| 1 | /* |
| 2 | * mixed_negation.c |
| 3 | * |
| 4 | */ |
| 5 | |
| 6 | #include <assert.h> |
| 7 | #include <string.h> |
| 8 | |
| 9 | #include <roaring/array_util.h> |
| 10 | #include <roaring/bitset_util.h> |
| 11 | #include <roaring/containers/containers.h> |
| 12 | #include <roaring/containers/convert.h> |
| 13 | #include <roaring/containers/mixed_negation.h> |
| 14 | #include <roaring/containers/run.h> |
| 15 | |
| 16 | // TODO: make simplified and optimized negation code across |
| 17 | // the full range. |
| 18 | |
| 19 | /* Negation across the entire range of the container. |
| 20 | * Compute the negation of src and write the result |
| 21 | * to *dst. The complement of a |
| 22 | * sufficiently sparse set will always be dense and a hence a bitmap |
| 23 | ' * We assume that dst is pre-allocated and a valid bitset container |
| 24 | * There can be no in-place version. |
| 25 | */ |
| 26 | void array_container_negation(const array_container_t *src, |
| 27 | bitset_container_t *dst) { |
| 28 | uint64_t card = UINT64_C(1 << 16); |
| 29 | bitset_container_set_all(dst); |
| 30 | |
| 31 | dst->cardinality = (int32_t)bitset_clear_list(dst->array, card, src->array, |
| 32 | (uint64_t)src->cardinality); |
| 33 | } |
| 34 | |
| 35 | /* Negation across the entire range of the container |
| 36 | * Compute the negation of src and write the result |
| 37 | * to *dst. A true return value indicates a bitset result, |
| 38 | * otherwise the result is an array container. |
| 39 | * We assume that dst is not pre-allocated. In |
| 40 | * case of failure, *dst will be NULL. |
| 41 | */ |
| 42 | bool bitset_container_negation(const bitset_container_t *src, void **dst) { |
| 43 | return bitset_container_negation_range(src, 0, (1 << 16), dst); |
| 44 | } |
| 45 | |
| 46 | /* inplace version */ |
| 47 | /* |
| 48 | * Same as bitset_container_negation except that if the output is to |
| 49 | * be a |
| 50 | * bitset_container_t, then src is modified and no allocation is made. |
| 51 | * If the output is to be an array_container_t, then caller is responsible |
| 52 | * to free the container. |
| 53 | * In all cases, the result is in *dst. |
| 54 | */ |
| 55 | bool bitset_container_negation_inplace(bitset_container_t *src, void **dst) { |
| 56 | return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst); |
| 57 | } |
| 58 | |
| 59 | /* Negation across the entire range of container |
| 60 | * Compute the negation of src and write the result |
| 61 | * to *dst. Return values are the *_TYPECODES as defined * in containers.h |
| 62 | * We assume that dst is not pre-allocated. In |
| 63 | * case of failure, *dst will be NULL. |
| 64 | */ |
| 65 | int run_container_negation(const run_container_t *src, void **dst) { |
| 66 | return run_container_negation_range(src, 0, (1 << 16), dst); |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * Same as run_container_negation except that if the output is to |
| 71 | * be a |
| 72 | * run_container_t, and has the capacity to hold the result, |
| 73 | * then src is modified and no allocation is made. |
| 74 | * In all cases, the result is in *dst. |
| 75 | */ |
| 76 | int run_container_negation_inplace(run_container_t *src, void **dst) { |
| 77 | return run_container_negation_range_inplace(src, 0, (1 << 16), dst); |
| 78 | } |
| 79 | |
| 80 | /* Negation across a range of the container. |
| 81 | * Compute the negation of src and write the result |
| 82 | * to *dst. Returns true if the result is a bitset container |
| 83 | * and false for an array container. *dst is not preallocated. |
| 84 | */ |
| 85 | bool array_container_negation_range(const array_container_t *src, |
| 86 | const int range_start, const int range_end, |
| 87 | void **dst) { |
| 88 | /* close port of the Java implementation */ |
| 89 | if (range_start >= range_end) { |
| 90 | *dst = array_container_clone(src); |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | int32_t start_index = |
| 95 | binarySearch(src->array, src->cardinality, (uint16_t)range_start); |
| 96 | if (start_index < 0) start_index = -start_index - 1; |
| 97 | |
| 98 | int32_t last_index = |
| 99 | binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1)); |
| 100 | if (last_index < 0) last_index = -last_index - 2; |
| 101 | |
| 102 | const int32_t current_values_in_range = last_index - start_index + 1; |
| 103 | const int32_t span_to_be_flipped = range_end - range_start; |
| 104 | const int32_t new_values_in_range = |
| 105 | span_to_be_flipped - current_values_in_range; |
| 106 | const int32_t cardinality_change = |
