1 | /* |
2 | * mixed_andnot.c. More methods since operation is not symmetric, |
3 | * except no "wide" andnot , so no lazy options motivated. |
4 | */ |
5 | |
6 | #include <assert.h> |
7 | #include <string.h> |
8 | |
9 | #include <roaring/array_util.h> |
10 | #include <roaring/bitset_util.h> |
11 | #include <roaring/containers/containers.h> |
12 | #include <roaring/containers/convert.h> |
13 | #include <roaring/containers/mixed_andnot.h> |
14 | #include <roaring/containers/perfparameters.h> |
15 | |
16 | /* Compute the andnot of src_1 and src_2 and write the result to |
17 | * dst, a valid array container that could be the same as dst.*/ |
18 | void array_bitset_container_andnot(const array_container_t *src_1, |
19 | const bitset_container_t *src_2, |
20 | array_container_t *dst) { |
21 | // follows Java implementation as of June 2016 |
22 | if (dst->capacity < src_1->cardinality) { |
23 | array_container_grow(dst, src_1->cardinality, false); |
24 | } |
25 | int32_t newcard = 0; |
26 | const int32_t origcard = src_1->cardinality; |
27 | for (int i = 0; i < origcard; ++i) { |
28 | uint16_t key = src_1->array[i]; |
29 | dst->array[newcard] = key; |
30 | newcard += 1 - bitset_container_contains(src_2, key); |
31 | } |
32 | dst->cardinality = newcard; |
33 | } |
34 | |
35 | /* Compute the andnot of src_1 and src_2 and write the result to |
36 | * src_1 */ |
37 | |
38 | void array_bitset_container_iandnot(array_container_t *src_1, |
39 | const bitset_container_t *src_2) { |
40 | array_bitset_container_andnot(src_1, src_2, src_1); |
41 | } |
42 | |
43 | /* Compute the andnot of src_1 and src_2 and write the result to |
44 | * dst, which does not initially have a valid container. |
45 | * Return true for a bitset result; false for array |
46 | */ |
47 | |
48 | bool bitset_array_container_andnot(const bitset_container_t *src_1, |
49 | const array_container_t *src_2, void **dst) { |
50 | // Java did this directly, but we have option of asm or avx |
51 | bitset_container_t *result = bitset_container_create(); |
52 | bitset_container_copy(src_1, result); |
53 | result->cardinality = |
54 | (int32_t)bitset_clear_list(result->array, (uint64_t)result->cardinality, |
55 | src_2->array, (uint64_t)src_2->cardinality); |
56 | |
57 | // do required type conversions. |
58 | if (result->cardinality <= DEFAULT_MAX_SIZE) { |
59 | *dst = array_container_from_bitset(result); |
60 | bitset_container_free(result); |
61 | return false; |
62 | } |
63 | *dst = result; |
64 | return true; |
65 | } |
66 | |
67 | /* Compute the andnot of src_1 and src_2 and write the result to |
68 | * dst (which has no container initially). It will modify src_1 |
69 | * to be dst if the result is a bitset. Otherwise, it will |
70 | * free src_1 and dst will be a new array container. In both |
71 | * cases, the caller is responsible for deallocating dst. |
72 | * Returns true iff dst is a bitset */ |
73 | |
74 | bool bitset_array_container_iandnot(bitset_container_t *src_1, |
75 | const array_container_t *src_2, |
76 | void **dst) { |
77 | *dst = src_1; |
78 | src_1->cardinality = |
79 | (int32_t)bitset_clear_list(src_1->array, (uint64_t)src_1->cardinality, |
80 | src_2->array, (uint64_t)src_2->cardinality); |
81 | |
82 | if (src_1->cardinality <= DEFAULT_MAX_SIZE) { |
83 | *dst = array_container_from_bitset(src_1); |
84 | bitset_container_free(src_1); |
85 | return false; // not bitset |
86 | } else |
87 | return true; |
88 | } |
89 | |
90 | /* Compute the andnot of src_1 and src_2 and write the result to |
91 | * dst. Result may be either a bitset or an array container |
92 | * (returns "result is bitset"). dst does not initially have |
93 | * any container, but becomes either a bitset container (return |
94 | * result true) or an array container. |
95 | */ |
96 | |
97 | bool run_bitset_container_andnot(const run_container_t *src_1, |
98 | const bitset_container_t *src_2, void **dst) { |
