference to the stream. |
1011 | |
1012 | \sa {Serializing Qt Data Types} |
1013 | */ |
1014 | QDataStream & operator<<(QDataStream &s, const QTransform &m) |
1015 | { |
1016 | s << double(m.m11()) |
1017 | << double(m.m12()) |
1018 | << double(m.m13()) |
1019 | << double(m.m21()) |
1020 | << double(m.m22()) |
1021 | << double(m.m23()) |
1022 | << double(m.m31()) |
1023 | << double(m.m32()) |
1024 | << double(m.m33()); |
1025 | return s; |
1026 | } |
1027 | |
1028 | /*! |
1029 | \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
1030 | \since 4.3 |
1031 | \relates QTransform |
1032 | |
1033 | Reads the given \a matrix from the given \a stream and returns a |
1034 | reference to the stream. |
1035 | |
1036 | \sa {Serializing Qt Data Types} |
1037 | */ |
1038 | QDataStream & operator>>(QDataStream &s, QTransform &t) |
1039 | { |
1040 | double m11, m12, m13, |
1041 | m21, m22, m23, |
1042 | m31, m32, m33; |
1043 | |
1044 | s >> m11; |
1045 | s >> m12; |
1046 | s >> m13; |
1047 | s >> m21; |
1048 | s >> m22; |
1049 | s >> m23; |
1050 | s >> m31; |
1051 | s >> m32; |
1052 | s >> m33; |
1053 | t.setMatrix(m11, m12, m13, |
1054 | m21, m22, m23, |
1055 | m31, m32, m33); |
1056 | return s; |
1057 | } |
1058 | |
1059 | #endif // QT_NO_DATASTREAM |
1060 | |
1061 | #ifndef QT_NO_DEBUG_STREAM |
1062 | QDebug operator<<(QDebug dbg, const QTransform &m) |
1063 | { |
1064 | static const char typeStr[][12] = |
1065 | { |
1066 | "TxNone" , |
1067 | "TxTranslate" , |
1068 | "TxScale" , |
1069 | "" , |
1070 | "TxRotate" , |
1071 | "" , "" , "" , |
1072 | "TxShear" , |
1073 | "" , "" , "" , "" , "" , "" , "" , |
1074 | "TxProject" |
1075 | }; |
1076 | |
1077 | QDebugStateSaver saver(dbg); |
1078 | dbg.nospace() << "QTransform(type=" << typeStr[m.type()] << ',' |
1079 | << " 11=" << m.m11() |
1080 | << " 12=" << m.m12() |
1081 | << " 13=" << m.m13() |
1082 | << " 21=" << m.m21() |
1083 | << " 22=" << m.m22() |
1084 | << " 23=" << m.m23() |
1085 | << " 31=" << m.m31() |
1086 | << " 32=" << m.m32() |
1087 | << " 33=" << m.m33() |
1088 | << ')'; |
1089 | |
1090 | return dbg; |
1091 | } |
1092 | #endif |
1093 | |
1094 | /*! |
1095 | \fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
1096 | \relates QTransform |
1097 | |
1098 | This is the same as \a{matrix}.map(\a{point}). |
1099 | |
1100 | \sa QTransform::map() |
1101 | */ |
1102 | QPoint QTransform::map(const QPoint &p) const |
1103 | { |
1104 | qreal fx = p.x(); |
1105 | qreal fy = p.y(); |
1106 | |
1107 | qreal x = 0, y = 0; |
1108 | |
1109 | TransformationType t = inline_type(); |
1110 | switch(t) { |
1111 | case TxNone: |
1112 | x = fx; |
1113 | y = fy; |
1114 | break; |
1115 | case TxTranslate: |
1116 | x = fx + m_matrix[2][0]; |
1117 | y = fy + m_matrix[2][1]; |
1118 | break; |
1119 | case TxScale: |
1120 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
1121 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
1122 | break; |
1123 | case TxRotate: |
1124 | case TxShear: |
1125 | case TxProject: |
1126 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
1127 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
1128 | if (t == TxProject) { |
1129 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
1130 | x *= w; |
1131 | y *= w; |
1132 | } |
1133 | } |
1134 | return QPoint(qRound(x), qRound(y)); |
1135 | } |
1136 | |
1137 | |
1138 | /*! |
1139 | \fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
1140 | \relates QTransform |
1141 | |
1142 | Same as \a{matrix}.map(\a{point}). |
1143 | |
1144 | \sa QTransform::map() |
1145 | */ |
1146 | |
1147 | /*! |
1148 | \overload |
1149 | |
1150 | Creates and returns a QPointF object that is a copy of the given point, |
1151 | \a p, mapped into the coordinate system defined by this matrix. |
1152 | */ |
1153 | QPointF QTransform::map(const QPointF &p) const |
1154 | { |
1155 | qreal fx = p.x(); |
1156 | qreal fy = p.y(); |
1157 | |
1158 | qreal x = 0, y = 0; |
1159 | |
1160 | TransformationType t = inline_type(); |
1161 | switch(t) { |
1162 | case TxNone: |
1163 | x = fx; |
1164 | y = fy; |
1165 | break; |
1166 | case TxTranslate: |
1167 | x = fx + m_matrix[2][0]; |
1168 | y = fy + m_matrix[2][1]; |
1169 | break; |
1170 | case TxScale: |
1171 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
1172 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
1173 | break; |
1174 | case TxRotate: |
1175 | case TxShear: |
1176 | case TxProject: |
1177 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
1178 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
1179 | if (t == TxProject) { |
1180 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
1181 | x *= w; |
1182 | y *= w; |
1183 | } |
1184 | } |
1185 | return QPointF(x, y); |
1186 | } |
1187 | |
1188 | /*! |
1189 | \fn QPoint QTransform::map(const QPoint &point) const |
1190 | \overload |
1191 | |
1192 | Creates and returns a QPoint object that is a copy of the given \a |
1193 | point, mapped into the coordinate system defined by this |
1194 | matrix. Note that the transformed coordinates are rounded to the |
1195 | nearest integer. |
1196 | */ |
1197 | |
1198 | /*! |
1199 | \fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
