| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | #include "qtransform.h" |
| 40 | |
| 41 | #include "qdatastream.h" |
| 42 | #include "qdebug.h" |
| 43 | #include "qhashfunctions.h" |
| 44 | #include "qregion.h" |
| 45 | #include "qpainterpath.h" |
| 46 | #include "qpainterpath_p.h" |
| 47 | #include "qvariant.h" |
| 48 | #include <qmath.h> |
| 49 | #include <qnumeric.h> |
| 50 | |
| 51 | #include <private/qbezier_p.h> |
| 52 | |
| 53 | QT_BEGIN_NAMESPACE |
| 54 | |
| 55 | #ifndef QT_NO_DEBUG |
| 56 | Q_NEVER_INLINE |
| 57 | static void nanWarning(const char *func) |
| 58 | { |
| 59 | qWarning("QTransform::%s with NaN called" , func); |
| 60 | } |
| 61 | #endif // QT_NO_DEBUG |
| 62 | |
| 63 | #define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
| 64 | |
| 65 | #ifdef MAP |
| 66 | # undef MAP |
| 67 | #endif |
| 68 | #define MAP(x, y, nx, ny) \ |
| 69 | do { \ |
| 70 | qreal FX_ = x; \ |
| 71 | qreal FY_ = y; \ |
| 72 | switch(t) { \ |
| 73 | case TxNone: \ |
| 74 | nx = FX_; \ |
| 75 | ny = FY_; \ |
| 76 | break; \ |
| 77 | case TxTranslate: \ |
| 78 | nx = FX_ + m_matrix[2][0]; \ |
| 79 | ny = FY_ + m_matrix[2][1]; \ |
| 80 | break; \ |
| 81 | case TxScale: \ |
| 82 | nx = m_matrix[0][0] * FX_ + m_matrix[2][0]; \ |
| 83 | ny = m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
| 84 | break; \ |
| 85 | case TxRotate: \ |
| 86 | case TxShear: \ |
| 87 | case TxProject: \ |
| 88 | nx = m_matrix[0][0] * FX_ + m_matrix[1][0] * FY_ + m_matrix[2][0]; \ |
| 89 | ny = m_matrix[0][1] * FX_ + m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
| 90 | if (t == TxProject) { \ |
| 91 | qreal w = (m_matrix[0][2] * FX_ + m_matrix[1][2] * FY_ + m_matrix[2][2]); \ |
| 92 | if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \ |
| 93 | w = 1./w; \ |
| 94 | nx *= w; \ |
| 95 | ny *= w; \ |
| 96 | } \ |
| 97 | } \ |
| 98 | } while (0) |
| 99 | |
| 100 | /*! |
| 101 | \class QTransform |
| 102 | \brief The QTransform class specifies 2D transformations of a coordinate system. |
| 103 | \since 4.3 |
| 104 | \ingroup painting |
| 105 | \inmodule QtGui |
| 106 | |
| 107 | A transformation specifies how to translate, scale, shear, rotate |
| 108 | or project the coordinate system, and is typically used when |
| 109 | rendering graphics. |
| 110 | |
| 111 | A QTransform object can be built using the setMatrix(), scale(), |
| 112 | rotate(), translate() and shear() functions. Alternatively, it |
| 113 | can be built by applying \l {QTransform#Basic Matrix |
| 114 | Operations}{basic matrix operations}. The matrix can also be |
| 115 | defined when constructed, and it can be reset to the identity |
| 116 | matrix (the default) using the reset() function. |
| 117 | |
| 118 | The QTransform class supports mapping of graphic primitives: A given |
| 119 | point, line, polygon, region, or painter path can be mapped to the |
| 120 | coordinate system defined by \e this matrix using the map() |
| 121 | function. In case of a rectangle, its coordinates can be |
| 122 | transformed using the mapRect() function. A rectangle can also be |
| 123 | transformed into a \e polygon (mapped to the coordinate system |
| 124 | defined by \e this matrix), using the mapToPolygon() function. |
| 125 | |
| 126 | QTransform provides the isIdentity() function which returns \c true if |
| 127 | the matrix is the identity matrix, and the isInvertible() function |
| 128 | which returns \c true if the matrix is non-singular (i.e. AB = BA = |
| 129 | I). The inverted() function returns an inverted copy of \e this |
| 130 | matrix if it is invertible (otherwise it returns the identity |
| 131 | matrix), and adjoint() returns the matrix's classical adjoint. |
| 132 | In addition, QTransform provides the determinant() function which |
| 133 | returns the matrix's determinant. |
| 134 | |
| 135 | Finally, the QTransform class supports matrix multiplication, addition |
| 136 | and subtraction, and objects of the class can be streamed as well |
| 137 | as compared. |
| 138 | |
| 139 | \tableofcontents |
| 140 | |
| 141 | \section1 Rendering Graphics |
| 142 | |
| 143 | When rendering graphics, the matrix defines the transformations |
| 144 | but the actual transformation is performed by the drawing routines |
| 145 | in QPainter. |
| 146 | |
| 147 | By default, QPainter operates on the associated device's own |
| 148 | coordinate system. The standard coordinate system of a |
| 149 | QPaintDevice has its origin located at the top-left position. The |
| 150 | \e x values increase to the right; \e y values increase |
| 151 | downward. For a complete description, see the \l {Coordinate |
| 152 | System} {coordinate system} documentation. |
| 153 | |
| 154 | QPainter has functions to translate, scale, shear and rotate the |
| 155 | coordinate system without using a QTransform. For example: |
| 156 | |
| 157 | \table 100% |
| 158 | \row |
| 159 | \li \inlineimage qtransform-simpletransformation.png |
| 160 | \li |
| 161 | \snippet transform/main.cpp 0 |
| 162 | \endtable |
| 163 | |
| 164 | Although these functions are very convenient, it can be more |
| 165 | efficient to build a QTransform and call QPainter::setTransform() if you |
| 166 | want to perform more than a single transform operation. For |
| 167 | example: |
| 168 | |
| 169 | \table 100% |
| 170 | \row |
| 171 | \li \inlineimage qtransform-combinedtransformation.png |
| 172 | \li |
| 173 | \snippet transform/main.cpp 1 |
| 174 | \endtable |
| 175 | |
| 176 | \section1 Basic Matrix Operations |
| 177 | |
| 178 | \image qtransform-representation.png |
| 179 | |
| 180 | A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
| 181 | \c m32 (\c dy) elements specify horizontal and vertical translation. |
| 182 | The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
| 183 | The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
| 184 | And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
| 185 | projection, with \c m33 as an additional projection factor. |
| 186 | |
| 187 | QTransform transforms a point in the plane to another point using the |
| 188 | following formulas: |
| 189 | |
| 190 | \snippet code/src_gui_painting_qtransform.cpp 0 |
| 191 | |
| 192 | The point \e (x, y) is the original point, and \e (x', y') is the |
| 193 | transformed point. \e (x', y') can be transformed back to \e (x, |
| 194 | y) by performing the same operation on the inverted() matrix. |
| 195 | |
| 196 | The various matrix elements can be set when constructing the |
| 197 | matrix, or by using the setMatrix() function later on. They can also |
| 198 | be manipulated using the translate(), rotate(), scale() and |
| 199 | shear() convenience functions. The currently set values can be |
| 200 | retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
| 201 | m31(), m32(), m33(), dx() and dy() functions. |
| 202 | |
| 203 | Translation is the simplest transformation. Setting \c dx and \c |
| 204 | dy will move the coordinate system \c dx units along the X axis |
| 205 | and \c dy units along the Y axis. Scaling can be done by setting |
| 206 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
| 207 | 1.5 will double the height and increase the width by 50%. The |
| 208 | identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
| 209 | to 0) mapping a point to itself. Shearing is controlled by \c m12 |
| 210 | and \c m21. Setting these elements to values different from zero |
| 211 | will twist the coordinate system. Rotation is achieved by |
| 212 | setting both the shearing factors and the scaling factors. Perspective |
| 213 | transformation is achieved by setting both the projection factors and |
| 214 | the scaling factors. |
| 215 | |
| 216 | Here's the combined transformations example using basic matrix |
| 217 | operations: |
| 218 | |
| 219 | \table 100% |
| 220 | \row |
| 221 | \li \inlineimage qtransform-combinedtransformation2.png |
| 222 | \li |
| 223 | \snippet transform/main.cpp 2 |
| 224 | \endtable |
| 225 | |
| 226 | \sa QPainter, {Coordinate System}, {painting/affine}{Affine |
| 227 | Transformations Example}, {Transformations Example} |
| 228 | */ |
| 229 | |
| 230 | /*! |
| 231 | \enum QTransform::TransformationType |
| 232 | |
| 233 | \value TxNone |
| 234 | \value TxTranslate |
| 235 | \value TxScale |
| 236 | \value TxRotate |
| 237 | \value TxShear |
| 238 | \value TxProject |
| 239 | */ |
| 240 | |
| 241 | /*! |
| 242 | \fn QTransform::QTransform(Qt::Initialization) |
| 243 | \internal |
| 244 | */ |
| 245 | |
| 246 | /*! |
| 247 | \fn QTransform::QTransform() |
| 248 | |
| 249 | Constructs an identity matrix. |
| 250 | |
| 251 | All elements are set to zero except \c m11 and \c m22 (specifying |
| 252 | the scale) and \c m33 which are set to 1. |
| 253 | |
| 254 | \sa reset() |
| 255 | */ |
| 256 | |
| 257 | /*! |
| 258 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
| 259 | |
| 260 | Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
| 261 | \a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
| 262 | |
| 263 | \sa setMatrix() |
| 264 | */ |
| 265 | |
| 266 | /*! |
| 267 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
| 268 | |
| 269 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
| 270 | |
| 271 | \sa setMatrix() |
| 272 | */ |
| 273 | |
| 274 | /*! |
| 275 | Returns the adjoint of this matrix. |
| 276 | */ |
| 277 | QTransform QTransform::adjoint() const |
| 278 | { |
| 279 | qreal h11, h12, h13, |
| 280 | h21, h22, h23, |
| 281 | h31, h32, h33; |
| 282 | h11 = m_matrix[1][1] * m_matrix[2][2] - m_matrix[1][2] * m_matrix[2][1]; |
| 283 | h21 = m_matrix[1][2] * m_matrix[2][0] - m_matrix[1][0] * m_matrix[2][2]; |
| 284 | h31 = m_matrix[1][0] * m_matrix[2][1] - m_matrix[1][1] * m_matrix[2][0]; |
| 285 | h12 = m_matrix[0][2] * m_matrix[2][1] - m_matrix[0][1] * m_matrix[2][2]; |