99 | // follows the Java implementation as of June 2016 |
100 | int card = run_container_cardinality(src_1); |
101 | if (card <= DEFAULT_MAX_SIZE) { |
102 | // must be an array |
103 | array_container_t *answer = array_container_create_given_capacity(card); |
104 | answer->cardinality = 0; |
105 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
106 | rle16_t rle = src_1->runs[rlepos]; |
107 | for (int run_value = rle.value; run_value <= rle.value + rle.length; |
108 | ++run_value) { |
109 | if (!bitset_container_get(src_2, (uint16_t)run_value)) { |
110 | answer->array[answer->cardinality++] = (uint16_t)run_value; |
111 | } |
112 | } |
113 | } |
114 | *dst = answer; |
115 | return false; |
116 | } else { // we guess it will be a bitset, though have to check guess when |
117 | // done |
118 | bitset_container_t *answer = bitset_container_clone(src_2); |
119 | |
120 | uint32_t last_pos = 0; |
121 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
122 | rle16_t rle = src_1->runs[rlepos]; |
123 | |
124 | uint32_t start = rle.value; |
125 | uint32_t end = start + rle.length + 1; |
126 | bitset_reset_range(answer->array, last_pos, start); |
127 | bitset_flip_range(answer->array, start, end); |
128 | last_pos = end; |
129 | } |
130 | bitset_reset_range(answer->array, last_pos, (uint32_t)(1 << 16)); |
131 | |
132 | answer->cardinality = bitset_container_compute_cardinality(answer); |
133 | |
134 | if (answer->cardinality <= DEFAULT_MAX_SIZE) { |
135 | *dst = array_container_from_bitset(answer); |
136 | bitset_container_free(answer); |
137 | return false; // not bitset |
138 | } |
139 | *dst = answer; |
140 | return true; // bitset |
141 | } |
142 | } |
143 | |
144 | /* Compute the andnot of src_1 and src_2 and write the result to |
145 | * dst. Result may be either a bitset or an array container |
146 | * (returns "result is bitset"). dst does not initially have |
147 | * any container, but becomes either a bitset container (return |
148 | * result true) or an array container. |
149 | */ |
150 | |
151 | bool run_bitset_container_iandnot(run_container_t *src_1, |
152 | const bitset_container_t *src_2, void **dst) { |
153 | // dummy implementation |
154 | bool ans = run_bitset_container_andnot(src_1, src_2, dst); |
155 | run_container_free(src_1); |
156 | return ans; |
157 | } |
158 | |
159 | /* Compute the andnot of src_1 and src_2 and write the result to |
160 | * dst. Result may be either a bitset or an array container |
161 | * (returns "result is bitset"). dst does not initially have |
162 | * any container, but becomes either a bitset container (return |
163 | * result true) or an array container. |
164 | */ |
165 | |
166 | bool bitset_run_container_andnot(const bitset_container_t *src_1, |
167 | const run_container_t *src_2, void **dst) { |
168 | // follows Java implementation |
169 | bitset_container_t *result = bitset_container_create(); |
170 | |
171 | bitset_container_copy(src_1, result); |
172 | for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { |
173 | rle16_t rle = src_2->runs[rlepos]; |
174 | bitset_reset_range(result->array, rle.value, |
175 | rle.value + rle.length + UINT32_C(1)); |
176 | } |
177 | result->cardinality = bitset_container_compute_cardinality(result); |
178 | |
179 | if (result->cardinality <= DEFAULT_MAX_SIZE) { |
180 | *dst = array_container_from_bitset(result); |
181 | bitset_container_free(result); |
182 | return false; // not bitset |
183 | } |
184 | *dst = result; |
185 | return true; // bitset |
186 | } |
187 | |
188 | /* Compute the andnot of src_1 and src_2 and write the result to |
189 | * dst (which has no container initially). It will modify src_1 |
190 | * to be dst if the result is a bitset. Otherwise, it will |
191 | * free src_1 and dst will be a new array container. In both |
192 | * cases, the caller is responsible for deallocating dst. |
193 | * Returns true iff dst is a bitset */ |