1200 | \relates QTransform |
1201 | |
1202 | This is the same as \a{matrix}.map(\a{line}). |
1203 | |
1204 | \sa QTransform::map() |
1205 | */ |
1206 | |
1207 | /*! |
1208 | \fn QLine operator*(const QLine &line, const QTransform &matrix) |
1209 | \relates QTransform |
1210 | |
1211 | This is the same as \a{matrix}.map(\a{line}). |
1212 | |
1213 | \sa QTransform::map() |
1214 | */ |
1215 | |
1216 | /*! |
1217 | \overload |
1218 | |
1219 | Creates and returns a QLineF object that is a copy of the given line, |
1220 | \a l, mapped into the coordinate system defined by this matrix. |
1221 | */ |
1222 | QLine QTransform::map(const QLine &l) const |
1223 | { |
1224 | qreal fx1 = l.x1(); |
1225 | qreal fy1 = l.y1(); |
1226 | qreal fx2 = l.x2(); |
1227 | qreal fy2 = l.y2(); |
1228 | |
1229 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
1230 | |
1231 | TransformationType t = inline_type(); |
1232 | switch(t) { |
1233 | case TxNone: |
1234 | x1 = fx1; |
1235 | y1 = fy1; |
1236 | x2 = fx2; |
1237 | y2 = fy2; |
1238 | break; |
1239 | case TxTranslate: |
1240 | x1 = fx1 + m_matrix[2][0]; |
1241 | y1 = fy1 + m_matrix[2][1]; |
1242 | x2 = fx2 + m_matrix[2][0]; |
1243 | y2 = fy2 + m_matrix[2][1]; |
1244 | break; |
1245 | case TxScale: |
1246 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
1247 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1248 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
1249 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1250 | break; |
1251 | case TxRotate: |
1252 | case TxShear: |
1253 | case TxProject: |
1254 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
1255 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1256 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
1257 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1258 | if (t == TxProject) { |
1259 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
1260 | x1 *= w; |
1261 | y1 *= w; |
1262 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
1263 | x2 *= w; |
1264 | y2 *= w; |
1265 | } |
1266 | } |
1267 | return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2)); |
1268 | } |
1269 | |
1270 | /*! |
1271 | \overload |
1272 | |
1273 | \fn QLineF QTransform::map(const QLineF &line) const |
1274 | |
1275 | Creates and returns a QLine object that is a copy of the given \a |
1276 | line, mapped into the coordinate system defined by this matrix. |
1277 | Note that the transformed coordinates are rounded to the nearest |
1278 | integer. |
1279 | */ |
1280 | |
1281 | QLineF QTransform::map(const QLineF &l) const |
1282 | { |
1283 | qreal fx1 = l.x1(); |
1284 | qreal fy1 = l.y1(); |
1285 | qreal fx2 = l.x2(); |
1286 | qreal fy2 = l.y2(); |
1287 | |
1288 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
1289 | |
1290 | TransformationType t = inline_type(); |
1291 | switch(t) { |
1292 | case TxNone: |
1293 | x1 = fx1; |
1294 | y1 = fy1; |
1295 | x2 = fx2; |
1296 | y2 = fy2; |
1297 | break; |
1298 | case TxTranslate: |
1299 | x1 = fx1 + m_matrix[2][0]; |
1300 | y1 = fy1 + m_matrix[2][1]; |
1301 | x2 = fx2 + m_matrix[2][0]; |
1302 | y2 = fy2 + m_matrix[2][1]; |
1303 | break; |
1304 | case TxScale: |
1305 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
1306 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1307 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
1308 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1309 | break; |
1310 | case TxRotate: |
1311 | case TxShear: |
1312 | case TxProject: |
1313 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
1314 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1315 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
1316 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1317 | if (t == TxProject) { |
1318 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
1319 | x1 *= w; |
1320 | y1 *= w; |
1321 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
1322 | x2 *= w; |
1323 | y2 *= w; |
1324 | } |
1325 | } |
1326 | return QLineF(x1, y1, x2, y2); |
1327 | } |
1328 | |
1329 | static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly) |
1330 | { |
1331 | if (poly.size() == 0) |
1332 | return poly; |
1333 | |
1334 | if (poly.size() == 1) |
1335 | return QPolygonF() << transform.map(poly.at(0)); |
1336 | |
1337 | QPainterPath path; |
1338 | path.addPolygon(poly); |
1339 | |
1340 | path = transform.map(path); |
1341 | |
1342 | QPolygonF result; |
1343 | const int elementCount = path.elementCount(); |
1344 | result.reserve(elementCount); |
1345 | for (int i = 0; i < elementCount; ++i) |
1346 | result << path.elementAt(i); |
1347 | return result; |
1348 | } |
1349 | |
1350 | |
1351 | /*! |
1352 | \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
1353 | \since 4.3 |
1354 | \relates QTransform |
1355 | |
1356 | This is the same as \a{matrix}.map(\a{polygon}). |
1357 | |
1358 | \sa QTransform::map() |
1359 | */ |
1360 | |
1361 | /*! |
1362 | \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
1363 | \relates QTransform |
1364 | |
1365 | This is the same as \a{matrix}.map(\a{polygon}). |
1366 | |
1367 | \sa QTransform::map() |
1368 | */ |
1369 | |
1370 | /*! |
