| 1 | #include <assert.h> |
| 2 | #include <stdio.h> |
| 3 | #include <stdlib.h> |
| 4 | #include <string.h> |
| 5 | #include <time.h> |
| 6 | |
| 7 | #include <roaring/roaring.h> |
| 8 | |
| 9 | #include "test.h" |
| 10 | |
| 11 | static unsigned int seed = 123456789; |
| 12 | static const int OUR_RAND_MAX = (1 << 30) - 1; |
| 13 | inline static unsigned int our_rand() { // we do not want to depend on a system-specific |
| 14 | // random number generator |
| 15 | seed = (1103515245 * seed + 12345); |
| 16 | return seed & OUR_RAND_MAX; |
| 17 | } |
| 18 | |
| 19 | static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) { |
| 20 | return (a < b) ? a : b; |
| 21 | } |
| 22 | |
| 23 | // arrays expected to both be sorted. |
| 24 | static int array_equals(uint32_t *a1, int32_t size1, uint32_t *a2, |
| 25 | int32_t size2) { |
| 26 | if (size1 != size2) return 0; |
| 27 | for (int i = 0; i < size1; ++i) { |
| 28 | if (a1[i] != a2[i]) { |
| 29 | return 0; |
| 30 | } |
| 31 | } |
| 32 | return 1; |
| 33 | } |
| 34 | |
| 35 | bool roaring_iterator_sumall(uint32_t value, void *param) { |
| 36 | *(uint32_t *)param += value; |
| 37 | return true; // continue till the end |
| 38 | } |
| 39 | |
| 40 | |
| 41 | void range_contains() { |
| 42 | uint32_t end = 2073952257; |
| 43 | uint32_t start = end-2; |
| 44 | roaring_bitmap_t *bm = roaring_bitmap_from_range(start, end-1, 1); |
| 45 | roaring_bitmap_printf_describe(bm);printf("\n" ); |
| 46 | roaring_bitmap_contains_range(bm, start, end); |
| 47 | roaring_bitmap_free(bm); |
| 48 | } |
| 49 | |
| 50 | void is_really_empty() { |
| 51 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 52 | assert_true(roaring_bitmap_is_empty(bm)); |
| 53 | assert_false(roaring_bitmap_contains(bm, 0)); |
| 54 | roaring_bitmap_free(bm); |
| 55 | } |
| 56 | |
| 57 | void inplaceorwide() { |
| 58 | uint64_t end = 4294901761; |
| 59 | roaring_bitmap_t *r1 = roaring_bitmap_from_range(0,1,1); |
| 60 | roaring_bitmap_t *r2 = roaring_bitmap_from_range(0,end,1); |
| 61 | roaring_bitmap_or_inplace(r1, r2); |
| 62 | assert_true(roaring_bitmap_get_cardinality(r1) == end); |
| 63 | roaring_bitmap_free(r1); |
| 64 | roaring_bitmap_free(r2); |
| 65 | } |
| 66 | |
| 67 | void can_copy_empty(bool copy_on_write) { |
| 68 | roaring_bitmap_t *bm1 = roaring_bitmap_create(); |
| 69 | roaring_bitmap_set_copy_on_write(bm1, copy_on_write); |
| 70 | roaring_bitmap_t *bm2 = roaring_bitmap_copy(bm1); |
| 71 | assert(roaring_bitmap_get_cardinality(bm1) == 0); |
| 72 | assert(roaring_bitmap_get_cardinality(bm2) == 0); |
| 73 | assert(roaring_bitmap_is_empty(bm1)); |
| 74 | assert(roaring_bitmap_is_empty(bm2)); |
| 75 | roaring_bitmap_add(bm1, 3); |
| 76 | roaring_bitmap_add(bm2, 5); |
| 77 | assert(roaring_bitmap_get_cardinality(bm1) == 1); |
| 78 | assert(roaring_bitmap_get_cardinality(bm2) == 1); |
| 79 | assert(roaring_bitmap_contains(bm1,3)); |
| 80 | assert(roaring_bitmap_contains(bm2,5)); |
| 81 | assert(!roaring_bitmap_contains(bm2,3)); |
| 82 | assert(!roaring_bitmap_contains(bm1,5)); |
| 83 | roaring_bitmap_free(bm1); |
| 84 | roaring_bitmap_free(bm2); |
| 85 | } |
| 86 | |
| 87 | void issue208() { |
| 88 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 89 | for (uint32_t i = 1; i < 8194; i+=2) { |
| 90 | roaring_bitmap_add(r, i); |
| 91 | } |
| 92 | uint32_t rank = roaring_bitmap_rank(r, 63); |
| 93 | assert(rank == 32); |
| 94 | roaring_bitmap_free(r); |
| 95 | } |
| 96 | |
| 97 | void issue208b() { |
| 98 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 99 | for (uint32_t i = 65536 - 64; i < 65536; i++) { |
| 100 | roaring_bitmap_add(r, i); |
| 101 | } |
| 102 | for (uint32_t i = 0; i < 8196; i+=2) { |
| 103 | roaring_bitmap_add(r, i); |
| 104 | } |
| 105 | for (uint32_t i = 65536 - 64; i < 65536; i++) { |
| 106 | uint32_t expected = i - (65536 - 64) + 8196 / 2 + 1; |
| 107 | uint32_t rank = roaring_bitmap_rank(r, i); |
| 108 | assert(rank == expected); |
| 109 | } |
| 110 | roaring_bitmap_free(r); |
| 111 | } |
| 112 | |
| 113 | |
| 114 | void can_copy_empty_true() { |
| 115 | can_copy_empty(true); |
| 116 | } |
| 117 | |
| 118 | void can_copy_empty_false() { |
| 119 | can_copy_empty(false); |
| 120 | } |
| 121 | |
| 122 | void can_add_to_copies(bool copy_on_write) { |
| 123 | roaring_bitmap_t *bm1 = roaring_bitmap_create(); |
| 124 | roaring_bitmap_set_copy_on_write(bm1, copy_on_write); |
| 125 | roaring_bitmap_add(bm1, 3); |
| 126 | roaring_bitmap_t *bm2 = roaring_bitmap_copy(bm1); |
| 127 | assert(roaring_bitmap_get_cardinality(bm1) == 1); |
| 128 | assert(roaring_bitmap_get_cardinality(bm2) == 1); |
| 129 | roaring_bitmap_add(bm2, 4); |
| 130 | roaring_bitmap_add(bm1, 5); |
| 131 | assert(roaring_bitmap_get_cardinality(bm1) == 2); |
| 132 | assert(roaring_bitmap_get_cardinality(bm2) == 2); |
| 133 | roaring_bitmap_free(bm1); |
| 134 | roaring_bitmap_free(bm2); |
| 135 | } |
| 136 | |
| 137 | void convert_all_containers(roaring_bitmap_t* r, uint8_t dst_type) { |
| 138 | for (int32_t i = 0; i < r->high_low_container.size; i++) { |
| 139 | // first step: convert src_type to ARRAY |
| 140 | if (r->high_low_container.typecodes[i] == BITSET_CONTAINER_TYPE_CODE) { |
| 141 | array_container_t* dst_container = array_container_from_bitset(r->high_low_container.containers[i]); |
| 142 | bitset_container_free(r->high_low_container.containers[i]); |
| 143 | r->high_low_container.containers[i] = dst_container; |
| 144 | r->high_low_container.typecodes[i] = ARRAY_CONTAINER_TYPE_CODE; |
| 145 | } else if (r->high_low_container.typecodes[i] == RUN_CONTAINER_TYPE_CODE) { |
| 146 | array_container_t* dst_container = array_container_from_run(r->high_low_container.containers[i]); |
| 147 | run_container_free(r->high_low_container.containers[i]); |
| 148 | r->high_low_container.containers[i] = dst_container; |
| 149 | r->high_low_container.typecodes[i] = ARRAY_CONTAINER_TYPE_CODE; |
| 150 | } |
| 151 | assert(r->high_low_container.typecodes[i] == ARRAY_CONTAINER_TYPE_CODE); |
| 152 | |
| 153 | // second step: convert ARRAY to dst_type |
| 154 | if (dst_type == BITSET_CONTAINER_TYPE_CODE) { |
| 155 | bitset_container_t* dst_container = bitset_container_from_array(r->high_low_container.containers[i]); |
| 156 | array_container_free(r->high_low_container.containers[i]); |
| 157 | r->high_low_container.containers[i] = dst_container; |
| 158 | r->high_low_container.typecodes[i] = BITSET_CONTAINER_TYPE_CODE; |
| 159 | } else if (dst_type == RUN_CONTAINER_TYPE_CODE) { |
| 160 | run_container_t* dst_container = run_container_from_array(r->high_low_container.containers[i]); |
| 161 | array_container_free(r->high_low_container.containers[i]); |
| 162 | r->high_low_container.containers[i] = dst_container; |
| 163 | r->high_low_container.typecodes[i] = RUN_CONTAINER_TYPE_CODE; |
| 164 | } |
| 165 | assert(r->high_low_container.typecodes[i] == dst_type); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Tiny framework to compare roaring bitmap vs reference implementation |
| 171 | * side by side |
| 172 | */ |
| 173 | struct sbs_s { |
| 174 | roaring_bitmap_t *roaring; |
| 175 | |
| 176 | // reference implementation |
| 177 | uint64_t *words; |
| 178 | uint32_t size; // number of words |
| 179 | }; |
| 180 | typedef struct sbs_s sbs_t; |
| 181 | |
| 182 | sbs_t *sbs_create() { |
| 183 | sbs_t *sbs = malloc(sizeof(sbs_t)); |
| 184 | sbs->roaring = roaring_bitmap_create(); |
| 185 | sbs->size = 1; |
| 186 | sbs->words = malloc(sbs->size * sizeof(uint64_t)); |
| 187 | for (uint32_t i = 0; i < sbs->size; i++) { |
| 188 | sbs->words[i] = 0; |
| 189 | } |
| 190 | return sbs; |
| 191 | } |
| 192 | |
| 193 | void sbs_free(sbs_t *sbs) { |
| 194 | roaring_bitmap_free(sbs->roaring); |
| 195 | free(sbs->words); |
| 196 | free(sbs); |
| 197 | } |
| 198 | |
| 199 | void sbs_convert(sbs_t *sbs, uint8_t code) { |
| 200 | convert_all_containers(sbs->roaring, code); |
| 201 | } |
| 202 | |
| 203 | void sbs_ensure_room(sbs_t *sbs, uint32_t v) { |
| 204 | uint32_t i = v / 64; |
| 205 | if (i >= sbs->size) { |
| 206 | uint32_t new_size = (i+1) * 3 / 2; |
| 207 | sbs->words = realloc(sbs->words, new_size*sizeof(uint64_t)); |
| 208 | for (uint32_t j = sbs->size; j < new_size; j++) { |
| 209 | sbs->words[j] = 0; |
| 210 | } |
| 211 | sbs->size = new_size; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | void sbs_add_value(sbs_t *sbs, uint32_t v) { |
| 216 | roaring_bitmap_add(sbs->roaring, v); |
| 217 | |
| 218 | sbs_ensure_room(sbs, v); |
| 219 | sbs->words[v/64] |= UINT64_C(1) << (v % 64); |
| 220 | } |
| 221 | |
| 222 | void sbs_add_range(sbs_t *sbs, uint64_t min, uint64_t max) { |
| 223 | sbs_ensure_room(sbs, max); |
| 224 | for (uint64_t v = min; v <= max; v++) { |
| 225 | sbs->words[v/64] |= UINT64_C(1) << (v % 64); |
| 226 | } |
| 227 | |
| 228 | roaring_bitmap_add_range(sbs->roaring, min, max + 1); |
| 229 | } |
| 230 | |
| 231 | void sbs_remove_range(sbs_t *sbs, uint64_t min, uint64_t max) { |
| 232 | sbs_ensure_room(sbs, max); |
| 233 | for (uint64_t v = min; v <= max; v++) { |
| 234 | sbs->words[v/64] &= ~(UINT64_C(1) << (v % 64)); |
| 235 | } |
| 236 | |
| 237 | roaring_bitmap_remove_range(sbs->roaring, min, max + 1); |
| 238 | } |
| 239 | |
| 240 | void sbs_remove_many(sbs_t *sbs, size_t n_args, uint32_t *vals) { |
| 241 | for (size_t i = 0; i < n_args; i++) { |
| 242 | uint32_t v = vals[i]; |
| 243 | sbs_ensure_room(sbs, v); |
| 244 | sbs->words[v/64] &= ~(UINT64_C(1) << (v % 64)); |
| 245 | } |
| 246 | roaring_bitmap_remove_many(sbs->roaring, n_args, vals); |
| 247 | } |
| 248 | |
| 249 | bool sbs_check_type(sbs_t *sbs, uint8_t type) { |
| 250 | bool answer = true; |
| 251 | for (int32_t i = 0; i < sbs->roaring->high_low_container.size; i++) { |
| 252 | answer = answer && (sbs->roaring->high_low_container.typecodes[i] == type); |
| 253 | } |
| 254 | return answer; |
| 255 | } |
| 256 | |
| 257 | bool sbs_is_empty(sbs_t *sbs) { |
| 258 | return sbs->roaring->high_low_container.size == 0; |
| 259 | } |
| 260 | |
| 261 | void sbs_compare(sbs_t *sbs) { |
| 262 | uint32_t expected_cardinality = 0; |
| 263 | for (uint32_t i = 0; i < sbs->size; i++) { |
| 264 | uint64_t word = sbs->words[i]; |
| 265 | while (word != 0) { |
| 266 | expected_cardinality += 1; |
| 267 | word = word & (word - 1); |
| 268 | } |
| 269 | } |
| 270 | uint32_t *expected_values = malloc(expected_cardinality * sizeof(uint32_t)); |
| 271 | memset(expected_values, 0, expected_cardinality * sizeof(uint32_t)); |
| 272 | for (uint32_t i = 0, dst = 0; i < sbs->size; i++) { |
| 273 | for (uint32_t j = 0; j < 64; j++) { |
| 274 | if ((sbs->words[i] & (UINT64_C(1) << j)) != 0) { |
| 275 | expected_values[dst++] = i*64 + j; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | uint32_t actual_cardinality = roaring_bitmap_get_cardinality(sbs->roaring); |
| 281 | uint32_t *actual_values = malloc(actual_cardinality * sizeof(uint32_t)); |
| 282 | memset(actual_values, 0, actual_cardinality * sizeof(uint32_t)); |
| 283 | roaring_bitmap_to_uint32_array(sbs->roaring, actual_values); |
| 284 | |
| 285 | bool ok = array_equals(actual_values, actual_cardinality, |
| 286 | expected_values, expected_cardinality); |
| 287 | if (!ok) { |
| 288 | printf("Expected: " ); |
| 289 | for (uint32_t i = 0; i < expected_cardinality; i++) { |
| 290 | printf("%u " , expected_values[i]); |
| 291 | } |
| 292 | printf("\n" ); |
| 293 | |
| 294 | printf("Actual: " ); |
| 295 | roaring_bitmap_printf(sbs->roaring); |
| 296 | printf("\n" ); |
| 297 | } |
| 298 | free(actual_values); |
| 299 | free(expected_values); |
| 300 | assert_true(ok); |
| 301 | } |
| 302 | |
| 303 | void test_stats() { |
| 304 | // create a new empty bitmap |
| 305 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 306 | assert_non_null(r1); |
| 307 | // then we can add values |
| 308 | for (uint32_t i = 100; i < 1000; i++) { |
| 309 | roaring_bitmap_add(r1, i); |
| 310 | } |
| 311 | for (uint32_t i = 1000; i < 100000; i += 10) { |
| 312 | roaring_bitmap_add(r1, i); |
| 313 | } |
| 314 | roaring_bitmap_add(r1, 100000); |
| 315 | |
| 316 | roaring_statistics_t stats; |
| 317 | roaring_bitmap_statistics(r1, &stats); |
| 318 | assert_true(stats.cardinality == roaring_bitmap_get_cardinality(r1)); |
| 319 | assert_true(stats.min_value == 100); |
| 320 | assert_true(stats.max_value == 100000); |
| 321 | roaring_bitmap_free(r1); |
| 322 | } |
| 323 | |
| 324 | // this should expose memory leaks |
| 325 | // (https://github.com/RoaringBitmap/CRoaring/pull/70) |
| 326 | void leaks_with_empty(bool copy_on_write) { |
| 327 | roaring_bitmap_t *empty = roaring_bitmap_create(); |
| 328 | roaring_bitmap_set_copy_on_write(empty, copy_on_write); |
| 329 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 330 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 331 | for (uint32_t i = 100; i < 70000; i += 3) { |
| 332 | roaring_bitmap_add(r1, i); |
| 333 | } |
| 334 | roaring_bitmap_t *ror = roaring_bitmap_or(r1, empty); |
| 335 | roaring_bitmap_t *rxor = roaring_bitmap_xor(r1, empty); |
| 336 | roaring_bitmap_t *rand = roaring_bitmap_and(r1, empty); |
| 337 | roaring_bitmap_t *randnot = roaring_bitmap_andnot(r1, empty); |
| 338 | roaring_bitmap_free(empty); |
| 339 | assert_true(roaring_bitmap_equals(ror, r1)); |
| 340 | roaring_bitmap_free(ror); |
| 341 | assert_true(roaring_bitmap_equals(rxor, r1)); |
| 342 | roaring_bitmap_free(rxor); |
| 343 | assert_true(roaring_bitmap_equals(randnot, r1)); |
| 344 | roaring_bitmap_free(randnot); |
| 345 | roaring_bitmap_free(r1); |
| 346 | assert_true(roaring_bitmap_is_empty(rand)); |
| 347 | roaring_bitmap_free(rand); |
| 348 | } |
| 349 | |
| 350 | void leaks_with_empty_true() { leaks_with_empty(true); } |
| 351 | |
| 352 | void leaks_with_empty_false() { leaks_with_empty(false); } |
| 353 | |
| 354 | void check_interval() { |
| 355 | // create a new bitmap with varargs |
| 356 | roaring_bitmap_t *r = roaring_bitmap_of(4, 1, 2, 3, 1000); |
| 357 | assert_non_null(r); |
| 358 | |
| 359 | roaring_bitmap_printf(r); |
| 360 | |
| 361 | |
| 362 | roaring_bitmap_t *range = roaring_bitmap_from_range(10, 1000+1, 1); |
| 363 | assert_non_null(range); |
| 364 | assert_true(roaring_bitmap_intersect(r,range)); |
| 365 | roaring_bitmap_t *range2 = roaring_bitmap_from_range(10, 1000, 1); |
| 366 | assert_non_null(range2); |
| 367 | assert_false(roaring_bitmap_intersect(r,range2)); |
| 368 | |
| 369 | roaring_bitmap_free(r); |
| 370 | roaring_bitmap_free(range); |
| 371 | roaring_bitmap_free(range2); |
| 372 | |
| 373 | } |
| 374 | |
| 375 | void check_full_inplace_flip() { |
| 376 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 377 | uint64_t bignumber = UINT64_C(0x100000000); |
| 378 | roaring_bitmap_flip_inplace(r1, 0, bignumber); |
| 379 | assert_true(roaring_bitmap_get_cardinality(r1) == bignumber); |
| 380 | roaring_bitmap_free(r1); |
| 381 | } |
| 382 | |
| 383 | void check_iterate_to_end() { |
| 384 | uint64_t bignumber = UINT64_C(0x100000000); |
| 385 | for(uint64_t s = 0; s < 1024; s++) { |
| 386 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 387 | roaring_bitmap_flip_inplace(r1, bignumber - s, bignumber); |
| 388 | roaring_uint32_iterator_t iterator; |
| 389 | roaring_init_iterator(r1, &iterator); |
| 390 | uint64_t count = 0; |
| 391 | while(iterator.has_value) { |
| 392 | assert(iterator.current_value + (s - count) == bignumber); |
| 393 | count++; |
| 394 | roaring_advance_uint32_iterator(&iterator); |
| 395 | } |
| 396 | assert_true(count == s); |
| 397 | assert_true(roaring_bitmap_get_cardinality(r1) == s); |
| 398 | roaring_bitmap_free(r1); |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | void check_iterate_to_beginning() { |
| 403 | uint64_t bignumber = UINT64_C(0x100000000); |
| 404 | for(uint64_t s = 0; s < 1024; s++) { |
| 405 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 406 | roaring_bitmap_flip_inplace(r1, bignumber - s, bignumber); |
| 407 | roaring_uint32_iterator_t iterator; |
| 408 | roaring_init_iterator_last(r1, &iterator); |
| 409 | uint64_t count = 0; |
| 410 | while(iterator.has_value) { |
| 411 | count++; |
| 412 | assert(iterator.current_value + count == bignumber); |
| 413 | roaring_previous_uint32_iterator(&iterator); |
| 414 | } |
| 415 | assert_true(count == s); |
| 416 | assert_true(roaring_bitmap_get_cardinality(r1) == s); |
| 417 | roaring_bitmap_free(r1); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void check_range_contains_from_end() { |
| 422 | uint64_t bignumber = UINT64_C(0x100000000); |
| 423 | for(uint64_t s = 0; s < 1024 * 1024; s++) { |
| 424 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 425 | roaring_bitmap_add_range(r1, bignumber - s, bignumber); |
| 426 | assert_true(roaring_bitmap_get_cardinality(r1) == s); |
| 427 | if(s>0) { |
| 428 | assert_true(roaring_bitmap_contains_range(r1, bignumber - s, bignumber - 1)); |
| 429 | } |
| 430 | assert_true(roaring_bitmap_contains_range(r1, bignumber - s, bignumber)); |
| 431 | assert_false(roaring_bitmap_contains_range(r1, bignumber - s - 1, bignumber)); |
| 432 | assert_true(roaring_bitmap_get_cardinality(r1) == s); |
| 433 | roaring_bitmap_free(r1); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void check_full_flip() { |
| 438 | roaring_bitmap_t *rorg = roaring_bitmap_create(); |
| 439 | uint64_t bignumber = UINT64_C(0x100000000); |
| 440 | roaring_bitmap_t *r1 = roaring_bitmap_flip(rorg, 0, bignumber); |
| 441 | assert_true(roaring_bitmap_get_cardinality(r1) == bignumber); |
| 442 | roaring_bitmap_free(r1); |
| 443 | roaring_bitmap_free(rorg); |
| 444 | } |
| 445 | |
| 446 | void test_stress_memory(bool copy_on_write) { |
| 447 | for (size_t i = 0; i < 5; i++) { |
| 448 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 449 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 450 | assert_non_null(r1); |
| 451 | for (size_t k = 0; k < 1000000; k++) { |
| 452 | uint32_t j = rand() % (100000000); |
| 453 | roaring_bitmap_add(r1, j); |
| 454 | } |
| 455 | roaring_bitmap_run_optimize(r1); |
| 456 | uint32_t compact_size = roaring_bitmap_portable_size_in_bytes(r1); |
| 457 | char * serializedbytes = (char *) malloc(compact_size); |
| 458 | size_t actualsize = roaring_bitmap_portable_serialize(r1, serializedbytes); |
