| 1 | /* |
| 2 | * mixed_andnot.c. More methods since operation is not symmetric, |
| 3 | * except no "wide" andnot , so no lazy options motivated. |
| 4 | */ |
| 5 | |
| 6 | #include <assert.h> |
| 7 | #include <string.h> |
| 8 | |
| 9 | #include <roaring/array_util.h> |
| 10 | #include <roaring/bitset_util.h> |
| 11 | #include <roaring/containers/containers.h> |
| 12 | #include <roaring/containers/convert.h> |
| 13 | #include <roaring/containers/mixed_andnot.h> |
| 14 | #include <roaring/containers/perfparameters.h> |
| 15 | |
| 16 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 17 | * dst, a valid array container that could be the same as dst.*/ |
| 18 | void array_bitset_container_andnot(const array_container_t *src_1, |
| 19 | const bitset_container_t *src_2, |
| 20 | array_container_t *dst) { |
| 21 | // follows Java implementation as of June 2016 |
| 22 | if (dst->capacity < src_1->cardinality) { |
| 23 | array_container_grow(dst, src_1->cardinality, false); |
| 24 | } |
| 25 | int32_t newcard = 0; |
| 26 | const int32_t origcard = src_1->cardinality; |
| 27 | for (int i = 0; i < origcard; ++i) { |
| 28 | uint16_t key = src_1->array[i]; |
| 29 | dst->array[newcard] = key; |
| 30 | newcard += 1 - bitset_container_contains(src_2, key); |
| 31 | } |
| 32 | dst->cardinality = newcard; |
| 33 | } |
| 34 | |
| 35 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 36 | * src_1 */ |
| 37 | |
| 38 | void array_bitset_container_iandnot(array_container_t *src_1, |
| 39 | const bitset_container_t *src_2) { |
| 40 | array_bitset_container_andnot(src_1, src_2, src_1); |
| 41 | } |
| 42 | |
| 43 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 44 | * dst, which does not initially have a valid container. |
| 45 | * Return true for a bitset result; false for array |
| 46 | */ |
| 47 | |
| 48 | bool bitset_array_container_andnot(const bitset_container_t *src_1, |
| 49 | const array_container_t *src_2, void **dst) { |
| 50 | // Java did this directly, but we have option of asm or avx |
| 51 | bitset_container_t *result = bitset_container_create(); |
| 52 | bitset_container_copy(src_1, result); |
| 53 | result->cardinality = |
| 54 | (int32_t)bitset_clear_list(result->array, (uint64_t)result->cardinality, |
| 55 | src_2->array, (uint64_t)src_2->cardinality); |
| 56 | |
| 57 | // do required type conversions. |
| 58 | if (result->cardinality <= DEFAULT_MAX_SIZE) { |
| 59 | *dst = array_container_from_bitset(result); |
| 60 | bitset_container_free(result); |
| 61 | return false; |
| 62 | } |
| 63 | *dst = result; |
| 64 | return true; |
| 65 | } |
| 66 | |
| 67 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 68 | * dst (which has no container initially). It will modify src_1 |
| 69 | * to be dst if the result is a bitset. Otherwise, it will |
| 70 | * free src_1 and dst will be a new array container. In both |
| 71 | * cases, the caller is responsible for deallocating dst. |
| 72 | * Returns true iff dst is a bitset */ |
| 73 | |
| 74 | bool bitset_array_container_iandnot(bitset_container_t *src_1, |
| 75 | const array_container_t *src_2, |
| 76 | void **dst) { |
| 77 | *dst = src_1; |
| 78 | src_1->cardinality = |
| 79 | (int32_t)bitset_clear_list(src_1->array, (uint64_t)src_1->cardinality, |
| 80 | src_2->array, (uint64_t)src_2->cardinality); |
| 81 | |
| 82 | if (src_1->cardinality <= DEFAULT_MAX_SIZE) { |
| 83 | *dst = array_container_from_bitset(src_1); |
| 84 | bitset_container_free(src_1); |
| 85 | return false; // not bitset |
| 86 | } else |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 91 | * dst. Result may be either a bitset or an array container |
| 92 | * (returns "result is bitset"). dst does not initially have |
| 93 | * any container, but becomes either a bitset container (return |
| 94 | * result true) or an array container. |
| 95 | */ |
| 96 | |
| 97 | bool run_bitset_container_andnot(const run_container_t *src_1, |
| 98 | const bitset_container_t *src_2, void **dst) { |
| 99 | // follows the Java implementation as of June 2016 |