1371 | \fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
1372 | \overload |
1373 | |
1374 | Creates and returns a QPolygonF object that is a copy of the given |
1375 | \a polygon, mapped into the coordinate system defined by this |
1376 | matrix. |
1377 | */ |
1378 | QPolygonF QTransform::map(const QPolygonF &a) const |
1379 | { |
1380 | TransformationType t = inline_type(); |
1381 | if (t <= TxTranslate) |
1382 | return a.translated(m_matrix[2][0], m_matrix[2][1]); |
1383 | |
1384 | if (t >= QTransform::TxProject) |
1385 | return mapProjective(*this, a); |
1386 | |
1387 | int size = a.size(); |
1388 | int i; |
1389 | QPolygonF p(size); |
1390 | const QPointF *da = a.constData(); |
1391 | QPointF *dp = p.data(); |
1392 | |
1393 | for(i = 0; i < size; ++i) { |
1394 | MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
1395 | } |
1396 | return p; |
1397 | } |
1398 | |
1399 | /*! |
1400 | \fn QPolygon QTransform::map(const QPolygon &polygon) const |
1401 | \overload |
1402 | |
1403 | Creates and returns a QPolygon object that is a copy of the given |
1404 | \a polygon, mapped into the coordinate system defined by this |
1405 | matrix. Note that the transformed coordinates are rounded to the |
1406 | nearest integer. |
1407 | */ |
1408 | QPolygon QTransform::map(const QPolygon &a) const |
1409 | { |
1410 | TransformationType t = inline_type(); |
1411 | if (t <= TxTranslate) |
1412 | return a.translated(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
1413 | |
1414 | if (t >= QTransform::TxProject) |
1415 | return mapProjective(*this, QPolygonF(a)).toPolygon(); |
1416 | |
1417 | int size = a.size(); |
1418 | int i; |
1419 | QPolygon p(size); |
1420 | const QPoint *da = a.constData(); |
1421 | QPoint *dp = p.data(); |
1422 | |
1423 | for(i = 0; i < size; ++i) { |
1424 | qreal nx = 0, ny = 0; |
1425 | MAP(da[i].xp, da[i].yp, nx, ny); |
1426 | dp[i].xp = qRound(nx); |
1427 | dp[i].yp = qRound(ny); |
1428 | } |
1429 | return p; |
1430 | } |
1431 | |
1432 | /*! |
1433 | \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
1434 | \relates QTransform |
1435 | |
1436 | This is the same as \a{matrix}.map(\a{region}). |
1437 | |
1438 | \sa QTransform::map() |
1439 | */ |
1440 | |
1441 | extern QPainterPath qt_regionToPath(const QRegion ®ion); |
1442 | |
1443 | /*! |
1444 | \fn QRegion QTransform::map(const QRegion ®ion) const |
1445 | \overload |
1446 | |
1447 | Creates and returns a QRegion object that is a copy of the given |
1448 | \a region, mapped into the coordinate system defined by this matrix. |
1449 | |
1450 | Calling this method can be rather expensive if rotations or |
1451 | shearing are used. |
1452 | */ |
1453 | QRegion QTransform::map(const QRegion &r) const |
1454 | { |
1455 | TransformationType t = inline_type(); |
1456 | if (t == TxNone) |
1457 | return r; |
1458 | |
1459 | if (t == TxTranslate) { |
1460 | QRegion copy(r); |
1461 | copy.translate(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
1462 | return copy; |
1463 | } |
1464 | |
1465 | if (t == TxScale) { |
1466 | QRegion res; |
1467 | if (m11() < 0 || m22() < 0) { |
1468 | for (const QRect &rect : r) |
1469 | res += mapRect(QRectF(rect)).toRect(); |
1470 | } else { |
1471 | QVarLengthArray<QRect, 32> rects; |
1472 | rects.reserve(r.rectCount()); |
1473 | for (const QRect &rect : r) { |
1474 | QRect nr = mapRect(QRectF(rect)).toRect(); |
1475 | if (!nr.isEmpty()) |
1476 | rects.append(nr); |
1477 | } |
1478 | res.setRects(rects.constData(), rects.count()); |
1479 | } |
1480 | return res; |
1481 | } |
1482 | |
1483 | QPainterPath p = map(qt_regionToPath(r)); |
1484 | return p.toFillPolygon().toPolygon(); |
1485 | } |
1486 | |
1487 | struct QHomogeneousCoordinate |
1488 | { |
1489 | qreal x; |
1490 | qreal y; |
1491 | qreal w; |
1492 | |
1493 | QHomogeneousCoordinate() {} |
1494 | QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
1495 | |
1496 | const QPointF toPoint() const { |
1497 | qreal iw = 1. / w; |
1498 | return QPointF(x * iw, y * iw); |
1499 | } |
1500 | }; |
1501 | |
1502 | static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
1503 | { |
1504 | QHomogeneousCoordinate c; |
1505 | c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
1506 | c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
1507 | c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
1508 | return c; |
1509 | } |
1510 | |
1511 | static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
1512 | bool needsMoveTo, bool needsLineTo = true) |
1513 | { |
1514 | QHomogeneousCoordinate ha = mapHomogeneous(transform, a); |
1515 | QHomogeneousCoordinate hb = mapHomogeneous(transform, b); |
1516 | |
1517 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
1518 | return false; |
1519 | |
1520 | if (hb.w < Q_NEAR_CLIP) { |
1521 | const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
1522 | |
1523 | hb.x += (ha.x - hb.x) * t; |
1524 | hb.y += (ha.y - hb.y) * t; |
1525 | hb.w = qreal(Q_NEAR_CLIP); |
1526 | } else if (ha.w < Q_NEAR_CLIP) { |
1527 | const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
1528 | |
1529 | ha.x += (hb.x - ha.x) * t; |
1530 | ha.y += (hb.y - ha.y) * t; |
1531 | ha.w = qreal(Q_NEAR_CLIP); |
1532 | |