194 | |
195 | bool bitset_run_container_iandnot(bitset_container_t *src_1, |
196 | const run_container_t *src_2, void **dst) { |
197 | *dst = src_1; |
198 | |
199 | for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { |
200 | rle16_t rle = src_2->runs[rlepos]; |
201 | bitset_reset_range(src_1->array, rle.value, |
202 | rle.value + rle.length + UINT32_C(1)); |
203 | } |
204 | src_1->cardinality = bitset_container_compute_cardinality(src_1); |
205 | |
206 | if (src_1->cardinality <= DEFAULT_MAX_SIZE) { |
207 | *dst = array_container_from_bitset(src_1); |
208 | bitset_container_free(src_1); |
209 | return false; // not bitset |
210 | } else |
211 | return true; |
212 | } |
213 | |
214 | /* helper. a_out must be a valid array container with adequate capacity. |
215 | * Returns the cardinality of the output container. Partly Based on Java |
216 | * implementation Util.unsignedDifference. |
217 | * |
218 | * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper |
219 | * to avoid advanceUntil? |
220 | */ |
221 | |
222 | static int run_array_array_subtract(const run_container_t *r, |
223 | const array_container_t *a_in, |
224 | array_container_t *a_out) { |
225 | int out_card = 0; |
226 | int32_t in_array_pos = |
227 | -1; // since advanceUntil always assumes we start the search AFTER this |
228 | |
229 | for (int rlepos = 0; rlepos < r->n_runs; rlepos++) { |
230 | int32_t start = r->runs[rlepos].value; |
231 | int32_t end = start + r->runs[rlepos].length + 1; |
232 | |
233 | in_array_pos = advanceUntil(a_in->array, in_array_pos, |
234 | a_in->cardinality, (uint16_t)start); |
235 | |
236 | if (in_array_pos >= a_in->cardinality) { // run has no items subtracted |
237 | for (int32_t i = start; i < end; ++i) |
238 | a_out->array[out_card++] = (uint16_t)i; |
239 | } else { |
240 | uint16_t next_nonincluded = a_in->array[in_array_pos]; |
241 | if (next_nonincluded >= end) { |
242 | // another case when run goes unaltered |
243 | for (int32_t i = start; i < end; ++i) |
244 | a_out->array[out_card++] = (uint16_t)i; |
245 | in_array_pos--; // ensure we see this item again if necessary |
246 | } else { |
247 | for (int32_t i = start; i < end; ++i) |
248 | if (i != next_nonincluded) |
249 | a_out->array[out_card++] = (uint16_t)i; |
250 | else // 0 should ensure we don't match |
251 | next_nonincluded = |
252 | (in_array_pos + 1 >= a_in->cardinality) |
253 | ? 0 |
254 | : a_in->array[++in_array_pos]; |
255 | in_array_pos--; // see again |
256 | } |
257 | } |
258 | } |
259 | return out_card; |
260 | } |
261 | |
262 | /* dst does not indicate a valid container initially. Eventually it |
263 | * can become any type of container. |
264 | */ |
265 | |
266 | int run_array_container_andnot(const run_container_t *src_1, |
267 | const array_container_t *src_2, void **dst) { |
268 | // follows the Java impl as of June 2016 |
269 | |
270 | int card = run_container_cardinality(src_1); |
271 | const int arbitrary_threshold = 32; |
272 | |
273 | if (card <= arbitrary_threshold) { |
274 | if (src_2->cardinality == 0) { |
275 | *dst = run_container_clone(src_1); |
276 | return RUN_CONTAINER_TYPE_CODE; |
277 | } |
278 | // Java's "lazyandNot.toEfficientContainer" thing |
279 | run_container_t *answer = run_container_create_given_capacity( |
280 | card + array_container_cardinality(src_2)); |
281 | |
282 | int rlepos = 0; |
283 | int xrlepos = 0; // "x" is src_2 |
284 | rle16_t rle = src_1->runs[rlepos]; |
285 | int32_t start = rle.value; |
286 | int32_t end = start + rle.length + 1; |
287 | int32_t xstart = src_2->array[xrlepos]; |
288 | |
289 | while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) { |
290 | if (end <= xstart) { |
291 | // output the first run |
292 | answer->runs[answer->n_runs++] = |
293 | (rle16_t){.value = (uint16_t)start, |
294 | .length = (uint16_t)(end - start - 1)}; |
295 | rlepos++; |
296 | if (rlepos < src_1->n_runs) { |