| 100 | int card = run_container_cardinality(src_1); |
| 101 | if (card <= DEFAULT_MAX_SIZE) { |
| 102 | // must be an array |
| 103 | array_container_t *answer = array_container_create_given_capacity(card); |
| 104 | answer->cardinality = 0; |
| 105 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
| 106 | rle16_t rle = src_1->runs[rlepos]; |
| 107 | for (int run_value = rle.value; run_value <= rle.value + rle.length; |
| 108 | ++run_value) { |
| 109 | if (!bitset_container_get(src_2, (uint16_t)run_value)) { |
| 110 | answer->array[answer->cardinality++] = (uint16_t)run_value; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | *dst = answer; |
| 115 | return false; |
| 116 | } else { // we guess it will be a bitset, though have to check guess when |
| 117 | // done |
| 118 | bitset_container_t *answer = bitset_container_clone(src_2); |
| 119 | |
| 120 | uint32_t last_pos = 0; |
| 121 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
| 122 | rle16_t rle = src_1->runs[rlepos]; |
| 123 | |
| 124 | uint32_t start = rle.value; |
| 125 | uint32_t end = start + rle.length + 1; |
| 126 | bitset_reset_range(answer->array, last_pos, start); |
| 127 | bitset_flip_range(answer->array, start, end); |
| 128 | last_pos = end; |
| 129 | } |
| 130 | bitset_reset_range(answer->array, last_pos, (uint32_t)(1 << 16)); |
| 131 | |
| 132 | answer->cardinality = bitset_container_compute_cardinality(answer); |
| 133 | |
| 134 | if (answer->cardinality <= DEFAULT_MAX_SIZE) { |
| 135 | *dst = array_container_from_bitset(answer); |
| 136 | bitset_container_free(answer); |
| 137 | return false; // not bitset |
| 138 | } |
| 139 | *dst = answer; |
| 140 | return true; // bitset |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 145 | * dst. Result may be either a bitset or an array container |
| 146 | * (returns "result is bitset"). dst does not initially have |
| 147 | * any container, but becomes either a bitset container (return |
| 148 | * result true) or an array container. |
| 149 | */ |
| 150 | |
| 151 | bool run_bitset_container_iandnot(run_container_t *src_1, |
| 152 | const bitset_container_t *src_2, void **dst) { |
| 153 | // dummy implementation |
| 154 | bool ans = run_bitset_container_andnot(src_1, src_2, dst); |
| 155 | run_container_free(src_1); |
| 156 | return ans; |
| 157 | } |
| 158 | |
| 159 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 160 | * dst. Result may be either a bitset or an array container |
| 161 | * (returns "result is bitset"). dst does not initially have |
| 162 | * any container, but becomes either a bitset container (return |
| 163 | * result true) or an array container. |
| 164 | */ |
| 165 | |
| 166 | bool bitset_run_container_andnot(const bitset_container_t *src_1, |
| 167 | const run_container_t *src_2, void **dst) { |
| 168 | // follows Java implementation |
| 169 | bitset_container_t *result = bitset_container_create(); |
| 170 | |
| 171 | bitset_container_copy(src_1, result); |
| 172 | for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { |
| 173 | rle16_t rle = src_2->runs[rlepos]; |
| 174 | bitset_reset_range(result->array, rle.value, |
| 175 | rle.value + rle.length + UINT32_C(1)); |
| 176 | } |
| 177 | result->cardinality = bitset_container_compute_cardinality(result); |
| 178 | |
| 179 | if (result->cardinality <= DEFAULT_MAX_SIZE) { |
| 180 | *dst = array_container_from_bitset(result); |
| 181 | bitset_container_free(result); |
| 182 | return false; // not bitset |
| 183 | } |
| 184 | *dst = result; |
| 185 | return true; // bitset |
| 186 | } |
| 187 | |
| 188 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 189 | * dst (which has no container initially). It will modify src_1 |
| 190 | * to be dst if the result is a bitset. Otherwise, it will |
| 191 | * free src_1 and dst will be a new array container. In both |
| 192 | * cases, the caller is responsible for deallocating dst. |
| 193 | * Returns true iff dst is a bitset */ |
| 194 | |
| 195 | bool bitset_run_container_iandnot(bitset_container_t *src_1, |
| 196 | const run_container_t *src_2, void **dst) { |