1533 | const QPointF p = ha.toPoint(); |
1534 | if (needsMoveTo) { |
1535 | path.moveTo(p); |
1536 | needsMoveTo = false; |
1537 | } else { |
1538 | path.lineTo(p); |
1539 | } |
1540 | } |
1541 | |
1542 | if (needsMoveTo) |
1543 | path.moveTo(ha.toPoint()); |
1544 | |
1545 | if (needsLineTo) |
1546 | path.lineTo(hb.toPoint()); |
1547 | |
1548 | return true; |
1549 | } |
1550 | Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); |
1551 | |
1552 | static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
1553 | { |
1554 | // Convert projective xformed curves to line |
1555 | // segments so they can be transformed more accurately |
1556 | |
1557 | qreal scale; |
1558 | qt_scaleForTransform(transform, &scale); |
1559 | |
1560 | qreal curveThreshold = scale == 0 ? qreal(0.25) : (qreal(0.25) / scale); |
1561 | |
1562 | QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon(curveThreshold); |
1563 | |
1564 | for (int i = 0; i < segment.size() - 1; ++i) |
1565 | if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo)) |
1566 | needsMoveTo = false; |
1567 | |
1568 | return !needsMoveTo; |
1569 | } |
1570 | |
1571 | static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
1572 | { |
1573 | QPainterPath result; |
1574 | |
1575 | QPointF last; |
1576 | QPointF lastMoveTo; |
1577 | bool needsMoveTo = true; |
1578 | for (int i = 0; i < path.elementCount(); ++i) { |
1579 | switch (path.elementAt(i).type) { |
1580 | case QPainterPath::MoveToElement: |
1581 | if (i > 0 && lastMoveTo != last) |
1582 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo); |
1583 | |
1584 | lastMoveTo = path.elementAt(i); |
1585 | last = path.elementAt(i); |
1586 | needsMoveTo = true; |
1587 | break; |
1588 | case QPainterPath::LineToElement: |
1589 | if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo)) |
1590 | needsMoveTo = false; |
1591 | last = path.elementAt(i); |
1592 | break; |
1593 | case QPainterPath::CurveToElement: |
1594 | if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo)) |
1595 | needsMoveTo = false; |
1596 | i += 2; |
1597 | last = path.elementAt(i); |
1598 | break; |
1599 | default: |
1600 | Q_ASSERT(false); |
1601 | } |
1602 | } |
1603 | |
1604 | if (path.elementCount() > 0 && lastMoveTo != last) |
1605 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false); |
1606 | |
1607 | result.setFillRule(path.fillRule()); |
1608 | return result; |
1609 | } |
1610 | |
1611 | /*! |
1612 | \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
1613 | \since 4.3 |
1614 | \relates QTransform |
1615 | |
1616 | This is the same as \a{matrix}.map(\a{path}). |
1617 | |
1618 | \sa QTransform::map() |
1619 | */ |
1620 | |
1621 | /*! |
1622 | \overload |
1623 | |
1624 | Creates and returns a QPainterPath object that is a copy of the |
1625 | given \a path, mapped into the coordinate system defined by this |
1626 | matrix. |
1627 | */ |
1628 | QPainterPath QTransform::map(const QPainterPath &path) const |
1629 | { |
1630 | TransformationType t = inline_type(); |
1631 | if (t == TxNone || path.elementCount() == 0) |
1632 | return path; |
1633 | |
1634 | if (t >= TxProject) |
1635 | return mapProjective(*this, path); |
1636 | |
1637 | QPainterPath copy = path; |
1638 | |
1639 | if (t == TxTranslate) { |
1640 | copy.translate(m_matrix[2][0], m_matrix[2][1]); |
1641 | } else { |
1642 | copy.detach(); |
1643 | // Full xform |
1644 | for (int i=0; i<path.elementCount(); ++i) { |
1645 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
1646 | MAP(e.x, e.y, e.x, e.y); |
1647 | } |
1648 | } |
1649 | |
1650 | return copy; |
1651 | } |
1652 | |
1653 | /*! |
1654 | \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
1655 | |
1656 | Creates and returns a QPolygon representation of the given \a |
1657 | rectangle, mapped into the coordinate system defined by this |
1658 | matrix. |
1659 | |
1660 | The rectangle's coordinates are transformed using the following |
1661 | formulas: |
1662 | |
1663 | \snippet code/src_gui_painting_qtransform.cpp 1 |
1664 | |
1665 | Polygons and rectangles behave slightly differently when |
1666 | transformed (due to integer rounding), so |
1667 | \c{matrix.map(QPolygon(rectangle))} is not always the same as |
1668 | \c{matrix.mapToPolygon(rectangle)}. |
1669 | |
1670 | \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
1671 | Operations} |
1672 | */ |
1673 | QPolygon QTransform::mapToPolygon(const QRect &rect) const |
1674 | { |
1675 | TransformationType t = inline_type(); |
1676 | |
1677 | QPolygon a(4); |
1678 | qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
1679 | if (t <= TxScale) { |
1680 | x[0] = m_matrix[0][0]*rect.x() + m_matrix[2][0]; |
1681 | y[0] = m_matrix[1][1]*rect.y() + m_matrix[2][1]; |
1682 | qreal w = m_matrix[0][0]*rect.width(); |
1683 | qreal h = m_matrix[1][1]*rect.height(); |
1684 | if (w < 0) { |
1685 | w = -w; |
1686 | x[0] -= w; |
1687 | } |
1688 | if (h < 0) { |
1689 | h = -h; |
1690 | y[0] -= h; |
1691 | } |
1692 | x[1] = x[0]+w; |
1693 | x[2] = x[1]; |
1694 | x[3] = x[0]; |
1695 | y[1] = y[0]; |
1696 | y[2] = y[0]+h; |
1697 | y[3] = y[2]; |
1698 | } else { |
1699 | qreal right = rect.x() + rect.width(); |