| 286 | h22 = m_matrix[0][0] * m_matrix[2][2] - m_matrix[0][2] * m_matrix[2][0]; |
| 287 | h32 = m_matrix[0][1] * m_matrix[2][0] - m_matrix[0][0] * m_matrix[2][1]; |
| 288 | h13 = m_matrix[0][1] * m_matrix[1][2] - m_matrix[0][2] * m_matrix[1][1]; |
| 289 | h23 = m_matrix[0][2] * m_matrix[1][0] - m_matrix[0][0] * m_matrix[1][2]; |
| 290 | h33 = m_matrix[0][0] * m_matrix[1][1] - m_matrix[0][1] * m_matrix[1][0]; |
| 291 | |
| 292 | return QTransform(h11, h12, h13, |
| 293 | h21, h22, h23, |
| 294 | h31, h32, h33); |
| 295 | } |
| 296 | |
| 297 | /*! |
| 298 | Returns the transpose of this matrix. |
| 299 | */ |
| 300 | QTransform QTransform::transposed() const |
| 301 | { |
| 302 | QTransform t(m_matrix[0][0], m_matrix[1][0], m_matrix[2][0], |
| 303 | m_matrix[0][1], m_matrix[1][1], m_matrix[2][1], |
| 304 | m_matrix[0][2], m_matrix[1][2], m_matrix[2][2]); |
| 305 | return t; |
| 306 | } |
| 307 | |
| 308 | /*! |
| 309 | Returns an inverted copy of this matrix. |
| 310 | |
| 311 | If the matrix is singular (not invertible), the returned matrix is |
| 312 | the identity matrix. If \a invertible is valid (i.e. not 0), its |
| 313 | value is set to true if the matrix is invertible, otherwise it is |
| 314 | set to false. |
| 315 | |
| 316 | \sa isInvertible() |
| 317 | */ |
| 318 | QTransform QTransform::inverted(bool *invertible) const |
| 319 | { |
| 320 | QTransform invert; |
| 321 | bool inv = true; |
| 322 | |
| 323 | switch(inline_type()) { |
| 324 | case TxNone: |
| 325 | break; |
| 326 | case TxTranslate: |
| 327 | invert.m_matrix[2][0] = -m_matrix[2][0]; |
| 328 | invert.m_matrix[2][1] = -m_matrix[2][1]; |
| 329 | break; |
| 330 | case TxScale: |
| 331 | inv = !qFuzzyIsNull(m_matrix[0][0]); |
| 332 | inv &= !qFuzzyIsNull(m_matrix[1][1]); |
| 333 | if (inv) { |
| 334 | invert.m_matrix[0][0] = 1. / m_matrix[0][0]; |
| 335 | invert.m_matrix[1][1] = 1. / m_matrix[1][1]; |
| 336 | invert.m_matrix[2][0] = -m_matrix[2][0] * invert.m_matrix[0][0]; |
| 337 | invert.m_matrix[2][1] = -m_matrix[2][1] * invert.m_matrix[1][1]; |
| 338 | } |
| 339 | break; |
| 340 | // case TxRotate: |
| 341 | // case TxShear: |
| 342 | // invert.affine = affine.inverted(&inv); |
| 343 | // break; |
| 344 | default: |
| 345 | // general case |
| 346 | qreal det = determinant(); |
| 347 | inv = !qFuzzyIsNull(det); |
| 348 | if (inv) |
| 349 | invert = adjoint() / det; |
| 350 | break; |
| 351 | } |
| 352 | |
| 353 | if (invertible) |
| 354 | *invertible = inv; |
| 355 | |
| 356 | if (inv) { |
| 357 | // inverting doesn't change the type |
| 358 | invert.m_type = m_type; |
| 359 | invert.m_dirty = m_dirty; |
| 360 | } |
| 361 | |
| 362 | return invert; |
| 363 | } |
| 364 | |
| 365 | /*! |
| 366 | Moves the coordinate system \a dx along the x axis and \a dy along |
| 367 | the y axis, and returns a reference to the matrix. |
| 368 | |
| 369 | \sa setMatrix() |
| 370 | */ |
| 371 | QTransform &QTransform::translate(qreal dx, qreal dy) |
| 372 | { |
| 373 | if (dx == 0 && dy == 0) |
| 374 | return *this; |
| 375 | #ifndef QT_NO_DEBUG |
| 376 | if (qIsNaN(dx) | qIsNaN(dy)) { |
| 377 | nanWarning("translate" ); |
| 378 | return *this; |
| 379 | } |
| 380 | #endif |
| 381 | |
| 382 | switch(inline_type()) { |
| 383 | case TxNone: |
| 384 | m_matrix[2][0] = dx; |
| 385 | m_matrix[2][1] = dy; |
| 386 | break; |
| 387 | case TxTranslate: |
| 388 | m_matrix[2][0] += dx; |
| 389 | m_matrix[2][1] += dy; |
| 390 | break; |
| 391 | case TxScale: |
| 392 | m_matrix[2][0] += dx * m_matrix[0][0]; |
| 393 | m_matrix[2][1] += dy * m_matrix[1][1]; |
| 394 | break; |
| 395 | case TxProject: |
| 396 | m_matrix[2][2] += dx * m_matrix[0][2] + dy * m_matrix[1][2]; |
| 397 | Q_FALLTHROUGH(); |
| 398 | case TxShear: |
| 399 | case TxRotate: |
| 400 | m_matrix[2][0] += dx * m_matrix[0][0] + dy * m_matrix[1][0]; |
| 401 | m_matrix[2][1] += dy * m_matrix[1][1] + dx * m_matrix[0][1]; |
| 402 | break; |
| 403 | } |
| 404 | if (m_dirty < TxTranslate) |
| 405 | m_dirty = TxTranslate; |
| 406 | return *this; |
| 407 | } |
| 408 | |
| 409 | /*! |
| 410 | Creates a matrix which corresponds to a translation of \a dx along |
| 411 | the x axis and \a dy along the y axis. This is the same as |
| 412 | QTransform().translate(dx, dy) but slightly faster. |
| 413 | |
| 414 | \since 4.5 |
| 415 | */ |
| 416 | QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
| 417 | { |
| 418 | #ifndef QT_NO_DEBUG |
| 419 | if (qIsNaN(dx) | qIsNaN(dy)) { |
| 420 | nanWarning("fromTranslate" ); |
| 421 | return QTransform(); |
| 422 | } |
| 423 | #endif |
| 424 | QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1); |
| 425 | if (dx == 0 && dy == 0) |
| 426 | transform.m_type = TxNone; |
| 427 | else |
| 428 | transform.m_type = TxTranslate; |
| 429 | transform.m_dirty = TxNone; |
| 430 | return transform; |
| 431 | } |
| 432 | |
| 433 | /*! |
| 434 | Scales the coordinate system by \a sx horizontally and \a sy |
| 435 | vertically, and returns a reference to the matrix. |
| 436 | |
| 437 | \sa setMatrix() |
| 438 | */ |
| 439 | QTransform & QTransform::scale(qreal sx, qreal sy) |
| 440 | { |
| 441 | if (sx == 1 && sy == 1) |
| 442 | return *this; |
| 443 | #ifndef QT_NO_DEBUG |
| 444 | if (qIsNaN(sx) | qIsNaN(sy)) { |
| 445 | nanWarning("scale" ); |
| 446 | return *this; |
| 447 | } |
| 448 | #endif |
| 449 | |
| 450 | switch(inline_type()) { |
| 451 | case TxNone: |
| 452 | case TxTranslate: |
| 453 | m_matrix[0][0] = sx; |
| 454 | m_matrix[1][1] = sy; |
| 455 | break; |
| 456 | case TxProject: |
| 457 | m_matrix[0][2] *= sx; |
| 458 | m_matrix[1][2] *= sy; |
| 459 | Q_FALLTHROUGH(); |
| 460 | case TxRotate: |
| 461 | case TxShear: |
| 462 | m_matrix[0][1] *= sx; |
| 463 | m_matrix[1][0] *= sy; |
| 464 | Q_FALLTHROUGH(); |
| 465 | case TxScale: |
| 466 | m_matrix[0][0] *= sx; |
| 467 | m_matrix[1][1] *= sy; |
| 468 | break; |
| 469 | } |
| 470 | if (m_dirty < TxScale) |
| 471 | m_dirty = TxScale; |
| 472 | return *this; |
| 473 | } |
| 474 | |
| 475 | /*! |
| 476 | Creates a matrix which corresponds to a scaling of |
| 477 | \a sx horizontally and \a sy vertically. |
| 478 | This is the same as QTransform().scale(sx, sy) but slightly faster. |
| 479 | |
| 480 | \since 4.5 |
| 481 | */ |
| 482 | QTransform QTransform::fromScale(qreal sx, qreal sy) |
| 483 | { |
| 484 | #ifndef QT_NO_DEBUG |
| 485 | if (qIsNaN(sx) | qIsNaN(sy)) { |
| 486 | nanWarning("fromScale" ); |
| 487 | return QTransform(); |
| 488 | } |
| 489 | #endif |
| 490 | QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1); |
| 491 | if (sx == 1. && sy == 1.) |
| 492 | transform.m_type = TxNone; |
| 493 | else |
| 494 | transform.m_type = TxScale; |
| 495 | transform.m_dirty = TxNone; |
| 496 | return transform; |
| 497 | } |
| 498 | |
| 499 | /*! |
| 500 | Shears the coordinate system by \a sh horizontally and \a sv |
| 501 | vertically, and returns a reference to the matrix. |
| 502 | |
| 503 | \sa setMatrix() |
| 504 | */ |
| 505 | QTransform & QTransform::shear(qreal sh, qreal sv) |
| 506 | { |
| 507 | if (sh == 0 && sv == 0) |
| 508 | return *this; |
| 509 | #ifndef QT_NO_DEBUG |
| 510 | if (qIsNaN(sh) | qIsNaN(sv)) { |
| 511 | nanWarning("shear" ); |
| 512 | return *this; |
| 513 | } |
| 514 | #endif |
| 515 | |
| 516 | switch(inline_type()) { |
| 517 | case TxNone: |
| 518 | case TxTranslate: |
| 519 | m_matrix[0][1] = sv; |
| 520 | m_matrix[1][0] = sh; |
| 521 | break; |
| 522 | case TxScale: |
| 523 | m_matrix[0][1] = sv*m_matrix[1][1]; |
| 524 | m_matrix[1][0] = sh*m_matrix[0][0]; |
| 525 | break; |
| 526 | case TxProject: { |
| 527 | qreal tm13 = sv * m_matrix[1][2]; |
| 528 | qreal tm23 = sh * m_matrix[0][2]; |
| 529 | m_matrix[0][2] += tm13; |
| 530 | m_matrix[1][2] += tm23; |
| 531 | } |
| 532 | Q_FALLTHROUGH(); |
| 533 | case TxRotate: |
| 534 | case TxShear: { |
| 535 | qreal tm11 = sv * m_matrix[1][0]; |
| 536 | qreal tm22 = sh * m_matrix[0][1]; |
| 537 | qreal tm12 = sv * m_matrix[1][1]; |
| 538 | qreal tm21 = sh * m_matrix[0][0]; |
| 539 | m_matrix[0][0] += tm11; |
| 540 | m_matrix[0][1] += tm12; |
| 541 | m_matrix[1][0] += tm21; |
| 542 | m_matrix[1][1] += tm22; |
| 543 | break; |
| 544 | } |
| 545 | } |
| 546 | if (m_dirty < TxShear) |
| 547 | m_dirty = TxShear; |
| 548 | return *this; |
| 549 | } |
| 550 | |
| 551 | const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
| 552 | const qreal inv_dist_to_plane = 1. / 1024.; |
| 553 | |
| 554 | /*! |
| 555 | \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis) |
| 556 | |
| 557 | Rotates the coordinate system counterclockwise by the given \a angle |
| 558 | about the specified \a axis and returns a reference to the matrix. |
| 559 | |
| 560 | Note that if you apply a QTransform to a point defined in widget |
| 561 | coordinates, the direction of the rotation will be clockwise |
| 562 | because the y-axis points downwards. |
| 563 | |
| 564 | The angle is specified in degrees. |
| 565 | |
| 566 | \sa setMatrix() |
| 567 | */ |
| 568 | QTransform & QTransform::rotate(qreal a, Qt::Axis axis) |
| 569 | { |
| 570 | if (a == 0) |
| 571 | return *this; |
| 572 | #ifndef QT_NO_DEBUG |
| 573 | if (qIsNaN(a)) { |
| 574 | nanWarning("rotate" ); |
| 575 | return *this; |
| 576 | } |
| 577 | #endif |
| 578 | |
| 579 | qreal sina = 0; |
| 580 | qreal cosa = 0; |
| 581 | if (a == 90. || a == -270.) |
| 582 | sina = 1.; |
| 583 | else if (a == 270. || a == -90.) |
| 584 | sina = -1.; |
| 585 | else if (a == 180.) |
| 586 | cosa = -1.; |
| 587 | else{ |
| 588 | qreal b = deg2rad*a; // convert to radians |
| 589 | sina = qSin(b); // fast and convenient |
| 590 | cosa = qCos(b); |
| 591 | } |
| 592 | |
| 593 | if (axis == Qt::ZAxis) { |
| 594 | switch(inline_type()) { |
| 595 | case TxNone: |
| 596 | case TxTranslate: |
| 597 | m_matrix[0][0] = cosa; |
| 598 | m_matrix[0][1] = sina; |
| 599 | m_matrix[1][0] = -sina; |
| 600 | m_matrix[1][1] = cosa; |