| 197 | *dst = src_1; |
| 198 | |
| 199 | for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { |
| 200 | rle16_t rle = src_2->runs[rlepos]; |
| 201 | bitset_reset_range(src_1->array, rle.value, |
| 202 | rle.value + rle.length + UINT32_C(1)); |
| 203 | } |
| 204 | src_1->cardinality = bitset_container_compute_cardinality(src_1); |
| 205 | |
| 206 | if (src_1->cardinality <= DEFAULT_MAX_SIZE) { |
| 207 | *dst = array_container_from_bitset(src_1); |
| 208 | bitset_container_free(src_1); |
| 209 | return false; // not bitset |
| 210 | } else |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | /* helper. a_out must be a valid array container with adequate capacity. |
| 215 | * Returns the cardinality of the output container. Partly Based on Java |
| 216 | * implementation Util.unsignedDifference. |
| 217 | * |
| 218 | * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper |
| 219 | * to avoid advanceUntil? |
| 220 | */ |
| 221 | |
| 222 | static int run_array_array_subtract(const run_container_t *r, |
| 223 | const array_container_t *a_in, |
| 224 | array_container_t *a_out) { |
| 225 | int out_card = 0; |
| 226 | int32_t in_array_pos = |
| 227 | -1; // since advanceUntil always assumes we start the search AFTER this |
| 228 | |
| 229 | for (int rlepos = 0; rlepos < r->n_runs; rlepos++) { |
| 230 | int32_t start = r->runs[rlepos].value; |
| 231 | int32_t end = start + r->runs[rlepos].length + 1; |
| 232 | |
| 233 | in_array_pos = advanceUntil(a_in->array, in_array_pos, |
| 234 | a_in->cardinality, (uint16_t)start); |
| 235 | |
| 236 | if (in_array_pos >= a_in->cardinality) { // run has no items subtracted |
| 237 | for (int32_t i = start; i < end; ++i) |
| 238 | a_out->array[out_card++] = (uint16_t)i; |
| 239 | } else { |
| 240 | uint16_t next_nonincluded = a_in->array[in_array_pos]; |
| 241 | if (next_nonincluded >= end) { |
| 242 | // another case when run goes unaltered |
| 243 | for (int32_t i = start; i < end; ++i) |
| 244 | a_out->array[out_card++] = (uint16_t)i; |
| 245 | in_array_pos--; // ensure we see this item again if necessary |
| 246 | } else { |
| 247 | for (int32_t i = start; i < end; ++i) |
| 248 | if (i != next_nonincluded) |
| 249 | a_out->array[out_card++] = (uint16_t)i; |
| 250 | else // 0 should ensure we don't match |
| 251 | next_nonincluded = |
| 252 | (in_array_pos + 1 >= a_in->cardinality) |
| 253 | ? 0 |
| 254 | : a_in->array[++in_array_pos]; |
| 255 | in_array_pos--; // see again |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | return out_card; |
| 260 | } |
| 261 | |
| 262 | /* dst does not indicate a valid container initially. Eventually it |
| 263 | * can become any type of container. |
| 264 | */ |
| 265 | |
| 266 | int run_array_container_andnot(const run_container_t *src_1, |
| 267 | const array_container_t *src_2, void **dst) { |
| 268 | // follows the Java impl as of June 2016 |
| 269 | |
| 270 | int card = run_container_cardinality(src_1); |
| 271 | const int arbitrary_threshold = 32; |
| 272 | |
| 273 | if (card <= arbitrary_threshold) { |
| 274 | if (src_2->cardinality == 0) { |
| 275 | *dst = run_container_clone(src_1); |
| 276 | return RUN_CONTAINER_TYPE_CODE; |
| 277 | } |
| 278 | // Java's "lazyandNot.toEfficientContainer" thing |
| 279 | run_container_t *answer = run_container_create_given_capacity( |
| 280 | card + array_container_cardinality(src_2)); |
| 281 | |
| 282 | int rlepos = 0; |
| 283 | int xrlepos = 0; // "x" is src_2 |
| 284 | rle16_t rle = src_1->runs[rlepos]; |
| 285 | int32_t start = rle.value; |
| 286 | int32_t end = start + rle.length + 1; |
| 287 | int32_t xstart = src_2->array[xrlepos]; |
| 288 | |
| 289 | while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) { |
| 290 | if (end <= xstart) { |
| 291 | // output the first run |
| 292 | answer->runs[answer->n_runs++] = |
| 293 | (rle16_t){.value = (uint16_t)start, |
| 294 | .length = (uint16_t)(end - start - 1)}; |
| 295 | rlepos++; |
| 296 | if (rlepos < src_1->n_runs) { |
| 297 | start = src_1->runs[rlepos].value; |