1700 | qreal bottom = rect.y() + rect.height(); |
1701 | MAP(rect.x(), rect.y(), x[0], y[0]); |
1702 | MAP(right, rect.y(), x[1], y[1]); |
1703 | MAP(right, bottom, x[2], y[2]); |
1704 | MAP(rect.x(), bottom, x[3], y[3]); |
1705 | } |
1706 | |
1707 | // all coordinates are correctly, tranform to a pointarray |
1708 | // (rounding to the next integer) |
1709 | a.setPoints(4, qRound(x[0]), qRound(y[0]), |
1710 | qRound(x[1]), qRound(y[1]), |
1711 | qRound(x[2]), qRound(y[2]), |
1712 | qRound(x[3]), qRound(y[3])); |
1713 | return a; |
1714 | } |
1715 | |
1716 | /*! |
1717 | Creates a transformation matrix, \a trans, that maps a unit square |
1718 | to a four-sided polygon, \a quad. Returns \c true if the transformation |
1719 | is constructed or false if such a transformation does not exist. |
1720 | |
1721 | \sa quadToSquare(), quadToQuad() |
1722 | */ |
1723 | bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
1724 | { |
1725 | if (quad.count() != 4) |
1726 | return false; |
1727 | |
1728 | qreal dx0 = quad[0].x(); |
1729 | qreal dx1 = quad[1].x(); |
1730 | qreal dx2 = quad[2].x(); |
1731 | qreal dx3 = quad[3].x(); |
1732 | |
1733 | qreal dy0 = quad[0].y(); |
1734 | qreal dy1 = quad[1].y(); |
1735 | qreal dy2 = quad[2].y(); |
1736 | qreal dy3 = quad[3].y(); |
1737 | |
1738 | double ax = dx0 - dx1 + dx2 - dx3; |
1739 | double ay = dy0 - dy1 + dy2 - dy3; |
1740 | |
1741 | if (!ax && !ay) { //afine transform |
1742 | trans.setMatrix(dx1 - dx0, dy1 - dy0, 0, |
1743 | dx2 - dx1, dy2 - dy1, 0, |
1744 | dx0, dy0, 1); |
1745 | } else { |
1746 | double ax1 = dx1 - dx2; |
1747 | double ax2 = dx3 - dx2; |
1748 | double ay1 = dy1 - dy2; |
1749 | double ay2 = dy3 - dy2; |
1750 | |
1751 | /*determinants */ |
1752 | double gtop = ax * ay2 - ax2 * ay; |
1753 | double htop = ax1 * ay - ax * ay1; |
1754 | double bottom = ax1 * ay2 - ax2 * ay1; |
1755 | |
1756 | double a, b, c, d, e, f, g, h; /*i is always 1*/ |
1757 | |
1758 | if (!bottom) |
1759 | return false; |
1760 | |
1761 | g = gtop/bottom; |
1762 | h = htop/bottom; |
1763 | |
1764 | a = dx1 - dx0 + g * dx1; |
1765 | b = dx3 - dx0 + h * dx3; |
1766 | c = dx0; |
1767 | d = dy1 - dy0 + g * dy1; |
1768 | e = dy3 - dy0 + h * dy3; |
1769 | f = dy0; |
1770 | |
1771 | trans.setMatrix(a, d, g, |
1772 | b, e, h, |
1773 | c, f, 1.0); |
1774 | } |
1775 | |
1776 | return true; |
1777 | } |
1778 | |
1779 | /*! |
1780 | \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
1781 | |
1782 | Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
1783 | \a quad, to a unit square. Returns \c true if the transformation is constructed |
1784 | or false if such a transformation does not exist. |
1785 | |
1786 | \sa squareToQuad(), quadToQuad() |
1787 | */ |
1788 | bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
1789 | { |
1790 | if (!squareToQuad(quad, trans)) |
1791 | return false; |
1792 | |
1793 | bool invertible = false; |
1794 | trans = trans.inverted(&invertible); |
1795 | |
1796 | return invertible; |
1797 | } |
1798 | |
1799 | /*! |
1800 | Creates a transformation matrix, \a trans, that maps a four-sided |
1801 | polygon, \a one, to another four-sided polygon, \a two. |
1802 | Returns \c true if the transformation is possible; otherwise returns |
1803 | false. |
1804 | |
1805 | This is a convenience method combining quadToSquare() and |
1806 | squareToQuad() methods. It allows the input quad to be |
1807 | transformed into any other quad. |
1808 | |
1809 | \sa squareToQuad(), quadToSquare() |
1810 | */ |
1811 | bool QTransform::quadToQuad(const QPolygonF &one, |
1812 | const QPolygonF &two, |
1813 | QTransform &trans) |
1814 | { |
1815 | QTransform stq; |
1816 | if (!quadToSquare(one, trans)) |
1817 | return false; |
1818 | if (!squareToQuad(two, stq)) |
1819 | return false; |
1820 | trans *= stq; |
1821 | //qDebug()<<"Final = "<<trans; |
1822 | return true; |
1823 | } |
1824 | |
1825 | /*! |
1826 | Sets the matrix elements to the specified values, \a m11, |
1827 | \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
1828 | \a m33. Note that this function replaces the previous values. |
1829 | QTransform provides the translate(), rotate(), scale() and shear() |
1830 | convenience functions to manipulate the various matrix elements |
1831 | based on the currently defined coordinate system. |
1832 | |
1833 | \sa QTransform() |
1834 | */ |
1835 | |
1836 | void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
1837 | qreal m21, qreal m22, qreal m23, |
1838 | qreal m31, qreal m32, qreal m33) |
1839 | { |
1840 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
1841 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
1842 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
1843 | m_type = TxNone; |
1844 | m_dirty = TxProject; |
1845 | } |
1846 | |
1847 | static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform) |
1848 | { |
1849 | const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right()); |
1850 | const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom()); |
1851 | |
1852 | return wx + wy + transform.m33() < Q_NEAR_CLIP; |
1853 | } |
1854 | |
1855 | QRect QTransform::mapRect(const QRect &rect) const |
1856 | { |