| 107 | new_values_in_range - current_values_in_range; |
| 108 | const int32_t new_cardinality = src->cardinality + cardinality_change; |
| 109 | |
| 110 | if (new_cardinality > DEFAULT_MAX_SIZE) { |
| 111 | bitset_container_t *temp = bitset_container_from_array(src); |
| 112 | bitset_flip_range(temp->array, (uint32_t)range_start, |
| 113 | (uint32_t)range_end); |
| 114 | temp->cardinality = new_cardinality; |
| 115 | *dst = temp; |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | array_container_t *arr = |
| 120 | array_container_create_given_capacity(new_cardinality); |
| 121 | *dst = (void *)arr; |
| 122 | if(new_cardinality == 0) { |
| 123 | arr->cardinality = new_cardinality; |
| 124 | return false; // we are done. |
| 125 | } |
| 126 | // copy stuff before the active area |
| 127 | memcpy(arr->array, src->array, start_index * sizeof(uint16_t)); |
| 128 | |
| 129 | // work on the range |
| 130 | int32_t out_pos = start_index, in_pos = start_index; |
| 131 | int32_t val_in_range = range_start; |
| 132 | for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) { |
| 133 | if ((uint16_t)val_in_range != src->array[in_pos]) { |
| 134 | arr->array[out_pos++] = (uint16_t)val_in_range; |
| 135 | } else { |
| 136 | ++in_pos; |
| 137 | } |
| 138 | } |
| 139 | for (; val_in_range < range_end; ++val_in_range) |
| 140 | arr->array[out_pos++] = (uint16_t)val_in_range; |
| 141 | |
| 142 | // content after the active range |
| 143 | memcpy(arr->array + out_pos, src->array + (last_index + 1), |
| 144 | (src->cardinality - (last_index + 1)) * sizeof(uint16_t)); |
| 145 | arr->cardinality = new_cardinality; |
| 146 | return false; |
| 147 | } |
| 148 | |
| 149 | /* Even when the result would fit, it is unclear how to make an |
| 150 | * inplace version without inefficient copying. |
| 151 | */ |
| 152 | |
| 153 | bool array_container_negation_range_inplace(array_container_t *src, |
| 154 | const int range_start, |
| 155 | const int range_end, void **dst) { |
| 156 | bool ans = array_container_negation_range(src, range_start, range_end, dst); |
| 157 | // TODO : try a real inplace version |
| 158 | array_container_free(src); |
| 159 | return ans; |
| 160 | } |
| 161 | |
| 162 | /* Negation across a range of the container |
| 163 | * Compute the negation of src and write the result |
| 164 | * to *dst. A true return value indicates a bitset result, |
| 165 | * otherwise the result is an array container. |
| 166 | * We assume that dst is not pre-allocated. In |
| 167 | * case of failure, *dst will be NULL. |
| 168 | */ |
| 169 | bool bitset_container_negation_range(const bitset_container_t *src, |
| 170 | const int range_start, const int range_end, |
| 171 | void **dst) { |
| 172 | // TODO maybe consider density-based estimate |
| 173 | // and sometimes build result directly as array, with |
| 174 | // conversion back to bitset if wrong. Or determine |
| 175 | // actual result cardinality, then go directly for the known final cont. |
| 176 | |
| 177 | // keep computation using bitsets as long as possible. |
| 178 | bitset_container_t *t = bitset_container_clone(src); |
| 179 | bitset_flip_range(t->array, (uint32_t)range_start, (uint32_t)range_end); |
| 180 | t->cardinality = bitset_container_compute_cardinality(t); |
| 181 | |
| 182 | if (t->cardinality > DEFAULT_MAX_SIZE) { |
| 183 | *dst = t; |
| 184 | return true; |
| 185 | } else { |
| 186 | *dst = array_container_from_bitset(t); |
| 187 | bitset_container_free(t); |
| 188 | return false; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /* inplace version */ |
| 193 | /* |
| 194 | * Same as bitset_container_negation except that if the output is to |
| 195 | * be a |
| 196 | * bitset_container_t, then src is modified and no allocation is made. |
| 197 | * If the output is to be an array_container_t, then caller is responsible |
| 198 | * to free the container. |
| 199 | * In all cases, the result is in *dst. |
| 200 | */ |
| 201 | bool bitset_container_negation_range_inplace(bitset_container_t *src, |
| 202 | const int range_start, |
| 203 | const int range_end, void **dst) { |
| 204 | bitset_flip_range(src->array, (uint32_t)range_start, (uint32_t)range_end); |
| 205 | src->cardinality = bitset_container_compute_cardinality(src); |
| 206 | if (src->cardinality > DEFAULT_MAX_SIZE) { |
| 207 | *dst = src; |
| 208 | return true; |
| 209 | } |
| 210 | *dst = array_container_from_bitset(src); |
| 211 | bitset_container_free(src); |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | /* Negation across a range of container |