| 459 | assert_int_equal(actualsize, compact_size); |
| 460 | roaring_bitmap_t *t = roaring_bitmap_portable_deserialize(serializedbytes); |
| 461 | assert_true(roaring_bitmap_equals(r1, t)); |
| 462 | roaring_bitmap_free(t); |
| 463 | free(serializedbytes); |
| 464 | roaring_bitmap_free(r1); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | void test_stress_memory_true() { |
| 469 | test_stress_memory(true); |
| 470 | } |
| 471 | |
| 472 | void test_stress_memory_false() { |
| 473 | test_stress_memory(false); |
| 474 | } |
| 475 | |
| 476 | |
| 477 | void test_example(bool copy_on_write) { |
| 478 | // create a new empty bitmap |
| 479 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 480 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 481 | assert_non_null(r1); |
| 482 | |
| 483 | // then we can add values |
| 484 | for (uint32_t i = 100; i < 1000; i++) { |
| 485 | roaring_bitmap_add(r1, i); |
| 486 | } |
| 487 | |
| 488 | // check whether a value is contained |
| 489 | assert_true(roaring_bitmap_contains(r1, 500)); |
| 490 | |
| 491 | // compute how many bits there are: |
| 492 | uint32_t cardinality = roaring_bitmap_get_cardinality(r1); |
| 493 | printf("Cardinality = %d \n" , cardinality); |
| 494 | |
| 495 | // if your bitmaps have long runs, you can compress them by calling |
| 496 | // run_optimize |
| 497 | uint32_t size = roaring_bitmap_portable_size_in_bytes(r1); |
| 498 | roaring_bitmap_run_optimize(r1); |
| 499 | uint32_t compact_size = roaring_bitmap_portable_size_in_bytes(r1); |
| 500 | |
| 501 | printf("size before run optimize %d bytes, and after %d bytes\n" , size, |
| 502 | compact_size); |
| 503 | |
| 504 | // create a new bitmap with varargs |
| 505 | roaring_bitmap_t *r2 = roaring_bitmap_of(5, 1, 2, 3, 5, 6); |
| 506 | assert_non_null(r2); |
| 507 | |
| 508 | roaring_bitmap_printf(r2); |
| 509 | |
| 510 | // we can also create a bitmap from a pointer to 32-bit integers |
| 511 | const uint32_t values[] = {2, 3, 4}; |
| 512 | roaring_bitmap_t *r3 = roaring_bitmap_of_ptr(3, values); |
| 513 | roaring_bitmap_set_copy_on_write(r3, copy_on_write); |
| 514 | |
| 515 | // we can also go in reverse and go from arrays to bitmaps |
| 516 | uint64_t card1 = roaring_bitmap_get_cardinality(r1); |
| 517 | uint32_t *arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 518 | assert(arr1 != NULL); |
| 519 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 520 | |
| 521 | // we can go from arrays to bitmaps from "offset" by "limit" |
| 522 | size_t offset = 100; |
| 523 | size_t limit = 1000; |
| 524 | uint32_t *arr3 = (uint32_t *)malloc(limit * sizeof(uint32_t)); |
| 525 | assert(arr3 != NULL); |
| 526 | roaring_bitmap_range_uint32_array(r1, offset, limit, arr3); |
| 527 | free(arr3); |
| 528 | |
| 529 | |
| 530 | roaring_bitmap_t *r1f = roaring_bitmap_of_ptr(card1, arr1); |
| 531 | free(arr1); |
| 532 | assert_non_null(r1f); |
| 533 | |
| 534 | // bitmaps shall be equal |
| 535 | assert_true(roaring_bitmap_equals(r1, r1f)); |
| 536 | roaring_bitmap_free(r1f); |
| 537 | |
| 538 | // we can copy and compare bitmaps |
| 539 | roaring_bitmap_t *z = roaring_bitmap_copy(r3); |
| 540 | roaring_bitmap_set_copy_on_write(z, copy_on_write); |
| 541 | assert_true(roaring_bitmap_equals(r3, z)); |
| 542 | |
| 543 | roaring_bitmap_free(z); |
| 544 | |
| 545 | // we can compute union two-by-two |
| 546 | roaring_bitmap_t *r1_2_3 = roaring_bitmap_or(r1, r2); |
| 547 | assert_true(roaring_bitmap_get_cardinality(r1_2_3) == |
| 548 | roaring_bitmap_or_cardinality(r1, r2)); |
| 549 | |
| 550 | roaring_bitmap_set_copy_on_write(r1_2_3, copy_on_write); |
| 551 | roaring_bitmap_or_inplace(r1_2_3, r3); |
| 552 | |
| 553 | // we can compute a big union |
| 554 | const roaring_bitmap_t *allmybitmaps[] = {r1, r2, r3}; |
| 555 | roaring_bitmap_t *bigunion = roaring_bitmap_or_many(3, allmybitmaps); |
| 556 | assert_true(roaring_bitmap_equals(r1_2_3, bigunion)); |
| 557 | roaring_bitmap_t *bigunionheap = |
| 558 | roaring_bitmap_or_many_heap(3, allmybitmaps); |
| 559 | assert_true(roaring_bitmap_equals(r1_2_3, bigunionheap)); |
| 560 | roaring_bitmap_free(r1_2_3); |
| 561 | roaring_bitmap_free(bigunion); |
| 562 | roaring_bitmap_free(bigunionheap); |
| 563 | |
| 564 | // we can compute xor two-by-two |
| 565 | roaring_bitmap_t *rx1_2_3 = roaring_bitmap_xor(r1, r2); |
| 566 | roaring_bitmap_set_copy_on_write(rx1_2_3, copy_on_write); |
| 567 | roaring_bitmap_xor_inplace(rx1_2_3, r3); |
| 568 | |
| 569 | // we can compute a big xor |
| 570 | const roaring_bitmap_t *allmybitmaps_x[] = {r1, r2, r3}; |
| 571 | roaring_bitmap_t *bigxor = roaring_bitmap_xor_many(3, allmybitmaps_x); |
| 572 | assert_true(roaring_bitmap_equals(rx1_2_3, bigxor)); |
| 573 | |
| 574 | roaring_bitmap_free(rx1_2_3); |
| 575 | roaring_bitmap_free(bigxor); |
| 576 | |
| 577 | // we can compute intersection two-by-two |
| 578 | roaring_bitmap_t *i1_2 = roaring_bitmap_and(r1, r2); |
| 579 | assert_true(roaring_bitmap_get_cardinality(i1_2) == |
| 580 | roaring_bitmap_and_cardinality(r1, r2)); |
| 581 | |
| 582 | roaring_bitmap_free(i1_2); |
| 583 | |
| 584 | // we can write a bitmap to a pointer and recover it later |
| 585 | uint32_t expectedsize = roaring_bitmap_portable_size_in_bytes(r1); |
| 586 | char *serializedbytes = malloc(expectedsize); |
| 587 | size_t actualsize = roaring_bitmap_portable_serialize(r1, serializedbytes); |
| 588 | assert_int_equal(actualsize, expectedsize); |
| 589 | roaring_bitmap_t *t = roaring_bitmap_portable_deserialize(serializedbytes); |
| 590 | assert_true(roaring_bitmap_equals(r1, t)); |
| 591 | roaring_bitmap_free(t); |
| 592 | // we can also check whether there is a bitmap at a memory location without reading it |
| 593 | size_t sizeofbitmap = roaring_bitmap_portable_deserialize_size(serializedbytes,expectedsize); |
| 594 | assert(sizeofbitmap == expectedsize); // sizeofbitmap would be zero if no bitmap were found |
| 595 | // we can also read the bitmap "safely" by specifying a byte size limit: |
| 596 | t = roaring_bitmap_portable_deserialize_safe(serializedbytes,expectedsize); |
| 597 | assert(roaring_bitmap_equals(r1, t)); // what we recover is equal |
| 598 | roaring_bitmap_free(t); |
| 599 | free(serializedbytes); |
| 600 | |
| 601 | // we can iterate over all values using custom functions |
| 602 | uint32_t counter = 0; |
| 603 | roaring_iterate(r1, roaring_iterator_sumall, &counter); |
| 604 | |
| 605 | /** |
| 606 | * bool roaring_iterator_sumall(uint32_t value, void *param) { |
| 607 | * *(uint32_t *) param += value; |
| 608 | * return true; // continue till the end |
| 609 | * } |
| 610 | * |
| 611 | */ |
| 612 | |
| 613 | // we can also create iterator structs |
| 614 | counter = 0; |
| 615 | roaring_uint32_iterator_t *i = roaring_create_iterator(r1); |
| 616 | while (i->has_value) { |
| 617 | counter++; |
| 618 | roaring_advance_uint32_iterator(i); |
| 619 | } |
| 620 | roaring_free_uint32_iterator(i); |
| 621 | assert_true(roaring_bitmap_get_cardinality(r1) == counter); |
| 622 | |
| 623 | |
| 624 | // for greater speed, you can iterate over the data in bulk |
| 625 | i = roaring_create_iterator(r1); |
| 626 | uint32_t buffer[256]; |
| 627 | while (1) { |
| 628 | uint32_t ret = roaring_read_uint32_iterator(i, buffer, 256); |
| 629 | for (uint32_t j = 0; j < ret; j++) { |
| 630 | counter += buffer[j]; |
| 631 | } |
| 632 | if (ret < 256) { |
| 633 | break; |
| 634 | } |
| 635 | } |
| 636 | roaring_free_uint32_iterator(i); |
| 637 | |
| 638 | roaring_bitmap_free(r1); |
| 639 | roaring_bitmap_free(r2); |
| 640 | roaring_bitmap_free(r3); |
| 641 | } |
| 642 | |
| 643 | void test_uint32_iterator(bool run) { |
| 644 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 645 | for (uint32_t i = 0; i < 66000; i += 3) { |
| 646 | roaring_bitmap_add(r1, i); |
| 647 | } |
| 648 | for (uint32_t i = 100000; i < 200000; i++) { |
| 649 | roaring_bitmap_add(r1, i); |
| 650 | } |
| 651 | for (uint32_t i = 300000; i < 500000; i += 100) { |
| 652 | roaring_bitmap_add(r1, i); |
| 653 | } |
| 654 | for (uint32_t i = 600000; i < 700000; i += 1) { |
| 655 | roaring_bitmap_add(r1, i); |
| 656 | } |
| 657 | for (uint32_t i = 800000; i < 900000; i += 7) { |
| 658 | roaring_bitmap_add(r1, i); |
| 659 | } |
| 660 | if(run) roaring_bitmap_run_optimize(r1); |
| 661 | roaring_uint32_iterator_t *iter = roaring_create_iterator(r1); |
| 662 | for (uint32_t i = 0; i < 66000; i += 3) { |
| 663 | assert_true(iter->has_value); |
| 664 | assert_true(iter->current_value == i); |
| 665 | roaring_move_uint32_iterator_equalorlarger(iter,i); |
| 666 | assert_true(iter->has_value); |
| 667 | assert_true(iter->current_value == i); |
| 668 | roaring_advance_uint32_iterator(iter); |
| 669 | } |
| 670 | for (uint32_t i = 100000; i < 200000; i++) { |
| 671 | assert_true(iter->has_value); |
| 672 | assert_true(iter->current_value == i); |
| 673 | roaring_move_uint32_iterator_equalorlarger(iter,i); |
| 674 | assert_true(iter->has_value); |
| 675 | assert_true(iter->current_value == i); |
| 676 | roaring_advance_uint32_iterator(iter); |
| 677 | } |
| 678 | for (uint32_t i = 300000; i < 500000; i += 100) { |
| 679 | assert_true(iter->has_value); |
| 680 | assert_true(iter->current_value == i); |
| 681 | roaring_move_uint32_iterator_equalorlarger(iter,i); |
| 682 | assert_true(iter->has_value); |
| 683 | assert_true(iter->current_value == i); |
| 684 | roaring_advance_uint32_iterator(iter); |
| 685 | } |
| 686 | for (uint32_t i = 600000; i < 700000; i += 1) { |
| 687 | assert_true(iter->has_value); |
| 688 | assert_true(iter->current_value == i); |
| 689 | roaring_move_uint32_iterator_equalorlarger(iter,i); |
| 690 | assert_true(iter->has_value); |
| 691 | assert_true(iter->current_value == i); |
| 692 | roaring_advance_uint32_iterator(iter); |
| 693 | } |
| 694 | for (uint32_t i = 800000; i < 900000; i += 7) { |
| 695 | assert_true(iter->has_value); |
| 696 | assert_true(iter->current_value == i); |
| 697 | roaring_move_uint32_iterator_equalorlarger(iter,i); |
| 698 | assert_true(iter->has_value); |
| 699 | assert_true(iter->current_value == i); |
| 700 | roaring_advance_uint32_iterator(iter); |
| 701 | } |
| 702 | assert_false(iter->has_value); |
| 703 | roaring_move_uint32_iterator_equalorlarger(iter,0); |
| 704 | assert_true(iter->has_value); |
| 705 | assert_true(iter->current_value == 0); |
| 706 | roaring_move_uint32_iterator_equalorlarger(iter,66000); |
| 707 | assert_true(iter->has_value); |
| 708 | assert_true(iter->current_value == 100000); |
| 709 | roaring_move_uint32_iterator_equalorlarger(iter,100000); |
| 710 | assert_true(iter->has_value); |
| 711 | assert_true(iter->current_value == 100000); |
| 712 | roaring_move_uint32_iterator_equalorlarger(iter,200000); |
| 713 | assert_true(iter->has_value); |
| 714 | assert_true(iter->current_value == 300000); |
| 715 | roaring_move_uint32_iterator_equalorlarger(iter,300000); |
| 716 | assert_true(iter->has_value); |
| 717 | assert_true(iter->current_value == 300000); |
| 718 | roaring_move_uint32_iterator_equalorlarger(iter,500000); |
| 719 | assert_true(iter->has_value); |
| 720 | assert_true(iter->current_value == 600000); |
| 721 | roaring_move_uint32_iterator_equalorlarger(iter,600000); |
| 722 | assert_true(iter->has_value); |
| 723 | assert_true(iter->current_value == 600000); |
| 724 | roaring_move_uint32_iterator_equalorlarger(iter,700000); |
| 725 | assert_true(iter->has_value); |
| 726 | assert_true(iter->current_value == 800000); |
| 727 | roaring_move_uint32_iterator_equalorlarger(iter,800000); |
| 728 | assert_true(iter->has_value); |
| 729 | assert_true(iter->current_value == 800000); |
| 730 | roaring_move_uint32_iterator_equalorlarger(iter,900000); |
| 731 | assert_false(iter->has_value); |
| 732 | roaring_move_uint32_iterator_equalorlarger(iter,0); |
| 733 | for (uint32_t i = 0; i < 66000; i += 3) { |
| 734 | assert_true(iter->has_value); |
| 735 | assert_true(iter->current_value == i); |
| 736 | roaring_move_uint32_iterator_equalorlarger(iter,i+1); |
| 737 | } |
| 738 | for (uint32_t i = 100000; i < 200000; i++) { |
| 739 | assert_true(iter->has_value); |
| 740 | assert_true(iter->current_value == i); |
| 741 | roaring_move_uint32_iterator_equalorlarger(iter,i+1); |
| 742 | } |
| 743 | for (uint32_t i = 300000; i < 500000; i += 100) { |
| 744 | assert_true(iter->has_value); |
| 745 | assert_true(iter->current_value == i); |
| 746 | roaring_move_uint32_iterator_equalorlarger(iter,i+1); |
| 747 | } |
| 748 | for (uint32_t i = 600000; i < 700000; i += 1) { |
| 749 | assert_true(iter->has_value); |
| 750 | assert_true(iter->current_value == i); |
| 751 | roaring_move_uint32_iterator_equalorlarger(iter,i+1); |
| 752 | } |
| 753 | for (uint32_t i = 800000; i < 900000; i += 7) { |
| 754 | assert_true(iter->has_value); |
| 755 | assert_true(iter->current_value == i); |
| 756 | roaring_move_uint32_iterator_equalorlarger(iter,i+1); |
| 757 | } |
| 758 | assert_false(iter->has_value); |
| 759 | |
| 760 | roaring_free_uint32_iterator(iter); |
| 761 | roaring_bitmap_free(r1); |
| 762 | } |
| 763 | |
| 764 | void test_uint32_iterator_true() { test_uint32_iterator(true); } |
| 765 | |
| 766 | void test_uint32_iterator_false() { test_uint32_iterator(false); } |
| 767 | |
| 768 | void test_example_true() { test_example(true); } |
| 769 | |
| 770 | void test_example_false() { test_example(false); } |
| 771 | |
| 772 | void can_remove_from_copies(bool copy_on_write) { |
| 773 | roaring_bitmap_t *bm1 = roaring_bitmap_create(); |
| 774 | roaring_bitmap_set_copy_on_write(bm1, copy_on_write); |
| 775 | roaring_bitmap_add(bm1, 3); |
| 776 | roaring_bitmap_t *bm2 = roaring_bitmap_copy(bm1); |
| 777 | assert(roaring_bitmap_get_cardinality(bm1) == 1); |
| 778 | assert(roaring_bitmap_get_cardinality(bm2) == 1); |
| 779 | roaring_bitmap_add(bm2, 4); |
| 780 | roaring_bitmap_add(bm1, 5); |
| 781 | assert(roaring_bitmap_get_cardinality(bm1) == 2); |
| 782 | assert(roaring_bitmap_get_cardinality(bm2) == 2); |
| 783 | roaring_bitmap_remove(bm1, 5); |
| 784 | assert(roaring_bitmap_get_cardinality(bm1) == 1); |
| 785 | roaring_bitmap_remove(bm1, 4); |
| 786 | assert(roaring_bitmap_get_cardinality(bm1) == 1); |
| 787 | assert(roaring_bitmap_get_cardinality(bm2) == 2); |
| 788 | roaring_bitmap_remove(bm2, 4); |
| 789 | assert(roaring_bitmap_get_cardinality(bm2) == 1); |
| 790 | roaring_bitmap_free(bm1); |
| 791 | roaring_bitmap_free(bm2); |
| 792 | } |
| 793 | |
| 794 | void test_basic_add() { |
| 795 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 796 | roaring_bitmap_add(bm, 0); |
| 797 | roaring_bitmap_remove(bm, 0); |
| 798 | roaring_bitmap_free(bm); |
| 799 | } |
| 800 | |
| 801 | void test_addremove() { |
| 802 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 803 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 804 | roaring_bitmap_add(bm, value); |
| 805 | } |
| 806 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 807 | roaring_bitmap_remove(bm, value); |
| 808 | } |
| 809 | assert_true(roaring_bitmap_is_empty(bm)); |
| 810 | roaring_bitmap_free(bm); |
| 811 | } |
| 812 | |
| 813 | void test_addremoverun() { |
| 814 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 815 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 816 | roaring_bitmap_add(bm, value); |
| 817 | } |
| 818 | roaring_bitmap_run_optimize(bm); |
| 819 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 820 | roaring_bitmap_remove(bm, value); |
| 821 | } |
| 822 | assert_true(roaring_bitmap_is_empty(bm)); |
| 823 | roaring_bitmap_free(bm); |
| 824 | } |
| 825 | |
| 826 | void test_clear() { |
| 827 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 828 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 829 | roaring_bitmap_add(bm, value); |
| 830 | } |
| 831 | roaring_bitmap_clear(bm); |
| 832 | assert_true(roaring_bitmap_is_empty(bm)); |
| 833 | size_t expected_card = 0; |
| 834 | for (uint32_t value = 33057; value < 147849; value += 8) { |
| 835 | roaring_bitmap_add(bm, value); |
| 836 | expected_card ++; |
| 837 | } |
| 838 | assert_true(roaring_bitmap_get_cardinality(bm) == expected_card); |
| 839 | roaring_bitmap_clear(bm); |
| 840 | assert_true(roaring_bitmap_is_empty(bm)); |
| 841 | roaring_bitmap_free(bm); |
| 842 | } |
| 843 | |
| 844 | |
| 845 | void test_remove_from_copies_true() { can_remove_from_copies(true); } |
| 846 | |
| 847 | void test_remove_from_copies_false() { can_remove_from_copies(false); } |
| 848 | |
| 849 | bool check_bitmap_from_range(uint32_t min, uint64_t max, uint32_t step) { |
| 850 | roaring_bitmap_t *result = roaring_bitmap_from_range(min, max, step); |
| 851 | assert_non_null(result); |
| 852 | roaring_bitmap_t *expected = roaring_bitmap_create(); |
| 853 | assert_non_null(expected); |
| 854 | for (uint32_t value = min; value < max; value += step) { |
| 855 | roaring_bitmap_add(expected, value); |
| 856 | } |
| 857 | bool is_equal = roaring_bitmap_equals(expected, result); |
| 858 | if (!is_equal) { |
| 859 | fprintf(stderr, "[ERROR] check_bitmap_from_range(%u, %u, %u)\n" , |
| 860 | (unsigned)min, (unsigned)max, (unsigned)step); |
| 861 | } |
| 862 | roaring_bitmap_free(expected); |
| 863 | roaring_bitmap_free(result); |
| 864 | return is_equal; |
| 865 | } |
| 866 | |
| 867 | void test_silly_range() { |
| 868 | check_bitmap_from_range(0, 1, 1); |
| 869 | check_bitmap_from_range(0, 2, 1); |
| 870 | roaring_bitmap_t *bm1 = roaring_bitmap_from_range(0, 1, 1); |
| 871 | roaring_bitmap_t *bm2 = roaring_bitmap_from_range(0, 2, 1); |
| 872 | assert_false(roaring_bitmap_equals(bm1, bm2)); |
| 873 | roaring_bitmap_free(bm1); |
| 874 | roaring_bitmap_free(bm2); |
| 875 | } |
| 876 | |
| 877 | void test_adversarial_range() { |
| 878 | roaring_bitmap_t *bm1 = roaring_bitmap_from_range(0, UINT64_C(0x100000000), 1); |
| 879 | assert_true(roaring_bitmap_get_cardinality(bm1) == UINT64_C(0x100000000)); |
| 880 | roaring_bitmap_free(bm1); |
| 881 | } |
| 882 | |
| 883 | void test_range_and_serialize() { |
| 884 | roaring_bitmap_t *old_bm = roaring_bitmap_from_range(65520, 131057, 16); |
| 885 | size_t size = roaring_bitmap_portable_size_in_bytes(old_bm); |
| 886 | char *buff = malloc(size); |