1857 | TransformationType t = inline_type(); |
1858 | if (t <= TxTranslate) |
1859 | return rect.translated(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
1860 | |
1861 | if (t <= TxScale) { |
1862 | int x = qRound(m_matrix[0][0] * rect.x() + m_matrix[2][0]); |
1863 | int y = qRound(m_matrix[1][1] * rect.y() + m_matrix[2][1]); |
1864 | int w = qRound(m_matrix[0][0] * rect.width()); |
1865 | int h = qRound(m_matrix[1][1] * rect.height()); |
1866 | if (w < 0) { |
1867 | w = -w; |
1868 | x -= w; |
1869 | } |
1870 | if (h < 0) { |
1871 | h = -h; |
1872 | y -= h; |
1873 | } |
1874 | return QRect(x, y, w, h); |
1875 | } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
1876 | // see mapToPolygon for explanations of the algorithm. |
1877 | qreal x = 0, y = 0; |
1878 | MAP(rect.left(), rect.top(), x, y); |
1879 | qreal xmin = x; |
1880 | qreal ymin = y; |
1881 | qreal xmax = x; |
1882 | qreal ymax = y; |
1883 | MAP(rect.right() + 1, rect.top(), x, y); |
1884 | xmin = qMin(xmin, x); |
1885 | ymin = qMin(ymin, y); |
1886 | xmax = qMax(xmax, x); |
1887 | ymax = qMax(ymax, y); |
1888 | MAP(rect.right() + 1, rect.bottom() + 1, x, y); |
1889 | xmin = qMin(xmin, x); |
1890 | ymin = qMin(ymin, y); |
1891 | xmax = qMax(xmax, x); |
1892 | ymax = qMax(ymax, y); |
1893 | MAP(rect.left(), rect.bottom() + 1, x, y); |
1894 | xmin = qMin(xmin, x); |
1895 | ymin = qMin(ymin, y); |
1896 | xmax = qMax(xmax, x); |
1897 | ymax = qMax(ymax, y); |
1898 | return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); |
1899 | } else { |
1900 | QPainterPath path; |
1901 | path.addRect(rect); |
1902 | return map(path).boundingRect().toRect(); |
1903 | } |
1904 | } |
1905 | |
1906 | /*! |
1907 | \fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
1908 | |
1909 | Creates and returns a QRectF object that is a copy of the given \a |
1910 | rectangle, mapped into the coordinate system defined by this |
1911 | matrix. |
1912 | |
1913 | The rectangle's coordinates are transformed using the following |
1914 | formulas: |
1915 | |
1916 | \snippet code/src_gui_painting_qtransform.cpp 2 |
1917 | |
1918 | If rotation or shearing has been specified, this function returns |
1919 | the \e bounding rectangle. To retrieve the exact region the given |
1920 | \a rectangle maps to, use the mapToPolygon() function instead. |
1921 | |
1922 | \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
1923 | Operations} |
1924 | */ |
1925 | QRectF QTransform::mapRect(const QRectF &rect) const |
1926 | { |
1927 | TransformationType t = inline_type(); |
1928 | if (t <= TxTranslate) |
1929 | return rect.translated(m_matrix[2][0], m_matrix[2][1]); |
1930 | |
1931 | if (t <= TxScale) { |
1932 | qreal x = m_matrix[0][0] * rect.x() + m_matrix[2][0]; |
1933 | qreal y = m_matrix[1][1] * rect.y() + m_matrix[2][1]; |
1934 | qreal w = m_matrix[0][0] * rect.width(); |
1935 | qreal h = m_matrix[1][1] * rect.height(); |
1936 | if (w < 0) { |
1937 | w = -w; |
1938 | x -= w; |
1939 | } |
1940 | if (h < 0) { |
1941 | h = -h; |
1942 | y -= h; |
1943 | } |
1944 | return QRectF(x, y, w, h); |
1945 | } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
1946 | qreal x = 0, y = 0; |
1947 | MAP(rect.x(), rect.y(), x, y); |
1948 | qreal xmin = x; |
1949 | qreal ymin = y; |
1950 | qreal xmax = x; |
1951 | qreal ymax = y; |
1952 | MAP(rect.x() + rect.width(), rect.y(), x, y); |
1953 | xmin = qMin(xmin, x); |
1954 | ymin = qMin(ymin, y); |
1955 | xmax = qMax(xmax, x); |
1956 | ymax = qMax(ymax, y); |
1957 | MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
1958 | xmin = qMin(xmin, x); |
1959 | ymin = qMin(ymin, y); |
1960 | xmax = qMax(xmax, x); |
1961 | ymax = qMax(ymax, y); |
1962 | MAP(rect.x(), rect.y() + rect.height(), x, y); |
1963 | xmin = qMin(xmin, x); |
1964 | ymin = qMin(ymin, y); |
1965 | xmax = qMax(xmax, x); |
1966 | ymax = qMax(ymax, y); |
1967 | return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
1968 | } else { |
1969 | QPainterPath path; |
1970 | path.addRect(rect); |
1971 | return map(path).boundingRect(); |
1972 | } |
1973 | } |
1974 | |
1975 | /*! |
1976 | \fn QRect QTransform::mapRect(const QRect &rectangle) const |
1977 | \overload |
1978 | |
1979 | Creates and returns a QRect object that is a copy of the given \a |
1980 | rectangle, mapped into the coordinate system defined by this |
1981 | matrix. Note that the transformed coordinates are rounded to the |
1982 | nearest integer. |
1983 | */ |
1984 | |
1985 | /*! |
1986 | Maps the given coordinates \a x and \a y into the coordinate |
1987 | system defined by this matrix. The resulting values are put in *\a |
1988 | tx and *\a ty, respectively. |
1989 | |
1990 | The coordinates are transformed using the following formulas: |
1991 | |
1992 | \snippet code/src_gui_painting_qtransform.cpp 3 |
1993 | |
1994 | The point (x, y) is the original point, and (x', y') is the |
1995 | transformed point. |
1996 | |
1997 | \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
1998 | */ |
1999 | void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
2000 | { |
2001 | TransformationType t = inline_type(); |
2002 | MAP(x, y, *tx, *ty); |
2003 | } |
2004 | |
2005 | /*! |
2006 | \overload |
2007 | |