| 601 | break; |
| 602 | case TxScale: { |
| 603 | qreal tm11 = cosa * m_matrix[0][0]; |
| 604 | qreal tm12 = sina * m_matrix[1][1]; |
| 605 | qreal tm21 = -sina * m_matrix[0][0]; |
| 606 | qreal tm22 = cosa * m_matrix[1][1]; |
| 607 | m_matrix[0][0] = tm11; |
| 608 | m_matrix[0][1] = tm12; |
| 609 | m_matrix[1][0] = tm21; |
| 610 | m_matrix[1][1] = tm22; |
| 611 | break; |
| 612 | } |
| 613 | case TxProject: { |
| 614 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
| 615 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
| 616 | m_matrix[0][2] = tm13; |
| 617 | m_matrix[1][2] = tm23; |
| 618 | Q_FALLTHROUGH(); |
| 619 | } |
| 620 | case TxRotate: |
| 621 | case TxShear: { |
| 622 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
| 623 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
| 624 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
| 625 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
| 626 | m_matrix[0][0] = tm11; |
| 627 | m_matrix[0][1] = tm12; |
| 628 | m_matrix[1][0] = tm21; |
| 629 | m_matrix[1][1] = tm22; |
| 630 | break; |
| 631 | } |
| 632 | } |
| 633 | if (m_dirty < TxRotate) |
| 634 | m_dirty = TxRotate; |
| 635 | } else { |
| 636 | QTransform result; |
| 637 | if (axis == Qt::YAxis) { |
| 638 | result.m_matrix[0][0] = cosa; |
| 639 | result.m_matrix[0][2] = -sina * inv_dist_to_plane; |
| 640 | } else { |
| 641 | result.m_matrix[1][1] = cosa; |
| 642 | result.m_matrix[1][2] = -sina * inv_dist_to_plane; |
| 643 | } |
| 644 | result.m_type = TxProject; |
| 645 | *this = result * *this; |
| 646 | } |
| 647 | |
| 648 | return *this; |
| 649 | } |
| 650 | |
| 651 | /*! |
| 652 | \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis) |
| 653 | |
| 654 | Rotates the coordinate system counterclockwise by the given \a angle |
| 655 | about the specified \a axis and returns a reference to the matrix. |
| 656 | |
| 657 | Note that if you apply a QTransform to a point defined in widget |
| 658 | coordinates, the direction of the rotation will be clockwise |
| 659 | because the y-axis points downwards. |
| 660 | |
| 661 | The angle is specified in radians. |
| 662 | |
| 663 | \sa setMatrix() |
| 664 | */ |
| 665 | QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis) |
| 666 | { |
| 667 | #ifndef QT_NO_DEBUG |
| 668 | if (qIsNaN(a)) { |
| 669 | nanWarning("rotateRadians" ); |
| 670 | return *this; |
| 671 | } |
| 672 | #endif |
| 673 | qreal sina = qSin(a); |
| 674 | qreal cosa = qCos(a); |
| 675 | |
| 676 | if (axis == Qt::ZAxis) { |
| 677 | switch(inline_type()) { |
| 678 | case TxNone: |
| 679 | case TxTranslate: |
| 680 | m_matrix[0][0] = cosa; |
| 681 | m_matrix[0][1] = sina; |
| 682 | m_matrix[1][0] = -sina; |
| 683 | m_matrix[1][1] = cosa; |
| 684 | break; |
| 685 | case TxScale: { |
| 686 | qreal tm11 = cosa * m_matrix[0][0]; |
| 687 | qreal tm12 = sina * m_matrix[1][1]; |
| 688 | qreal tm21 = -sina * m_matrix[0][0]; |
| 689 | qreal tm22 = cosa * m_matrix[1][1]; |
| 690 | m_matrix[0][0] = tm11; |
| 691 | m_matrix[0][1] = tm12; |
| 692 | m_matrix[1][0] = tm21; |
| 693 | m_matrix[1][1] = tm22; |
| 694 | break; |
| 695 | } |
| 696 | case TxProject: { |
| 697 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
| 698 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
| 699 | m_matrix[0][2] = tm13; |
| 700 | m_matrix[1][2] = tm23; |
| 701 | Q_FALLTHROUGH(); |
| 702 | } |
| 703 | case TxRotate: |
| 704 | case TxShear: { |
| 705 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
| 706 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
| 707 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
| 708 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
| 709 | m_matrix[0][0] = tm11; |
| 710 | m_matrix[0][1] = tm12; |
| 711 | m_matrix[1][0] = tm21; |
| 712 | m_matrix[1][1] = tm22; |
| 713 | break; |
| 714 | } |
| 715 | } |
| 716 | if (m_dirty < TxRotate) |
| 717 | m_dirty = TxRotate; |
| 718 | } else { |
| 719 | QTransform result; |
| 720 | if (axis == Qt::YAxis) { |
| 721 | result.m_matrix[0][0] = cosa; |
| 722 | result.m_matrix[0][2] = -sina * inv_dist_to_plane; |
| 723 | } else { |
| 724 | result.m_matrix[1][1] = cosa; |
| 725 | result.m_matrix[1][2] = -sina * inv_dist_to_plane; |
| 726 | } |
| 727 | result.m_type = TxProject; |
| 728 | *this = result * *this; |
| 729 | } |
| 730 | return *this; |
| 731 | } |
| 732 | |
| 733 | /*! |
| 734 | \fn bool QTransform::operator==(const QTransform &matrix) const |
| 735 | Returns \c true if this matrix is equal to the given \a matrix, |
| 736 | otherwise returns \c false. |
| 737 | */ |
| 738 | bool QTransform::operator==(const QTransform &o) const |
| 739 | { |
| 740 | return m_matrix[0][0] == o.m_matrix[0][0] && |
| 741 | m_matrix[0][1] == o.m_matrix[0][1] && |
| 742 | m_matrix[1][0] == o.m_matrix[1][0] && |
| 743 | m_matrix[1][1] == o.m_matrix[1][1] && |
| 744 | m_matrix[2][0] == o.m_matrix[2][0] && |
| 745 | m_matrix[2][1] == o.m_matrix[2][1] && |
| 746 | m_matrix[0][2] == o.m_matrix[0][2] && |
| 747 | m_matrix[1][2] == o.m_matrix[1][2] && |
| 748 | m_matrix[2][2] == o.m_matrix[2][2]; |
| 749 | } |
| 750 | |
| 751 | /*! |
| 752 | \since 5.6 |
| 753 | \relates QTransform |
| 754 | |
| 755 | Returns the hash value for \a key, using |
| 756 | \a seed to seed the calculation. |
| 757 | */ |
| 758 | size_t qHash(const QTransform &key, size_t seed) noexcept |
| 759 | { |
| 760 | QtPrivate::QHashCombine hash; |
| 761 | seed = hash(seed, key.m11()); |
| 762 | seed = hash(seed, key.m12()); |
| 763 | seed = hash(seed, key.m21()); |
| 764 | seed = hash(seed, key.m22()); |
| 765 | seed = hash(seed, key.dx()); |
| 766 | seed = hash(seed, key.dy()); |
| 767 | seed = hash(seed, key.m13()); |
| 768 | seed = hash(seed, key.m23()); |
| 769 | seed = hash(seed, key.m33()); |
| 770 | return seed; |
| 771 | } |
| 772 | |
| 773 | |
| 774 | /*! |
| 775 | \fn bool QTransform::operator!=(const QTransform &matrix) const |
| 776 | Returns \c true if this matrix is not equal to the given \a matrix, |
| 777 | otherwise returns \c false. |
| 778 | */ |
| 779 | bool QTransform::operator!=(const QTransform &o) const |
| 780 | { |
| 781 | return !operator==(o); |
| 782 | } |
| 783 | |
| 784 | /*! |
| 785 | \fn QTransform & QTransform::operator*=(const QTransform &matrix) |
| 786 | \overload |
| 787 | |
| 788 | Returns the result of multiplying this matrix by the given \a |
| 789 | matrix. |
| 790 | */ |
| 791 | QTransform & QTransform::operator*=(const QTransform &o) |
| 792 | { |
| 793 | const TransformationType otherType = o.inline_type(); |
| 794 | if (otherType == TxNone) |
| 795 | return *this; |
| 796 | |
| 797 | const TransformationType thisType = inline_type(); |
| 798 | if (thisType == TxNone) |
| 799 | return operator=(o); |
| 800 | |
| 801 | TransformationType t = qMax(thisType, otherType); |
| 802 | switch(t) { |
| 803 | case TxNone: |
| 804 | break; |
| 805 | case TxTranslate: |
| 806 | m_matrix[2][0] += o.m_matrix[2][0]; |
| 807 | m_matrix[2][1] += o.m_matrix[2][1]; |
| 808 | break; |
| 809 | case TxScale: |
| 810 | { |
| 811 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0]; |
| 812 | qreal m22 = m_matrix[1][1] * o.m_matrix[1][1]; |
| 813 | |
| 814 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + o.m_matrix[2][0]; |
| 815 | qreal m32 = m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
| 816 | |
| 817 | m_matrix[0][0] = m11; |
| 818 | m_matrix[1][1] = m22; |
| 819 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; |
| 820 | break; |
| 821 | } |
| 822 | case TxRotate: |
| 823 | case TxShear: |
| 824 | { |
| 825 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0]; |
| 826 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1]; |
| 827 | |
| 828 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0]; |
| 829 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1]; |
| 830 | |
| 831 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + o.m_matrix[2][0]; |
| 832 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
| 833 | |
| 834 | m_matrix[0][0] = m11; |
| 835 | m_matrix[0][1] = m12; |
| 836 | m_matrix[1][0] = m21; |
| 837 | m_matrix[1][1] = m22; |
| 838 | m_matrix[2][0] = m31; |
| 839 | m_matrix[2][1] = m32; |
| 840 | break; |
| 841 | } |
| 842 | case TxProject: |
| 843 | { |
| 844 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0] + m_matrix[0][2] * o.m_matrix[2][0]; |
| 845 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1] + m_matrix[0][2] * o.m_matrix[2][1]; |
| 846 | qreal m13 = m_matrix[0][0] * o.m_matrix[0][2] + m_matrix[0][1] * o.m_matrix[1][2] + m_matrix[0][2] * o.m_matrix[2][2]; |
| 847 | |
| 848 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0] + m_matrix[1][2] * o.m_matrix[2][0]; |
| 849 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1] + m_matrix[1][2] * o.m_matrix[2][1]; |
| 850 | qreal m23 = m_matrix[1][0] * o.m_matrix[0][2] + m_matrix[1][1] * o.m_matrix[1][2] + m_matrix[1][2] * o.m_matrix[2][2]; |
| 851 | |
| 852 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + m_matrix[2][2] * o.m_matrix[2][0]; |
| 853 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + m_matrix[2][2] * o.m_matrix[2][1]; |
| 854 | qreal m33 = m_matrix[2][0] * o.m_matrix[0][2] + m_matrix[2][1] * o.m_matrix[1][2] + m_matrix[2][2] * o.m_matrix[2][2]; |
| 855 | |
| 856 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
| 857 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
| 858 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | m_dirty = t; |
| 863 | m_type = t; |
| 864 | |
| 865 | return *this; |
| 866 | } |
| 867 | |
| 868 | /*! |
| 869 | \fn QTransform QTransform::operator*(const QTransform &matrix) const |
| 870 | Returns the result of multiplying this matrix by the given \a |
| 871 | matrix. |
| 872 | |
| 873 | Note that matrix multiplication is not commutative, i.e. a*b != |
| 874 | b*a. |
| 875 | */ |
