1 | /* |
2 | * mixed_intersection.c |
3 | * |
4 | */ |
5 | |
6 | #include <roaring/array_util.h> |
7 | #include <roaring/bitset_util.h> |
8 | #include <roaring/containers/convert.h> |
9 | #include <roaring/containers/mixed_intersection.h> |
10 | |
11 | /* Compute the intersection of src_1 and src_2 and write the result to |
12 | * dst. */ |
13 | void array_bitset_container_intersection(const array_container_t *src_1, |
14 | const bitset_container_t *src_2, |
15 | array_container_t *dst) { |
16 | if (dst->capacity < src_1->cardinality) { |
17 | array_container_grow(dst, src_1->cardinality, false); |
18 | } |
19 | int32_t newcard = 0; // dst could be src_1 |
20 | const int32_t origcard = src_1->cardinality; |
21 | for (int i = 0; i < origcard; ++i) { |
22 | uint16_t key = src_1->array[i]; |
23 | // this branchless approach is much faster... |
24 | dst->array[newcard] = key; |
25 | newcard += bitset_container_contains(src_2, key); |
26 | /** |
27 | * we could do it this way instead... |
28 | * if (bitset_container_contains(src_2, key)) { |
29 | * dst->array[newcard++] = key; |
30 | * } |
31 | * but if the result is unpredictible, the processor generates |
32 | * many mispredicted branches. |
33 | * Difference can be huge (from 3 cycles when predictible all the way |
34 | * to 16 cycles when unpredictible. |
35 | * See |
36 | * https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c |
37 | */ |
38 | } |
39 | dst->cardinality = newcard; |
40 | } |
41 | |
42 | /* Compute the size of the intersection of src_1 and src_2. */ |
43 | int array_bitset_container_intersection_cardinality( |
44 | const array_container_t *src_1, const bitset_container_t *src_2) { |
45 | int32_t newcard = 0; |
46 | const int32_t origcard = src_1->cardinality; |
47 | for (int i = 0; i < origcard; ++i) { |
48 | uint16_t key = src_1->array[i]; |
49 | newcard += bitset_container_contains(src_2, key); |
50 | } |
51 | return newcard; |
52 | } |
53 | |
54 | |
55 | bool array_bitset_container_intersect(const array_container_t *src_1, |
56 | const bitset_container_t *src_2) { |
57 | const int32_t origcard = src_1->cardinality; |
58 | for (int i = 0; i < origcard; ++i) { |
59 | uint16_t key = src_1->array[i]; |
60 | if(bitset_container_contains(src_2, key)) return true; |
61 | } |
62 | return false; |
63 | } |
64 | |
65 | /* Compute the intersection of src_1 and src_2 and write the result to |
66 | * dst. It is allowed for dst to be equal to src_1. We assume that dst is a |
67 | * valid container. */ |
68 | void array_run_container_intersection(const array_container_t *src_1, |
69 | const run_container_t *src_2, |
70 | array_container_t *dst) { |
71 | if (run_container_is_full(src_2)) { |
72 | if (dst != src_1) array_container_copy(src_1, dst); |
73 | return; |
74 | } |
75 | if (dst->capacity < src_1->cardinality) { |
76 | array_container_grow(dst, src_1->cardinality, false); |
77 | } |
78 | if (src_2->n_runs == 0) { |
79 | return; |
80 | } |
81 | int32_t rlepos = 0; |
82 | int32_t arraypos = 0; |
83 | rle16_t rle = src_2->runs[rlepos]; |
84 | int32_t newcard = 0; |
85 | while (arraypos < src_1->cardinality) { |
86 | const uint16_t arrayval = src_1->array[arraypos]; |
87 | while (rle.value + rle.length < |
88 | arrayval) { // this will frequently be false |
89 | ++rlepos; |
90 | if (rlepos == src_2->n_runs) { |
91 | dst->cardinality = newcard; |
92 | return; // we are done |
93 | } |
94 | rle = src_2->runs[rlepos]; |
95 | } |
96 | if (rle.value > arrayval) { |
97 | arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, |
98 | rle.value); |
99 | } else { |
100 | dst->array[newcard] = arrayval; |
101 | newcard++; |
102 | arraypos++; |
103 | } |
104 | } |
105 | dst->cardinality = newcard; |
106 | } |
107 | |
108 | /* Compute the intersection of src_1 and src_2 and write the result to |
109 | * *dst. If the result is true then the result is a bitset_container_t |
110 | * otherwise is a array_container_t. If *dst == src_2, an in-place processing |
111 | * is attempted.*/ |
112 | bool run_bitset_container_intersection(const run_container_t *src_1, |
113 | const bitset_container_t *src_2, |
114 | void **dst) { |