2008 | Maps the given coordinates \a x and \a y into the coordinate |
2009 | system defined by this matrix. The resulting values are put in *\a |
2010 | tx and *\a ty, respectively. Note that the transformed coordinates |
2011 | are rounded to the nearest integer. |
2012 | */ |
2013 | void QTransform::map(int x, int y, int *tx, int *ty) const |
2014 | { |
2015 | TransformationType t = inline_type(); |
2016 | qreal fx = 0, fy = 0; |
2017 | MAP(x, y, fx, fy); |
2018 | *tx = qRound(fx); |
2019 | *ty = qRound(fy); |
2020 | } |
2021 | |
2022 | /*! |
2023 | Returns the transformation type of this matrix. |
2024 | |
2025 | The transformation type is the highest enumeration value |
2026 | capturing all of the matrix's transformations. For example, |
2027 | if the matrix both scales and shears, the type would be \c TxShear, |
2028 | because \c TxShear has a higher enumeration value than \c TxScale. |
2029 | |
2030 | Knowing the transformation type of a matrix is useful for optimization: |
2031 | you can often handle specific types more optimally than handling |
2032 | the generic case. |
2033 | */ |
2034 | QTransform::TransformationType QTransform::type() const |
2035 | { |
2036 | if(m_dirty == TxNone || m_dirty < m_type) |
2037 | return static_cast<TransformationType>(m_type); |
2038 | |
2039 | switch (static_cast<TransformationType>(m_dirty)) { |
2040 | case TxProject: |
2041 | if (!qFuzzyIsNull(m_matrix[0][2]) || !qFuzzyIsNull(m_matrix[1][2]) || !qFuzzyIsNull(m_matrix[2][2] - 1)) { |
2042 | m_type = TxProject; |
2043 | break; |
2044 | } |
2045 | Q_FALLTHROUGH(); |
2046 | case TxShear: |
2047 | case TxRotate: |
2048 | if (!qFuzzyIsNull(m_matrix[0][1]) || !qFuzzyIsNull(m_matrix[1][0])) { |
2049 | const qreal dot = m_matrix[0][0] * m_matrix[0][1] + m_matrix[1][0] * m_matrix[1][1]; |
2050 | if (qFuzzyIsNull(dot)) |
2051 | m_type = TxRotate; |
2052 | else |
2053 | m_type = TxShear; |
2054 | break; |
2055 | } |
2056 | Q_FALLTHROUGH(); |
2057 | case TxScale: |
2058 | if (!qFuzzyIsNull(m_matrix[0][0] - 1) || !qFuzzyIsNull(m_matrix[1][1] - 1)) { |
2059 | m_type = TxScale; |
2060 | break; |
2061 | } |
2062 | Q_FALLTHROUGH(); |
2063 | case TxTranslate: |
2064 | if (!qFuzzyIsNull(m_matrix[2][0]) || !qFuzzyIsNull(m_matrix[2][1])) { |
2065 | m_type = TxTranslate; |
2066 | break; |
2067 | } |
2068 | Q_FALLTHROUGH(); |
2069 | case TxNone: |
2070 | m_type = TxNone; |
2071 | break; |
2072 | } |
2073 | |
2074 | m_dirty = TxNone; |
2075 | return static_cast<TransformationType>(m_type); |
2076 | } |
2077 | |
2078 | /*! |
2079 | |
2080 | Returns the transform as a QVariant. |
2081 | */ |
2082 | QTransform::operator QVariant() const |
2083 | { |
2084 | return QVariant::fromValue(*this); |
2085 | } |
2086 | |
2087 | |
2088 | /*! |
2089 | \fn bool QTransform::isInvertible() const |
2090 | |
2091 | Returns \c true if the matrix is invertible, otherwise returns \c false. |
2092 | |
2093 | \sa inverted() |
2094 | */ |
2095 | |
2096 | /*! |
2097 | \fn qreal QTransform::m11() const |
2098 | |
2099 | Returns the horizontal scaling factor. |
2100 | |
2101 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2102 | Operations} |
2103 | */ |
2104 | |
2105 | /*! |
2106 | \fn qreal QTransform::m12() const |
2107 | |
2108 | Returns the vertical shearing factor. |
2109 | |
2110 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2111 | Operations} |
2112 | */ |
2113 | |
2114 | /*! |
2115 | \fn qreal QTransform::m21() const |
2116 | |
2117 | Returns the horizontal shearing factor. |
2118 | |
2119 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2120 | Operations} |
2121 | */ |
2122 | |
2123 | /*! |
2124 | \fn qreal QTransform::m22() const |
2125 | |
2126 | Returns the vertical scaling factor. |
2127 | |
2128 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2129 | Operations} |
2130 | */ |
2131 | |
2132 | /*! |
2133 | \fn qreal QTransform::dx() const |
2134 | |
2135 | Returns the horizontal translation factor. |
2136 | |
2137 | \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2138 | Operations} |
2139 | */ |
2140 | |
2141 | /*! |
2142 | \fn qreal QTransform::dy() const |
2143 | |
2144 | Returns the vertical translation factor. |
2145 | |
2146 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2147 | Operations} |
2148 | */ |
2149 | |
2150 | |
2151 | /*! |
2152 | \fn qreal QTransform::m13() const |
2153 | |
2154 | Returns the horizontal projection factor. |
2155 | |
2156 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2157 | Operations} |
2158 | */ |
2159 | |
2160 | |
2161 | /*! |
2162 | \fn qreal QTransform::m23() const |
2163 | |
2164 | Returns the vertical projection factor. |
2165 | |
2166 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2167 | Operations} |
2168 | */ |
2169 | |
2170 | /*! |
2171 | \fn qreal QTransform::m31() const |
2172 | |
2173 | Returns the horizontal translation factor. |
2174 | |
2175 | \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2176 | Operations} |
2177 | */ |
2178 | |
2179 | /*! |
2180 | \fn qreal QTransform::m32() const |
2181 | |
2182 | Returns the vertical translation factor. |
2183 | |
2184 | \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2185 | Operations} |