| 876 | QTransform QTransform::operator*(const QTransform &m) const |
| 877 | { |
| 878 | const TransformationType otherType = m.inline_type(); |
| 879 | if (otherType == TxNone) |
| 880 | return *this; |
| 881 | |
| 882 | const TransformationType thisType = inline_type(); |
| 883 | if (thisType == TxNone) |
| 884 | return m; |
| 885 | |
| 886 | QTransform t; |
| 887 | TransformationType type = qMax(thisType, otherType); |
| 888 | switch(type) { |
| 889 | case TxNone: |
| 890 | break; |
| 891 | case TxTranslate: |
| 892 | t.m_matrix[2][0] = m_matrix[2][0] + m.m_matrix[2][0]; |
| 893 | t.m_matrix[2][1] = m_matrix[2][1] + m.m_matrix[2][1]; |
| 894 | break; |
| 895 | case TxScale: |
| 896 | { |
| 897 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0]; |
| 898 | qreal m22 = m_matrix[1][1] * m.m_matrix[1][1]; |
| 899 | |
| 900 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m.m_matrix[2][0]; |
| 901 | qreal m32 = m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
| 902 | |
| 903 | t.m_matrix[0][0] = m11; |
| 904 | t.m_matrix[1][1] = m22; |
| 905 | t.m_matrix[2][0] = m31; |
| 906 | t.m_matrix[2][1] = m32; |
| 907 | break; |
| 908 | } |
| 909 | case TxRotate: |
| 910 | case TxShear: |
| 911 | { |
| 912 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0]; |
| 913 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1]; |
| 914 | |
| 915 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0]; |
| 916 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1]; |
| 917 | |
| 918 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m.m_matrix[2][0]; |
| 919 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
| 920 | |
| 921 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; |
| 922 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; |
| 923 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; |
| 924 | break; |
| 925 | } |
| 926 | case TxProject: |
| 927 | { |
| 928 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0] + m_matrix[0][2] * m.m_matrix[2][0]; |
| 929 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1] + m_matrix[0][2] * m.m_matrix[2][1]; |
| 930 | qreal m13 = m_matrix[0][0] * m.m_matrix[0][2] + m_matrix[0][1] * m.m_matrix[1][2] + m_matrix[0][2] * m.m_matrix[2][2]; |
| 931 | |
| 932 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0] + m_matrix[1][2] * m.m_matrix[2][0]; |
| 933 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1] + m_matrix[1][2] * m.m_matrix[2][1]; |
| 934 | qreal m23 = m_matrix[1][0] * m.m_matrix[0][2] + m_matrix[1][1] * m.m_matrix[1][2] + m_matrix[1][2] * m.m_matrix[2][2]; |
| 935 | |
| 936 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m_matrix[2][2] * m.m_matrix[2][0]; |
| 937 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m_matrix[2][2] * m.m_matrix[2][1]; |
| 938 | qreal m33 = m_matrix[2][0] * m.m_matrix[0][2] + m_matrix[2][1] * m.m_matrix[1][2] + m_matrix[2][2] * m.m_matrix[2][2]; |
| 939 | |
| 940 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; t.m_matrix[0][2] = m13; |
| 941 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; t.m_matrix[1][2] = m23; |
| 942 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; t.m_matrix[2][2] = m33; |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | t.m_dirty = type; |
| 947 | t.m_type = type; |
| 948 | |
| 949 | return t; |
| 950 | } |
| 951 | |
| 952 | /*! |
| 953 | \fn QTransform & QTransform::operator*=(qreal scalar) |
| 954 | \overload |
| 955 | |
| 956 | Returns the result of performing an element-wise multiplication of this |
| 957 | matrix with the given \a scalar. |
| 958 | */ |
| 959 | |
| 960 | /*! |
| 961 | \fn QTransform & QTransform::operator/=(qreal scalar) |
| 962 | \overload |
| 963 | |
| 964 | Returns the result of performing an element-wise division of this |
| 965 | matrix by the given \a scalar. |
| 966 | */ |
| 967 | |
| 968 | /*! |
| 969 | \fn QTransform & QTransform::operator+=(qreal scalar) |
| 970 | \overload |
| 971 | |
| 972 | Returns the matrix obtained by adding the given \a scalar to each |
| 973 | element of this matrix. |
| 974 | */ |
| 975 | |
| 976 | /*! |
| 977 | \fn QTransform & QTransform::operator-=(qreal scalar) |
| 978 | \overload |
| 979 | |
| 980 | Returns the matrix obtained by subtracting the given \a scalar from each |
| 981 | element of this matrix. |
| 982 | */ |
| 983 | |
| 984 | /*! |
| 985 | \fn QTransform &QTransform::operator=(const QTransform &matrix) noexcept |
| 986 | |
| 987 | Assigns the given \a matrix's values to this matrix. |
| 988 | */ |
| 989 | |
| 990 | /*! |
| 991 | Resets the matrix to an identity matrix, i.e. all elements are set |
| 992 | to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
| 993 | which are set to 1. |
| 994 | |
| 995 | \sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
| 996 | Operations}{Basic Matrix Operations} |
| 997 | */ |
| 998 | void QTransform::reset() |
| 999 | { |
| 1000 | *this = QTransform(); |
| 1001 | } |
| 1002 | |
| 1003 | #ifndef QT_NO_DATASTREAM |
| 1004 | /*! |
| 1005 | \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
| 1006 | \since 4.3 |
| 1007 | \relates QTransform |
| 1008 | |
| 1009 | Writes the given \a matrix to the given \a stream and returns a |
| 1010 | reference to the stream. |
| 1011 | |
| 1012 | \sa {Serializing Qt Data Types} |
| 1013 | */ |
| 1014 | QDataStream & operator<<(QDataStream &s, const QTransform &m) |
| 1015 | { |
| 1016 | s << double(m.m11()) |
| 1017 | << double(m.m12()) |
| 1018 | << double(m.m13()) |
| 1019 | << double(m.m21()) |
| 1020 | << double(m.m22()) |
| 1021 | << double(m.m23()) |
| 1022 | << double(m.m31()) |
| 1023 | << double(m.m32()) |
| 1024 | << double(m.m33()); |
| 1025 | return s; |
| 1026 | } |
| 1027 | |
| 1028 | /*! |
| 1029 | \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
| 1030 | \since 4.3 |
| 1031 | \relates QTransform |
| 1032 | |
| 1033 | Reads the given \a matrix from the given \a stream and returns a |
| 1034 | reference to the stream. |
| 1035 | |
| 1036 | \sa {Serializing Qt Data Types} |
| 1037 | */ |
| 1038 | QDataStream & operator>>(QDataStream &s, QTransform &t) |
| 1039 | { |
| 1040 | double m11, m12, m13, |
| 1041 | m21, m22, m23, |
| 1042 | m31, m32, m33; |
| 1043 | |
| 1044 | s >> m11; |
| 1045 | s >> m12; |
| 1046 | s >> m13; |
| 1047 | s >> m21; |
| 1048 | s >> m22; |
| 1049 | s >> m23; |
| 1050 | s >> m31; |
| 1051 | s >> m32; |
| 1052 | s >> m33; |
| 1053 | t.setMatrix(m11, m12, m13, |
| 1054 | m21, m22, m23, |
| 1055 | m31, m32, m33); |
| 1056 | return s; |
| 1057 | } |
| 1058 | |
| 1059 | #endif // QT_NO_DATASTREAM |
| 1060 | |
| 1061 | #ifndef QT_NO_DEBUG_STREAM |
| 1062 | QDebug operator<<(QDebug dbg, const QTransform &m) |
| 1063 | { |
| 1064 | static const char typeStr[][12] = |
| 1065 | { |
| 1066 | "TxNone" , |
| 1067 | "TxTranslate" , |
| 1068 | "TxScale" , |
| 1069 | "" , |
| 1070 | "TxRotate" , |
| 1071 | "" , "" , "" , |
| 1072 | "TxShear" , |
| 1073 | "" , "" , "" , "" , "" , "" , "" , |
| 1074 | "TxProject" |
| 1075 | }; |
| 1076 | |
| 1077 | QDebugStateSaver saver(dbg); |
| 1078 | dbg.nospace() << "QTransform(type=" << typeStr[m.type()] << ',' |
| 1079 | << " 11=" << m.m11() |
| 1080 | << " 12=" << m.m12() |
| 1081 | << " 13=" << m.m13() |
| 1082 | << " 21=" << m.m21() |
| 1083 | << " 22=" << m.m22() |
| 1084 | << " 23=" << m.m23() |
| 1085 | << " 31=" << m.m31() |
| 1086 | << " 32=" << m.m32() |
| 1087 | << " 33=" << m.m33() |
| 1088 | << ')'; |
| 1089 | |
| 1090 | return dbg; |
| 1091 | } |
| 1092 | #endif |
| 1093 | |
| 1094 | /*! |
| 1095 | \fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
| 1096 | \relates QTransform |
| 1097 | |
| 1098 | This is the same as \a{matrix}.map(\a{point}). |
| 1099 | |
| 1100 | \sa QTransform::map() |
| 1101 | */ |
| 1102 | QPoint QTransform::map(const QPoint &p) const |
| 1103 | { |
| 1104 | qreal fx = p.x(); |
| 1105 | qreal fy = p.y(); |
| 1106 | |
| 1107 | qreal x = 0, y = 0; |
| 1108 | |
| 1109 | TransformationType t = inline_type(); |
| 1110 | switch(t) { |
| 1111 | case TxNone: |
| 1112 | x = fx; |
| 1113 | y = fy; |
| 1114 | break; |
| 1115 | case TxTranslate: |
| 1116 | x = fx + m_matrix[2][0]; |
| 1117 | y = fy + m_matrix[2][1]; |
| 1118 | break; |
| 1119 | case TxScale: |
| 1120 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
| 1121 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
| 1122 | break; |
| 1123 | case TxRotate: |
| 1124 | case TxShear: |
| 1125 | case TxProject: |
| 1126 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
| 1127 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
| 1128 | if (t == TxProject) { |
| 1129 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
| 1130 | x *= w; |
| 1131 | y *= w; |
| 1132 | } |
| 1133 | } |
| 1134 | return QPoint(qRound(x), qRound(y)); |
| 1135 | } |
| 1136 | |
| 1137 | |
| 1138 | /*! |
| 1139 | \fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
| 1140 | \relates QTransform |
| 1141 | |
| 1142 | Same as \a{matrix}.map(\a{point}). |
| 1143 | |
| 1144 | \sa QTransform::map() |
| 1145 | */ |
| 1146 | |
| 1147 | /*! |
| 1148 | \overload |
| 1149 | |
| 1150 | Creates and returns a QPointF object that is a copy of the given point, |
| 1151 | \a p, mapped into the coordinate system defined by this matrix. |
| 1152 | */ |
| 1153 | QPointF QTransform::map(const QPointF &p) const |
| 1154 | { |
| 1155 | qreal fx = p.x(); |
| 1156 | qreal fy = p.y(); |
| 1157 | |
| 1158 | qreal x = 0, y = 0; |
| 1159 | |
| 1160 | TransformationType t = inline_type(); |
| 1161 | switch(t) { |
| 1162 | case TxNone: |
| 1163 | x = fx; |
| 1164 | y = fy; |
| 1165 | break; |
| 1166 | case TxTranslate: |
| 1167 | x = fx + m_matrix[2][0]; |
| 1168 | y = fy + m_matrix[2][1]; |
| 1169 | break; |
| 1170 | case TxScale: |
| 1171 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
| 1172 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
| 1173 | break; |