| 887 | size_t actualsize = roaring_bitmap_portable_serialize(old_bm, buff); |
| 888 | assert_int_equal(actualsize, size); |
| 889 | roaring_bitmap_t *new_bm = roaring_bitmap_portable_deserialize(buff); |
| 890 | assert_true(roaring_bitmap_equals(old_bm, new_bm)); |
| 891 | roaring_bitmap_free(old_bm); |
| 892 | roaring_bitmap_free(new_bm); |
| 893 | free(buff); |
| 894 | } |
| 895 | |
| 896 | void test_bitmap_from_range() { |
| 897 | assert_true(roaring_bitmap_from_range(1, 10, 0) == |
| 898 | NULL); // undefined range |
| 899 | assert_true(roaring_bitmap_from_range(5, 1, 3) == NULL); // empty range |
| 900 | for (uint32_t i = 16; i < 1 << 18; i *= 2) { |
| 901 | uint32_t min = i - 10; |
| 902 | for (uint32_t delta = 16; delta < 1 << 18; delta *= 2) { |
| 903 | uint32_t max = i + delta; |
| 904 | for (uint32_t step = 1; step <= 64; |
| 905 | step *= 2) { // check powers of 2 |
| 906 | assert_true(check_bitmap_from_range(min, max, step)); |
| 907 | } |
| 908 | for (uint32_t step = 1; step <= 81; |
| 909 | step *= 3) { // check powers of 3 |
| 910 | assert_true(check_bitmap_from_range(min, max, step)); |
| 911 | } |
| 912 | for (uint32_t step = 1; step <= 125; |
| 913 | step *= 5) { // check powers of 5 |
| 914 | assert_true(check_bitmap_from_range(min, max, step)); |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | // max range |
| 920 | roaring_bitmap_t *r = roaring_bitmap_from_range(0, UINT64_MAX, 1); |
| 921 | assert_true(roaring_bitmap_get_cardinality(r) == UINT64_C(0x100000000)); |
| 922 | roaring_bitmap_free(r); |
| 923 | } |
| 924 | |
| 925 | void test_printf() { |
| 926 | roaring_bitmap_t *r1 = |
| 927 | roaring_bitmap_of(8, 1, 2, 3, 100, 1000, 10000, 1000000, 20000000); |
| 928 | assert_non_null(r1); |
| 929 | roaring_bitmap_printf(r1); |
| 930 | roaring_bitmap_free(r1); |
| 931 | printf("\n" ); |
| 932 | } |
| 933 | |
| 934 | void test_printf_withbitmap() { |
| 935 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 936 | assert_non_null(r1); |
| 937 | roaring_bitmap_printf(r1); |
| 938 | /* Add some values to the bitmap */ |
| 939 | for (int i = 0, top_val = 4097; i < top_val; i++) |
| 940 | roaring_bitmap_add(r1, 2 * i); |
| 941 | roaring_bitmap_printf(r1); |
| 942 | roaring_bitmap_free(r1); |
| 943 | printf("\n" ); |
| 944 | } |
| 945 | |
| 946 | void test_printf_withrun() { |
| 947 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 948 | assert_non_null(r1); |
| 949 | roaring_bitmap_printf(r1); |
| 950 | /* Add some values to the bitmap */ |
| 951 | for (int i = 100, top_val = 200; i < top_val; i++) |
| 952 | roaring_bitmap_add(r1, i); |
| 953 | roaring_bitmap_run_optimize(r1); |
| 954 | roaring_bitmap_printf(r1); // does it crash? |
| 955 | roaring_bitmap_free(r1); |
| 956 | printf("\n" ); |
| 957 | } |
| 958 | |
| 959 | bool dummy_iterator(uint32_t value, void *param) { |
| 960 | (void)value; |
| 961 | |
| 962 | uint32_t *num = (uint32_t *)param; |
| 963 | (*num)++; |
| 964 | return true; |
| 965 | } |
| 966 | |
| 967 | void test_iterate() { |
| 968 | roaring_bitmap_t *r1 = |
| 969 | roaring_bitmap_of(8, 1, 2, 3, 100, 1000, 10000, 1000000, 20000000); |
| 970 | assert_non_null(r1); |
| 971 | |
| 972 | uint32_t num = 0; |
| 973 | /* Add some values to the bitmap */ |
| 974 | for (int i = 0, top_val = 384000; i < top_val; i++) |
| 975 | roaring_bitmap_add(r1, 3 * i); |
| 976 | |
| 977 | roaring_iterate(r1, dummy_iterator, (void *)&num); |
| 978 | |
| 979 | assert_int_equal(roaring_bitmap_get_cardinality(r1), num); |
| 980 | roaring_bitmap_free(r1); |
| 981 | } |
| 982 | |
| 983 | void test_iterate_empty() { |
| 984 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 985 | assert_non_null(r1); |
| 986 | uint32_t num = 0; |
| 987 | |
| 988 | roaring_iterate(r1, dummy_iterator, (void *)&num); |
| 989 | |
| 990 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 0); |
| 991 | assert_int_equal(roaring_bitmap_get_cardinality(r1), num); |
| 992 | roaring_bitmap_free(r1); |
| 993 | } |
| 994 | |
| 995 | void test_iterate_withbitmap() { |
| 996 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 997 | assert_non_null(r1); |
| 998 | /* Add some values to the bitmap */ |
| 999 | for (int i = 0, top_val = 4097; i < top_val; i++) |
| 1000 | roaring_bitmap_add(r1, 2 * i); |
| 1001 | uint32_t num = 0; |
| 1002 | |
| 1003 | roaring_iterate(r1, dummy_iterator, (void *)&num); |
| 1004 | |
| 1005 | assert_int_equal(roaring_bitmap_get_cardinality(r1), num); |
| 1006 | roaring_bitmap_free(r1); |
| 1007 | } |
| 1008 | |
| 1009 | void test_iterate_withrun() { |
| 1010 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1011 | assert_non_null(r1); |
| 1012 | /* Add some values to the bitmap */ |
| 1013 | for (int i = 100, top_val = 200; i < top_val; i++) |
| 1014 | roaring_bitmap_add(r1, i); |
| 1015 | roaring_bitmap_run_optimize(r1); |
| 1016 | uint32_t num = 0; |
| 1017 | roaring_iterate(r1, dummy_iterator, (void *)&num); |
| 1018 | |
| 1019 | assert_int_equal(roaring_bitmap_get_cardinality(r1), num); |
| 1020 | roaring_bitmap_free(r1); |
| 1021 | } |
| 1022 | |
| 1023 | void test_remove_withrun() { |
| 1024 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1025 | assert_non_null(r1); |
| 1026 | /* Add some values to the bitmap */ |
| 1027 | for (int i = 100, top_val = 20000; i < top_val; i++) |
| 1028 | roaring_bitmap_add(r1, i); |
| 1029 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 20000 - 100); |
| 1030 | roaring_bitmap_remove(r1, 1000); |
| 1031 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 20000 - 100 - 1); |
| 1032 | roaring_bitmap_run_optimize(r1); |
| 1033 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 20000 - 100 - 1); |
| 1034 | roaring_bitmap_remove(r1, 2000); |
| 1035 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 20000 - 100 - 1 - 1); |
| 1036 | roaring_bitmap_free(r1); |
| 1037 | } |
| 1038 | |
| 1039 | void test_portable_serialize() { |
| 1040 | roaring_bitmap_t *r1 = |
| 1041 | roaring_bitmap_of(8, 1, 2, 3, 100, 1000, 10000, 1000000, 20000000); |
| 1042 | assert_non_null(r1); |
| 1043 | |
| 1044 | uint32_t serialize_len; |
| 1045 | roaring_bitmap_t *r2; |
| 1046 | |
| 1047 | for (int i = 0, top_val = 384000; i < top_val; i++) |
| 1048 | roaring_bitmap_add(r1, 3 * i); |
| 1049 | |
| 1050 | uint32_t expectedsize = roaring_bitmap_portable_size_in_bytes(r1); |
| 1051 | char *serialized = malloc(expectedsize); |
| 1052 | serialize_len = roaring_bitmap_portable_serialize(r1, serialized); |
| 1053 | assert_int_equal(serialize_len, expectedsize); |
| 1054 | assert_int_equal(serialize_len, expectedsize); |
| 1055 | r2 = roaring_bitmap_portable_deserialize(serialized); |
| 1056 | assert_non_null(r2); |
| 1057 | |
| 1058 | uint64_t card1 = roaring_bitmap_get_cardinality(r1); |
| 1059 | uint32_t *arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1060 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1061 | |
| 1062 | uint64_t card2 = roaring_bitmap_get_cardinality(r2); |
| 1063 | uint32_t *arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1064 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1065 | |
| 1066 | assert_true(array_equals(arr1, card1, arr2, card2)); |
| 1067 | assert_true(roaring_bitmap_equals(r1, r2)); |
| 1068 | free(arr1); |
| 1069 | free(arr2); |
| 1070 | free(serialized); |
| 1071 | roaring_bitmap_free(r1); |
| 1072 | roaring_bitmap_free(r2); |
| 1073 | |
| 1074 | r1 = roaring_bitmap_of(6, 2946000, 2997491, 10478289, 10490227, 10502444, |
| 1075 | 19866827); |
| 1076 | expectedsize = roaring_bitmap_portable_size_in_bytes(r1); |
| 1077 | serialized = malloc(expectedsize); |
| 1078 | serialize_len = roaring_bitmap_portable_serialize(r1, serialized); |
| 1079 | assert_int_equal(serialize_len, expectedsize); |
| 1080 | assert_int_equal(serialize_len, expectedsize); |
| 1081 | |
| 1082 | r2 = roaring_bitmap_portable_deserialize(serialized); |
| 1083 | assert_non_null(r2); |
| 1084 | |
| 1085 | card1 = roaring_bitmap_get_cardinality(r1); |
| 1086 | arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1087 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1088 | |
| 1089 | card2 = roaring_bitmap_get_cardinality(r2); |
| 1090 | arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1091 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1092 | |
| 1093 | assert_true(array_equals(arr1, card1, arr2, card2)); |
| 1094 | assert_true(roaring_bitmap_equals(r1, r2)); |
| 1095 | free(arr1); |
| 1096 | free(arr2); |
| 1097 | free(serialized); |
| 1098 | roaring_bitmap_free(r1); |
| 1099 | roaring_bitmap_free(r2); |
| 1100 | |
| 1101 | r1 = roaring_bitmap_create(); |
| 1102 | assert_non_null(r1); |
| 1103 | |
| 1104 | for (uint32_t k = 100; k < 100000; ++k) { |
| 1105 | roaring_bitmap_add(r1, k); |
| 1106 | } |
| 1107 | |
| 1108 | roaring_bitmap_run_optimize(r1); |
| 1109 | expectedsize = roaring_bitmap_portable_size_in_bytes(r1); |
| 1110 | serialized = malloc(expectedsize); |
| 1111 | serialize_len = roaring_bitmap_portable_serialize(r1, serialized); |
| 1112 | assert_int_equal(serialize_len, expectedsize); |
| 1113 | |
| 1114 | r2 = roaring_bitmap_portable_deserialize(serialized); |
| 1115 | assert_non_null(r2); |
| 1116 | |
| 1117 | card1 = roaring_bitmap_get_cardinality(r1); |
| 1118 | arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1119 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1120 | |
| 1121 | card2 = roaring_bitmap_get_cardinality(r2); |
| 1122 | arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1123 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1124 | |
| 1125 | assert(array_equals(arr1, card1, arr2, card2)); |
| 1126 | assert(roaring_bitmap_equals(r1, r2)); |
| 1127 | free(arr1); |
| 1128 | free(arr2); |
| 1129 | free(serialized); |
| 1130 | roaring_bitmap_free(r1); |
| 1131 | roaring_bitmap_free(r2); |
| 1132 | } |
| 1133 | |
| 1134 | void test_serialize() { |
| 1135 | roaring_bitmap_t *r1 = |
| 1136 | roaring_bitmap_of(8, 1, 2, 3, 100, 1000, 10000, 1000000, 20000000); |
| 1137 | assert_non_null(r1); |
| 1138 | |
| 1139 | uint32_t serialize_len; |
| 1140 | char *serialized; |
| 1141 | roaring_bitmap_t *r2; |
| 1142 | |
| 1143 | /* Add some values to the bitmap */ |
| 1144 | for (int i = 0, top_val = 384000; i < top_val; i++) |
| 1145 | roaring_bitmap_add(r1, 3 * i); |
| 1146 | serialized = malloc(roaring_bitmap_size_in_bytes(r1)); |
| 1147 | serialize_len = roaring_bitmap_serialize(r1, serialized); |
| 1148 | assert_int_equal(serialize_len, roaring_bitmap_size_in_bytes(r1)); |
| 1149 | r2 = roaring_bitmap_deserialize(serialized); |
| 1150 | assert_non_null(r2); |
| 1151 | |
| 1152 | uint64_t card1 = roaring_bitmap_get_cardinality(r1); |
| 1153 | uint32_t *arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1154 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1155 | |
| 1156 | uint64_t card2 = roaring_bitmap_get_cardinality(r2); |
| 1157 | uint32_t *arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1158 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1159 | |
| 1160 | assert_true(array_equals(arr1, card1, arr2, card2)); |
| 1161 | assert_true(roaring_bitmap_equals(r1, r2)); |
| 1162 | free(arr1); |
| 1163 | free(arr2); |
| 1164 | free(serialized); |
| 1165 | roaring_bitmap_free(r1); |
| 1166 | roaring_bitmap_free(r2); |
| 1167 | |
| 1168 | run_container_t *run = run_container_create_given_capacity(1024); |
| 1169 | assert_non_null(run); |
| 1170 | for (int i = 0; i < 768; i++) run_container_add(run, 3 * i); |
| 1171 | |
| 1172 | serialize_len = run_container_serialization_len(run); |
| 1173 | char *rbuf = malloc(serialize_len); |
| 1174 | assert_int_equal((int32_t)serialize_len, |
| 1175 | run_container_serialize(run, rbuf)); |
| 1176 | run_container_t *run1 = run_container_deserialize(rbuf, serialize_len); |
| 1177 | free(rbuf); |
| 1178 | |
| 1179 | run_container_free(run); |
| 1180 | run_container_free(run1); |
| 1181 | |
| 1182 | r1 = roaring_bitmap_of(6, 2946000, 2997491, 10478289, 10490227, 10502444, |
| 1183 | 19866827); |
| 1184 | |
| 1185 | serialized = malloc(roaring_bitmap_size_in_bytes(r1)); |
| 1186 | serialize_len = roaring_bitmap_serialize(r1, serialized); |
| 1187 | assert_int_equal(serialize_len, roaring_bitmap_size_in_bytes(r1)); |
| 1188 | r2 = roaring_bitmap_deserialize(serialized); |
| 1189 | assert_non_null(r2); |
| 1190 | |
| 1191 | card1 = roaring_bitmap_get_cardinality(r1); |
| 1192 | arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1193 | assert_non_null(arr1); |
| 1194 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1195 | |
| 1196 | card2 = roaring_bitmap_get_cardinality(r2); |
| 1197 | arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1198 | assert_non_null(arr2); |
| 1199 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1200 | |
| 1201 | assert_true(array_equals(arr1, card1, arr2, card2)); |
| 1202 | assert_true(roaring_bitmap_equals(r1, r2)); |
| 1203 | free(arr1); |
| 1204 | free(arr2); |
| 1205 | free(serialized); |
| 1206 | roaring_bitmap_free(r1); |
| 1207 | roaring_bitmap_free(r2); |
| 1208 | |
| 1209 | r1 = roaring_bitmap_create(); |
| 1210 | for (uint32_t k = 100; k < 100000; ++k) { |
| 1211 | roaring_bitmap_add(r1, k); |
| 1212 | } |
| 1213 | roaring_bitmap_run_optimize(r1); |
| 1214 | serialized = malloc(roaring_bitmap_size_in_bytes(r1)); |
| 1215 | serialize_len = roaring_bitmap_serialize(r1, serialized); |
| 1216 | assert_int_equal(serialize_len, roaring_bitmap_size_in_bytes(r1)); |
| 1217 | r2 = roaring_bitmap_deserialize(serialized); |
| 1218 | |
| 1219 | card1 = roaring_bitmap_get_cardinality(r1); |
| 1220 | arr1 = (uint32_t *)malloc(card1 * sizeof(uint32_t)); |
| 1221 | assert_non_null(arr1); |
| 1222 | roaring_bitmap_to_uint32_array(r1, arr1); |
| 1223 | |
| 1224 | card2 = roaring_bitmap_get_cardinality(r2); |
| 1225 | arr2 = (uint32_t *)malloc(card2 * sizeof(uint32_t)); |
| 1226 | assert_non_null(arr2); |
| 1227 | roaring_bitmap_to_uint32_array(r2, arr2); |
| 1228 | |
| 1229 | assert_true(array_equals(arr1, card1, arr2, card2)); |
| 1230 | assert_true(roaring_bitmap_equals(r1, r2)); |
| 1231 | free(arr1); |
| 1232 | free(arr2); |
| 1233 | free(serialized); |
| 1234 | roaring_bitmap_free(r1); |
| 1235 | roaring_bitmap_free(r2); |
| 1236 | |
| 1237 | /* ******* */ |
| 1238 | roaring_bitmap_t *old_bm = roaring_bitmap_create(); |
| 1239 | for (unsigned i = 0; i < 102; i++) roaring_bitmap_add(old_bm, i); |
| 1240 | char *buff = malloc(roaring_bitmap_size_in_bytes(old_bm)); |
| 1241 | uint32_t size = roaring_bitmap_serialize(old_bm, buff); |
| 1242 | assert_int_equal(size, roaring_bitmap_size_in_bytes(old_bm)); |
| 1243 | roaring_bitmap_t *new_bm = roaring_bitmap_deserialize(buff); |
| 1244 | free(buff); |
| 1245 | assert_true((unsigned int)roaring_bitmap_get_cardinality(old_bm) == |
| 1246 | (unsigned int)roaring_bitmap_get_cardinality(new_bm)); |
| 1247 | assert_true(roaring_bitmap_equals(old_bm, new_bm)); |
| 1248 | roaring_bitmap_free(old_bm); |
| 1249 | roaring_bitmap_free(new_bm); |
| 1250 | } |
| 1251 | |
| 1252 | void test_add() { |
| 1253 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1254 | assert_non_null(r1); |
| 1255 | |
| 1256 | for (uint32_t i = 0; i < 10000; ++i) { |
| 1257 | assert_int_equal(roaring_bitmap_get_cardinality(r1), i); |
| 1258 | roaring_bitmap_add(r1, 200 * i); |
| 1259 | assert_int_equal(roaring_bitmap_get_cardinality(r1), i + 1); |
| 1260 | } |
| 1261 | |
| 1262 | roaring_bitmap_free(r1); |
| 1263 | } |
| 1264 | |
| 1265 | void test_add_checked() { |
| 1266 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1267 | assert_non_null(r1); |
| 1268 | |
| 1269 | assert_true(roaring_bitmap_add_checked(r1, 999)); |
| 1270 | for (uint32_t i = 0; i < 125; ++i) { |
| 1271 | assert_true(roaring_bitmap_add_checked(r1, 3823 * i)); |
| 1272 | assert_false(roaring_bitmap_add_checked(r1, 3823 * i)); |
| 1273 | } |
| 1274 | assert_false(roaring_bitmap_add_checked(r1, 999)); |
| 1275 | |
| 1276 | roaring_bitmap_free(r1); |
| 1277 | } |
| 1278 | |
| 1279 | void test_remove_checked() { |
| 1280 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 1281 | for (uint32_t i = 0; i < 125; ++i) { |
| 1282 | roaring_bitmap_add(bm, i * 3533); |
| 1283 | } |
| 1284 | for (uint32_t i = 0; i < 125; ++i) { |
| 1285 | assert_true(roaring_bitmap_remove_checked(bm, i * 3533)); |
| 1286 | assert_false(roaring_bitmap_remove_checked(bm, i * 3533)); |
| 1287 | } |
| 1288 | assert_false(roaring_bitmap_remove_checked(bm, 999)); |
| 1289 | roaring_bitmap_add(bm, 999); |
| 1290 | assert_true(roaring_bitmap_remove_checked(bm, 999)); |
| 1291 | assert_true(roaring_bitmap_is_empty(bm)); |
| 1292 | roaring_bitmap_free(bm); |
| 1293 | } |
| 1294 | |
| 1295 | void test_contains() { |
| 1296 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1297 | assert_non_null(r1); |
| 1298 | |
| 1299 | for (uint32_t i = 0; i < 10000; ++i) { |
| 1300 | assert_int_equal(roaring_bitmap_get_cardinality(r1), i); |
| 1301 | roaring_bitmap_add(r1, 200 * i); |
| 1302 | assert_int_equal(roaring_bitmap_get_cardinality(r1), i + 1); |
| 1303 | } |
| 1304 | |
| 1305 | for (uint32_t i = 0; i < 200 * 10000; ++i) { |
| 1306 | assert_int_equal(roaring_bitmap_contains(r1, i), (i % 200 == 0)); |
| 1307 | } |
| 1308 | |
| 1309 | roaring_bitmap_free(r1); |
| 1310 | } |
| 1311 | |
| 1312 | void test_contains_range() { |
| 1313 | uint32_t* values = malloc(100000 * sizeof(uint32_t)); |
| 1314 | assert_non_null(values); |
| 1315 | for (uint32_t length_range = 1; length_range <= 64; ++length_range) { |
| 1316 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1317 | assert_non_null(r1); |
| 1318 | for (uint32_t i = 0; i < 100000; ++i){ |
| 1319 | const uint32_t val = rand() % 200000; |
| 1320 | roaring_bitmap_add(r1, val); |
| 1321 | values[i] = val; |
| 1322 | } |
| 1323 | for (uint64_t i = 0; i < 100000; ++i){ |
| 1324 | if (roaring_bitmap_contains_range(r1, values[i], values[i] + length_range)){ |
| 1325 | for (uint32_t j = values[i]; j < values[i] + length_range; ++j) assert_true(roaring_bitmap_contains(r1, j)); |
| 1326 | } |
| 1327 | else { |
| 1328 | uint32_t count = 0; |
| 1329 | for (uint32_t j = values[i]; j < values[i] + length_range; ++j){ |
| 1330 | if (roaring_bitmap_contains(r1, j)) ++count; |