2186 | */ |
2187 | |
2188 | /*! |
2189 | \fn qreal QTransform::m33() const |
2190 | |
2191 | Returns the division factor. |
2192 | |
2193 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2194 | Operations} |
2195 | */ |
2196 | |
2197 | /*! |
2198 | \fn qreal QTransform::determinant() const |
2199 | |
2200 | Returns the matrix's determinant. |
2201 | */ |
2202 | |
2203 | /*! |
2204 | \fn bool QTransform::isIdentity() const |
2205 | |
2206 | Returns \c true if the matrix is the identity matrix, otherwise |
2207 | returns \c false. |
2208 | |
2209 | \sa reset() |
2210 | */ |
2211 | |
2212 | /*! |
2213 | \fn bool QTransform::isAffine() const |
2214 | |
2215 | Returns \c true if the matrix represent an affine transformation, |
2216 | otherwise returns \c false. |
2217 | */ |
2218 | |
2219 | /*! |
2220 | \fn bool QTransform::isScaling() const |
2221 | |
2222 | Returns \c true if the matrix represents a scaling |
2223 | transformation, otherwise returns \c false. |
2224 | |
2225 | \sa reset() |
2226 | */ |
2227 | |
2228 | /*! |
2229 | \fn bool QTransform::isRotating() const |
2230 | |
2231 | Returns \c true if the matrix represents some kind of a |
2232 | rotating transformation, otherwise returns \c false. |
2233 | |
2234 | \note A rotation transformation of 180 degrees and/or 360 degrees is treated as a scaling transformation. |
2235 | |
2236 | \sa reset() |
2237 | */ |
2238 | |
2239 | /*! |
2240 | \fn bool QTransform::isTranslating() const |
2241 | |
2242 | Returns \c true if the matrix represents a translating |
2243 | transformation, otherwise returns \c false. |
2244 | |
2245 | \sa reset() |
2246 | */ |
2247 | |
2248 | /*! |
2249 | \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
2250 | |
2251 | \relates QTransform |
2252 | \since 4.6 |
2253 | |
2254 | Returns \c true if \a t1 and \a t2 are equal, allowing for a small |
2255 | fuzziness factor for floating-point comparisons; false otherwise. |
2256 | */ |
2257 | |
2258 | |
2259 | // returns true if the transform is uniformly scaling |
2260 | // (same scale in x and y direction) |
2261 | // scale is set to the max of x and y scaling factors |
2262 | Q_GUI_EXPORT |
2263 | bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
2264 | { |
2265 | const QTransform::TransformationType type = transform.type(); |
2266 | if (type <= QTransform::TxTranslate) { |
2267 | if (scale) |
2268 | *scale = 1; |
2269 | return true; |
2270 | } else if (type == QTransform::TxScale) { |
2271 | const qreal xScale = qAbs(transform.m11()); |
2272 | const qreal yScale = qAbs(transform.m22()); |
2273 | if (scale) |
2274 | *scale = qMax(xScale, yScale); |
2275 | return qFuzzyCompare(xScale, yScale); |
2276 | } |
2277 | |
2278 | // rotate then scale: compare columns |
2279 | const qreal xScale1 = transform.m11() * transform.m11() |
2280 | + transform.m21() * transform.m21(); |
2281 | const qreal yScale1 = transform.m12() * transform.m12() |
2282 | + transform.m22() * transform.m22(); |
2283 | |
2284 | // scale then rotate: compare rows |
2285 | const qreal xScale2 = transform.m11() * transform.m11() |
2286 | + transform.m12() * transform.m12(); |
2287 | const qreal yScale2 = transform.m21() * transform.m21() |
2288 | + transform.m22() * transform.m22(); |
2289 | |
2290 | // decide the order of rotate and scale operations |
2291 | if (qAbs(xScale1 - yScale1) > qAbs(xScale2 - yScale2)) { |
2292 | if (scale) |
2293 | *scale = qSqrt(qMax(xScale1, yScale1)); |
2294 | |
2295 | return type == QTransform::TxRotate && qFuzzyCompare(xScale1, yScale1); |
2296 | } else { |
2297 | if (scale) |
2298 | *scale = qSqrt(qMax(xScale2, yScale2)); |
2299 | |
2300 | return type == QTransform::TxRotate && qFuzzyCompare(xScale2, yScale2); |
2301 | } |
2302 | } |
2303 | |
2304 | QDataStream & operator>>(QDataStream &s, QTransform::Affine &m) |
2305 | { |
2306 | if (s.version() == 1) { |
2307 | float m11, m12, m21, m22, dx, dy; |
2308 | s >> m11; s >> m12; s >> m21; s >> m22; s >> dx; s >> dy; |
2309 | |
2310 | m.m_matrix[0][0] = m11; |
2311 | m.m_matrix[0][1] = m12; |
2312 | m.m_matrix[1][0] = m21; |
2313 | m.m_matrix[1][1] = m22; |
2314 | m.m_matrix[2][0] = dx; |
2315 | m.m_matrix[2][1] = dy; |
2316 | } else { |
2317 | s >> m.m_matrix[0][0]; |
2318 | s >> m.m_matrix[0][1]; |
2319 | s >> m.m_matrix[1][0]; |
2320 | s >> m.m_matrix[1][1]; |
2321 | s >> m.m_matrix[2][0]; |
2322 | s >> m.m_matrix[2][1]; |
2323 | } |
2324 | m.m_matrix[0][2] = 0; |
2325 | m.m_matrix[1][2] = 0; |
2326 | m.m_matrix[2][2] = 1; |
2327 | return s; |
2328 | } |
2329 | |
2330 | QDataStream &operator<<(QDataStream &s, const QTransform::Affine &m) |
2331 | { |
2332 | if (s.version() == 1) { |
2333 | s << (float)m.m_matrix[0][0] |
2334 | << (float)m.m_matrix[0][1] |
2335 | << (float)m.m_matrix[1][0] |
2336 | << (float)m.m_matrix[1][1] |
2337 | << (float)m.m_matrix[2][0] |
2338 | << (float)m.m_matrix[2][1]; |
2339 | } else { |
2340 | s << m.m_matrix[0][0] |
2341 | << m.m_matrix[0][1] |
2342 | << m.m_matrix[1][0] |
2343 | << m.m_matrix[1][1] |
2344 | << m.m_matrix[2][0] |
2345 | << m.m_matrix[2][1]; |
2346 | } |
2347 | return s; |
2348 | } |
2349 | |
2350 | QT_END_NAMESPACE |
2351 | |