| 1174 | case TxRotate: |
| 1175 | case TxShear: |
| 1176 | case TxProject: |
| 1177 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
| 1178 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
| 1179 | if (t == TxProject) { |
| 1180 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
| 1181 | x *= w; |
| 1182 | y *= w; |
| 1183 | } |
| 1184 | } |
| 1185 | return QPointF(x, y); |
| 1186 | } |
| 1187 | |
| 1188 | /*! |
| 1189 | \fn QPoint QTransform::map(const QPoint &point) const |
| 1190 | \overload |
| 1191 | |
| 1192 | Creates and returns a QPoint object that is a copy of the given \a |
| 1193 | point, mapped into the coordinate system defined by this |
| 1194 | matrix. Note that the transformed coordinates are rounded to the |
| 1195 | nearest integer. |
| 1196 | */ |
| 1197 | |
| 1198 | /*! |
| 1199 | \fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
| 1200 | \relates QTransform |
| 1201 | |
| 1202 | This is the same as \a{matrix}.map(\a{line}). |
| 1203 | |
| 1204 | \sa QTransform::map() |
| 1205 | */ |
| 1206 | |
| 1207 | /*! |
| 1208 | \fn QLine operator*(const QLine &line, const QTransform &matrix) |
| 1209 | \relates QTransform |
| 1210 | |
| 1211 | This is the same as \a{matrix}.map(\a{line}). |
| 1212 | |
| 1213 | \sa QTransform::map() |
| 1214 | */ |
| 1215 | |
| 1216 | /*! |
| 1217 | \overload |
| 1218 | |
| 1219 | Creates and returns a QLineF object that is a copy of the given line, |
| 1220 | \a l, mapped into the coordinate system defined by this matrix. |
| 1221 | */ |
| 1222 | QLine QTransform::map(const QLine &l) const |
| 1223 | { |
| 1224 | qreal fx1 = l.x1(); |
| 1225 | qreal fy1 = l.y1(); |
| 1226 | qreal fx2 = l.x2(); |
| 1227 | qreal fy2 = l.y2(); |
| 1228 | |
| 1229 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
| 1230 | |
| 1231 | TransformationType t = inline_type(); |
| 1232 | switch(t) { |
| 1233 | case TxNone: |
| 1234 | x1 = fx1; |
| 1235 | y1 = fy1; |
| 1236 | x2 = fx2; |
| 1237 | y2 = fy2; |
| 1238 | break; |
| 1239 | case TxTranslate: |
| 1240 | x1 = fx1 + m_matrix[2][0]; |
| 1241 | y1 = fy1 + m_matrix[2][1]; |
| 1242 | x2 = fx2 + m_matrix[2][0]; |
| 1243 | y2 = fy2 + m_matrix[2][1]; |
| 1244 | break; |
| 1245 | case TxScale: |
| 1246 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
| 1247 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
| 1248 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
| 1249 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
| 1250 | break; |
| 1251 | case TxRotate: |
| 1252 | case TxShear: |
| 1253 | case TxProject: |
| 1254 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
| 1255 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
| 1256 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
| 1257 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
| 1258 | if (t == TxProject) { |
| 1259 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
| 1260 | x1 *= w; |
| 1261 | y1 *= w; |
| 1262 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
| 1263 | x2 *= w; |
| 1264 | y2 *= w; |
| 1265 | } |
| 1266 | } |
| 1267 | return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2)); |
| 1268 | } |
| 1269 | |
| 1270 | /*! |
| 1271 | \overload |
| 1272 | |
| 1273 | \fn QLineF QTransform::map(const QLineF &line) const |
| 1274 | |
| 1275 | Creates and returns a QLine object that is a copy of the given \a |
| 1276 | line, mapped into the coordinate system defined by this matrix. |
| 1277 | Note that the transformed coordinates are rounded to the nearest |
| 1278 | integer. |
| 1279 | */ |
| 1280 | |
| 1281 | QLineF QTransform::map(const QLineF &l) const |
| 1282 | { |
| 1283 | qreal fx1 = l.x1(); |
| 1284 | qreal fy1 = l.y1(); |
| 1285 | qreal fx2 = l.x2(); |
| 1286 | qreal fy2 = l.y2(); |
| 1287 | |
| 1288 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
| 1289 | |
| 1290 | TransformationType t = inline_type(); |
| 1291 | switch(t) { |
| 1292 | case TxNone: |
| 1293 | x1 = fx1; |
| 1294 | y1 = fy1; |
| 1295 | x2 = fx2; |
| 1296 | y2 = fy2; |
| 1297 | break; |
| 1298 | case TxTranslate: |
| 1299 | x1 = fx1 + m_matrix[2][0]; |
| 1300 | y1 = fy1 + m_matrix[2][1]; |
| 1301 | x2 = fx2 + m_matrix[2][0]; |
| 1302 | y2 = fy2 + m_matrix[2][1]; |
| 1303 | break; |
| 1304 | case TxScale: |
| 1305 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
| 1306 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
| 1307 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
| 1308 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
| 1309 | break; |
| 1310 | case TxRotate: |
| 1311 | case TxShear: |
| 1312 | case TxProject: |
| 1313 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
| 1314 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
| 1315 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
| 1316 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
| 1317 | if (t == TxProject) { |
| 1318 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
| 1319 | x1 *= w; |
| 1320 | y1 *= w; |
| 1321 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
| 1322 | x2 *= w; |
| 1323 | y2 *= w; |
| 1324 | } |
| 1325 | } |
| 1326 | return QLineF(x1, y1, x2, y2); |
| 1327 | } |
| 1328 | |
| 1329 | static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly) |
| 1330 | { |
| 1331 | if (poly.size() == 0) |
| 1332 | return poly; |
| 1333 | |
| 1334 | if (poly.size() == 1) |
| 1335 | return QPolygonF() << transform.map(poly.at(0)); |
| 1336 | |
| 1337 | QPainterPath path; |
| 1338 | path.addPolygon(poly); |
| 1339 | |
| 1340 | path = transform.map(path); |
| 1341 | |
| 1342 | QPolygonF result; |
| 1343 | const int elementCount = path.elementCount(); |
| 1344 | result.reserve(elementCount); |
| 1345 | for (int i = 0; i < elementCount; ++i) |
| 1346 | result << path.elementAt(i); |
| 1347 | return result; |
| 1348 | } |
| 1349 | |
| 1350 | |
| 1351 | /*! |
| 1352 | \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
| 1353 | \since 4.3 |
| 1354 | \relates QTransform |
| 1355 | |
| 1356 | This is the same as \a{matrix}.map(\a{polygon}). |
| 1357 | |
| 1358 | \sa QTransform::map() |
| 1359 | */ |
| 1360 | |
| 1361 | /*! |
| 1362 | \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
| 1363 | \relates QTransform |
| 1364 | |
| 1365 | This is the same as \a{matrix}.map(\a{polygon}). |
| 1366 | |
| 1367 | \sa QTransform::map() |
| 1368 | */ |
| 1369 | |
| 1370 | /*! |
| 1371 | \fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
| 1372 | \overload |
| 1373 | |
| 1374 | Creates and returns a QPolygonF object that is a copy of the given |
| 1375 | \a polygon, mapped into the coordinate system defined by this |
| 1376 | matrix. |
| 1377 | */ |
| 1378 | QPolygonF QTransform::map(const QPolygonF &a) const |
| 1379 | { |
| 1380 | TransformationType t = inline_type(); |
| 1381 | if (t <= TxTranslate) |
| 1382 | return a.translated(m_matrix[2][0], m_matrix[2][1]); |
| 1383 | |
| 1384 | if (t >= QTransform::TxProject) |
| 1385 | return mapProjective(*this, a); |
| 1386 | |
| 1387 | int size = a.size(); |
| 1388 | int i; |
| 1389 | QPolygonF p(size); |
| 1390 | const QPointF *da = a.constData(); |
| 1391 | QPointF *dp = p.data(); |
| 1392 | |
| 1393 | for(i = 0; i < size; ++i) { |
| 1394 | MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
| 1395 | } |
| 1396 | return p; |
| 1397 | } |
| 1398 | |
| 1399 | /*! |
| 1400 | \fn QPolygon QTransform::map(const QPolygon &polygon) const |
| 1401 | \overload |
| 1402 | |
| 1403 | Creates and returns a QPolygon object that is a copy of the given |
| 1404 | \a polygon, mapped into the coordinate system defined by this |
| 1405 | matrix. Note that the transformed coordinates are rounded to the |
| 1406 | nearest integer. |
| 1407 | */ |
| 1408 | QPolygon QTransform::map(const QPolygon &a) const |
| 1409 | { |
| 1410 | TransformationType t = inline_type(); |
| 1411 | if (t <= TxTranslate) |
| 1412 | return a.translated(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
| 1413 | |
| 1414 | if (t >= QTransform::TxProject) |
| 1415 | return mapProjective(*this, QPolygonF(a)).toPolygon(); |
| 1416 | |
| 1417 | int size = a.size(); |
| 1418 | int i; |
| 1419 | QPolygon p(size); |
| 1420 | const QPoint *da = a.constData(); |
| 1421 | QPoint *dp = p.data(); |
| 1422 | |
| 1423 | for(i = 0; i < size; ++i) { |
| 1424 | qreal nx = 0, ny = 0; |
| 1425 | MAP(da[i].xp, da[i].yp, nx, ny); |
| 1426 | dp[i].xp = qRound(nx); |
| 1427 | dp[i].yp = qRound(ny); |
| 1428 | } |
| 1429 | return p; |
| 1430 | } |
| 1431 | |
| 1432 | /*! |
| 1433 | \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
| 1434 | \relates QTransform |
| 1435 | |
| 1436 | This is the same as \a{matrix}.map(\a{region}). |
| 1437 | |
| 1438 | \sa QTransform::map() |
| 1439 | */ |
| 1440 | |
| 1441 | extern QPainterPath qt_regionToPath(const QRegion ®ion); |
| 1442 | |
| 1443 | /*! |
| 1444 | \fn QRegion QTransform::map(const QRegion ®ion) const |
| 1445 | \overload |
| 1446 | |
| 1447 | Creates and returns a QRegion object that is a copy of the given |
| 1448 | \a region, mapped into the coordinate system defined by this matrix. |
| 1449 | |
| 1450 | Calling this method can be rather expensive if rotations or |
| 1451 | shearing are used. |
| 1452 | */ |
| 1453 | QRegion QTransform::map(const QRegion &r) const |
| 1454 | { |
| 1455 | TransformationType t = inline_type(); |
| 1456 | if (t == TxNone) |
| 1457 | return r; |
| 1458 | |
| 1459 | if (t == TxTranslate) { |
| 1460 | QRegion copy(r); |
| 1461 | copy.translate(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
| 1462 | return copy; |
| 1463 | } |
| 1464 | |
| 1465 | if (t == TxScale) { |
| 1466 | QRegion res; |
| 1467 | if (m11() < 0 || m22() < 0) { |
| 1468 | for (const QRect &rect : r) |
| 1469 | res += mapRect(QRectF(rect)).toRect(); |
| 1470 | } else { |
| 1471 | QVarLengthArray<QRect, 32> rects; |
| 1472 | rects.reserve(r.rectCount()); |