| 1331 | else break; |
| 1332 | } |
| 1333 | assert_true(count != length_range); |
| 1334 | } |
| 1335 | } |
| 1336 | roaring_bitmap_free(r1); |
| 1337 | } |
| 1338 | free(values); |
| 1339 | for (uint32_t length_range = 1; length_range <= 64; ++length_range) { |
| 1340 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1341 | assert_non_null(r1); |
| 1342 | const uint32_t length_range_twice = length_range * 2; |
| 1343 | for (uint32_t i = 0; i < 130000; i += length_range){ |
| 1344 | if (i % length_range_twice == 0){ |
| 1345 | for (uint32_t j = i; j < i + length_range; ++j) roaring_bitmap_add(r1, j); |
| 1346 | } |
| 1347 | } |
| 1348 | for (uint32_t i = 0; i < 130000; i += length_range){ |
| 1349 | bool pres = roaring_bitmap_contains_range(r1, i, i + length_range); |
| 1350 | assert_true(((i % length_range_twice == 0) ? pres : !pres)); |
| 1351 | } |
| 1352 | roaring_bitmap_free(r1); |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | void test_intersection_array_x_array() { |
| 1357 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1358 | assert_non_null(r1); |
| 1359 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1360 | assert_non_null(r2); |
| 1361 | |
| 1362 | for (uint32_t i = 0; i < 100; ++i) { |
| 1363 | roaring_bitmap_add(r1, 2 * i); |
| 1364 | roaring_bitmap_add(r2, 3 * i); |
| 1365 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 1366 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i); |
| 1367 | |
| 1368 | assert_int_equal(roaring_bitmap_get_cardinality(r2), 2 * (i + 1)); |
| 1369 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 2 * (i + 1)); |
| 1370 | } |
| 1371 | |
| 1372 | roaring_bitmap_t *r1_and_r2 = roaring_bitmap_and(r1, r2); |
| 1373 | assert_true(roaring_bitmap_get_cardinality(r1_and_r2) == |
| 1374 | roaring_bitmap_and_cardinality(r1, r2)); |
| 1375 | |
| 1376 | assert_non_null(r1_and_r2); |
| 1377 | assert_int_equal(roaring_bitmap_get_cardinality(r1_and_r2), 2 * 34); |
| 1378 | |
| 1379 | roaring_bitmap_free(r1_and_r2); |
| 1380 | roaring_bitmap_free(r2); |
| 1381 | roaring_bitmap_free(r1); |
| 1382 | } |
| 1383 | |
| 1384 | void test_intersection_array_x_array_inplace() { |
| 1385 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1386 | assert(r1); |
| 1387 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1388 | assert(r2); |
| 1389 | |
| 1390 | for (uint32_t i = 0; i < 100; ++i) { |
| 1391 | roaring_bitmap_add(r1, 2 * i); |
| 1392 | roaring_bitmap_add(r2, 3 * i); |
| 1393 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 1394 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i); |
| 1395 | |
| 1396 | assert_int_equal(roaring_bitmap_get_cardinality(r2), 2 * (i + 1)); |
| 1397 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 2 * (i + 1)); |
| 1398 | } |
| 1399 | |
| 1400 | roaring_bitmap_and_inplace(r1, r2); |
| 1401 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 2 * 34); |
| 1402 | |
| 1403 | roaring_bitmap_free(r2); |
| 1404 | roaring_bitmap_free(r1); |
| 1405 | } |
| 1406 | |
| 1407 | void test_intersection_bitset_x_bitset() { |
| 1408 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1409 | assert(r1); |
| 1410 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1411 | assert(r2); |
| 1412 | |
| 1413 | for (uint32_t i = 0; i < 20000; ++i) { |
| 1414 | roaring_bitmap_add(r1, 2 * i); |
| 1415 | roaring_bitmap_add(r2, 3 * i); |
| 1416 | roaring_bitmap_add(r2, 3 * i + 1); |
| 1417 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 1418 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i); |
| 1419 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i + 1); |
| 1420 | |
| 1421 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 2 * (i + 1)); |
| 1422 | assert_int_equal(roaring_bitmap_get_cardinality(r2), 4 * (i + 1)); |
| 1423 | } |
| 1424 | |
| 1425 | roaring_bitmap_t *r1_and_r2 = roaring_bitmap_and(r1, r2); |
| 1426 | assert_true(roaring_bitmap_get_cardinality(r1_and_r2) == |
| 1427 | roaring_bitmap_and_cardinality(r1, r2)); |
| 1428 | |
| 1429 | assert_non_null(r1_and_r2); |
| 1430 | |
| 1431 | // NOT analytically determined but seems reasonable |
| 1432 | assert_int_equal(roaring_bitmap_get_cardinality(r1_and_r2), 26666); |
| 1433 | |
| 1434 | roaring_bitmap_free(r1_and_r2); |
| 1435 | roaring_bitmap_free(r2); |
| 1436 | roaring_bitmap_free(r1); |
| 1437 | } |
| 1438 | |
| 1439 | void test_intersection_bitset_x_bitset_inplace() { |
| 1440 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1441 | assert(r1); |
| 1442 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1443 | assert(r2); |
| 1444 | |
| 1445 | for (uint32_t i = 0; i < 20000; ++i) { |
| 1446 | roaring_bitmap_add(r1, 2 * i); |
| 1447 | roaring_bitmap_add(r2, 3 * i); |
| 1448 | roaring_bitmap_add(r2, 3 * i + 1); |
| 1449 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 1450 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i); |
| 1451 | roaring_bitmap_add(r2, 5 * 65536 + 3 * i + 1); |
| 1452 | |
| 1453 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 2 * (i + 1)); |
| 1454 | assert_int_equal(roaring_bitmap_get_cardinality(r2), 4 * (i + 1)); |
| 1455 | } |
| 1456 | |
| 1457 | roaring_bitmap_and_inplace(r1, r2); |
| 1458 | |
| 1459 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 26666); |
| 1460 | roaring_bitmap_free(r2); |
| 1461 | roaring_bitmap_free(r1); |
| 1462 | } |
| 1463 | |
| 1464 | void test_union(bool copy_on_write) { |
| 1465 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1466 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1467 | assert(r1); |
| 1468 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1469 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1470 | assert(r2); |
| 1471 | |
| 1472 | for (uint32_t i = 0; i < 100; ++i) { |
| 1473 | roaring_bitmap_add(r1, 2 * i); |
| 1474 | roaring_bitmap_add(r2, 3 * i); |
| 1475 | assert_int_equal(roaring_bitmap_get_cardinality(r2), i + 1); |
| 1476 | assert_int_equal(roaring_bitmap_get_cardinality(r1), i + 1); |
| 1477 | } |
| 1478 | |
| 1479 | roaring_bitmap_t *r1_or_r2 = roaring_bitmap_or(r1, r2); |
| 1480 | assert_true(roaring_bitmap_get_cardinality(r1_or_r2) == |
| 1481 | roaring_bitmap_or_cardinality(r1, r2)); |
| 1482 | |
| 1483 | roaring_bitmap_set_copy_on_write(r1_or_r2, copy_on_write); |
| 1484 | assert_int_equal(roaring_bitmap_get_cardinality(r1_or_r2), 166); |
| 1485 | |
| 1486 | roaring_bitmap_free(r1_or_r2); |
| 1487 | roaring_bitmap_free(r2); |
| 1488 | roaring_bitmap_free(r1); |
| 1489 | } |
| 1490 | |
| 1491 | void test_union_true() { test_union(true); } |
| 1492 | |
| 1493 | void test_union_false() { test_union(false); } |
| 1494 | |
| 1495 | // density factor changes as one gets further into bitmap |
| 1496 | static roaring_bitmap_t *gen_bitmap(double start_density, |
| 1497 | double density_gradient, int run_length, |
| 1498 | int blank_range_start, int blank_range_end, |
| 1499 | int universe_size) { |
| 1500 | srand(2345); |
| 1501 | roaring_bitmap_t *ans = roaring_bitmap_create(); |
| 1502 | double d = start_density; |
| 1503 | |
| 1504 | for (int i = 0; i < universe_size; i += run_length) { |
| 1505 | d = start_density + i * density_gradient; |
| 1506 | double r = our_rand() / (double)OUR_RAND_MAX; |
| 1507 | assert(r <= 1.0); |
| 1508 | assert(r >= 0); |
| 1509 | if (r < d && !(i >= blank_range_start && i < blank_range_end)) |
| 1510 | for (int j = 0; j < run_length; ++j) roaring_bitmap_add(ans, i + j); |
| 1511 | } |
| 1512 | roaring_bitmap_run_optimize(ans); |
| 1513 | return ans; |
| 1514 | } |
| 1515 | |
| 1516 | static roaring_bitmap_t *synthesized_xor(roaring_bitmap_t *r1, |
| 1517 | roaring_bitmap_t *r2) { |
| 1518 | unsigned universe_size = 0; |
| 1519 | roaring_statistics_t stats; |
| 1520 | roaring_bitmap_statistics(r1, &stats); |
| 1521 | universe_size = stats.max_value; |
| 1522 | roaring_bitmap_statistics(r2, &stats); |
| 1523 | if (stats.max_value > universe_size) universe_size = stats.max_value; |
| 1524 | |
| 1525 | roaring_bitmap_t *r1_or_r2 = roaring_bitmap_or(r1, r2); |
| 1526 | assert_true(roaring_bitmap_get_cardinality(r1_or_r2) == |
| 1527 | roaring_bitmap_or_cardinality(r1, r2)); |
| 1528 | |
| 1529 | roaring_bitmap_t *r1_and_r2 = roaring_bitmap_and(r1, r2); |
| 1530 | assert_true(roaring_bitmap_get_cardinality(r1_and_r2) == |
| 1531 | roaring_bitmap_and_cardinality(r1, r2)); |
| 1532 | |
| 1533 | roaring_bitmap_t *r1_nand_r2 = |
| 1534 | roaring_bitmap_flip(r1_and_r2, 0U, universe_size + 1U); |
| 1535 | roaring_bitmap_t *r1_xor_r2 = roaring_bitmap_and(r1_or_r2, r1_nand_r2); |
| 1536 | roaring_bitmap_free(r1_or_r2); |
| 1537 | roaring_bitmap_free(r1_and_r2); |
| 1538 | roaring_bitmap_free(r1_nand_r2); |
| 1539 | return r1_xor_r2; |
| 1540 | } |
| 1541 | |
| 1542 | static roaring_bitmap_t *synthesized_andnot(roaring_bitmap_t *r1, |
| 1543 | roaring_bitmap_t *r2) { |
| 1544 | unsigned universe_size = 0; |
| 1545 | roaring_statistics_t stats; |
| 1546 | roaring_bitmap_statistics(r1, &stats); |
| 1547 | universe_size = stats.max_value; |
| 1548 | roaring_bitmap_statistics(r2, &stats); |
| 1549 | if (stats.max_value > universe_size) universe_size = stats.max_value; |
| 1550 | |
| 1551 | roaring_bitmap_t *not_r2 = roaring_bitmap_flip(r2, 0U, universe_size + 1U); |
| 1552 | roaring_bitmap_t *r1_andnot_r2 = roaring_bitmap_and(r1, not_r2); |
| 1553 | roaring_bitmap_free(not_r2); |
| 1554 | return r1_andnot_r2; |
| 1555 | } |
| 1556 | |
| 1557 | // only for valid for universe < 10M, could adapt with roaring_bitmap_statistics |
| 1558 | static void show_difference(roaring_bitmap_t *result, |
| 1559 | roaring_bitmap_t *hopedfor) { |
| 1560 | int out_ctr = 0; |
| 1561 | for (int i = 0; i < 10000000; ++i) { |
| 1562 | if (roaring_bitmap_contains(result, i) && |
| 1563 | !roaring_bitmap_contains(hopedfor, i)) { |
| 1564 | printf("result incorrectly has %d\n" , i); |
| 1565 | ++out_ctr; |
| 1566 | } |
| 1567 | if (!roaring_bitmap_contains(result, i) && |
| 1568 | roaring_bitmap_contains(hopedfor, i)) { |
| 1569 | printf("result incorrectly omits %d\n" , i); |
| 1570 | ++out_ctr; |
| 1571 | } |
| 1572 | if (out_ctr > 20) { |
| 1573 | printf("20 errors seen, stopping comparison\n" ); |
| 1574 | break; |
| 1575 | } |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | void test_xor(bool copy_on_write) { |
| 1580 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1581 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1582 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1583 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1584 | |
| 1585 | for (uint32_t i = 0; i < 300; ++i) { |
| 1586 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 1587 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 1588 | } |
| 1589 | |
| 1590 | roaring_bitmap_t *r1_xor_r2 = roaring_bitmap_xor(r1, r2); |
| 1591 | roaring_bitmap_set_copy_on_write(r1_xor_r2, copy_on_write); |
| 1592 | |
| 1593 | int ansctr = 0; |
| 1594 | for (int i = 0; i < 300; ++i) { |
| 1595 | if (((i % 2 == 0) || (i % 3 == 0)) && (i % 6 != 0)) { |
| 1596 | ansctr++; |
| 1597 | if (!roaring_bitmap_contains(r1_xor_r2, i)) |
| 1598 | printf("missing %d\n" , i); |
| 1599 | } else if (roaring_bitmap_contains(r1_xor_r2, i)) |
| 1600 | printf("surplus %d\n" , i); |
| 1601 | } |
| 1602 | |
| 1603 | assert_int_equal(roaring_bitmap_get_cardinality(r1_xor_r2), ansctr); |
| 1604 | |
| 1605 | roaring_bitmap_free(r1_xor_r2); |
| 1606 | roaring_bitmap_free(r2); |
| 1607 | roaring_bitmap_free(r1); |
| 1608 | |
| 1609 | // some tougher tests on synthetic data |
| 1610 | |
| 1611 | roaring_bitmap_t *r[] = { |
| 1612 | // ascending density, last containers might be runs |
| 1613 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 1614 | // descending density, first containers might be runs |
| 1615 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 1616 | // uniformly rather sparse |
| 1617 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 1618 | // uniformly rather sparse with runs |
| 1619 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 1620 | // uniformly rather dense |
| 1621 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 1622 | // ascending density but never too dense |
| 1623 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 1624 | // ascending density but very sparse |
| 1625 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 1626 | // descending with a gap |
| 1627 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 1628 | // gap elsewhere |
| 1629 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 1630 | 0 // sentinel |
| 1631 | }; |
| 1632 | |
| 1633 | for (int i = 0; r[i]; ++i) { |
| 1634 | for (int j = i; r[j]; ++j) { |
| 1635 | roaring_bitmap_t *expected = synthesized_xor(r[i], r[j]); |
| 1636 | roaring_bitmap_t *result = roaring_bitmap_xor(r[i], r[j]); |
| 1637 | assert_true(roaring_bitmap_get_cardinality(result) == |
| 1638 | roaring_bitmap_xor_cardinality(r[i], r[j])); |
| 1639 | |
| 1640 | bool is_equal = roaring_bitmap_equals(expected, result); |
| 1641 | |
| 1642 | assert_true(is_equal); |
| 1643 | roaring_bitmap_free(expected); |
| 1644 | roaring_bitmap_free(result); |
| 1645 | } |
| 1646 | } |
| 1647 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 1648 | } |
| 1649 | |
| 1650 | void test_xor_true() { test_xor(true); } |
| 1651 | |
| 1652 | void test_xor_false() { test_xor(false); } |
| 1653 | |
| 1654 | void test_xor_inplace(bool copy_on_write) { |
| 1655 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1656 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1657 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1658 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1659 | |
| 1660 | for (uint32_t i = 0; i < 300; ++i) { |
| 1661 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 1662 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 1663 | } |
| 1664 | roaring_bitmap_xor_inplace(r1, r2); |
| 1665 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 166 - 16); |
| 1666 | |
| 1667 | roaring_bitmap_free(r2); |
| 1668 | roaring_bitmap_free(r1); |
| 1669 | |
| 1670 | // some tougher tests on synthetic data |
| 1671 | |
| 1672 | roaring_bitmap_t *r[] = { |
| 1673 | // ascending density, last containers might be runs |
| 1674 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 1675 | // descending density, first containers might be runs |
| 1676 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 1677 | // uniformly rather sparse |
| 1678 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 1679 | // uniformly rather sparse with runs |
| 1680 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 1681 | // uniformly rather dense |
| 1682 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 1683 | // ascending density but never too dense |
| 1684 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 1685 | // ascending density but very sparse |
| 1686 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 1687 | // descending with a gap |
| 1688 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 1689 | // gap elsewhere |
| 1690 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 1691 | 0 // sentinel |
| 1692 | }; |
| 1693 | |
| 1694 | for (int i = 0; r[i]; ++i) { |
| 1695 | for (int j = i + 1; r[j]; ++j) { |
| 1696 | roaring_bitmap_t *expected = synthesized_xor(r[i], r[j]); |
| 1697 | roaring_bitmap_t *copy = roaring_bitmap_copy(r[i]); |
| 1698 | roaring_bitmap_set_copy_on_write(copy, copy_on_write); |
| 1699 | |
| 1700 | roaring_bitmap_xor_inplace(copy, r[j]); |
| 1701 | |
| 1702 | bool is_equal = roaring_bitmap_equals(expected, copy); |
| 1703 | if (!is_equal) { |
| 1704 | printf("problem with i=%d j=%d\n" , i, j); |
| 1705 | printf("copy's cardinality is %d and expected's is %d\n" , |
| 1706 | (int)roaring_bitmap_get_cardinality(copy), |
| 1707 | (int)roaring_bitmap_get_cardinality(expected)); |
| 1708 | show_difference(copy, expected); |
| 1709 | } |
| 1710 | |
| 1711 | assert_true(is_equal); |
| 1712 | roaring_bitmap_free(expected); |
| 1713 | roaring_bitmap_free(copy); |
| 1714 | } |
| 1715 | } |
| 1716 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 1717 | } |
| 1718 | |
| 1719 | void test_xor_inplace_true() { test_xor_inplace(true); } |
| 1720 | |
| 1721 | void test_xor_inplace_false() { test_xor_inplace(false); } |
| 1722 | |
| 1723 | void test_xor_lazy(bool copy_on_write) { |
| 1724 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1725 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1726 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1727 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1728 | |
| 1729 | for (uint32_t i = 0; i < 300; ++i) { |
| 1730 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 1731 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 1732 | } |
| 1733 | |
| 1734 | roaring_bitmap_t *r1_xor_r2 = roaring_bitmap_lazy_xor(r1, r2); |
| 1735 | roaring_bitmap_repair_after_lazy(r1_xor_r2); |
| 1736 | |
| 1737 | roaring_bitmap_set_copy_on_write(r1_xor_r2, copy_on_write); |
| 1738 | |
| 1739 | int ansctr = 0; |
| 1740 | for (int i = 0; i < 300; ++i) { |
| 1741 | if (((i % 2 == 0) || (i % 3 == 0)) && (i % 6 != 0)) { |
| 1742 | ansctr++; |
| 1743 | if (!roaring_bitmap_contains(r1_xor_r2, i)) |
| 1744 | printf("missing %d\n" , i); |
| 1745 | } else if (roaring_bitmap_contains(r1_xor_r2, i)) |
| 1746 | printf("surplus %d\n" , i); |
| 1747 | } |
| 1748 | |
| 1749 | assert_int_equal(roaring_bitmap_get_cardinality(r1_xor_r2), ansctr); |
| 1750 | |
| 1751 | roaring_bitmap_free(r1_xor_r2); |
| 1752 | roaring_bitmap_free(r2); |
| 1753 | roaring_bitmap_free(r1); |
| 1754 | |
| 1755 | // some tougher tests on synthetic data |
| 1756 | roaring_bitmap_t *r[] = { |
| 1757 | // ascending density, last containers might be runs |
| 1758 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 1759 | // descending density, first containers might be runs |
| 1760 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 1761 | // uniformly rather sparse |
| 1762 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 1763 | // uniformly rather sparse with runs |
| 1764 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 1765 | // uniformly rather dense |