115 | if (run_container_is_full(src_1)) { |
116 | if (*dst != src_2) *dst = bitset_container_clone(src_2); |
117 | return true; |
118 | } |
119 | int32_t card = run_container_cardinality(src_1); |
120 | if (card <= DEFAULT_MAX_SIZE) { |
121 | // result can only be an array (assuming that we never make a |
122 | // RunContainer) |
123 | if (card > src_2->cardinality) { |
124 | card = src_2->cardinality; |
125 | } |
126 | array_container_t *answer = array_container_create_given_capacity(card); |
127 | *dst = answer; |
128 | if (*dst == NULL) { |
129 | return false; |
130 | } |
131 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
132 | rle16_t rle = src_1->runs[rlepos]; |
133 | uint32_t endofrun = (uint32_t)rle.value + rle.length; |
134 | for (uint32_t runValue = rle.value; runValue <= endofrun; |
135 | ++runValue) { |
136 | answer->array[answer->cardinality] = (uint16_t)runValue; |
137 | answer->cardinality += |
138 | bitset_container_contains(src_2, runValue); |
139 | } |
140 | } |
141 | return false; |
142 | } |
143 | if (*dst == src_2) { // we attempt in-place |
144 | bitset_container_t *answer = (bitset_container_t *)*dst; |
145 | uint32_t start = 0; |
146 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
147 | const rle16_t rle = src_1->runs[rlepos]; |
148 | uint32_t end = rle.value; |
149 | bitset_reset_range(src_2->array, start, end); |
150 | |
151 | start = end + rle.length + 1; |
152 | } |
153 | bitset_reset_range(src_2->array, start, UINT32_C(1) << 16); |
154 | answer->cardinality = bitset_container_compute_cardinality(answer); |
155 | if (src_2->cardinality > DEFAULT_MAX_SIZE) { |
156 | return true; |
157 | } else { |
158 | array_container_t *newanswer = array_container_from_bitset(src_2); |
159 | if (newanswer == NULL) { |
160 | *dst = NULL; |
161 | return false; |
162 | } |
163 | *dst = newanswer; |
164 | return false; |
165 | } |
166 | } else { // no inplace |
167 | // we expect the answer to be a bitmap (if we are lucky) |
168 | bitset_container_t *answer = bitset_container_clone(src_2); |
169 | |
170 | *dst = answer; |
171 | if (answer == NULL) { |
172 | return true; |
173 | } |
174 | uint32_t start = 0; |
175 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
176 | const rle16_t rle = src_1->runs[rlepos]; |
177 | uint32_t end = rle.value; |
178 | bitset_reset_range(answer->array, start, end); |
179 | start = end + rle.length + 1; |
180 | } |
181 | bitset_reset_range(answer->array, start, UINT32_C(1) << 16); |
182 | answer->cardinality = bitset_container_compute_cardinality(answer); |
183 | |
184 | if (answer->cardinality > DEFAULT_MAX_SIZE) { |
185 | return true; |
186 | } else { |
187 | array_container_t *newanswer = array_container_from_bitset(answer); |
188 | bitset_container_free((bitset_container_t *)*dst); |
189 | if (newanswer == NULL) { |
190 | *dst = NULL; |
191 | return false; |
192 | } |
193 | *dst = newanswer; |
194 | return false; |
195 | } |
196 | } |
197 | } |
198 | |
199 | /* Compute the size of the intersection between src_1 and src_2 . */ |
200 | int array_run_container_intersection_cardinality(const array_container_t *src_1, |
201 | const run_container_t *src_2) { |
202 | if (run_container_is_full(src_2)) { |
203 | return src_1->cardinality; |
204 | } |
205 | if (src_2->n_runs == 0) { |
206 | return 0; |
207 | } |
208 | int32_t rlepos = 0; |
209 | int32_t arraypos = 0; |
210 | rle16_t rle = src_2->runs[rlepos]; |
211 | int32_t newcard = 0; |
212 | while (arraypos < src_1->cardinality) { |
213 | const uint16_t arrayval = src_1->array[arraypos]; |
214 | while (rle.value + rle.length < |
215 | arrayval) { // this will frequently be false |
216 | ++rlepos; |
217 | if (rlepos == src_2->n_runs) { |
218 | return newcard; // we are done |
219 | } |
220 | rle = src_2->runs[rlepos]; |
221 | } |
222 | if (rle.value > arrayval) { |
223 | arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, |
224 | rle.value); |
225 | } else { |
226 | newcard++; |
227 | arraypos++; |
228 | } |
229 | } |
230 | return newcard; |
231 | } |
232 | |
233 | /* Compute the intersection between src_1 and src_2 |
234 | **/ |
235 | int run_bitset_container_intersection_cardinality( |