| 1473 | for (const QRect &rect : r) { |
| 1474 | QRect nr = mapRect(QRectF(rect)).toRect(); |
| 1475 | if (!nr.isEmpty()) |
| 1476 | rects.append(nr); |
| 1477 | } |
| 1478 | res.setRects(rects.constData(), rects.count()); |
| 1479 | } |
| 1480 | return res; |
| 1481 | } |
| 1482 | |
| 1483 | QPainterPath p = map(qt_regionToPath(r)); |
| 1484 | return p.toFillPolygon().toPolygon(); |
| 1485 | } |
| 1486 | |
| 1487 | struct QHomogeneousCoordinate |
| 1488 | { |
| 1489 | qreal x; |
| 1490 | qreal y; |
| 1491 | qreal w; |
| 1492 | |
| 1493 | QHomogeneousCoordinate() {} |
| 1494 | QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
| 1495 | |
| 1496 | const QPointF toPoint() const { |
| 1497 | qreal iw = 1. / w; |
| 1498 | return QPointF(x * iw, y * iw); |
| 1499 | } |
| 1500 | }; |
| 1501 | |
| 1502 | static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
| 1503 | { |
| 1504 | QHomogeneousCoordinate c; |
| 1505 | c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
| 1506 | c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
| 1507 | c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
| 1508 | return c; |
| 1509 | } |
| 1510 | |
| 1511 | static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
| 1512 | bool needsMoveTo, bool needsLineTo = true) |
| 1513 | { |
| 1514 | QHomogeneousCoordinate ha = mapHomogeneous(transform, a); |
| 1515 | QHomogeneousCoordinate hb = mapHomogeneous(transform, b); |
| 1516 | |
| 1517 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
| 1518 | return false; |
| 1519 | |
| 1520 | if (hb.w < Q_NEAR_CLIP) { |
| 1521 | const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
| 1522 | |
| 1523 | hb.x += (ha.x - hb.x) * t; |
| 1524 | hb.y += (ha.y - hb.y) * t; |
| 1525 | hb.w = qreal(Q_NEAR_CLIP); |
| 1526 | } else if (ha.w < Q_NEAR_CLIP) { |
| 1527 | const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
| 1528 | |
| 1529 | ha.x += (hb.x - ha.x) * t; |
| 1530 | ha.y += (hb.y - ha.y) * t; |
| 1531 | ha.w = qreal(Q_NEAR_CLIP); |
| 1532 | |
| 1533 | const QPointF p = ha.toPoint(); |
| 1534 | if (needsMoveTo) { |
| 1535 | path.moveTo(p); |
| 1536 | needsMoveTo = false; |
| 1537 | } else { |
| 1538 | path.lineTo(p); |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | if (needsMoveTo) |
| 1543 | path.moveTo(ha.toPoint()); |
| 1544 | |
| 1545 | if (needsLineTo) |
| 1546 | path.lineTo(hb.toPoint()); |
| 1547 | |
| 1548 | return true; |
| 1549 | } |
| 1550 | Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); |
| 1551 | |
| 1552 | static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
| 1553 | { |
| 1554 | // Convert projective xformed curves to line |
| 1555 | // segments so they can be transformed more accurately |
| 1556 | |
| 1557 | qreal scale; |
| 1558 | qt_scaleForTransform(transform, &scale); |
| 1559 | |
| 1560 | qreal curveThreshold = scale == 0 ? qreal(0.25) : (qreal(0.25) / scale); |
| 1561 | |
| 1562 | QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon(curveThreshold); |
| 1563 | |
| 1564 | for (int i = 0; i < segment.size() - 1; ++i) |
| 1565 | if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo)) |
| 1566 | needsMoveTo = false; |
| 1567 | |
| 1568 | return !needsMoveTo; |
| 1569 | } |
| 1570 | |
| 1571 | static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
| 1572 | { |
| 1573 | QPainterPath result; |
| 1574 | |
| 1575 | QPointF last; |
| 1576 | QPointF lastMoveTo; |
| 1577 | bool needsMoveTo = true; |
| 1578 | for (int i = 0; i < path.elementCount(); ++i) { |
| 1579 | switch (path.elementAt(i).type) { |
| 1580 | case QPainterPath::MoveToElement: |
| 1581 | if (i > 0 && lastMoveTo != last) |
| 1582 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo); |
| 1583 | |
| 1584 | lastMoveTo = path.elementAt(i); |
| 1585 | last = path.elementAt(i); |
| 1586 | needsMoveTo = true; |
| 1587 | break; |
| 1588 | case QPainterPath::LineToElement: |
| 1589 | if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo)) |
| 1590 | needsMoveTo = false; |
| 1591 | last = path.elementAt(i); |
| 1592 | break; |
| 1593 | case QPainterPath::CurveToElement: |
| 1594 | if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo)) |
| 1595 | needsMoveTo = false; |
| 1596 | i += 2; |
| 1597 | last = path.elementAt(i); |
| 1598 | break; |
| 1599 | default: |
| 1600 | Q_ASSERT(false); |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | if (path.elementCount() > 0 && lastMoveTo != last) |
| 1605 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false); |
| 1606 | |
| 1607 | result.setFillRule(path.fillRule()); |
| 1608 | return result; |
| 1609 | } |
| 1610 | |
| 1611 | /*! |
| 1612 | \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
| 1613 | \since 4.3 |
| 1614 | \relates QTransform |
| 1615 | |
| 1616 | This is the same as \a{matrix}.map(\a{path}). |
| 1617 | |
| 1618 | \sa QTransform::map() |
| 1619 | */ |
| 1620 | |
| 1621 | /*! |
| 1622 | \overload |
| 1623 | |
| 1624 | Creates and returns a QPainterPath object that is a copy of the |
| 1625 | given \a path, mapped into the coordinate system defined by this |
| 1626 | matrix. |
| 1627 | */ |
| 1628 | QPainterPath QTransform::map(const QPainterPath &path) const |
| 1629 | { |
| 1630 | TransformationType t = inline_type(); |
| 1631 | if (t == TxNone || path.elementCount() == 0) |
| 1632 | return path; |
| 1633 | |
| 1634 | if (t >= TxProject) |
| 1635 | return mapProjective(*this, path); |
| 1636 | |
| 1637 | QPainterPath copy = path; |
| 1638 | |
| 1639 | if (t == TxTranslate) { |
| 1640 | copy.translate(m_matrix[2][0], m_matrix[2][1]); |
| 1641 | } else { |
| 1642 | copy.detach(); |
| 1643 | // Full xform |
| 1644 | for (int i=0; i<path.elementCount(); ++i) { |
| 1645 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
| 1646 | MAP(e.x, e.y, e.x, e.y); |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | return copy; |
| 1651 | } |
| 1652 | |
| 1653 | /*! |
| 1654 | \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
| 1655 | |
| 1656 | Creates and returns a QPolygon representation of the given \a |
| 1657 | rectangle, mapped into the coordinate system defined by this |
| 1658 | matrix. |
| 1659 | |
| 1660 | The rectangle's coordinates are transformed using the following |
| 1661 | formulas: |
| 1662 | |
| 1663 | \snippet code/src_gui_painting_qtransform.cpp 1 |
| 1664 | |
| 1665 | Polygons and rectangles behave slightly differently when |
| 1666 | transformed (due to integer rounding), so |
| 1667 | \c{matrix.map(QPolygon(rectangle))} is not always the same as |
| 1668 | \c{matrix.mapToPolygon(rectangle)}. |
| 1669 | |
| 1670 | \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1671 | Operations} |
| 1672 | */ |
| 1673 | QPolygon QTransform::mapToPolygon(const QRect &rect) const |
| 1674 | { |
| 1675 | TransformationType t = inline_type(); |
| 1676 | |
| 1677 | QPolygon a(4); |
| 1678 | qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
| 1679 | if (t <= TxScale) { |
| 1680 | x[0] = m_matrix[0][0]*rect.x() + m_matrix[2][0]; |
| 1681 | y[0] = m_matrix[1][1]*rect.y() + m_matrix[2][1]; |
| 1682 | qreal w = m_matrix[0][0]*rect.width(); |
| 1683 | qreal h = m_matrix[1][1]*rect.height(); |
| 1684 | if (w < 0) { |
| 1685 | w = -w; |
| 1686 | x[0] -= w; |
| 1687 | } |
| 1688 | if (h < 0) { |
| 1689 | h = -h; |
| 1690 | y[0] -= h; |
| 1691 | } |
| 1692 | x[1] = x[0]+w; |
| 1693 | x[2] = x[1]; |
| 1694 | x[3] = x[0]; |
| 1695 | y[1] = y[0]; |
| 1696 | y[2] = y[0]+h; |
| 1697 | y[3] = y[2]; |
| 1698 | } else { |
| 1699 | qreal right = rect.x() + rect.width(); |
| 1700 | qreal bottom = rect.y() + rect.height(); |
| 1701 | MAP(rect.x(), rect.y(), x[0], y[0]); |
| 1702 | MAP(right, rect.y(), x[1], y[1]); |
| 1703 | MAP(right, bottom, x[2], y[2]); |
| 1704 | MAP(rect.x(), bottom, x[3], y[3]); |
| 1705 | } |
| 1706 | |
| 1707 | // all coordinates are correctly, tranform to a pointarray |
| 1708 | // (rounding to the next integer) |
| 1709 | a.setPoints(4, qRound(x[0]), qRound(y[0]), |
| 1710 | qRound(x[1]), qRound(y[1]), |
| 1711 | qRound(x[2]), qRound(y[2]), |
| 1712 | qRound(x[3]), qRound(y[3])); |
| 1713 | return a; |
| 1714 | } |
| 1715 | |
| 1716 | /*! |
| 1717 | Creates a transformation matrix, \a trans, that maps a unit square |
| 1718 | to a four-sided polygon, \a quad. Returns \c true if the transformation |
| 1719 | is constructed or false if such a transformation does not exist. |
| 1720 | |
| 1721 | \sa quadToSquare(), quadToQuad() |
| 1722 | */ |
| 1723 | bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
| 1724 | { |
| 1725 | if (quad.count() != 4) |
| 1726 | return false; |
| 1727 | |
| 1728 | qreal dx0 = quad[0].x(); |
| 1729 | qreal dx1 = quad[1].x(); |
| 1730 | qreal dx2 = quad[2].x(); |
| 1731 | qreal dx3 = quad[3].x(); |
| 1732 | |
| 1733 | qreal dy0 = quad[0].y(); |
| 1734 | qreal dy1 = quad[1].y(); |
| 1735 | qreal dy2 = quad[2].y(); |
| 1736 | qreal dy3 = quad[3].y(); |
| 1737 | |
| 1738 | double ax = dx0 - dx1 + dx2 - dx3; |
| 1739 | double ay = dy0 - dy1 + dy2 - dy3; |
| 1740 | |
| 1741 | if (!ax && !ay) { //afine transform |
| 1742 | trans.setMatrix(dx1 - dx0, dy1 - dy0, 0, |
| 1743 | dx2 - dx1, dy2 - dy1, 0, |
| 1744 | dx0, dy0, 1); |
| 1745 | } else { |
| 1746 | double ax1 = dx1 - dx2; |
| 1747 | double ax2 = dx3 - dx2; |
| 1748 | double ay1 = dy1 - dy2; |
| 1749 | double ay2 = dy3 - dy2; |
| 1750 | |
| 1751 | /*determinants */ |
| 1752 | double gtop = ax * ay2 - ax2 * ay; |
| 1753 | double htop = ax1 * ay - ax * ay1; |
| 1754 | double bottom = ax1 * ay2 - ax2 * ay1; |
| 1755 | |
| 1756 | double a, b, c, d, e, f, g, h; /*i is always 1*/ |
| 1757 | |
| 1758 | if (!bottom) |
| 1759 | return false; |
| 1760 | |
| 1761 | g = gtop/bottom; |
| 1762 | h = htop/bottom; |
| 1763 | |
| 1764 | a = dx1 - dx0 + g * dx1; |
| 1765 | b = dx3 - dx0 + h * dx3; |
| 1766 | c = dx0; |
| 1767 | d = dy1 - dy0 + g * dy1; |