| 1766 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 1767 | // ascending density but never too dense |
| 1768 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 1769 | // ascending density but very sparse |
| 1770 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 1771 | // descending with a gap |
| 1772 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 1773 | // gap elsewhere |
| 1774 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 1775 | 0 // sentinel |
| 1776 | }; |
| 1777 | |
| 1778 | for (int i = 0; r[i]; ++i) { |
| 1779 | for (int j = i; r[j]; ++j) { |
| 1780 | roaring_bitmap_t *expected = synthesized_xor(r[i], r[j]); |
| 1781 | |
| 1782 | roaring_bitmap_t *result = roaring_bitmap_lazy_xor(r[i], r[j]); |
| 1783 | roaring_bitmap_repair_after_lazy(result); |
| 1784 | |
| 1785 | bool is_equal = roaring_bitmap_equals(expected, result); |
| 1786 | if (!is_equal) { |
| 1787 | printf("problem with i=%d j=%d\n" , i, j); |
| 1788 | printf("result's cardinality is %d and expected's is %d\n" , |
| 1789 | (int)roaring_bitmap_get_cardinality(result), |
| 1790 | (int)roaring_bitmap_get_cardinality(expected)); |
| 1791 | show_difference(result, expected); |
| 1792 | } |
| 1793 | |
| 1794 | assert_true(is_equal); |
| 1795 | roaring_bitmap_free(expected); |
| 1796 | roaring_bitmap_free(result); |
| 1797 | } |
| 1798 | } |
| 1799 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 1800 | } |
| 1801 | |
| 1802 | void test_xor_lazy_true() { test_xor_lazy(true); } |
| 1803 | |
| 1804 | void test_xor_lazy_false() { test_xor_lazy(false); } |
| 1805 | |
| 1806 | void test_xor_lazy_inplace(bool copy_on_write) { |
| 1807 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1808 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1809 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1810 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1811 | |
| 1812 | for (uint32_t i = 0; i < 300; ++i) { |
| 1813 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 1814 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 1815 | } |
| 1816 | |
| 1817 | roaring_bitmap_t *r1_xor_r2 = roaring_bitmap_copy(r1); |
| 1818 | roaring_bitmap_set_copy_on_write(r1_xor_r2, copy_on_write); |
| 1819 | |
| 1820 | roaring_bitmap_lazy_xor_inplace(r1_xor_r2, r2); |
| 1821 | roaring_bitmap_repair_after_lazy(r1_xor_r2); |
| 1822 | |
| 1823 | int ansctr = 0; |
| 1824 | for (int i = 0; i < 300; ++i) { |
| 1825 | if (((i % 2 == 0) || (i % 3 == 0)) && (i % 6 != 0)) { |
| 1826 | ansctr++; |
| 1827 | if (!roaring_bitmap_contains(r1_xor_r2, i)) |
| 1828 | printf("missing %d\n" , i); |
| 1829 | } else if (roaring_bitmap_contains(r1_xor_r2, i)) |
| 1830 | printf("surplus %d\n" , i); |
| 1831 | } |
| 1832 | |
| 1833 | assert_int_equal(roaring_bitmap_get_cardinality(r1_xor_r2), ansctr); |
| 1834 | |
| 1835 | roaring_bitmap_free(r1_xor_r2); |
| 1836 | roaring_bitmap_free(r2); |
| 1837 | roaring_bitmap_free(r1); |
| 1838 | |
| 1839 | // some tougher tests on synthetic data |
| 1840 | roaring_bitmap_t *r[] = { |
| 1841 | // ascending density, last containers might be runs |
| 1842 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 1843 | // descending density, first containers might be runs |
| 1844 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 1845 | // uniformly rather sparse |
| 1846 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 1847 | // uniformly rather sparse with runs |
| 1848 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 1849 | // uniformly rather dense |
| 1850 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 1851 | // ascending density but never too dense |
| 1852 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 1853 | // ascending density but very sparse |
| 1854 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 1855 | // descending with a gap |
| 1856 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 1857 | // gap elsewhere |
| 1858 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 1859 | 0 // sentinel |
| 1860 | }; |
| 1861 | |
| 1862 | for (int i = 0; r[i]; ++i) { |
| 1863 | for (int j = i; r[j]; ++j) { |
| 1864 | roaring_bitmap_t *expected = synthesized_xor(r[i], r[j]); |
| 1865 | |
| 1866 | roaring_bitmap_t *result = roaring_bitmap_copy(r[i]); |
| 1867 | roaring_bitmap_lazy_xor_inplace(result, r[j]); |
| 1868 | roaring_bitmap_repair_after_lazy(result); |
| 1869 | |
| 1870 | bool is_equal = roaring_bitmap_equals(expected, result); |
| 1871 | if (!is_equal) { |
| 1872 | printf("problem with i=%d j=%d\n" , i, j); |
| 1873 | printf("result's cardinality is %d and expected's is %d\n" , |
| 1874 | (int)roaring_bitmap_get_cardinality(result), |
| 1875 | (int)roaring_bitmap_get_cardinality(expected)); |
| 1876 | show_difference(result, expected); |
| 1877 | } |
| 1878 | |
| 1879 | assert_true(is_equal); |
| 1880 | roaring_bitmap_free(expected); |
| 1881 | roaring_bitmap_free(result); |
| 1882 | } |
| 1883 | } |
| 1884 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 1885 | } |
| 1886 | |
| 1887 | void test_xor_lazy_inplace_true() { test_xor_lazy_inplace(true); } |
| 1888 | |
| 1889 | void test_xor_lazy_inplace_false() { test_xor_lazy_inplace(false); } |
| 1890 | |
| 1891 | static roaring_bitmap_t *roaring_from_sentinel_array(int *data, |
| 1892 | bool copy_on_write) { |
| 1893 | roaring_bitmap_t *ans = roaring_bitmap_create(); |
| 1894 | roaring_bitmap_set_copy_on_write(ans, copy_on_write); |
| 1895 | |
| 1896 | for (; *data != -1; ++data) { |
| 1897 | roaring_bitmap_add(ans, *data); |
| 1898 | } |
| 1899 | return ans; |
| 1900 | } |
| 1901 | |
| 1902 | void test_andnot(bool copy_on_write) { |
| 1903 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 1904 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 1905 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 1906 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 1907 | |
| 1908 | int data1[] = {1, |
| 1909 | 2, |
| 1910 | 65536 * 2 + 1, |
| 1911 | 65536 * 2 + 2, |
| 1912 | 65536 * 3 + 1, |
| 1913 | 65536 * 3 + 2, |
| 1914 | 65536 * 10 + 1, |
| 1915 | 65536 * 10 + 2, |
| 1916 | 65536 * 16 + 1, |
| 1917 | 65536 * 16 + 2, |
| 1918 | 65536 * 20 + 1, |
| 1919 | 65536 * 21 + 1, |
| 1920 | -1}; |
| 1921 | roaring_bitmap_t *rb1 = roaring_from_sentinel_array(data1, copy_on_write); |
| 1922 | int data2[] = {2, |
| 1923 | 3, |
| 1924 | 65536 * 10 + 2, |
| 1925 | 65536 * 10 + 3, |
| 1926 | 65536 * 12 + 2, |
| 1927 | 65536 * 12 + 3, |
| 1928 | 65536 * 14 + 2, |
| 1929 | 65536 * 14 + 3, |
| 1930 | 65536 * 16 + 2, |
| 1931 | 65536 * 16 + 3, |
| 1932 | -1}; |
| 1933 | roaring_bitmap_t *rb2 = roaring_from_sentinel_array(data2, copy_on_write); |
| 1934 | |
| 1935 | int data3[] = {2, |
| 1936 | 3, |
| 1937 | 65536 * 10 + 1, |
| 1938 | 65536 * 10 + 2, |
| 1939 | 65536 * 12 + 2, |
| 1940 | 65536 * 12 + 3, |
| 1941 | 65536 * 14 + 2, |
| 1942 | 65536 * 14 + 3, |
| 1943 | 65536 * 16 + 2, |
| 1944 | 65536 * 16 + 3, |
| 1945 | -1}; |
| 1946 | roaring_bitmap_t *rb3 = roaring_from_sentinel_array(data3, copy_on_write); |
| 1947 | int d1_minus_d2[] = {1, |
| 1948 | 65536 * 2 + 1, |
| 1949 | 65536 * 2 + 2, |
| 1950 | 65536 * 3 + 1, |
| 1951 | 65536 * 3 + 2, |
| 1952 | 65536 * 10 + 1, |
| 1953 | 65536 * 16 + 1, |
| 1954 | 65536 * 20 + 1, |
| 1955 | 65536 * 21 + 1, |
| 1956 | -1}; |
| 1957 | roaring_bitmap_t *rb1_minus_rb2 = |
| 1958 | roaring_from_sentinel_array(d1_minus_d2, copy_on_write); |
| 1959 | |
| 1960 | int d1_minus_d3[] = {1, 65536 * 2 + 1, 65536 * 2 + 2, 65536 * 3 + 1, |
| 1961 | 65536 * 3 + 2, |
| 1962 | // 65536*10+1, |
| 1963 | 65536 * 16 + 1, 65536 * 20 + 1, 65536 * 21 + 1, -1}; |
| 1964 | roaring_bitmap_t *rb1_minus_rb3 = |
| 1965 | roaring_from_sentinel_array(d1_minus_d3, copy_on_write); |
| 1966 | |
| 1967 | int d2_minus_d1[] = {3, |
| 1968 | 65536 * 10 + 3, |
| 1969 | 65536 * 12 + 2, |
| 1970 | 65536 * 12 + 3, |
| 1971 | 65536 * 14 + 2, |
| 1972 | 65536 * 14 + 3, |
| 1973 | 65536 * 16 + 3, |
| 1974 | -1}; |
| 1975 | |
| 1976 | roaring_bitmap_t *rb2_minus_rb1 = |
| 1977 | roaring_from_sentinel_array(d2_minus_d1, copy_on_write); |
| 1978 | |
| 1979 | int d3_minus_d1[] = {3, |
| 1980 | // 65536*10+3, |
| 1981 | 65536 * 12 + 2, 65536 * 12 + 3, 65536 * 14 + 2, |
| 1982 | 65536 * 14 + 3, 65536 * 16 + 3, -1}; |
| 1983 | roaring_bitmap_t *rb3_minus_rb1 = |
| 1984 | roaring_from_sentinel_array(d3_minus_d1, copy_on_write); |
| 1985 | |
| 1986 | int d3_minus_d2[] = {65536 * 10 + 1, -1}; |
| 1987 | roaring_bitmap_t *rb3_minus_rb2 = |
| 1988 | roaring_from_sentinel_array(d3_minus_d2, copy_on_write); |
| 1989 | |
| 1990 | roaring_bitmap_t *temp = roaring_bitmap_andnot(rb1, rb2); |
| 1991 | assert_true(roaring_bitmap_equals(rb1_minus_rb2, temp)); |
| 1992 | roaring_bitmap_free(temp); |
| 1993 | |
| 1994 | temp = roaring_bitmap_andnot(rb1, rb3); |
| 1995 | assert_true(roaring_bitmap_equals(rb1_minus_rb3, temp)); |
| 1996 | roaring_bitmap_free(temp); |
| 1997 | |
| 1998 | temp = roaring_bitmap_andnot(rb2, rb1); |
| 1999 | assert_true(roaring_bitmap_equals(rb2_minus_rb1, temp)); |
| 2000 | roaring_bitmap_free(temp); |
| 2001 | |
| 2002 | temp = roaring_bitmap_andnot(rb3, rb1); |
| 2003 | assert_true(roaring_bitmap_equals(rb3_minus_rb1, temp)); |
| 2004 | roaring_bitmap_free(temp); |
| 2005 | |
| 2006 | temp = roaring_bitmap_andnot(rb3, rb2); |
| 2007 | assert_true(roaring_bitmap_equals(rb3_minus_rb2, temp)); |
| 2008 | roaring_bitmap_free(temp); |
| 2009 | |
| 2010 | roaring_bitmap_t *large_run_bitmap = |
| 2011 | roaring_bitmap_from_range(2, 11 * 65536 + 27, 1); |
| 2012 | temp = roaring_bitmap_andnot(rb1, large_run_bitmap); |
| 2013 | |
| 2014 | int d1_minus_largerun[] = { |
| 2015 | 1, 65536 * 16 + 1, 65536 * 16 + 2, 65536 * 20 + 1, 65536 * 21 + 1, -1}; |
| 2016 | roaring_bitmap_t *rb1_minus_largerun = |
| 2017 | roaring_from_sentinel_array(d1_minus_largerun, copy_on_write); |
| 2018 | assert_true(roaring_bitmap_equals(rb1_minus_largerun, temp)); |
| 2019 | roaring_bitmap_free(temp); |
| 2020 | |
| 2021 | roaring_bitmap_free(rb1); |
| 2022 | roaring_bitmap_free(rb2); |
| 2023 | roaring_bitmap_free(rb3); |
| 2024 | roaring_bitmap_free(rb1_minus_rb2); |
| 2025 | roaring_bitmap_free(rb1_minus_rb3); |
| 2026 | roaring_bitmap_free(rb2_minus_rb1); |
| 2027 | roaring_bitmap_free(rb3_minus_rb1); |
| 2028 | roaring_bitmap_free(rb3_minus_rb2); |
| 2029 | roaring_bitmap_free(rb1_minus_largerun); |
| 2030 | roaring_bitmap_free(large_run_bitmap); |
| 2031 | |
| 2032 | for (uint32_t i = 0; i < 300; ++i) { |
| 2033 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 2034 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 2035 | } |
| 2036 | |
| 2037 | roaring_bitmap_t *r1_andnot_r2 = roaring_bitmap_andnot(r1, r2); |
| 2038 | roaring_bitmap_set_copy_on_write(r1_andnot_r2, copy_on_write); |
| 2039 | |
| 2040 | int ansctr = 0; |
| 2041 | for (int i = 0; i < 300; ++i) { |
| 2042 | if ((i % 2 == 0) && (i % 3 != 0)) { |
| 2043 | ansctr++; |
| 2044 | if (!roaring_bitmap_contains(r1_andnot_r2, i)) |
| 2045 | printf("missing %d\n" , i); |
| 2046 | } else if (roaring_bitmap_contains(r1_andnot_r2, i)) |
| 2047 | printf("surplus %d\n" , i); |
| 2048 | } |
| 2049 | |
| 2050 | assert_int_equal(roaring_bitmap_get_cardinality(r1_andnot_r2), ansctr); |
| 2051 | roaring_bitmap_free(r1_andnot_r2); |
| 2052 | roaring_bitmap_free(r2); |
| 2053 | roaring_bitmap_free(r1); |
| 2054 | |
| 2055 | // some tougher tests on synthetic data |
| 2056 | |
| 2057 | roaring_bitmap_t *r[] = { |
| 2058 | // ascending density, last containers might be runs |
| 2059 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 2060 | // descending density, first containers might be runs |
| 2061 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 2062 | // uniformly rather sparse |
| 2063 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 2064 | // uniformly rather sparse with runs |
| 2065 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 2066 | // uniformly rather dense |
| 2067 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 2068 | // ascending density but never too dense |
| 2069 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 2070 | // ascending density but very sparse |
| 2071 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 2072 | // descending with a gap |
| 2073 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 2074 | // gap elsewhere |
| 2075 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 2076 | 0 // sentinel |
| 2077 | }; |
| 2078 | |
| 2079 | for (int i = 0; r[i]; ++i) { |
| 2080 | for (int j = i; r[j]; ++j) { |
| 2081 | roaring_bitmap_t *expected = synthesized_andnot(r[i], r[j]); |
| 2082 | roaring_bitmap_t *result = roaring_bitmap_andnot(r[i], r[j]); |
| 2083 | |
| 2084 | bool is_equal = roaring_bitmap_equals(expected, result); |
| 2085 | |
| 2086 | assert_true(is_equal); |
| 2087 | roaring_bitmap_free(expected); |
| 2088 | roaring_bitmap_free(result); |
| 2089 | } |
| 2090 | } |
| 2091 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 2092 | } |
| 2093 | |
| 2094 | void test_andnot_true() { test_andnot(true); } |
| 2095 | |
| 2096 | void test_andnot_false() { test_andnot(false); } |
| 2097 | |
| 2098 | void test_andnot_inplace(bool copy_on_write) { |
| 2099 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2100 | roaring_bitmap_set_copy_on_write(r1, copy_on_write); |
| 2101 | roaring_bitmap_t *r2 = roaring_bitmap_create(); |
| 2102 | roaring_bitmap_set_copy_on_write(r2, copy_on_write); |
| 2103 | |
| 2104 | int data1[] = {1, |
| 2105 | 2, |
| 2106 | 65536 * 2 + 1, |
| 2107 | 65536 * 2 + 2, |
| 2108 | 65536 * 3 + 1, |
| 2109 | 65536 * 3 + 2, |
| 2110 | 65536 * 10 + 1, |
| 2111 | 65536 * 10 + 2, |
| 2112 | 65536 * 16 + 1, |
| 2113 | 65536 * 16 + 2, |
| 2114 | 65536 * 20 + 1, |
| 2115 | 65536 * 21 + 1, |
| 2116 | -1}; |
| 2117 | roaring_bitmap_t *rb1 = roaring_from_sentinel_array(data1, copy_on_write); |
| 2118 | int data2[] = {2, |
| 2119 | 3, |
| 2120 | 65536 * 10 + 2, |
| 2121 | 65536 * 10 + 3, |
| 2122 | 65536 * 12 + 2, |
| 2123 | 65536 * 12 + 3, |
| 2124 | 65536 * 14 + 2, |
| 2125 | 65536 * 14 + 3, |
| 2126 | 65536 * 16 + 2, |
| 2127 | 65536 * 16 + 3, |
| 2128 | -1}; |
| 2129 | roaring_bitmap_t *rb2 = roaring_from_sentinel_array(data2, copy_on_write); |
| 2130 | |
| 2131 | int data3[] = {2, |
| 2132 | 3, |
| 2133 | 65536 * 10 + 1, |
| 2134 | 65536 * 10 + 2, |
| 2135 | 65536 * 12 + 2, |
| 2136 | 65536 * 12 + 3, |
| 2137 | 65536 * 14 + 2, |
| 2138 | 65536 * 14 + 3, |
| 2139 | 65536 * 16 + 2, |
| 2140 | 65536 * 16 + 3, |
| 2141 | -1}; |
| 2142 | roaring_bitmap_t *rb3 = roaring_from_sentinel_array(data3, copy_on_write); |
| 2143 | int d1_minus_d2[] = {1, |
| 2144 | 65536 * 2 + 1, |
| 2145 | 65536 * 2 + 2, |
| 2146 | 65536 * 3 + 1, |
| 2147 | 65536 * 3 + 2, |
| 2148 | 65536 * 10 + 1, |
| 2149 | 65536 * 16 + 1, |
| 2150 | 65536 * 20 + 1, |
| 2151 | 65536 * 21 + 1, |
| 2152 | -1}; |
| 2153 | roaring_bitmap_t *rb1_minus_rb2 = |
| 2154 | roaring_from_sentinel_array(d1_minus_d2, copy_on_write); |
| 2155 | |
| 2156 | int d1_minus_d3[] = {1, 65536 * 2 + 1, 65536 * 2 + 2, 65536 * 3 + 1, |
| 2157 | 65536 * 3 + 2, |
| 2158 | // 65536*10+1, |
| 2159 | 65536 * 16 + 1, 65536 * 20 + 1, 65536 * 21 + 1, -1}; |
| 2160 | roaring_bitmap_t *rb1_minus_rb3 = |
| 2161 | roaring_from_sentinel_array(d1_minus_d3, copy_on_write); |
| 2162 | |
| 2163 | int d2_minus_d1[] = {3, |
| 2164 | 65536 * 10 + 3, |
| 2165 | 65536 * 12 + 2, |
| 2166 | 65536 * 12 + 3, |
| 2167 | 65536 * 14 + 2, |
| 2168 | 65536 * 14 + 3, |
| 2169 | 65536 * 16 + 3, |
| 2170 | -1}; |
| 2171 | |
| 2172 | roaring_bitmap_t *rb2_minus_rb1 = |
| 2173 | roaring_from_sentinel_array(d2_minus_d1, copy_on_write); |
| 2174 | |
| 2175 | int d3_minus_d1[] = {3, |
| 2176 | // 65536*10+3, |
| 2177 | 65536 * 12 + 2, 65536 * 12 + 3, 65536 * 14 + 2, |
| 2178 | 65536 * 14 + 3, 65536 * 16 + 3, -1}; |
| 2179 | roaring_bitmap_t *rb3_minus_rb1 = |
| 2180 | roaring_from_sentinel_array(d3_minus_d1, copy_on_write); |
| 2181 | |
| 2182 | int d3_minus_d2[] = {65536 * 10 + 1, -1}; |
| 2183 | roaring_bitmap_t *rb3_minus_rb2 = |
| 2184 | roaring_from_sentinel_array(d3_minus_d2, copy_on_write); |
| 2185 | |
| 2186 | roaring_bitmap_t *cpy = roaring_bitmap_copy(rb1); |
| 2187 | roaring_bitmap_andnot_inplace(cpy, rb2); |
| 2188 | assert_true(roaring_bitmap_equals(rb1_minus_rb2, cpy)); |
| 2189 | roaring_bitmap_free(cpy); |
| 2190 | |
| 2191 | cpy = roaring_bitmap_copy(rb1); |
| 2192 | roaring_bitmap_andnot_inplace(cpy, rb3); |
| 2193 | assert_true(roaring_bitmap_equals(rb1_minus_rb3, cpy)); |
| 2194 | roaring_bitmap_free(cpy); |
| 2195 | |
| 2196 | cpy = roaring_bitmap_copy(rb2); |
| 2197 | roaring_bitmap_andnot_inplace(cpy, rb1); |
| 2198 | assert_true(roaring_bitmap_equals(rb2_minus_rb1, cpy)); |
| 2199 | roaring_bitmap_free(cpy); |
| 2200 | |
| 2201 | cpy = roaring_bitmap_copy(rb3); |
| 2202 | roaring_bitmap_andnot_inplace(cpy, rb1); |
| 2203 | assert_true(roaring_bitmap_equals(rb3_minus_rb1, cpy)); |
| 2204 | roaring_bitmap_free(cpy); |
| 2205 | |
| 2206 | cpy = roaring_bitmap_copy(rb3); |
| 2207 | roaring_bitmap_andnot_inplace(cpy, rb2); |
| 2208 | assert_true(roaring_bitmap_equals(rb3_minus_rb2, cpy)); |
| 2209 | roaring_bitmap_free(cpy); |
| 2210 | |
| 2211 | roaring_bitmap_t *large_run_bitmap = |
| 2212 | roaring_bitmap_from_range(2, 11 * 65536 + 27, 1); |
| 2213 | |
| 2214 | cpy = roaring_bitmap_copy(rb1); |
| 2215 | roaring_bitmap_andnot_inplace(cpy, large_run_bitmap); |
| 2216 | |
| 2217 | int d1_minus_largerun[] = { |
| 2218 | 1, 65536 * 16 + 1, 65536 * 16 + 2, 65536 * 20 + 1, 65536 * 21 + 1, -1}; |
| 2219 | roaring_bitmap_t *rb1_minus_largerun = |
| 2220 | roaring_from_sentinel_array(d1_minus_largerun, copy_on_write); |
| 2221 | assert_true(roaring_bitmap_equals(rb1_minus_largerun, cpy)); |
| 2222 | roaring_bitmap_free(cpy); |
| 2223 | |
| 2224 | roaring_bitmap_free(rb1); |
| 2225 | roaring_bitmap_free(rb2); |
| 2226 | roaring_bitmap_free(rb3); |
| 2227 | roaring_bitmap_free(rb1_minus_rb2); |
| 2228 | roaring_bitmap_free(rb1_minus_rb3); |
| 2229 | roaring_bitmap_free(rb2_minus_rb1); |
| 2230 | roaring_bitmap_free(rb3_minus_rb1); |
| 2231 | roaring_bitmap_free(rb3_minus_rb2); |
| 2232 | roaring_bitmap_free(rb1_minus_largerun); |
| 2233 | roaring_bitmap_free(large_run_bitmap); |