| 216 | * Compute the negation of src and write the result |
| 217 | * to *dst. Return values are the *_TYPECODES as defined * in containers.h |
| 218 | * We assume that dst is not pre-allocated. In |
| 219 | * case of failure, *dst will be NULL. |
| 220 | */ |
| 221 | int run_container_negation_range(const run_container_t *src, |
| 222 | const int range_start, const int range_end, |
| 223 | void **dst) { |
| 224 | uint8_t return_typecode; |
| 225 | |
| 226 | // follows the Java implementation |
| 227 | if (range_end <= range_start) { |
| 228 | *dst = run_container_clone(src); |
| 229 | return RUN_CONTAINER_TYPE_CODE; |
| 230 | } |
| 231 | |
| 232 | run_container_t *ans = run_container_create_given_capacity( |
| 233 | src->n_runs + 1); // src->n_runs + 1); |
| 234 | int k = 0; |
| 235 | for (; k < src->n_runs && src->runs[k].value < range_start; ++k) { |
| 236 | ans->runs[k] = src->runs[k]; |
| 237 | ans->n_runs++; |
| 238 | } |
| 239 | |
| 240 | run_container_smart_append_exclusive( |
| 241 | ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); |
| 242 | |
| 243 | for (; k < src->n_runs; ++k) { |
| 244 | run_container_smart_append_exclusive(ans, src->runs[k].value, |
| 245 | src->runs[k].length); |
| 246 | } |
| 247 | |
| 248 | *dst = convert_run_to_efficient_container(ans, &return_typecode); |
| 249 | if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans); |
| 250 | |
| 251 | return return_typecode; |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | * Same as run_container_negation except that if the output is to |
| 256 | * be a |
| 257 | * run_container_t, and has the capacity to hold the result, |
| 258 | * then src is modified and no allocation is made. |
| 259 | * In all cases, the result is in *dst. |
| 260 | */ |
| 261 | int run_container_negation_range_inplace(run_container_t *src, |
| 262 | const int range_start, |
| 263 | const int range_end, void **dst) { |
| 264 | uint8_t return_typecode; |
| 265 | |
| 266 | if (range_end <= range_start) { |
| 267 | *dst = src; |
| 268 | return RUN_CONTAINER_TYPE_CODE; |
| 269 | } |
| 270 | |
| 271 | // TODO: efficient special case when range is 0 to 65535 inclusive |
| 272 | |
| 273 | if (src->capacity == src->n_runs) { |
| 274 | // no excess room. More checking to see if result can fit |
| 275 | bool last_val_before_range = false; |
| 276 | bool first_val_in_range = false; |
| 277 | bool last_val_in_range = false; |
| 278 | bool first_val_past_range = false; |
| 279 | |
| 280 | if (range_start > 0) |
| 281 | last_val_before_range = |
| 282 | run_container_contains(src, (uint16_t)(range_start - 1)); |
| 283 | first_val_in_range = run_container_contains(src, (uint16_t)range_start); |
| 284 | |
| 285 | if (last_val_before_range == first_val_in_range) { |
| 286 | last_val_in_range = |
| 287 | run_container_contains(src, (uint16_t)(range_end - 1)); |
| 288 | if (range_end != 0x10000) |
| 289 | first_val_past_range = |
| 290 | run_container_contains(src, (uint16_t)range_end); |
| 291 | |
| 292 | if (last_val_in_range == |
| 293 | first_val_past_range) { // no space for inplace |
| 294 | int ans = run_container_negation_range(src, range_start, |
| 295 | range_end, dst); |
| 296 | run_container_free(src); |
| 297 | return ans; |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | // all other cases: result will fit |
| 302 | |
| 303 | run_container_t *ans = src; |
| 304 | int my_nbr_runs = src->n_runs; |
| 305 | |
| 306 | ans->n_runs = 0; |
| 307 | int k = 0; |
| 308 | for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) { |
| 309 | // ans->runs[k] = src->runs[k]; (would be self-copy) |
| 310 | ans->n_runs++; |
| 311 | } |
| 312 | |
| 313 | // as with Java implementation, use locals to give self a buffer of depth 1 |
| 314 | rle16_t buffered = (rle16_t){.value = (uint16_t)0, .length = (uint16_t)0}; |
| 315 | rle16_t next = buffered; |
| 316 | if (k < my_nbr_runs) buffered = src->runs[k]; |
| 317 | |
| 318 | run_container_smart_append_exclusive( |
| 319 | ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); |
| 320 | |
| 321 | for (; k < my_nbr_runs; ++k) { |
| 322 | if (k + 1 < my_nbr_runs) next = src->runs[k + 1]; |
| 323 | |
| 324 | run_container_smart_append_exclusive(ans, buffered.value, |
| 325 | buffered.length); |
| 326 | buffered = next; |
| 327 | } |
| 328 | |
| 329 | *dst = convert_run_to_efficient_container(ans, &return_typecode); |
| 330 | if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans); |
| 331 | |
| 332 | return return_typecode; |
| 333 | } |
| 334 | |