| 1768 | e = dy3 - dy0 + h * dy3; |
| 1769 | f = dy0; |
| 1770 | |
| 1771 | trans.setMatrix(a, d, g, |
| 1772 | b, e, h, |
| 1773 | c, f, 1.0); |
| 1774 | } |
| 1775 | |
| 1776 | return true; |
| 1777 | } |
| 1778 | |
| 1779 | /*! |
| 1780 | \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
| 1781 | |
| 1782 | Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
| 1783 | \a quad, to a unit square. Returns \c true if the transformation is constructed |
| 1784 | or false if such a transformation does not exist. |
| 1785 | |
| 1786 | \sa squareToQuad(), quadToQuad() |
| 1787 | */ |
| 1788 | bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
| 1789 | { |
| 1790 | if (!squareToQuad(quad, trans)) |
| 1791 | return false; |
| 1792 | |
| 1793 | bool invertible = false; |
| 1794 | trans = trans.inverted(&invertible); |
| 1795 | |
| 1796 | return invertible; |
| 1797 | } |
| 1798 | |
| 1799 | /*! |
| 1800 | Creates a transformation matrix, \a trans, that maps a four-sided |
| 1801 | polygon, \a one, to another four-sided polygon, \a two. |
| 1802 | Returns \c true if the transformation is possible; otherwise returns |
| 1803 | false. |
| 1804 | |
| 1805 | This is a convenience method combining quadToSquare() and |
| 1806 | squareToQuad() methods. It allows the input quad to be |
| 1807 | transformed into any other quad. |
| 1808 | |
| 1809 | \sa squareToQuad(), quadToSquare() |
| 1810 | */ |
| 1811 | bool QTransform::quadToQuad(const QPolygonF &one, |
| 1812 | const QPolygonF &two, |
| 1813 | QTransform &trans) |
| 1814 | { |
| 1815 | QTransform stq; |
| 1816 | if (!quadToSquare(one, trans)) |
| 1817 | return false; |
| 1818 | if (!squareToQuad(two, stq)) |
| 1819 | return false; |
| 1820 | trans *= stq; |
| 1821 | //qDebug()<<"Final = "<<trans; |
| 1822 | return true; |
| 1823 | } |
| 1824 | |
| 1825 | /*! |
| 1826 | Sets the matrix elements to the specified values, \a m11, |
| 1827 | \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
| 1828 | \a m33. Note that this function replaces the previous values. |
| 1829 | QTransform provides the translate(), rotate(), scale() and shear() |
| 1830 | convenience functions to manipulate the various matrix elements |
| 1831 | based on the currently defined coordinate system. |
| 1832 | |
| 1833 | \sa QTransform() |
| 1834 | */ |
| 1835 | |
| 1836 | void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
| 1837 | qreal m21, qreal m22, qreal m23, |
| 1838 | qreal m31, qreal m32, qreal m33) |
| 1839 | { |
| 1840 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
| 1841 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
| 1842 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
| 1843 | m_type = TxNone; |
| 1844 | m_dirty = TxProject; |
| 1845 | } |
| 1846 | |
| 1847 | static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform) |
| 1848 | { |
| 1849 | const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right()); |
| 1850 | const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom()); |
| 1851 | |
| 1852 | return wx + wy + transform.m33() < Q_NEAR_CLIP; |
| 1853 | } |
| 1854 | |
| 1855 | QRect QTransform::mapRect(const QRect &rect) const |
| 1856 | { |
| 1857 | TransformationType t = inline_type(); |
| 1858 | if (t <= TxTranslate) |
| 1859 | return rect.translated(qRound(m_matrix[2][0]), qRound(m_matrix[2][1])); |
| 1860 | |
| 1861 | if (t <= TxScale) { |
| 1862 | int x = qRound(m_matrix[0][0] * rect.x() + m_matrix[2][0]); |
| 1863 | int y = qRound(m_matrix[1][1] * rect.y() + m_matrix[2][1]); |
| 1864 | int w = qRound(m_matrix[0][0] * rect.width()); |
| 1865 | int h = qRound(m_matrix[1][1] * rect.height()); |
| 1866 | if (w < 0) { |
| 1867 | w = -w; |
| 1868 | x -= w; |
| 1869 | } |
| 1870 | if (h < 0) { |
| 1871 | h = -h; |
| 1872 | y -= h; |
| 1873 | } |
| 1874 | return QRect(x, y, w, h); |
| 1875 | } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
| 1876 | // see mapToPolygon for explanations of the algorithm. |
| 1877 | qreal x = 0, y = 0; |
| 1878 | MAP(rect.left(), rect.top(), x, y); |
| 1879 | qreal xmin = x; |
| 1880 | qreal ymin = y; |
| 1881 | qreal xmax = x; |
| 1882 | qreal ymax = y; |
| 1883 | MAP(rect.right() + 1, rect.top(), x, y); |
| 1884 | xmin = qMin(xmin, x); |
| 1885 | ymin = qMin(ymin, y); |
| 1886 | xmax = qMax(xmax, x); |
| 1887 | ymax = qMax(ymax, y); |
| 1888 | MAP(rect.right() + 1, rect.bottom() + 1, x, y); |
| 1889 | xmin = qMin(xmin, x); |
| 1890 | ymin = qMin(ymin, y); |
| 1891 | xmax = qMax(xmax, x); |
| 1892 | ymax = qMax(ymax, y); |
| 1893 | MAP(rect.left(), rect.bottom() + 1, x, y); |
| 1894 | xmin = qMin(xmin, x); |
| 1895 | ymin = qMin(ymin, y); |
| 1896 | xmax = qMax(xmax, x); |
| 1897 | ymax = qMax(ymax, y); |
| 1898 | return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); |
| 1899 | } else { |
| 1900 | QPainterPath path; |
| 1901 | path.addRect(rect); |
| 1902 | return map(path).boundingRect().toRect(); |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | /*! |
| 1907 | \fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
| 1908 | |
| 1909 | Creates and returns a QRectF object that is a copy of the given \a |
| 1910 | rectangle, mapped into the coordinate system defined by this |
| 1911 | matrix. |
| 1912 | |
| 1913 | The rectangle's coordinates are transformed using the following |
| 1914 | formulas: |
| 1915 | |
| 1916 | \snippet code/src_gui_painting_qtransform.cpp 2 |
| 1917 | |
| 1918 | If rotation or shearing has been specified, this function returns |
| 1919 | the \e bounding rectangle. To retrieve the exact region the given |
| 1920 | \a rectangle maps to, use the mapToPolygon() function instead. |
| 1921 | |
| 1922 | \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1923 | Operations} |
| 1924 | */ |
| 1925 | QRectF QTransform::mapRect(const QRectF &rect) const |
| 1926 | { |
| 1927 | TransformationType t = inline_type(); |
| 1928 | if (t <= TxTranslate) |
| 1929 | return rect.translated(m_matrix[2][0], m_matrix[2][1]); |
| 1930 | |
| 1931 | if (t <= TxScale) { |
| 1932 | qreal x = m_matrix[0][0] * rect.x() + m_matrix[2][0]; |
| 1933 | qreal y = m_matrix[1][1] * rect.y() + m_matrix[2][1]; |
| 1934 | qreal w = m_matrix[0][0] * rect.width(); |
| 1935 | qreal h = m_matrix[1][1] * rect.height(); |
| 1936 | if (w < 0) { |
| 1937 | w = -w; |
| 1938 | x -= w; |
| 1939 | } |
| 1940 | if (h < 0) { |
| 1941 | h = -h; |
| 1942 | y -= h; |
| 1943 | } |
| 1944 | return QRectF(x, y, w, h); |
| 1945 | } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
| 1946 | qreal x = 0, y = 0; |
| 1947 | MAP(rect.x(), rect.y(), x, y); |
| 1948 | qreal xmin = x; |
| 1949 | qreal ymin = y; |
| 1950 | qreal xmax = x; |
| 1951 | qreal ymax = y; |
| 1952 | MAP(rect.x() + rect.width(), rect.y(), x, y); |
| 1953 | xmin = qMin(xmin, x); |
| 1954 | ymin = qMin(ymin, y); |
| 1955 | xmax = qMax(xmax, x); |
| 1956 | ymax = qMax(ymax, y); |
| 1957 | MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
| 1958 | xmin = qMin(xmin, x); |
| 1959 | ymin = qMin(ymin, y); |
| 1960 | xmax = qMax(xmax, x); |
| 1961 | ymax = qMax(ymax, y); |
| 1962 | MAP(rect.x(), rect.y() + rect.height(), x, y); |
| 1963 | xmin = qMin(xmin, x); |
| 1964 | ymin = qMin(ymin, y); |
| 1965 | xmax = qMax(xmax, x); |
| 1966 | ymax = qMax(ymax, y); |
| 1967 | return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
| 1968 | } else { |
| 1969 | QPainterPath path; |
| 1970 | path.addRect(rect); |
| 1971 | return map(path).boundingRect(); |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | /*! |
| 1976 | \fn QRect QTransform::mapRect(const QRect &rectangle) const |
| 1977 | \overload |
| 1978 | |
| 1979 | Creates and returns a QRect object that is a copy of the given \a |
| 1980 | rectangle, mapped into the coordinate system defined by this |
| 1981 | matrix. Note that the transformed coordinates are rounded to the |
| 1982 | nearest integer. |
| 1983 | */ |
| 1984 | |
| 1985 | /*! |
| 1986 | Maps the given coordinates \a x and \a y into the coordinate |
| 1987 | system defined by this matrix. The resulting values are put in *\a |
| 1988 | tx and *\a ty, respectively. |
| 1989 | |
| 1990 | The coordinates are transformed using the following formulas: |
| 1991 | |
| 1992 | \snippet code/src_gui_painting_qtransform.cpp 3 |
| 1993 | |
| 1994 | The point (x, y) is the original point, and (x', y') is the |
| 1995 | transformed point. |
| 1996 | |
| 1997 | \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
| 1998 | */ |
| 1999 | void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
| 2000 | { |
| 2001 | TransformationType t = inline_type(); |
| 2002 | MAP(x, y, *tx, *ty); |
| 2003 | } |
| 2004 | |
| 2005 | /*! |
| 2006 | \overload |
| 2007 | |
| 2008 | Maps the given coordinates \a x and \a y into the coordinate |
| 2009 | system defined by this matrix. The resulting values are put in *\a |
| 2010 | tx and *\a ty, respectively. Note that the transformed coordinates |
| 2011 | are rounded to the nearest integer. |
| 2012 | */ |
| 2013 | void QTransform::map(int x, int y, int *tx, int *ty) const |
| 2014 | { |
| 2015 | TransformationType t = inline_type(); |
| 2016 | qreal fx = 0, fy = 0; |
| 2017 | MAP(x, y, fx, fy); |
| 2018 | *tx = qRound(fx); |
| 2019 | *ty = qRound(fy); |
| 2020 | } |
| 2021 | |
| 2022 | /*! |
| 2023 | Returns the transformation type of this matrix. |
| 2024 | |
| 2025 | The transformation type is the highest enumeration value |
| 2026 | capturing all of the matrix's transformations. For example, |
| 2027 | if the matrix both scales and shears, the type would be \c TxShear, |
| 2028 | because \c TxShear has a higher enumeration value than \c TxScale. |
| 2029 | |
| 2030 | Knowing the transformation type of a matrix is useful for optimization: |
| 2031 | you can often handle specific types more optimally than handling |
| 2032 | the generic case. |
| 2033 | */ |