| 2234 | |
| 2235 | int diff_cardinality = 0; |
| 2236 | for (uint32_t i = 0; i < 300; ++i) { |
| 2237 | if (i % 2 == 0) roaring_bitmap_add(r1, i); |
| 2238 | if (i % 3 == 0) roaring_bitmap_add(r2, i); |
| 2239 | if ((i % 2 == 0) && (i % 3 != 0)) ++diff_cardinality; |
| 2240 | } |
| 2241 | roaring_bitmap_andnot_inplace(r1, r2); |
| 2242 | assert_int_equal(roaring_bitmap_get_cardinality(r1), diff_cardinality); |
| 2243 | |
| 2244 | roaring_bitmap_free(r2); |
| 2245 | roaring_bitmap_free(r1); |
| 2246 | |
| 2247 | // some tougher tests on synthetic data |
| 2248 | |
| 2249 | roaring_bitmap_t *r[] = { |
| 2250 | // ascending density, last containers might be runs |
| 2251 | gen_bitmap(0.0, 1e-6, 1, 0, 0, 1000000), |
| 2252 | // descending density, first containers might be runs |
| 2253 | gen_bitmap(1.0, -1e-6, 1, 0, 0, 1000000), |
| 2254 | // uniformly rather sparse |
| 2255 | gen_bitmap(1e-5, 0.0, 1, 0, 0, 2000000), |
| 2256 | // uniformly rather sparse with runs |
| 2257 | gen_bitmap(1e-5, 0.0, 3, 0, 0, 2000000), |
| 2258 | // uniformly rather dense |
| 2259 | gen_bitmap(1e-1, 0.0, 1, 0, 0, 2000000), |
| 2260 | // ascending density but never too dense |
| 2261 | gen_bitmap(0.001, 1e-7, 1, 0, 0, 1000000), |
| 2262 | // ascending density but very sparse |
| 2263 | gen_bitmap(0.0, 1e-10, 1, 0, 0, 1000000), |
| 2264 | // descending with a gap |
| 2265 | gen_bitmap(0.5, -1e-6, 1, 600000, 800000, 1000000), |
| 2266 | // gap elsewhere |
| 2267 | gen_bitmap(1, -1e-6, 1, 300000, 500000, 1000000), |
| 2268 | 0 // sentinel |
| 2269 | }; |
| 2270 | |
| 2271 | for (int i = 0; r[i]; ++i) { |
| 2272 | for (int j = i + 1; r[j]; ++j) { |
| 2273 | roaring_bitmap_t *expected = synthesized_andnot(r[i], r[j]); |
| 2274 | roaring_bitmap_t *copy = roaring_bitmap_copy(r[i]); |
| 2275 | roaring_bitmap_set_copy_on_write(copy, copy_on_write); |
| 2276 | |
| 2277 | roaring_bitmap_andnot_inplace(copy, r[j]); |
| 2278 | |
| 2279 | bool is_equal = roaring_bitmap_equals(expected, copy); |
| 2280 | if (!is_equal) { |
| 2281 | printf("problem with i=%d j=%d\n" , i, j); |
| 2282 | printf("copy's cardinality is %d and expected's is %d\n" , |
| 2283 | (int)roaring_bitmap_get_cardinality(copy), |
| 2284 | (int)roaring_bitmap_get_cardinality(expected)); |
| 2285 | show_difference(copy, expected); |
| 2286 | } |
| 2287 | |
| 2288 | assert_true(is_equal); |
| 2289 | roaring_bitmap_free(expected); |
| 2290 | roaring_bitmap_free(copy); |
| 2291 | } |
| 2292 | } |
| 2293 | for (int i = 0; r[i]; ++i) roaring_bitmap_free(r[i]); |
| 2294 | } |
| 2295 | |
| 2296 | void test_andnot_inplace_true() { test_andnot_inplace(true); } |
| 2297 | |
| 2298 | void test_andnot_inplace_false() { test_xor_inplace(false); } |
| 2299 | |
| 2300 | static roaring_bitmap_t *make_roaring_from_array(uint32_t *a, int len) { |
| 2301 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2302 | for (int i = 0; i < len; ++i) roaring_bitmap_add(r1, a[i]); |
| 2303 | return r1; |
| 2304 | } |
| 2305 | |
| 2306 | void test_conversion_to_int_array() { |
| 2307 | int ans_ctr = 0; |
| 2308 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2309 | |
| 2310 | // a dense bitmap container (best done with runs) |
| 2311 | for (uint32_t i = 0; i < 50000; ++i) { |
| 2312 | if (i != 30000) { // making 2 runs |
| 2313 | ans[ans_ctr++] = i; |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | // a sparse one |
| 2318 | for (uint32_t i = 70000; i < 130000; i += 17) { |
| 2319 | ans[ans_ctr++] = i; |
| 2320 | } |
| 2321 | |
| 2322 | // a dense one but not good for runs |
| 2323 | |
| 2324 | for (uint32_t i = 65536 * 3; i < 65536 * 4; i++) { |
| 2325 | if (i % 3 != 0) { |
| 2326 | ans[ans_ctr++] = i; |
| 2327 | } |
| 2328 | } |
| 2329 | |
| 2330 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2331 | |
| 2332 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2333 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2334 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2335 | |
| 2336 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2337 | roaring_bitmap_free(r1); |
| 2338 | free(arr); |
| 2339 | free(ans); |
| 2340 | } |
| 2341 | |
| 2342 | void test_conversion_to_int_array_with_runoptimize() { |
| 2343 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2344 | int ans_ctr = 0; |
| 2345 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2346 | |
| 2347 | // a dense bitmap container (best done with runs) |
| 2348 | for (uint32_t i = 0; i < 50000; ++i) { |
| 2349 | if (i != 30000) { // making 2 runs |
| 2350 | ans[ans_ctr++] = i; |
| 2351 | } |
| 2352 | } |
| 2353 | |
| 2354 | // a sparse one |
| 2355 | for (uint32_t i = 70000; i < 130000; i += 17) { |
| 2356 | ans[ans_ctr++] = i; |
| 2357 | } |
| 2358 | |
| 2359 | // a dense one but not good for runs |
| 2360 | |
| 2361 | for (uint32_t i = 65536 * 3; i < 65536 * 4; i++) { |
| 2362 | if (i % 3 != 0) { |
| 2363 | ans[ans_ctr++] = i; |
| 2364 | } |
| 2365 | } |
| 2366 | roaring_bitmap_free(r1); |
| 2367 | |
| 2368 | r1 = make_roaring_from_array(ans, ans_ctr); |
| 2369 | assert_true(roaring_bitmap_run_optimize(r1)); |
| 2370 | |
| 2371 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2372 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2373 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2374 | |
| 2375 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2376 | roaring_bitmap_free(r1); |
| 2377 | free(arr); |
| 2378 | free(ans); |
| 2379 | } |
| 2380 | |
| 2381 | void test_array_to_run() { |
| 2382 | int ans_ctr = 0; |
| 2383 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2384 | |
| 2385 | // array container (best done with runs) |
| 2386 | for (uint32_t i = 0; i < 500; ++i) { |
| 2387 | if (i != 300) { // making 2 runs |
| 2388 | ans[ans_ctr++] = 65536 + i; |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2393 | assert_true(roaring_bitmap_run_optimize(r1)); |
| 2394 | |
| 2395 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2396 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2397 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2398 | |
| 2399 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2400 | roaring_bitmap_free(r1); |
| 2401 | free(arr); |
| 2402 | free(ans); |
| 2403 | } |
| 2404 | |
| 2405 | void test_array_to_self() { |
| 2406 | int ans_ctr = 0; |
| 2407 | |
| 2408 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2409 | |
| 2410 | // array container (best not done with runs) |
| 2411 | for (uint32_t i = 0; i < 500; i += 2) { |
| 2412 | if (i != 300) { // making 2 runs |
| 2413 | ans[ans_ctr++] = 65536 + i; |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2418 | assert_false(roaring_bitmap_run_optimize(r1)); |
| 2419 | |
| 2420 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2421 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2422 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2423 | |
| 2424 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2425 | roaring_bitmap_free(r1); |
| 2426 | free(arr); |
| 2427 | free(ans); |
| 2428 | } |
| 2429 | |
| 2430 | void test_bitset_to_self() { |
| 2431 | int ans_ctr = 0; |
| 2432 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2433 | |
| 2434 | // bitset container (best not done with runs) |
| 2435 | for (uint32_t i = 0; i < 50000; i += 2) { |
| 2436 | if (i != 300) { // making 2 runs |
| 2437 | ans[ans_ctr++] = 65536 + i; |
| 2438 | } |
| 2439 | } |
| 2440 | |
| 2441 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2442 | assert_false(roaring_bitmap_run_optimize(r1)); |
| 2443 | |
| 2444 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2445 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2446 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2447 | |
| 2448 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2449 | roaring_bitmap_free(r1); |
| 2450 | free(arr); |
| 2451 | free(ans); |
| 2452 | } |
| 2453 | |
| 2454 | void test_bitset_to_run() { |
| 2455 | int ans_ctr = 0; |
| 2456 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2457 | |
| 2458 | // bitset container (best done with runs) |
| 2459 | for (uint32_t i = 0; i < 50000; i++) { |
| 2460 | if (i != 300) { // making 2 runs |
| 2461 | ans[ans_ctr++] = 65536 + i; |
| 2462 | } |
| 2463 | } |
| 2464 | |
| 2465 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2466 | assert(roaring_bitmap_run_optimize(r1)); |
| 2467 | |
| 2468 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2469 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2470 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2471 | |
| 2472 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2473 | roaring_bitmap_free(r1); |
| 2474 | free(arr); |
| 2475 | free(ans); |
| 2476 | } |
| 2477 | |
| 2478 | // not sure how to get containers that are runcontainers but not efficient |
| 2479 | |
| 2480 | void test_run_to_self() { |
| 2481 | int ans_ctr = 0; |
| 2482 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2483 | |
| 2484 | // bitset container (best done with runs) |
| 2485 | for (uint32_t i = 0; i < 50000; i++) { |
| 2486 | if (i != 300) { // making 2 runs |
| 2487 | ans[ans_ctr++] = 65536 + i; |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2492 | bool b = roaring_bitmap_run_optimize(r1); // will make a run container |
| 2493 | b = roaring_bitmap_run_optimize(r1); // we hope it will keep it |
| 2494 | assert_true(b); // still true there is a runcontainer |
| 2495 | |
| 2496 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2497 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2498 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2499 | |
| 2500 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2501 | roaring_bitmap_free(r1); |
| 2502 | free(arr); |
| 2503 | free(ans); |
| 2504 | } |
| 2505 | |
| 2506 | void test_remove_run_to_bitset() { |
| 2507 | int ans_ctr = 0; |
| 2508 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2509 | |
| 2510 | // bitset container (best done with runs) |
| 2511 | for (uint32_t i = 0; i < 50000; i++) { |
| 2512 | if (i != 300) { // making 2 runs |
| 2513 | ans[ans_ctr++] = 65536 + i; |
| 2514 | } |
| 2515 | } |
| 2516 | |
| 2517 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2518 | assert_true(roaring_bitmap_run_optimize(r1)); // will make a run container |
| 2519 | assert_true(roaring_bitmap_remove_run_compression(r1)); // removal done |
| 2520 | assert_true( |
| 2521 | roaring_bitmap_run_optimize(r1)); // there is again a run container |
| 2522 | |
| 2523 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2524 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2525 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2526 | |
| 2527 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2528 | roaring_bitmap_free(r1); |
| 2529 | free(arr); |
| 2530 | free(ans); |
| 2531 | } |
| 2532 | |
| 2533 | void test_remove_run_to_array() { |
| 2534 | int ans_ctr = 0; |
| 2535 | uint32_t *ans = calloc(100000, sizeof(int32_t)); |
| 2536 | |
| 2537 | // array (best done with runs) |
| 2538 | for (uint32_t i = 0; i < 500; i++) { |
| 2539 | if (i != 300) { // making 2 runs |
| 2540 | ans[ans_ctr++] = 65536 + i; |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | roaring_bitmap_t *r1 = make_roaring_from_array(ans, ans_ctr); |
| 2545 | assert_true(roaring_bitmap_run_optimize(r1)); // will make a run container |
| 2546 | assert_true(roaring_bitmap_remove_run_compression(r1)); // removal done |
| 2547 | assert_true( |
| 2548 | roaring_bitmap_run_optimize(r1)); // there is again a run container |
| 2549 | |
| 2550 | uint64_t card = roaring_bitmap_get_cardinality(r1); |
| 2551 | uint32_t *arr = (uint32_t *)malloc(card * sizeof(uint32_t)); |
| 2552 | roaring_bitmap_to_uint32_array(r1, arr); |
| 2553 | |
| 2554 | assert_true(array_equals(arr, (int)card, ans, ans_ctr)); |
| 2555 | roaring_bitmap_free(r1); |
| 2556 | free(arr); |
| 2557 | free(ans); |
| 2558 | } |
| 2559 | |
| 2560 | // array in, array out |
| 2561 | void test_negation_array0() { |
| 2562 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2563 | assert_non_null(r1); |
| 2564 | |
| 2565 | roaring_bitmap_t *notted_r1 = roaring_bitmap_flip(r1, 200U, 500U); |
| 2566 | assert_non_null(notted_r1); |
| 2567 | assert_int_equal(300, roaring_bitmap_get_cardinality(notted_r1)); |
| 2568 | |
| 2569 | roaring_bitmap_free(notted_r1); |
| 2570 | roaring_bitmap_free(r1); |
| 2571 | } |
| 2572 | |
| 2573 | // array in, array out |
| 2574 | void test_negation_array1() { |
| 2575 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2576 | assert_non_null(r1); |
| 2577 | |
| 2578 | roaring_bitmap_add(r1, 1); |
| 2579 | roaring_bitmap_add(r1, 2); |
| 2580 | // roaring_bitmap_add(r1,3); |
| 2581 | roaring_bitmap_add(r1, 4); |
| 2582 | roaring_bitmap_add(r1, 5); |
| 2583 | roaring_bitmap_t *notted_r1 = roaring_bitmap_flip(r1, 2U, 5U); |
| 2584 | assert_non_null(notted_r1); |
| 2585 | assert_int_equal(3, roaring_bitmap_get_cardinality(notted_r1)); |
| 2586 | |
| 2587 | roaring_bitmap_free(notted_r1); |
| 2588 | roaring_bitmap_free(r1); |
| 2589 | } |
| 2590 | |
| 2591 | // arrays to bitmaps and runs |
| 2592 | void test_negation_array2() { |
| 2593 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2594 | assert_non_null(r1); |
| 2595 | |
| 2596 | for (uint32_t i = 0; i < 100; ++i) { |
| 2597 | roaring_bitmap_add(r1, 2 * i); |
| 2598 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 2599 | } |
| 2600 | |
| 2601 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 200); |
| 2602 | |
| 2603 | // get the first batch of ones but not the second |
| 2604 | roaring_bitmap_t *notted_r1 = roaring_bitmap_flip(r1, 0U, 100000U); |
| 2605 | assert_non_null(notted_r1); |
| 2606 | |
| 2607 | // lose 100 for key 0, but gain 100 for key 5 |
| 2608 | assert_int_equal(100000, roaring_bitmap_get_cardinality(notted_r1)); |
| 2609 | roaring_bitmap_free(notted_r1); |
| 2610 | |
| 2611 | // flip all ones and beyond |
| 2612 | notted_r1 = roaring_bitmap_flip(r1, 0U, 1000000U); |
| 2613 | assert_non_null(notted_r1); |
| 2614 | assert_int_equal(1000000 - 200, roaring_bitmap_get_cardinality(notted_r1)); |
| 2615 | roaring_bitmap_free(notted_r1); |
| 2616 | |
| 2617 | // Flip some bits in the middle |
| 2618 | notted_r1 = roaring_bitmap_flip(r1, 100000U, 200000U); |
| 2619 | assert_non_null(notted_r1); |
| 2620 | assert_int_equal(100000 + 200, roaring_bitmap_get_cardinality(notted_r1)); |
| 2621 | roaring_bitmap_free(notted_r1); |
| 2622 | |
| 2623 | // flip almost all of the bits, end at an even boundary |
| 2624 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 6); |
| 2625 | assert_non_null(notted_r1); |
| 2626 | assert_int_equal(65536 * 6 - 200 + 1, |
| 2627 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2628 | roaring_bitmap_free(notted_r1); |
| 2629 | |
| 2630 | // flip first bunch of the bits, end at an even boundary |
| 2631 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 5); |
| 2632 | assert_non_null(notted_r1); |
| 2633 | assert_int_equal(65536 * 5 - 100 + 1 + 100, |
| 2634 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2635 | roaring_bitmap_free(notted_r1); |
| 2636 | |
| 2637 | roaring_bitmap_free(r1); |
| 2638 | } |
| 2639 | |
| 2640 | // bitmaps to bitmaps and runs |
| 2641 | void test_negation_bitset1() { |
| 2642 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2643 | assert_non_null(r1); |
| 2644 | |
| 2645 | for (uint32_t i = 0; i < 25000; ++i) { |
| 2646 | roaring_bitmap_add(r1, 2 * i); |
| 2647 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 2648 | } |
| 2649 | |
| 2650 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 50000); |
| 2651 | |
| 2652 | // get the first batch of ones but not the second |
| 2653 | roaring_bitmap_t *notted_r1 = roaring_bitmap_flip(r1, 0U, 100000U); |
| 2654 | assert_non_null(notted_r1); |
| 2655 | |
| 2656 | // lose 25000 for key 0, but gain 25000 for key 5 |
| 2657 | assert_int_equal(100000, roaring_bitmap_get_cardinality(notted_r1)); |
| 2658 | roaring_bitmap_free(notted_r1); |
| 2659 | |
| 2660 | // flip all ones and beyond |
| 2661 | notted_r1 = roaring_bitmap_flip(r1, 0U, 1000000U); |
| 2662 | assert_non_null(notted_r1); |
| 2663 | assert_int_equal(1000000 - 50000, |
| 2664 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2665 | roaring_bitmap_free(notted_r1); |
| 2666 | |
| 2667 | // Flip some bits in the middle |
| 2668 | notted_r1 = roaring_bitmap_flip(r1, 100000U, 200000U); |
| 2669 | assert_non_null(notted_r1); |
| 2670 | assert_int_equal(100000 + 50000, roaring_bitmap_get_cardinality(notted_r1)); |
| 2671 | roaring_bitmap_free(notted_r1); |
| 2672 | |
| 2673 | // flip almost all of the bits, end at an even boundary |
| 2674 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 6); |
| 2675 | assert_non_null(notted_r1); |
| 2676 | assert_int_equal(65536 * 6 - 50000 + 1, |
| 2677 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2678 | roaring_bitmap_free(notted_r1); |
| 2679 | |
| 2680 | // flip first bunch of the bits, end at an even boundary |
| 2681 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 5); |
| 2682 | assert_non_null(notted_r1); |
| 2683 | assert_int_equal(65536 * 5 - 25000 + 1 + 25000, |
| 2684 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2685 | roaring_bitmap_free(notted_r1); |
| 2686 | |
| 2687 | roaring_bitmap_free(r1); |
| 2688 | } |
| 2689 | |
| 2690 | void test_negation_helper(bool runopt, uint32_t gap) { |
| 2691 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2692 | assert_non_null(r1); |
| 2693 | |
| 2694 | for (uint32_t i = 0; i < 65536; ++i) { |
| 2695 | if (i % 147 < gap) continue; |
| 2696 | roaring_bitmap_add(r1, i); |
| 2697 | roaring_bitmap_add(r1, 5 * 65536 + i); |
| 2698 | } |
| 2699 | if (runopt) { |
| 2700 | bool hasrun = roaring_bitmap_run_optimize(r1); |
| 2701 | assert_true(hasrun); |
| 2702 | } |
| 2703 | |
| 2704 | int orig_card = (int) roaring_bitmap_get_cardinality(r1); |
| 2705 | |
| 2706 | // get the first batch of ones but not the second |
| 2707 | roaring_bitmap_t *notted_r1 = roaring_bitmap_flip(r1, 0U, 100000U); |
| 2708 | assert_non_null(notted_r1); |
| 2709 | |
| 2710 | // lose some for key 0, but gain same num for key 5 |
| 2711 | assert_int_equal(100000, roaring_bitmap_get_cardinality(notted_r1)); |