| 298 | end = start + src_1->runs[rlepos].length + 1; |
| 299 | } |
| 300 | } else if (xstart + 1 <= start) { |
| 301 | // exit the second run |
| 302 | xrlepos++; |
| 303 | if (xrlepos < src_2->cardinality) { |
| 304 | xstart = src_2->array[xrlepos]; |
| 305 | } |
| 306 | } else { |
| 307 | if (start < xstart) { |
| 308 | answer->runs[answer->n_runs++] = |
| 309 | (rle16_t){.value = (uint16_t)start, |
| 310 | .length = (uint16_t)(xstart - start - 1)}; |
| 311 | } |
| 312 | if (xstart + 1 < end) { |
| 313 | start = xstart + 1; |
| 314 | } else { |
| 315 | rlepos++; |
| 316 | if (rlepos < src_1->n_runs) { |
| 317 | start = src_1->runs[rlepos].value; |
| 318 | end = start + src_1->runs[rlepos].length + 1; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | if (rlepos < src_1->n_runs) { |
| 324 | answer->runs[answer->n_runs++] = |
| 325 | (rle16_t){.value = (uint16_t)start, |
| 326 | .length = (uint16_t)(end - start - 1)}; |
| 327 | rlepos++; |
| 328 | if (rlepos < src_1->n_runs) { |
| 329 | memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos, |
| 330 | (src_1->n_runs - rlepos) * sizeof(rle16_t)); |
| 331 | answer->n_runs += (src_1->n_runs - rlepos); |
| 332 | } |
| 333 | } |
| 334 | uint8_t return_type; |
| 335 | *dst = convert_run_to_efficient_container(answer, &return_type); |
| 336 | if (answer != *dst) run_container_free(answer); |
| 337 | return return_type; |
| 338 | } |
| 339 | // else it's a bitmap or array |
| 340 | |
| 341 | if (card <= DEFAULT_MAX_SIZE) { |
| 342 | array_container_t *ac = array_container_create_given_capacity(card); |
| 343 | // nb Java code used a generic iterator-based merge to compute |
| 344 | // difference |
| 345 | ac->cardinality = run_array_array_subtract(src_1, src_2, ac); |
| 346 | *dst = ac; |
| 347 | return ARRAY_CONTAINER_TYPE_CODE; |
| 348 | } |
| 349 | bitset_container_t *ans = bitset_container_from_run(src_1); |
| 350 | bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst); |
| 351 | return (result_is_bitset ? BITSET_CONTAINER_TYPE_CODE |
| 352 | : ARRAY_CONTAINER_TYPE_CODE); |
| 353 | } |
| 354 | |
| 355 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 356 | * dst (which has no container initially). It will modify src_1 |
| 357 | * to be dst if the result is a bitset. Otherwise, it will |
| 358 | * free src_1 and dst will be a new array container. In both |
| 359 | * cases, the caller is responsible for deallocating dst. |
| 360 | * Returns true iff dst is a bitset */ |
| 361 | |
| 362 | int run_array_container_iandnot(run_container_t *src_1, |
| 363 | const array_container_t *src_2, void **dst) { |
| 364 | // dummy implementation same as June 2016 Java |
| 365 | int ans = run_array_container_andnot(src_1, src_2, dst); |
| 366 | run_container_free(src_1); |
| 367 | return ans; |
| 368 | } |
| 369 | |
| 370 | /* dst must be a valid array container, allowed to be src_1 */ |
| 371 | |
| 372 | void array_run_container_andnot(const array_container_t *src_1, |
| 373 | const run_container_t *src_2, |
| 374 | array_container_t *dst) { |
| 375 | // basically following Java impl as of June 2016 |
| 376 | if (src_1->cardinality > dst->capacity) { |
| 377 | array_container_grow(dst, src_1->cardinality, false); |
| 378 | } |
| 379 | |
| 380 | if (src_2->n_runs == 0) { |
| 381 | memmove(dst->array, src_1->array, |
| 382 | sizeof(uint16_t) * src_1->cardinality); |
| 383 | dst->cardinality = src_1->cardinality; |
| 384 | return; |
| 385 | } |
| 386 | int32_t run_start = src_2->runs[0].value; |
| 387 | int32_t run_end = run_start + src_2->runs[0].length; |
| 388 | int which_run = 0; |
| 389 | |
| 390 | uint16_t val = 0; |
| 391 | int dest_card = 0; |
| 392 | for (int i = 0; i < src_1->cardinality; ++i) { |
| 393 | val = src_1->array[i]; |
| 394 | if (val < run_start) |
| 395 | dst->array[dest_card++] = val; |
| 396 | else if (val <= run_end) { |
| 397 | ; // omitted item |
| 398 | } else { |
| 399 | do { |
| 400 | if (which_run + 1 < src_2->n_runs) { |
| 401 | ++which_run; |
| 402 | run_start = src_2->runs[which_run].value; |