236 | const run_container_t *src_1, const bitset_container_t *src_2) { |
237 | if (run_container_is_full(src_1)) { |
238 | return bitset_container_cardinality(src_2); |
239 | } |
240 | int answer = 0; |
241 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
242 | rle16_t rle = src_1->runs[rlepos]; |
243 | answer += |
244 | bitset_lenrange_cardinality(src_2->array, rle.value, rle.length); |
245 | } |
246 | return answer; |
247 | } |
248 | |
249 | |
250 | bool array_run_container_intersect(const array_container_t *src_1, |
251 | const run_container_t *src_2) { |
252 | if( run_container_is_full(src_2) ) { |
253 | return !array_container_empty(src_1); |
254 | } |
255 | if (src_2->n_runs == 0) { |
256 | return false; |
257 | } |
258 | int32_t rlepos = 0; |
259 | int32_t arraypos = 0; |
260 | rle16_t rle = src_2->runs[rlepos]; |
261 | while (arraypos < src_1->cardinality) { |
262 | const uint16_t arrayval = src_1->array[arraypos]; |
263 | while (rle.value + rle.length < |
264 | arrayval) { // this will frequently be false |
265 | ++rlepos; |
266 | if (rlepos == src_2->n_runs) { |
267 | return false; // we are done |
268 | } |
269 | rle = src_2->runs[rlepos]; |
270 | } |
271 | if (rle.value > arrayval) { |
272 | arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, |
273 | rle.value); |
274 | } else { |
275 | return true; |
276 | } |
277 | } |
278 | return false; |
279 | } |
280 | |
281 | /* Compute the intersection between src_1 and src_2 |
282 | **/ |
283 | bool run_bitset_container_intersect(const run_container_t *src_1, |
284 | const bitset_container_t *src_2) { |
285 | if( run_container_is_full(src_1) ) { |
286 | return !bitset_container_empty(src_2); |
287 | } |
288 | for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { |
289 | rle16_t rle = src_1->runs[rlepos]; |
290 | if(!bitset_lenrange_empty(src_2->array, rle.value,rle.length)) return true; |
291 | } |
292 | return false; |
293 | } |
294 | |
295 | /* |
296 | * Compute the intersection between src_1 and src_2 and write the result |
297 | * to *dst. If the return function is true, the result is a bitset_container_t |
298 | * otherwise is a array_container_t. |
299 | */ |
300 | bool bitset_bitset_container_intersection(const bitset_container_t *src_1, |
301 | const bitset_container_t *src_2, |
302 | void **dst) { |
303 | const int newCardinality = bitset_container_and_justcard(src_1, src_2); |
304 | if (newCardinality > DEFAULT_MAX_SIZE) { |
305 | *dst = bitset_container_create(); |
306 | if (*dst != NULL) { |
307 | bitset_container_and_nocard(src_1, src_2, |
308 | (bitset_container_t *)*dst); |
309 | ((bitset_container_t *)*dst)->cardinality = newCardinality; |
310 | } |
311 | return true; // it is a bitset |
312 | } |
313 | *dst = array_container_create_given_capacity(newCardinality); |
314 | if (*dst != NULL) { |
315 | ((array_container_t *)*dst)->cardinality = newCardinality; |
316 | bitset_extract_intersection_setbits_uint16( |
317 | ((const bitset_container_t *)src_1)->array, |
318 | ((const bitset_container_t *)src_2)->array, |
319 | BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array, |
320 | 0); |
321 | } |
322 | return false; // not a bitset |
323 | } |
324 | |
325 | bool bitset_bitset_container_intersection_inplace( |
326 | bitset_container_t *src_1, const bitset_container_t *src_2, void **dst) { |
327 | const int newCardinality = bitset_container_and_justcard(src_1, src_2); |
328 | if (newCardinality > DEFAULT_MAX_SIZE) { |
329 | *dst = src_1; |
330 | bitset_container_and_nocard(src_1, src_2, src_1); |
331 | ((bitset_container_t *)*dst)->cardinality = newCardinality; |
332 | return true; // it is a bitset |
333 | } |
334 | *dst = array_container_create_given_capacity(newCardinality); |
335 | if (*dst != NULL) { |
336 | ((array_container_t *)*dst)->cardinality = newCardinality; |
337 | bitset_extract_intersection_setbits_uint16( |
338 | ((const bitset_container_t *)src_1)->array, |
339 | ((const bitset_container_t *)src_2)->array, |
340 | BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array, |
341 | 0); |
342 | } |
343 | return false; // not a bitset |
344 | } |
345 | |