| 2712 | roaring_bitmap_free(notted_r1); |
| 2713 | |
| 2714 | // flip all ones and beyond |
| 2715 | notted_r1 = roaring_bitmap_flip(r1, 0U, 1000000U); |
| 2716 | assert_non_null(notted_r1); |
| 2717 | assert_int_equal(1000000 - orig_card, |
| 2718 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2719 | roaring_bitmap_free(notted_r1); |
| 2720 | |
| 2721 | // Flip some bits in the middle |
| 2722 | notted_r1 = roaring_bitmap_flip(r1, 100000U, 200000U); |
| 2723 | assert_non_null(notted_r1); |
| 2724 | assert_int_equal(100000 + orig_card, |
| 2725 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2726 | roaring_bitmap_free(notted_r1); |
| 2727 | |
| 2728 | // flip almost all of the bits, end at an even boundary |
| 2729 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 6); |
| 2730 | assert_non_null(notted_r1); |
| 2731 | assert_int_equal((65536 * 6 - 1) - orig_card, |
| 2732 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2733 | roaring_bitmap_free(notted_r1); |
| 2734 | |
| 2735 | // flip first bunch of the bits, end at an even boundary |
| 2736 | notted_r1 = roaring_bitmap_flip(r1, 1U, 65536 * 5); |
| 2737 | assert_non_null(notted_r1); |
| 2738 | assert_int_equal(65536 * 5 - 1 - (orig_card / 2) + (orig_card / 2), |
| 2739 | roaring_bitmap_get_cardinality(notted_r1)); |
| 2740 | roaring_bitmap_free(notted_r1); |
| 2741 | |
| 2742 | roaring_bitmap_free(r1); |
| 2743 | } |
| 2744 | |
| 2745 | // bitmaps to arrays and runs |
| 2746 | void test_negation_bitset2() { test_negation_helper(false, 2); } |
| 2747 | |
| 2748 | // runs to arrays |
| 2749 | void test_negation_run1() { test_negation_helper(true, 1); } |
| 2750 | |
| 2751 | // runs to runs |
| 2752 | void test_negation_run2() { test_negation_helper(true, 30); } |
| 2753 | |
| 2754 | /* Now, same thing except inplace. At this level, cannot really know if |
| 2755 | * inplace |
| 2756 | * done */ |
| 2757 | |
| 2758 | // array in, array out |
| 2759 | void test_inplace_negation_array0() { |
| 2760 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2761 | assert_non_null(r1); |
| 2762 | |
| 2763 | roaring_bitmap_flip_inplace(r1, 200U, 500U); |
| 2764 | assert_non_null(r1); |
| 2765 | assert_int_equal(300, roaring_bitmap_get_cardinality(r1)); |
| 2766 | |
| 2767 | roaring_bitmap_free(r1); |
| 2768 | } |
| 2769 | |
| 2770 | // array in, array out |
| 2771 | void test_inplace_negation_array1() { |
| 2772 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2773 | assert_non_null(r1); |
| 2774 | |
| 2775 | roaring_bitmap_add(r1, 1); |
| 2776 | roaring_bitmap_add(r1, 2); |
| 2777 | |
| 2778 | roaring_bitmap_add(r1, 4); |
| 2779 | roaring_bitmap_add(r1, 5); |
| 2780 | roaring_bitmap_flip_inplace(r1, 2U, 5U); |
| 2781 | assert_non_null(r1); |
| 2782 | assert_int_equal(3, roaring_bitmap_get_cardinality(r1)); |
| 2783 | |
| 2784 | roaring_bitmap_free(r1); |
| 2785 | } |
| 2786 | |
| 2787 | // arrays to bitmaps and runs |
| 2788 | void test_inplace_negation_array2() { |
| 2789 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2790 | assert_non_null(r1); |
| 2791 | |
| 2792 | for (uint32_t i = 0; i < 100; ++i) { |
| 2793 | roaring_bitmap_add(r1, 2 * i); |
| 2794 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 2795 | } |
| 2796 | roaring_bitmap_t *r1_orig = roaring_bitmap_copy(r1); |
| 2797 | |
| 2798 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 200); |
| 2799 | |
| 2800 | // get the first batch of ones but not the second |
| 2801 | roaring_bitmap_flip_inplace(r1, 0U, 100000U); |
| 2802 | assert_non_null(r1); |
| 2803 | |
| 2804 | // lose 100 for key 0, but gain 100 for key 5 |
| 2805 | assert_int_equal(100000, roaring_bitmap_get_cardinality(r1)); |
| 2806 | roaring_bitmap_free(r1); |
| 2807 | r1 = roaring_bitmap_copy(r1_orig); |
| 2808 | |
| 2809 | // flip all ones and beyond |
| 2810 | roaring_bitmap_flip_inplace(r1, 0U, 1000000U); |
| 2811 | assert_non_null(r1); |
| 2812 | assert_int_equal(1000000 - 200, roaring_bitmap_get_cardinality(r1)); |
| 2813 | roaring_bitmap_free(r1); |
| 2814 | r1 = roaring_bitmap_copy(r1_orig); |
| 2815 | |
| 2816 | // Flip some bits in the middle |
| 2817 | roaring_bitmap_flip_inplace(r1, 100000U, 200000U); |
| 2818 | assert_non_null(r1); |
| 2819 | assert_int_equal(100000 + 200, roaring_bitmap_get_cardinality(r1)); |
| 2820 | roaring_bitmap_free(r1); |
| 2821 | r1 = roaring_bitmap_copy(r1_orig); |
| 2822 | |
| 2823 | // flip almost all of the bits, end at an even boundary |
| 2824 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 6); |
| 2825 | assert_non_null(r1); |
| 2826 | assert_int_equal(65536 * 6 - 200 + 1, roaring_bitmap_get_cardinality(r1)); |
| 2827 | roaring_bitmap_free(r1); |
| 2828 | r1 = roaring_bitmap_copy(r1_orig); |
| 2829 | |
| 2830 | // flip first bunch of the bits, end at an even boundary |
| 2831 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 5); |
| 2832 | assert_non_null(r1); |
| 2833 | assert_int_equal(65536 * 5 - 100 + 1 + 100, |
| 2834 | roaring_bitmap_get_cardinality(r1)); |
| 2835 | /* */ |
| 2836 | roaring_bitmap_free(r1_orig); |
| 2837 | roaring_bitmap_free(r1); |
| 2838 | } |
| 2839 | |
| 2840 | // bitmaps to bitmaps and runs |
| 2841 | void test_inplace_negation_bitset1() { |
| 2842 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2843 | assert_non_null(r1); |
| 2844 | |
| 2845 | for (uint32_t i = 0; i < 25000; ++i) { |
| 2846 | roaring_bitmap_add(r1, 2 * i); |
| 2847 | roaring_bitmap_add(r1, 5 * 65536 + 2 * i); |
| 2848 | } |
| 2849 | |
| 2850 | roaring_bitmap_t *r1_orig = roaring_bitmap_copy(r1); |
| 2851 | |
| 2852 | assert_int_equal(roaring_bitmap_get_cardinality(r1), 50000); |
| 2853 | |
| 2854 | // get the first batch of ones but not the second |
| 2855 | roaring_bitmap_flip_inplace(r1, 0U, 100000U); |
| 2856 | assert_non_null(r1); |
| 2857 | |
| 2858 | // lose 25000 for key 0, but gain 25000 for key 5 |
| 2859 | assert_int_equal(100000, roaring_bitmap_get_cardinality(r1)); |
| 2860 | roaring_bitmap_free(r1); |
| 2861 | r1 = roaring_bitmap_copy(r1_orig); |
| 2862 | |
| 2863 | // flip all ones and beyond |
| 2864 | roaring_bitmap_flip_inplace(r1, 0U, 1000000U); |
| 2865 | assert_non_null(r1); |
| 2866 | assert_int_equal(1000000 - 50000, roaring_bitmap_get_cardinality(r1)); |
| 2867 | roaring_bitmap_free(r1); |
| 2868 | r1 = roaring_bitmap_copy(r1_orig); |
| 2869 | |
| 2870 | // Flip some bits in the middle |
| 2871 | roaring_bitmap_flip_inplace(r1, 100000U, 200000U); |
| 2872 | assert_non_null(r1); |
| 2873 | assert_int_equal(100000 + 50000, roaring_bitmap_get_cardinality(r1)); |
| 2874 | roaring_bitmap_free(r1); |
| 2875 | r1 = roaring_bitmap_copy(r1_orig); |
| 2876 | |
| 2877 | // flip almost all of the bits, end at an even boundary |
| 2878 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 6); |
| 2879 | assert_non_null(r1); |
| 2880 | assert_int_equal(65536 * 6 - 50000 + 1, roaring_bitmap_get_cardinality(r1)); |
| 2881 | roaring_bitmap_free(r1); |
| 2882 | r1 = roaring_bitmap_copy(r1_orig); |
| 2883 | |
| 2884 | // flip first bunch of the bits, end at an even boundary |
| 2885 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 5); |
| 2886 | assert_non_null(r1); |
| 2887 | assert_int_equal(65536 * 5 - 25000 + 1 + 25000, |
| 2888 | roaring_bitmap_get_cardinality(r1)); |
| 2889 | roaring_bitmap_free(r1); |
| 2890 | |
| 2891 | roaring_bitmap_free(r1_orig); |
| 2892 | } |
| 2893 | |
| 2894 | void test_inplace_negation_helper(bool runopt, uint32_t gap) { |
| 2895 | roaring_bitmap_t *r1 = roaring_bitmap_create(); |
| 2896 | assert_non_null(r1); |
| 2897 | |
| 2898 | for (uint32_t i = 0; i < 65536; ++i) { |
| 2899 | if (i % 147 < gap) continue; |
| 2900 | roaring_bitmap_add(r1, i); |
| 2901 | roaring_bitmap_add(r1, 5 * 65536 + i); |
| 2902 | } |
| 2903 | if (runopt) { |
| 2904 | bool hasrun = roaring_bitmap_run_optimize(r1); |
| 2905 | assert_true(hasrun); |
| 2906 | } |
| 2907 | |
| 2908 | int orig_card = (int) roaring_bitmap_get_cardinality(r1); |
| 2909 | roaring_bitmap_t *r1_orig = roaring_bitmap_copy(r1); |
| 2910 | |
| 2911 | // get the first batch of ones but not the second |
| 2912 | roaring_bitmap_flip_inplace(r1, 0U, 100000U); |
| 2913 | assert_non_null(r1); |
| 2914 | |
| 2915 | // lose some for key 0, but gain same num for key 5 |
| 2916 | assert_int_equal(100000, roaring_bitmap_get_cardinality(r1)); |
| 2917 | roaring_bitmap_free(r1); |
| 2918 | |
| 2919 | // flip all ones and beyond |
| 2920 | r1 = roaring_bitmap_copy(r1_orig); |
| 2921 | roaring_bitmap_flip_inplace(r1, 0U, 1000000U); |
| 2922 | assert_non_null(r1); |
| 2923 | assert_int_equal(1000000 - orig_card, roaring_bitmap_get_cardinality(r1)); |
| 2924 | roaring_bitmap_free(r1); |
| 2925 | |
| 2926 | // Flip some bits in the middle |
| 2927 | r1 = roaring_bitmap_copy(r1_orig); |
| 2928 | roaring_bitmap_flip_inplace(r1, 100000U, 200000U); |
| 2929 | assert_non_null(r1); |
| 2930 | assert_int_equal(100000 + orig_card, roaring_bitmap_get_cardinality(r1)); |
| 2931 | roaring_bitmap_free(r1); |
| 2932 | |
| 2933 | // flip almost all of the bits, end at an even boundary |
| 2934 | r1 = roaring_bitmap_copy(r1_orig); |
| 2935 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 6); |
| 2936 | assert_non_null(r1); |
| 2937 | assert_int_equal((65536 * 6 - 1) - orig_card, |
| 2938 | roaring_bitmap_get_cardinality(r1)); |
| 2939 | roaring_bitmap_free(r1); |
| 2940 | |
| 2941 | // flip first bunch of the bits, end at an even boundary |
| 2942 | r1 = roaring_bitmap_copy(r1_orig); |
| 2943 | roaring_bitmap_flip_inplace(r1, 1U, 65536 * 5); |
| 2944 | assert_non_null(r1); |
| 2945 | assert_int_equal(65536 * 5 - 1 - (orig_card / 2) + (orig_card / 2), |
| 2946 | roaring_bitmap_get_cardinality(r1)); |
| 2947 | roaring_bitmap_free(r1); |
| 2948 | |
| 2949 | roaring_bitmap_free(r1_orig); |
| 2950 | } |
| 2951 | |
| 2952 | // bitmaps to arrays and runs |
| 2953 | void test_inplace_negation_bitset2() { test_inplace_negation_helper(false, 2); } |
| 2954 | |
| 2955 | // runs to arrays |
| 2956 | void test_inplace_negation_run1() { test_inplace_negation_helper(true, 1); } |
| 2957 | |
| 2958 | // runs to runs |
| 2959 | void test_inplace_negation_run2() { test_inplace_negation_helper(true, 30); } |
| 2960 | |
| 2961 | // runs to bitmaps is hard to do. |
| 2962 | // TODO it |
| 2963 | |
| 2964 | void test_rand_flips() { |
| 2965 | srand(1234); |
| 2966 | const int min_runs = 1; |
| 2967 | const int flip_trials = 5; // these are expensive tests |
| 2968 | const int range = 2000000; |
| 2969 | char *input = malloc(range); |
| 2970 | char *output = malloc(range); |
| 2971 | |
| 2972 | for (int card = 2; card < 1000000; card *= 8) { |
| 2973 | printf("test_rand_flips with attempted card %d" , card); |
| 2974 | |
| 2975 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 2976 | memset(input, 0, range); |
| 2977 | for (int i = 0; i < card; ++i) { |
| 2978 | double f1 = our_rand() / (double)OUR_RAND_MAX; |
| 2979 | double f2 = our_rand() / (double)OUR_RAND_MAX; |
| 2980 | double f3 = our_rand() / (double)OUR_RAND_MAX; |
| 2981 | int pos = (int)(f1 * f2 * f3 * |
| 2982 | range); // denser at the start, sparser at end |
| 2983 | assert(pos < range); |
| 2984 | assert(pos >= 0); |
| 2985 | roaring_bitmap_add(r, pos); |
| 2986 | input[pos] = 1; |
| 2987 | } |
| 2988 | for (int i = 0; i < min_runs; ++i) { |
| 2989 | int startpos = our_rand() % (range / 2); |
| 2990 | for (int j = startpos; j < startpos + 65536 * 2; ++j) |
| 2991 | if (j % 147 < 100) { |
| 2992 | roaring_bitmap_add(r, j); |
| 2993 | input[j] = 1; |
| 2994 | } |
| 2995 | } |
| 2996 | roaring_bitmap_run_optimize(r); |
| 2997 | printf(" and actual card = %d\n" , |
| 2998 | (int)roaring_bitmap_get_cardinality(r)); |
| 2999 | |
| 3000 | for (int i = 0; i < flip_trials; ++i) { |
| 3001 | int start = our_rand() % (range - 1); |
| 3002 | int len = our_rand() % (range - start); |
| 3003 | roaring_bitmap_t *ans = roaring_bitmap_flip(r, start, start + len); |
| 3004 | memcpy(output, input, range); |
| 3005 | for (int j = start; j < start + len; ++j) output[j] = 1 - input[j]; |
| 3006 | |
| 3007 | // verify answer |
| 3008 | for (int j = 0; j < range; ++j) { |
| 3009 | assert_true(((bool)output[j]) == |
| 3010 | roaring_bitmap_contains(ans, j)); |
| 3011 | } |
| 3012 | |
| 3013 | roaring_bitmap_free(ans); |
| 3014 | } |
| 3015 | roaring_bitmap_free(r); |
| 3016 | } |
| 3017 | free(output); |
| 3018 | free(input); |
| 3019 | } |
| 3020 | |
| 3021 | // randomized flipping test - inplace version |
| 3022 | void test_inplace_rand_flips() { |
| 3023 | srand(1234); |
| 3024 | const int min_runs = 1; |
| 3025 | const int flip_trials = 5; // these are expensive tests |
| 3026 | const int range = 2000000; |
| 3027 | char *input = malloc(range); |
| 3028 | char *output = malloc(range); |
| 3029 | |
| 3030 | for (int card = 2; card < 1000000; card *= 8) { |
| 3031 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3032 | memset(input, 0, range); |
| 3033 | for (int i = 0; i < card; ++i) { |
| 3034 | double f1 = our_rand() / (double)OUR_RAND_MAX; |
| 3035 | double f2 = our_rand() / (double)OUR_RAND_MAX; |
| 3036 | double f3 = our_rand() / (double)OUR_RAND_MAX; |
| 3037 | int pos = (int)(f1 * f2 * f3 * |
| 3038 | range); // denser at the start, sparser at end |
| 3039 | assert(pos < range); |
| 3040 | assert(pos >= 0); |
| 3041 | roaring_bitmap_add(r, pos); |
| 3042 | input[pos] = 1; |
| 3043 | } |
| 3044 | for (int i = 0; i < min_runs; ++i) { |
| 3045 | int startpos = our_rand() % (range / 2); |
| 3046 | for (int j = startpos; j < startpos + 65536 * 2; ++j) |
| 3047 | if (j % 147 < 100) { |
| 3048 | roaring_bitmap_add(r, j); |
| 3049 | input[j] = 1; |
| 3050 | } |
| 3051 | } |
| 3052 | roaring_bitmap_run_optimize(r); |
| 3053 | |
| 3054 | roaring_bitmap_t *r_orig = roaring_bitmap_copy(r); |
| 3055 | |
| 3056 | for (int i = 0; i < flip_trials; ++i) { |
| 3057 | int start = our_rand() % (range - 1); |
| 3058 | int len = our_rand() % (range - start); |
| 3059 | |
| 3060 | roaring_bitmap_flip_inplace(r, start, start + len); |
| 3061 | memcpy(output, input, range); |
| 3062 | for (int j = start; j < start + len; ++j) output[j] = 1 - input[j]; |
| 3063 | |
| 3064 | // verify answer |
| 3065 | for (int j = 0; j < range; ++j) { |
| 3066 | assert_true(((bool)output[j]) == roaring_bitmap_contains(r, j)); |
| 3067 | } |
| 3068 | |
| 3069 | roaring_bitmap_free(r); |
| 3070 | r = roaring_bitmap_copy(r_orig); |
| 3071 | } |
| 3072 | roaring_bitmap_free(r_orig); |
| 3073 | roaring_bitmap_free(r); |
| 3074 | } |
| 3075 | free(output); |
| 3076 | free(input); |
| 3077 | } |
| 3078 | |
| 3079 | void test_flip_array_container_removal() { |
| 3080 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 3081 | for (unsigned val = 0; val < 100; val++) { |
| 3082 | roaring_bitmap_add(bm, val); |
| 3083 | } |
| 3084 | roaring_bitmap_flip_inplace(bm, 0, 100); |
| 3085 | roaring_bitmap_free(bm); |
| 3086 | } |
| 3087 | |
| 3088 | void test_flip_bitset_container_removal() { |
| 3089 | roaring_bitmap_t *bm = roaring_bitmap_create(); |
| 3090 | for (unsigned val = 0; val < 10000; val++) { |
| 3091 | roaring_bitmap_add(bm, val); |
| 3092 | } |
| 3093 | roaring_bitmap_flip_inplace(bm, 0, 10000); |
| 3094 | roaring_bitmap_free(bm); |
| 3095 | } |
| 3096 | |
| 3097 | void test_flip_run_container_removal() { |
| 3098 | roaring_bitmap_t *bm = roaring_bitmap_from_range(0, 10000, 1); |
| 3099 | roaring_bitmap_flip_inplace(bm, 0, 10000); |
| 3100 | roaring_bitmap_free(bm); |
| 3101 | } |
| 3102 | |
| 3103 | void test_flip_run_container_removal2() { |
| 3104 | roaring_bitmap_t *bm = roaring_bitmap_from_range(0, 66002, 1); |
| 3105 | roaring_bitmap_flip_inplace(bm, 0, 987653576); |
| 3106 | roaring_bitmap_free(bm); |
| 3107 | } |
| 3108 | |
| 3109 | // randomized test for rank query |
| 3110 | void select_test() { |
| 3111 | srand(1234); |
| 3112 | const int min_runs = 1; |
| 3113 | const uint32_t range = 2000000; |
| 3114 | char *input = malloc(range); |
| 3115 | |
| 3116 | for (int card = 2; card < 1000000; card *= 8) { |
| 3117 | |
| 3118 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3119 | memset(input, 0, range); |
| 3120 | for (int i = 0; i < card; ++i) { |
| 3121 | double f1 = our_rand() / (double)OUR_RAND_MAX; |
| 3122 | double f2 = our_rand() / (double)OUR_RAND_MAX; |
| 3123 | double f3 = our_rand() / (double)OUR_RAND_MAX; |
| 3124 | uint32_t pos = (uint32_t)(f1 * f2 * f3 * |
| 3125 | range); // denser at the start, sparser at end |
| 3126 | assert(pos < range); |
| 3127 | roaring_bitmap_add(r, pos); |
| 3128 | input[pos] = 1; |
| 3129 | } |
| 3130 | for (int i = 0; i < min_runs; ++i) { |
| 3131 | int startpos = our_rand() % (range / 2); |
| 3132 | for (int j = startpos; j < startpos + 65536 * 2; ++j) |
| 3133 | if (j % 147 < 100) { |
| 3134 | roaring_bitmap_add(r, j); |
| 3135 | input[j] = 1; |
| 3136 | } |
| 3137 | } |
| 3138 | roaring_bitmap_run_optimize(r); |
| 3139 | uint64_t true_card = roaring_bitmap_get_cardinality(r); |
| 3140 | |
| 3141 | roaring_bitmap_set_copy_on_write(r, true); |
| 3142 | roaring_bitmap_t *r_copy = roaring_bitmap_copy(r); |
| 3143 | |
| 3144 | void *bitmaps[] = {r, r_copy}; |
| 3145 | for (unsigned i_bm = 0; i_bm < 2; i_bm++) { |
| 3146 | uint32_t rank = 0; |
| 3147 | uint32_t element; |
| 3148 | for (uint32_t i = 0; i < true_card; i++) { |
| 3149 | if (input[i]) { |
| 3150 | assert_true( |
| 3151 | roaring_bitmap_select(bitmaps[i_bm], rank, &element)); |
| 3152 | assert_int_equal(i, element); |
| 3153 | rank++; |
| 3154 | } |
| 3155 | } |
| 3156 | for (uint32_t n = 0; n < 10; n++) { |
| 3157 | assert_false(roaring_bitmap_select(bitmaps[i_bm], true_card + n, |
| 3158 | &element)); |
| 3159 | } |
| 3160 | } |
| 3161 | |
| 3162 | roaring_bitmap_free(r); |
| 3163 | roaring_bitmap_free(r_copy); |
| 3164 | } |
| 3165 | free(input); |
| 3166 | } |
| 3167 | |
| 3168 | void test_maximum_minimum() { |
| 3169 | for (uint32_t mymin = 123; mymin < 1000000; mymin *= 2) { |
| 3170 | // just arrays |
| 3171 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3172 | uint32_t x = mymin; |
| 3173 | for (; x < 1000 + mymin; x += 100) { |
| 3174 | roaring_bitmap_add(r, x); |