297 | start = src_1->runs[rlepos].value; |
298 | end = start + src_1->runs[rlepos].length + 1; |
299 | } |
300 | } else if (xstart + 1 <= start) { |
301 | // exit the second run |
302 | xrlepos++; |
303 | if (xrlepos < src_2->cardinality) { |
304 | xstart = src_2->array[xrlepos]; |
305 | } |
306 | } else { |
307 | if (start < xstart) { |
308 | answer->runs[answer->n_runs++] = |
309 | (rle16_t){.value = (uint16_t)start, |
310 | .length = (uint16_t)(xstart - start - 1)}; |
311 | } |
312 | if (xstart + 1 < end) { |
313 | start = xstart + 1; |
314 | } else { |
315 | rlepos++; |
316 | if (rlepos < src_1->n_runs) { |
317 | start = src_1->runs[rlepos].value; |
318 | end = start + src_1->runs[rlepos].length + 1; |
319 | } |
320 | } |
321 | } |
322 | } |
323 | if (rlepos < src_1->n_runs) { |
324 | answer->runs[answer->n_runs++] = |
325 | (rle16_t){.value = (uint16_t)start, |
326 | .length = (uint16_t)(end - start - 1)}; |
327 | rlepos++; |
328 | if (rlepos < src_1->n_runs) { |
329 | memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos, |
330 | (src_1->n_runs - rlepos) * sizeof(rle16_t)); |
331 | answer->n_runs += (src_1->n_runs - rlepos); |
332 | } |
333 | } |
334 | uint8_t return_type; |
335 | *dst = convert_run_to_efficient_container(answer, &return_type); |
336 | if (answer != *dst) run_container_free(answer); |
337 | return return_type; |
338 | } |
339 | // else it's a bitmap or array |
340 | |
341 | if (card <= DEFAULT_MAX_SIZE) { |
342 | array_container_t *ac = array_container_create_given_capacity(card); |
343 | // nb Java code used a generic iterator-based merge to compute |
344 | // difference |
345 | ac->cardinality = run_array_array_subtract(src_1, src_2, ac); |
346 | *dst = ac; |
347 | return ARRAY_CONTAINER_TYPE_CODE; |
348 | } |
349 | bitset_container_t *ans = bitset_container_from_run(src_1); |
350 | bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst); |
351 | return (result_is_bitset ? BITSET_CONTAINER_TYPE_CODE |
352 | : ARRAY_CONTAINER_TYPE_CODE); |
353 | } |
354 | |
355 | /* Compute the andnot of src_1 and src_2 and write the result to |
356 | * dst (which has no container initially). It will modify src_1 |
357 | * to be dst if the result is a bitset. Otherwise, it will |
358 | * free src_1 and dst will be a new array container. In both |
359 | * cases, the caller is responsible for deallocating dst. |
360 | * Returns true iff dst is a bitset */ |
361 | |
362 | int run_array_container_iandnot(run_container_t *src_1, |
363 | const array_container_t *src_2, void **dst) { |
364 | // dummy implementation same as June 2016 Java |
365 | int ans = run_array_container_andnot(src_1, src_2, dst); |
366 | run_container_free(src_1); |
367 | return ans; |
368 | } |
369 | |
370 | /* dst must be a valid array container, allowed to be src_1 */ |
371 | |
372 | void array_run_container_andnot(const array_container_t *src_1, |
373 | const run_container_t *src_2, |
374 | array_container_t *dst) { |
375 | // basically following Java impl as of June 2016 |
376 | if (src_1->cardinality > dst->capacity) { |
377 | array_container_grow(dst, src_1->cardinality, false); |
378 | } |
379 | |
380 | if (src_2->n_runs == 0) { |
381 | memmove(dst->array, src_1->array, |
382 | sizeof(uint16_t) * src_1->cardinality); |
383 | dst->cardinality = src_1->cardinality; |
384 | return; |
385 | } |
386 | int32_t run_start = src_2->runs[0].value; |
387 | int32_t run_end = run_start + src_2->runs[0].length; |
388 | int which_run = 0; |
389 | |
390 | uint16_t val = 0; |
391 | int dest_card = 0; |
392 | for (int i = 0; i < src_1->cardinality; ++i) { |
393 | val = src_1->array[i]; |
394 | if (val < run_start) |
395 | dst->array[dest_card++] = val; |
396 | else if (val <= run_end) { |
397 | ; // omitted item |
398 | } else { |
399 | do { |
400 | if (which_run + 1 < src_2->n_runs) { |
401 | ++which_run; |
402 | run_start = src_2->runs[which_run].value; |