| 2034 | QTransform::TransformationType QTransform::type() const |
| 2035 | { |
| 2036 | if(m_dirty == TxNone || m_dirty < m_type) |
| 2037 | return static_cast<TransformationType>(m_type); |
| 2038 | |
| 2039 | switch (static_cast<TransformationType>(m_dirty)) { |
| 2040 | case TxProject: |
| 2041 | if (!qFuzzyIsNull(m_matrix[0][2]) || !qFuzzyIsNull(m_matrix[1][2]) || !qFuzzyIsNull(m_matrix[2][2] - 1)) { |
| 2042 | m_type = TxProject; |
| 2043 | break; |
| 2044 | } |
| 2045 | Q_FALLTHROUGH(); |
| 2046 | case TxShear: |
| 2047 | case TxRotate: |
| 2048 | if (!qFuzzyIsNull(m_matrix[0][1]) || !qFuzzyIsNull(m_matrix[1][0])) { |
| 2049 | const qreal dot = m_matrix[0][0] * m_matrix[0][1] + m_matrix[1][0] * m_matrix[1][1]; |
| 2050 | if (qFuzzyIsNull(dot)) |
| 2051 | m_type = TxRotate; |
| 2052 | else |
| 2053 | m_type = TxShear; |
| 2054 | break; |
| 2055 | } |
| 2056 | Q_FALLTHROUGH(); |
| 2057 | case TxScale: |
| 2058 | if (!qFuzzyIsNull(m_matrix[0][0] - 1) || !qFuzzyIsNull(m_matrix[1][1] - 1)) { |
| 2059 | m_type = TxScale; |
| 2060 | break; |
| 2061 | } |
| 2062 | Q_FALLTHROUGH(); |
| 2063 | case TxTranslate: |
| 2064 | if (!qFuzzyIsNull(m_matrix[2][0]) || !qFuzzyIsNull(m_matrix[2][1])) { |
| 2065 | m_type = TxTranslate; |
| 2066 | break; |
| 2067 | } |
| 2068 | Q_FALLTHROUGH(); |
| 2069 | case TxNone: |
| 2070 | m_type = TxNone; |
| 2071 | break; |
| 2072 | } |
| 2073 | |
| 2074 | m_dirty = TxNone; |
| 2075 | return static_cast<TransformationType>(m_type); |
| 2076 | } |
| 2077 | |
| 2078 | /*! |
| 2079 | |
| 2080 | Returns the transform as a QVariant. |
| 2081 | */ |
| 2082 | QTransform::operator QVariant() const |
| 2083 | { |
| 2084 | return QVariant::fromValue(*this); |
| 2085 | } |
| 2086 | |
| 2087 | |
| 2088 | /*! |
| 2089 | \fn bool QTransform::isInvertible() const |
| 2090 | |
| 2091 | Returns \c true if the matrix is invertible, otherwise returns \c false. |
| 2092 | |
| 2093 | \sa inverted() |
| 2094 | */ |
| 2095 | |
| 2096 | /*! |
| 2097 | \fn qreal QTransform::m11() const |
| 2098 | |
| 2099 | Returns the horizontal scaling factor. |
| 2100 | |
| 2101 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2102 | Operations} |
| 2103 | */ |
| 2104 | |
| 2105 | /*! |
| 2106 | \fn qreal QTransform::m12() const |
| 2107 | |
| 2108 | Returns the vertical shearing factor. |
| 2109 | |
| 2110 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2111 | Operations} |
| 2112 | */ |
| 2113 | |
| 2114 | /*! |
| 2115 | \fn qreal QTransform::m21() const |
| 2116 | |
| 2117 | Returns the horizontal shearing factor. |
| 2118 | |
| 2119 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2120 | Operations} |
| 2121 | */ |
| 2122 | |
| 2123 | /*! |
| 2124 | \fn qreal QTransform::m22() const |
| 2125 | |
| 2126 | Returns the vertical scaling factor. |
| 2127 | |
| 2128 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2129 | Operations} |
| 2130 | */ |
| 2131 | |
| 2132 | /*! |
| 2133 | \fn qreal QTransform::dx() const |
| 2134 | |
| 2135 | Returns the horizontal translation factor. |
| 2136 | |
| 2137 | \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2138 | Operations} |
| 2139 | */ |
| 2140 | |
| 2141 | /*! |
| 2142 | \fn qreal QTransform::dy() const |
| 2143 | |
| 2144 | Returns the vertical translation factor. |
| 2145 | |
| 2146 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2147 | Operations} |
| 2148 | */ |
| 2149 | |
| 2150 | |
| 2151 | /*! |
| 2152 | \fn qreal QTransform::m13() const |
| 2153 | |
| 2154 | Returns the horizontal projection factor. |
| 2155 | |
| 2156 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2157 | Operations} |
| 2158 | */ |
| 2159 | |
| 2160 | |
| 2161 | /*! |
| 2162 | \fn qreal QTransform::m23() const |
| 2163 | |
| 2164 | Returns the vertical projection factor. |
| 2165 | |
| 2166 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2167 | Operations} |
| 2168 | */ |
| 2169 | |
| 2170 | /*! |
| 2171 | \fn qreal QTransform::m31() const |
| 2172 | |
| 2173 | Returns the horizontal translation factor. |
| 2174 | |
| 2175 | \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2176 | Operations} |
| 2177 | */ |
| 2178 | |
| 2179 | /*! |
| 2180 | \fn qreal QTransform::m32() const |
| 2181 | |
| 2182 | Returns the vertical translation factor. |
| 2183 | |
| 2184 | \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2185 | Operations} |
| 2186 | */ |
| 2187 | |
| 2188 | /*! |
| 2189 | \fn qreal QTransform::m33() const |
| 2190 | |
| 2191 | Returns the division factor. |
| 2192 | |
| 2193 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2194 | Operations} |
| 2195 | */ |
| 2196 | |
| 2197 | /*! |
| 2198 | \fn qreal QTransform::determinant() const |
| 2199 | |
| 2200 | Returns the matrix's determinant. |
| 2201 | */ |
| 2202 | |
| 2203 | /*! |
| 2204 | \fn bool QTransform::isIdentity() const |
| 2205 | |
| 2206 | Returns \c true if the matrix is the identity matrix, otherwise |
| 2207 | returns \c false. |
| 2208 | |
| 2209 | \sa reset() |
| 2210 | */ |
| 2211 | |
| 2212 | /*! |
| 2213 | \fn bool QTransform::isAffine() const |
| 2214 | |
| 2215 | Returns \c true if the matrix represent an affine transformation, |
| 2216 | otherwise returns \c false. |
| 2217 | */ |
| 2218 | |
| 2219 | /*! |
| 2220 | \fn bool QTransform::isScaling() const |
| 2221 | |
| 2222 | Returns \c true if the matrix represents a scaling |
| 2223 | transformation, otherwise returns \c false. |
| 2224 | |
| 2225 | \sa reset() |
| 2226 | */ |
| 2227 | |
| 2228 | /*! |
| 2229 | \fn bool QTransform::isRotating() const |
| 2230 | |
| 2231 | Returns \c true if the matrix represents some kind of a |
| 2232 | rotating transformation, otherwise returns \c false. |
| 2233 | |
| 2234 | \note A rotation transformation of 180 degrees and/or 360 degrees is treated as a scaling transformation. |
| 2235 | |
| 2236 | \sa reset() |
| 2237 | */ |
| 2238 | |
| 2239 | /*! |
| 2240 | \fn bool QTransform::isTranslating() const |
| 2241 | |
| 2242 | Returns \c true if the matrix represents a translating |
| 2243 | transformation, otherwise returns \c false. |
| 2244 | |
| 2245 | \sa reset() |
| 2246 | */ |
| 2247 | |
| 2248 | /*! |
| 2249 | \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
| 2250 | |
| 2251 | \relates QTransform |
| 2252 | \since 4.6 |
| 2253 | |
| 2254 | Returns \c true if \a t1 and \a t2 are equal, allowing for a small |
| 2255 | fuzziness factor for floating-point comparisons; false otherwise. |
| 2256 | */ |
| 2257 | |
| 2258 | |
| 2259 | // returns true if the transform is uniformly scaling |
| 2260 | // (same scale in x and y direction) |
| 2261 | // scale is set to the max of x and y scaling factors |
| 2262 | Q_GUI_EXPORT |
| 2263 | bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
| 2264 | { |
| 2265 | const QTransform::TransformationType type = transform.type(); |
| 2266 | if (type <= QTransform::TxTranslate) { |
| 2267 | if (scale) |
| 2268 | *scale = 1; |
| 2269 | return true; |
| 2270 | } else if (type == QTransform::TxScale) { |
| 2271 | const qreal xScale = qAbs(transform.m11()); |
| 2272 | const qreal yScale = qAbs(transform.m22()); |
| 2273 | if (scale) |
| 2274 | *scale = qMax(xScale, yScale); |
| 2275 | return qFuzzyCompare(xScale, yScale); |
| 2276 | } |
| 2277 | |
| 2278 | // rotate then scale: compare columns |
| 2279 | const qreal xScale1 = transform.m11() * transform.m11() |
| 2280 | + transform.m21() * transform.m21(); |
| 2281 | const qreal yScale1 = transform.m12() * transform.m12() |
| 2282 | + transform.m22() * transform.m22(); |
| 2283 | |
| 2284 | // scale then rotate: compare rows |
| 2285 | const qreal xScale2 = transform.m11() * transform.m11() |
| 2286 | + transform.m12() * transform.m12(); |
| 2287 | const qreal yScale2 = transform.m21() * transform.m21() |
| 2288 | + transform.m22() * transform.m22(); |
| 2289 | |
| 2290 | // decide the order of rotate and scale operations |
| 2291 | if (qAbs(xScale1 - yScale1) > qAbs(xScale2 - yScale2)) { |
| 2292 | if (scale) |
| 2293 | *scale = qSqrt(qMax(xScale1, yScale1)); |
| 2294 | |
| 2295 | return type == QTransform::TxRotate && qFuzzyCompare(xScale1, yScale1); |
| 2296 | } else { |
| 2297 | if (scale) |
| 2298 | *scale = qSqrt(qMax(xScale2, yScale2)); |
| 2299 | |
| 2300 | return type == QTransform::TxRotate && qFuzzyCompare(xScale2, yScale2); |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | QDataStream & operator>>(QDataStream &s, QTransform::Affine &m) |
| 2305 | { |
| 2306 | if (s.version() == 1) { |
| 2307 | float m11, m12, m21, m22, dx, dy; |
| 2308 | s >> m11; s >> m12; s >> m21; s >> m22; s >> dx; s >> dy; |
| 2309 | |
| 2310 | m.m_matrix[0][0] = m11; |
| 2311 | m.m_matrix[0][1] = m12; |
| 2312 | m.m_matrix[1][0] = m21; |
| 2313 | m.m_matrix[1][1] = m22; |
| 2314 | m.m_matrix[2][0] = dx; |
| 2315 | m.m_matrix[2][1] = dy; |
| 2316 | } else { |
| 2317 | s >> m.m_matrix[0][0]; |
| 2318 | s >> m.m_matrix[0][1]; |
| 2319 | s >> m.m_matrix[1][0]; |
| 2320 | s >> m.m_matrix[1][1]; |
| 2321 | s >> m.m_matrix[2][0]; |
| 2322 | s >> m.m_matrix[2][1]; |
| 2323 | } |
| 2324 | m.m_matrix[0][2] = 0; |
| 2325 | m.m_matrix[1][2] = 0; |
| 2326 | m.m_matrix[2][2] = 1; |
| 2327 | return s; |
| 2328 | } |
| 2329 | |
| 2330 | QDataStream &operator<<(QDataStream &s, const QTransform::Affine &m) |
| 2331 | { |
| 2332 | if (s.version() == 1) { |
| 2333 | s << (float)m.m_matrix[0][0] |
| 2334 | << (float)m.m_matrix[0][1] |
| 2335 | << (float)m.m_matrix[1][0] |
| 2336 | << (float)m.m_matrix[1][1] |
| 2337 | << (float)m.m_matrix[2][0] |
| 2338 | << (float)m.m_matrix[2][1]; |
| 2339 | } else { |
| 2340 | s << m.m_matrix[0][0] |
| 2341 | << m.m_matrix[0][1] |
| 2342 | << m.m_matrix[1][0] |
| 2343 | << m.m_matrix[1][1] |
| 2344 | << m.m_matrix[2][0] |
| 2345 | << m.m_matrix[2][1]; |
| 2346 | } |
| 2347 | return s; |
| 2348 | } |
| 2349 | |
| 2350 | QT_END_NAMESPACE |
| 2351 | |