| 403 | run_end = run_start + src_2->runs[which_run].length; |
| 404 | |
| 405 | } else |
| 406 | run_start = run_end = (1 << 16) + 1; |
| 407 | } while (val > run_end); |
| 408 | --i; |
| 409 | } |
| 410 | } |
| 411 | dst->cardinality = dest_card; |
| 412 | } |
| 413 | |
| 414 | /* dst does not indicate a valid container initially. Eventually it |
| 415 | * can become any kind of container. |
| 416 | */ |
| 417 | |
| 418 | void array_run_container_iandnot(array_container_t *src_1, |
| 419 | const run_container_t *src_2) { |
| 420 | array_run_container_andnot(src_1, src_2, src_1); |
| 421 | } |
| 422 | |
| 423 | /* dst does not indicate a valid container initially. Eventually it |
| 424 | * can become any kind of container. |
| 425 | */ |
| 426 | |
| 427 | int run_run_container_andnot(const run_container_t *src_1, |
| 428 | const run_container_t *src_2, void **dst) { |
| 429 | run_container_t *ans = run_container_create(); |
| 430 | run_container_andnot(src_1, src_2, ans); |
| 431 | uint8_t typecode_after; |
| 432 | *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); |
| 433 | return typecode_after; |
| 434 | } |
| 435 | |
| 436 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 437 | * dst (which has no container initially). It will modify src_1 |
| 438 | * to be dst if the result is a bitset. Otherwise, it will |
| 439 | * free src_1 and dst will be a new array container. In both |
| 440 | * cases, the caller is responsible for deallocating dst. |
| 441 | * Returns true iff dst is a bitset */ |
| 442 | |
| 443 | int run_run_container_iandnot(run_container_t *src_1, |
| 444 | const run_container_t *src_2, void **dst) { |
| 445 | // following Java impl as of June 2016 (dummy) |
| 446 | int ans = run_run_container_andnot(src_1, src_2, dst); |
| 447 | run_container_free(src_1); |
| 448 | return ans; |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * dst is a valid array container and may be the same as src_1 |
| 453 | */ |
| 454 | |
| 455 | void array_array_container_andnot(const array_container_t *src_1, |
| 456 | const array_container_t *src_2, |
| 457 | array_container_t *dst) { |
| 458 | array_container_andnot(src_1, src_2, dst); |
| 459 | } |
| 460 | |
| 461 | /* inplace array-array andnot will always be able to reuse the space of |
| 462 | * src_1 */ |
| 463 | void array_array_container_iandnot(array_container_t *src_1, |
| 464 | const array_container_t *src_2) { |
| 465 | array_container_andnot(src_1, src_2, src_1); |
| 466 | } |
| 467 | |
| 468 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 469 | * dst (which has no container initially). Return value is |
| 470 | * "dst is a bitset" |
| 471 | */ |
| 472 | |
| 473 | bool bitset_bitset_container_andnot(const bitset_container_t *src_1, |
| 474 | const bitset_container_t *src_2, |
| 475 | void **dst) { |
| 476 | bitset_container_t *ans = bitset_container_create(); |
| 477 | int card = bitset_container_andnot(src_1, src_2, ans); |
| 478 | if (card <= DEFAULT_MAX_SIZE) { |
| 479 | *dst = array_container_from_bitset(ans); |
| 480 | bitset_container_free(ans); |
| 481 | return false; // not bitset |
| 482 | } else { |
| 483 | *dst = ans; |
| 484 | return true; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 489 | * dst (which has no container initially). It will modify src_1 |
| 490 | * to be dst if the result is a bitset. Otherwise, it will |
| 491 | * free src_1 and dst will be a new array container. In both |
| 492 | * cases, the caller is responsible for deallocating dst. |
| 493 | * Returns true iff dst is a bitset */ |
| 494 | |
| 495 | bool bitset_bitset_container_iandnot(bitset_container_t *src_1, |
| 496 | const bitset_container_t *src_2, |
| 497 | void **dst) { |
| 498 | int card = bitset_container_andnot(src_1, src_2, src_1); |
| 499 | if (card <= DEFAULT_MAX_SIZE) { |
| 500 | *dst = array_container_from_bitset(src_1); |
| 501 | bitset_container_free(src_1); |
| 502 | return false; // not bitset |
| 503 | } else { |
| 504 | *dst = src_1; |
| 505 | return true; |
| 506 | } |
| 507 | } |
| 508 | |