403 | run_end = run_start + src_2->runs[which_run].length; |
404 | |
405 | } else |
406 | run_start = run_end = (1 << 16) + 1; |
407 | } while (val > run_end); |
408 | --i; |
409 | } |
410 | } |
411 | dst->cardinality = dest_card; |
412 | } |
413 | |
414 | /* dst does not indicate a valid container initially. Eventually it |
415 | * can become any kind of container. |
416 | */ |
417 | |
418 | void array_run_container_iandnot(array_container_t *src_1, |
419 | const run_container_t *src_2) { |
420 | array_run_container_andnot(src_1, src_2, src_1); |
421 | } |
422 | |
423 | /* dst does not indicate a valid container initially. Eventually it |
424 | * can become any kind of container. |
425 | */ |
426 | |
427 | int run_run_container_andnot(const run_container_t *src_1, |
428 | const run_container_t *src_2, void **dst) { |
429 | run_container_t *ans = run_container_create(); |
430 | run_container_andnot(src_1, src_2, ans); |
431 | uint8_t typecode_after; |
432 | *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); |
433 | return typecode_after; |
434 | } |
435 | |
436 | /* Compute the andnot of src_1 and src_2 and write the result to |
437 | * dst (which has no container initially). It will modify src_1 |
438 | * to be dst if the result is a bitset. Otherwise, it will |
439 | * free src_1 and dst will be a new array container. In both |
440 | * cases, the caller is responsible for deallocating dst. |
441 | * Returns true iff dst is a bitset */ |
442 | |
443 | int run_run_container_iandnot(run_container_t *src_1, |
444 | const run_container_t *src_2, void **dst) { |
445 | // following Java impl as of June 2016 (dummy) |
446 | int ans = run_run_container_andnot(src_1, src_2, dst); |
447 | run_container_free(src_1); |
448 | return ans; |
449 | } |
450 | |
451 | /* |
452 | * dst is a valid array container and may be the same as src_1 |
453 | */ |
454 | |
455 | void array_array_container_andnot(const array_container_t *src_1, |
456 | const array_container_t *src_2, |
457 | array_container_t *dst) { |
458 | array_container_andnot(src_1, src_2, dst); |
459 | } |
460 | |
461 | /* inplace array-array andnot will always be able to reuse the space of |
462 | * src_1 */ |
463 | void array_array_container_iandnot(array_container_t *src_1, |
464 | const array_container_t *src_2) { |
465 | array_container_andnot(src_1, src_2, src_1); |
466 | } |
467 | |
468 | /* Compute the andnot of src_1 and src_2 and write the result to |
469 | * dst (which has no container initially). Return value is |
470 | * "dst is a bitset" |
471 | */ |
472 | |
473 | bool bitset_bitset_container_andnot(const bitset_container_t *src_1, |
474 | const bitset_container_t *src_2, |
475 | void **dst) { |
476 | bitset_container_t *ans = bitset_container_create(); |
477 | int card = bitset_container_andnot(src_1, src_2, ans); |
478 | if (card <= DEFAULT_MAX_SIZE) { |
479 | *dst = array_container_from_bitset(ans); |
480 | bitset_container_free(ans); |
481 | return false; // not bitset |
482 | } else { |
483 | *dst = ans; |
484 | return true; |
485 | } |
486 | } |
487 | |
488 | /* Compute the andnot of src_1 and src_2 and write the result to |
489 | * dst (which has no container initially). It will modify src_1 |
490 | * to be dst if the result is a bitset. Otherwise, it will |
491 | * free src_1 and dst will be a new array container. In both |
492 | * cases, the caller is responsible for deallocating dst. |
493 | * Returns true iff dst is a bitset */ |
494 | |
495 | bool bitset_bitset_container_iandnot(bitset_container_t *src_1, |
496 | const bitset_container_t *src_2, |
497 | void **dst) { |
498 | int card = bitset_container_andnot(src_1, src_2, src_1); |
499 | if (card <= DEFAULT_MAX_SIZE) { |
500 | *dst = array_container_from_bitset(src_1); |
501 | bitset_container_free(src_1); |
502 | return false; // not bitset |
503 | } else { |
504 | *dst = src_1; |
505 | return true; |
506 | } |
507 | } |
508 | |