| 3175 | } |
| 3176 | assert_true(roaring_bitmap_minimum(r) == mymin); |
| 3177 | assert_true(roaring_bitmap_maximum(r) == x - 100); |
| 3178 | // now bitmap |
| 3179 | x = mymin; |
| 3180 | for (; x < 64000 + mymin; x += 2) { |
| 3181 | roaring_bitmap_add(r, x); |
| 3182 | } |
| 3183 | assert_true(roaring_bitmap_minimum(r) == mymin); |
| 3184 | assert_true(roaring_bitmap_maximum(r) == x - 2); |
| 3185 | // now run |
| 3186 | x = mymin; |
| 3187 | for (; x < 64000 + mymin; x++) { |
| 3188 | roaring_bitmap_add(r, x); |
| 3189 | } |
| 3190 | roaring_bitmap_run_optimize(r); |
| 3191 | assert_true(roaring_bitmap_minimum(r) == mymin); |
| 3192 | assert_true(roaring_bitmap_maximum(r) == x - 1); |
| 3193 | roaring_bitmap_free(r); |
| 3194 | } |
| 3195 | } |
| 3196 | |
| 3197 | static uint64_t rank(uint32_t *arr, size_t length, uint32_t x) { |
| 3198 | uint64_t sum = 0; |
| 3199 | for (size_t i = 0; i < length; ++i) { |
| 3200 | if (arr[i] > x) break; |
| 3201 | sum++; |
| 3202 | } |
| 3203 | return sum; |
| 3204 | } |
| 3205 | |
| 3206 | void test_rank() { |
| 3207 | for (uint32_t mymin = 123; mymin < 1000000; mymin *= 2) { |
| 3208 | // just arrays |
| 3209 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3210 | uint32_t x = mymin; |
| 3211 | for (; x < 1000 + mymin; x += 100) { |
| 3212 | roaring_bitmap_add(r, x); |
| 3213 | } |
| 3214 | uint64_t card = roaring_bitmap_get_cardinality(r); |
| 3215 | uint32_t *ans = malloc(card * sizeof(uint32_t)); |
| 3216 | roaring_bitmap_to_uint32_array(r, ans); |
| 3217 | for (uint32_t z = 0; z < 1000 + mymin + 10; z += 10) { |
| 3218 | uint64_t truerank = rank(ans, card, z); |
| 3219 | uint64_t computedrank = roaring_bitmap_rank(r, z); |
| 3220 | if (truerank != computedrank) |
| 3221 | printf("%d != %d \n" , (int)truerank, (int)computedrank); |
| 3222 | assert_true(truerank == computedrank); |
| 3223 | } |
| 3224 | free(ans); |
| 3225 | // now bitmap |
| 3226 | x = mymin; |
| 3227 | for (; x < 64000 + mymin; x += 2) { |
| 3228 | roaring_bitmap_add(r, x); |
| 3229 | } |
| 3230 | card = roaring_bitmap_get_cardinality(r); |
| 3231 | ans = malloc(card * sizeof(uint32_t)); |
| 3232 | roaring_bitmap_to_uint32_array(r, ans); |
| 3233 | for (uint32_t z = 0; z < 64000 + mymin + 10; z += 10) { |
| 3234 | uint64_t truerank = rank(ans, card, z); |
| 3235 | uint64_t computedrank = roaring_bitmap_rank(r, z); |
| 3236 | if (truerank != computedrank) |
| 3237 | printf("%d != %d \n" , (int)truerank, (int)computedrank); |
| 3238 | assert_true(truerank == computedrank); |
| 3239 | } |
| 3240 | free(ans); |
| 3241 | // now run |
| 3242 | x = mymin; |
| 3243 | for (; x < 64000 + mymin; x++) { |
| 3244 | roaring_bitmap_add(r, x); |
| 3245 | } |
| 3246 | roaring_bitmap_run_optimize(r); |
| 3247 | card = roaring_bitmap_get_cardinality(r); |
| 3248 | ans = malloc(card * sizeof(uint32_t)); |
| 3249 | roaring_bitmap_to_uint32_array(r, ans); |
| 3250 | for (uint32_t z = 0; z < 64000 + mymin + 10; z += 10) { |
| 3251 | uint64_t truerank = rank(ans, card, z); |
| 3252 | uint64_t computedrank = roaring_bitmap_rank(r, z); |
| 3253 | if (truerank != computedrank) |
| 3254 | printf("%d != %d \n" , (int)truerank, (int)computedrank); |
| 3255 | assert_true(truerank == computedrank); |
| 3256 | } |
| 3257 | free(ans); |
| 3258 | |
| 3259 | roaring_bitmap_free(r); |
| 3260 | } |
| 3261 | } |
| 3262 | |
| 3263 | // Return a random value which does not belong to the roaring bitmap. |
| 3264 | // Value will be lower than upper_bound. |
| 3265 | uint32_t choose_missing_value(roaring_bitmap_t *rb, uint32_t upper_bound) { |
| 3266 | do { |
| 3267 | uint32_t value = our_rand() % upper_bound; |
| 3268 | if (!roaring_bitmap_contains(rb, value)) return value; |
| 3269 | } while (true); |
| 3270 | } |
| 3271 | |
| 3272 | void test_intersect_small_run_bitset() { |
| 3273 | roaring_bitmap_t *rb1 = roaring_bitmap_from_range(0, 1, 1); |
| 3274 | roaring_bitmap_t *rb2 = roaring_bitmap_from_range(1, 8194, 2); |
| 3275 | assert_false(roaring_bitmap_intersect(rb1, rb2)); |
| 3276 | roaring_bitmap_free(rb1); |
| 3277 | roaring_bitmap_free(rb2); |
| 3278 | } |
| 3279 | |
| 3280 | void test_subset() { |
| 3281 | uint32_t value; |
| 3282 | roaring_bitmap_t *rb1 = roaring_bitmap_create(); |
| 3283 | roaring_bitmap_t *rb2 = roaring_bitmap_create(); |
| 3284 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3285 | assert_false(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3286 | // Sparse values |
| 3287 | for (int i = 0; i < 1000; i++) { |
| 3288 | roaring_bitmap_add(rb2, choose_missing_value(rb2, UINT32_C(1) << 31)); |
| 3289 | } |
| 3290 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3291 | assert_true(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3292 | roaring_bitmap_or_inplace(rb1, rb2); |
| 3293 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3294 | assert_false(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3295 | value = choose_missing_value(rb1, UINT32_C(1) << 31); |
| 3296 | roaring_bitmap_add(rb1, value); |
| 3297 | roaring_bitmap_add(rb2, choose_missing_value(rb1, UINT32_C(1) << 31)); |
| 3298 | assert_false(roaring_bitmap_is_subset(rb1, rb2)); |
| 3299 | assert_false(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3300 | roaring_bitmap_add(rb2, value); |
| 3301 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3302 | assert_true(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3303 | // Dense values |
| 3304 | for (int i = 0; i < 50000; i++) { |
| 3305 | value = choose_missing_value(rb2, 1 << 17); |
| 3306 | roaring_bitmap_add(rb1, value); |
| 3307 | roaring_bitmap_add(rb2, value); |
| 3308 | } |
| 3309 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3310 | assert_true(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3311 | value = choose_missing_value(rb2, 1 << 16); |
| 3312 | roaring_bitmap_add(rb1, value); |
| 3313 | roaring_bitmap_add(rb2, choose_missing_value(rb1, 1 << 16)); |
| 3314 | assert_false(roaring_bitmap_is_subset(rb1, rb2)); |
| 3315 | assert_false(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3316 | roaring_bitmap_add(rb2, value); |
| 3317 | assert_true(roaring_bitmap_is_subset(rb1, rb2)); |
| 3318 | assert_true(roaring_bitmap_is_strict_subset(rb1, rb2)); |
| 3319 | roaring_bitmap_free(rb1); |
| 3320 | roaring_bitmap_free(rb2); |
| 3321 | } |
| 3322 | |
| 3323 | void test_or_many_memory_leak() { |
| 3324 | for(int i=0; i<10; i++) { |
| 3325 | roaring_bitmap_t *bm1 = roaring_bitmap_create(); |
| 3326 | for(int j=0; j<10; j++) { |
| 3327 | roaring_bitmap_t *bm2 = roaring_bitmap_create(); |
| 3328 | const roaring_bitmap_t *buff[] = {bm1, bm2}; |
| 3329 | roaring_bitmap_t *bm3 = roaring_bitmap_or_many(2, buff); |
| 3330 | roaring_bitmap_free(bm2); |
| 3331 | roaring_bitmap_free(bm3); |
| 3332 | } |
| 3333 | roaring_bitmap_free(bm1); |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | void test_iterator_generate_data(uint32_t **values_out, uint32_t *count_out) { |
| 3338 | const size_t capacity = 1000*1000; |
| 3339 | uint32_t* values = malloc(sizeof(uint32_t) * capacity); // ascending order |
| 3340 | uint32_t count = 0; |
| 3341 | uint32_t base = 1234; // container index |
| 3342 | |
| 3343 | // min allowed value |
| 3344 | values[count++] = 0; |
| 3345 | |
| 3346 | // only the very first value in container is set |
| 3347 | values[count++] = base*65536; |
| 3348 | base += 2; |
| 3349 | |
| 3350 | // only the very last value in container is set |
| 3351 | values[count++] = base*65536 + 65535; |
| 3352 | base += 2; |
| 3353 | |
| 3354 | // fully filled container |
| 3355 | for (uint32_t i = 0; i < 65536; i++) { |
| 3356 | values[count++] = base*65536 + i; |
| 3357 | } |
| 3358 | base += 2; |
| 3359 | |
| 3360 | // even values |
| 3361 | for (uint32_t i = 0; i < 65536; i += 2) { |
| 3362 | values[count++] = base*65536 + i; |
| 3363 | } |
| 3364 | base += 2; |
| 3365 | |
| 3366 | // odd values |
| 3367 | for (uint32_t i = 1; i < 65536; i += 2) { |
| 3368 | values[count++] = base*65536 + i; |
| 3369 | } |
| 3370 | base += 2; |
| 3371 | |
| 3372 | // each next 64-bit word is ROR'd by one |
| 3373 | for (uint32_t i = 0; i < 65536; i += 65) { |
| 3374 | values[count++] = base*65536 + i; |
| 3375 | } |
| 3376 | base += 2; |
| 3377 | |
| 3378 | // runs of increasing length: 0, 1,0, 1,1,0, 1,1,1,0, ... |
| 3379 | for (uint32_t i = 0, run_index = 0; i < 65536; i++) { |
| 3380 | if (i != (run_index+1)*(run_index+2)/2-1) { |
| 3381 | values[count++] = base*65536 + i; |
| 3382 | } else { |
| 3383 | run_index++; |
| 3384 | } |
| 3385 | } |
| 3386 | base += 2; |
| 3387 | |
| 3388 | // 00000XX, XXXXXX, XX0000 |
| 3389 | for (uint32_t i = 65536-100; i < 65536; i++) { |
| 3390 | values[count++] = base*65536 + i; |
| 3391 | } |
| 3392 | base += 1; |
| 3393 | for (uint32_t i = 0; i < 65536; i++) { |
| 3394 | values[count++] = base*65536 + i; |
| 3395 | } |
| 3396 | base += 1; |
| 3397 | for (uint32_t i = 0; i < 100; i++) { |
| 3398 | values[count++] = base*65536 + i; |
| 3399 | } |
| 3400 | base += 2; |
| 3401 | |
| 3402 | // random |
| 3403 | for (int i = 0; i < 65536; i += our_rand()%10+1) { |
| 3404 | values[count++] = base*65536 + i; |
| 3405 | } |
| 3406 | base += 2; |
| 3407 | |
| 3408 | // max allowed value |
| 3409 | values[count++] = UINT32_MAX; |
| 3410 | |
| 3411 | assert(count <= capacity); |
| 3412 | *values_out = values; |
| 3413 | *count_out = count; |
| 3414 | } |
| 3415 | |
| 3416 | /* |
| 3417 | * Read bitmap in steps of given size, compare with reference values. |
| 3418 | * If step is UINT32_MAX (special value), then read single non-empty container at a time. |
| 3419 | */ |
| 3420 | void read_compare(roaring_bitmap_t* r, const uint32_t* ref_values, uint32_t ref_count, uint32_t step) { |
| 3421 | roaring_uint32_iterator_t *iter = roaring_create_iterator(r); |
| 3422 | uint32_t* buffer = malloc(sizeof(uint32_t) * (step == UINT32_MAX ? 65536 : step)); |
| 3423 | while (ref_count > 0) { |
| 3424 | assert(iter->has_value == true); |
| 3425 | assert(iter->current_value == ref_values[0]); |
| 3426 | |
| 3427 | uint32_t num_ask = step; |
| 3428 | if (step == UINT32_MAX) { |
| 3429 | num_ask = 0; |
| 3430 | for (uint32_t i = 0; i < ref_count; i++) { |
| 3431 | if ((ref_values[i]>>16) == (ref_values[0]>>16)) { |
| 3432 | num_ask++; |
| 3433 | } else { |
| 3434 | break; |
| 3435 | } |
| 3436 | } |
| 3437 | } |
| 3438 | |
| 3439 | uint32_t num_got = roaring_read_uint32_iterator(iter, buffer, num_ask); |
| 3440 | assert(num_got == minimum_uint32(num_ask, ref_count)); |
| 3441 | for (uint32_t i = 0; i < num_got; i++) { |
| 3442 | assert(ref_values[i] == buffer[i]); |
| 3443 | } |
| 3444 | ref_values += num_got; |
| 3445 | ref_count -= num_got; |
| 3446 | } |
| 3447 | |
| 3448 | assert(iter->has_value == false); |
| 3449 | assert(iter->current_value == UINT32_MAX); |
| 3450 | |
| 3451 | assert(roaring_read_uint32_iterator(iter, buffer, step) == 0); |
| 3452 | assert(iter->has_value == false); |
| 3453 | assert(iter->current_value == UINT32_MAX); |
| 3454 | |
| 3455 | free(buffer); |
| 3456 | roaring_free_uint32_iterator(iter); |
| 3457 | } |
| 3458 | |
| 3459 | void test_read_uint32_iterator(uint8_t type) { |
| 3460 | uint32_t* ref_values; |
| 3461 | uint32_t ref_count; |
| 3462 | test_iterator_generate_data(&ref_values, &ref_count); |
| 3463 | |
| 3464 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3465 | for (uint32_t i = 0; i < ref_count; i++) { |
| 3466 | roaring_bitmap_add(r, ref_values[i]); |
| 3467 | } |
| 3468 | if (type != UINT8_MAX) { |
| 3469 | convert_all_containers(r, type); |
| 3470 | } |
| 3471 | |
| 3472 | read_compare(r, ref_values, ref_count, 1); |
| 3473 | read_compare(r, ref_values, ref_count, 2); |
| 3474 | read_compare(r, ref_values, ref_count, 7); |
| 3475 | read_compare(r, ref_values, ref_count, ref_count-1); |
| 3476 | read_compare(r, ref_values, ref_count, ref_count); |
| 3477 | read_compare(r, ref_values, ref_count, UINT32_MAX); // special value |
| 3478 | |
| 3479 | roaring_bitmap_free(r); |
| 3480 | free(ref_values); |
| 3481 | } |
| 3482 | |
| 3483 | void test_read_uint32_iterator_array() { |
| 3484 | test_read_uint32_iterator(ARRAY_CONTAINER_TYPE_CODE); |
| 3485 | } |
| 3486 | void test_read_uint32_iterator_bitset() { |
| 3487 | test_read_uint32_iterator(BITSET_CONTAINER_TYPE_CODE); |
| 3488 | } |
| 3489 | void test_read_uint32_iterator_run() { |
| 3490 | test_read_uint32_iterator(RUN_CONTAINER_TYPE_CODE); |
| 3491 | } |
| 3492 | void test_read_uint32_iterator_native() { |
| 3493 | test_read_uint32_iterator(UINT8_MAX); // special value |
| 3494 | } |
| 3495 | |
| 3496 | void test_previous_iterator(uint8_t type) { |
| 3497 | uint32_t* ref_values; |
| 3498 | uint32_t ref_count; |
| 3499 | test_iterator_generate_data(&ref_values, &ref_count); |
| 3500 | |
| 3501 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3502 | for (uint32_t i = 0; i < ref_count; i++) { |
| 3503 | roaring_bitmap_add(r, ref_values[i]); |
| 3504 | } |
| 3505 | if (type != UINT8_MAX) { |
| 3506 | convert_all_containers(r, type); |
| 3507 | } |
| 3508 | |
| 3509 | roaring_uint32_iterator_t iterator; |
| 3510 | roaring_init_iterator_last(r, &iterator); |
| 3511 | uint32_t count = 0; |
| 3512 | |
| 3513 | do { |
| 3514 | assert(iterator.has_value); |
| 3515 | ++count; |
| 3516 | assert((int64_t)ref_count - (int64_t)count >= 0); // sanity check |
| 3517 | assert(ref_values[ref_count - count] == iterator.current_value); |
| 3518 | } while (roaring_previous_uint32_iterator(&iterator)); |
| 3519 | |
| 3520 | assert(ref_count == count); |
| 3521 | |
| 3522 | roaring_bitmap_free(r); |
| 3523 | free(ref_values); |
| 3524 | } |
| 3525 | |
| 3526 | void test_previous_iterator_array() { |
| 3527 | test_previous_iterator(ARRAY_CONTAINER_TYPE_CODE); |
| 3528 | } |
| 3529 | |
| 3530 | void test_previous_iterator_bitset() { |
| 3531 | test_previous_iterator(BITSET_CONTAINER_TYPE_CODE); |
| 3532 | } |
| 3533 | |
| 3534 | void test_previous_iterator_run() { |
| 3535 | test_previous_iterator(RUN_CONTAINER_TYPE_CODE); |
| 3536 | } |
| 3537 | |
| 3538 | void test_previous_iterator_native() { |
| 3539 | test_previous_iterator(UINT8_MAX); // special value |
| 3540 | } |
| 3541 | |
| 3542 | void test_iterator_reuse_retry_count(int retry_count){ |
| 3543 | uint32_t* ref_values; |
| 3544 | uint32_t ref_count; |
| 3545 | test_iterator_generate_data(&ref_values, &ref_count); |
| 3546 | |
| 3547 | roaring_bitmap_t* with_edges = roaring_bitmap_create(); |
| 3548 | // We don't want min and max values inside this bitmap |
| 3549 | roaring_bitmap_t* without_edges = roaring_bitmap_create(); |
| 3550 | |
| 3551 | for (uint32_t i = 0; i < ref_count; i++) { |
| 3552 | roaring_bitmap_add(with_edges, ref_values[i]); |
| 3553 | if (i != 0 && i != ref_count - 1) { |
| 3554 | roaring_bitmap_add(without_edges, ref_values[i]); |
| 3555 | } |
| 3556 | } |
| 3557 | |
| 3558 | // sanity checks |
| 3559 | assert(roaring_bitmap_contains(with_edges, 0)); |
| 3560 | assert(roaring_bitmap_contains(with_edges, UINT32_MAX)); |
| 3561 | assert(!roaring_bitmap_contains(without_edges, 0)); |
| 3562 | assert(!roaring_bitmap_contains(without_edges, UINT32_MAX)); |
| 3563 | assert(roaring_bitmap_get_cardinality(with_edges) - 2 == roaring_bitmap_get_cardinality(without_edges)); |
| 3564 | |
| 3565 | const roaring_bitmap_t* bitmaps[] = {with_edges, without_edges}; |
| 3566 | int num_bitmaps = sizeof(bitmaps) / sizeof(bitmaps[0]); |
| 3567 | |
| 3568 | for (int i = 0; i < num_bitmaps; ++i){ |
| 3569 | roaring_uint32_iterator_t iterator; |
| 3570 | roaring_init_iterator(bitmaps[i], &iterator); |
| 3571 | assert(iterator.has_value); |
| 3572 | uint32_t first_value = iterator.current_value; |
| 3573 | |
| 3574 | uint32_t count = 0; |
| 3575 | while (iterator.has_value) { |
| 3576 | count++; |
| 3577 | roaring_advance_uint32_iterator(&iterator); |
| 3578 | } |
| 3579 | assert(count == roaring_bitmap_get_cardinality(bitmaps[i])); |
| 3580 | |
| 3581 | // Test advancing the iterator more times than necessary |
| 3582 | for (int retry = 0; retry < retry_count; ++retry) { |
| 3583 | roaring_advance_uint32_iterator(&iterator); |
| 3584 | } |
| 3585 | |
| 3586 | // Using same iterator we want to go backwards through the list |
| 3587 | roaring_previous_uint32_iterator(&iterator); |
| 3588 | count = 0; |
| 3589 | while (iterator.has_value) { |
| 3590 | count++; |
| 3591 | roaring_previous_uint32_iterator(&iterator); |
| 3592 | } |
| 3593 | assert(count == roaring_bitmap_get_cardinality(bitmaps[i])); |
| 3594 | |
| 3595 | // Test decrement the iterator more times than necessary |
| 3596 | for (int retry = 0; retry < retry_count; ++retry) { |
| 3597 | roaring_previous_uint32_iterator(&iterator); |
| 3598 | } |
| 3599 | |
| 3600 | roaring_advance_uint32_iterator(&iterator); |
| 3601 | assert(iterator.has_value); |
| 3602 | assert(first_value == iterator.current_value); |
| 3603 | } |
| 3604 | |
| 3605 | |
| 3606 | roaring_bitmap_free(without_edges); |
| 3607 | roaring_bitmap_free(with_edges); |
| 3608 | free(ref_values); |
| 3609 | } |
| 3610 | |
| 3611 | void test_iterator_reuse() { |
| 3612 | test_iterator_reuse_retry_count(0); |
| 3613 | } |
| 3614 | |
| 3615 | void test_iterator_reuse_many() { |
| 3616 | test_iterator_reuse_retry_count(10); |
| 3617 | } |
| 3618 | |
| 3619 | void test_add_range() { |
| 3620 | // autoconversion: BITSET -> BITSET -> RUN |
| 3621 | { |
| 3622 | sbs_t* sbs = sbs_create(); |
| 3623 | sbs_add_value(sbs, 100); |
| 3624 | sbs_convert(sbs, BITSET_CONTAINER_TYPE_CODE); |
| 3625 | sbs_add_range(sbs, 0, 299); |
| 3626 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3627 | sbs_add_range(sbs, 301, 65535); |
| 3628 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3629 | // after and only after BITSET becomes [0, 65535], it is converted to RUN |
| 3630 | sbs_add_range(sbs, 300, 300); |
| 3631 | assert_true(sbs_check_type(sbs, RUN_CONTAINER_TYPE_CODE)); |
| 3632 | sbs_compare(sbs); |
| 3633 | sbs_free(sbs); |
| 3634 | } |
| 3635 | |
| 3636 | // autoconversion: ARRAY -> ARRAY -> BITSET |
| 3637 | { |
| 3638 | sbs_t* sbs = sbs_create(); |
| 3639 | sbs_add_value(sbs, 100); |
| 3640 | sbs_convert(sbs, ARRAY_CONTAINER_TYPE_CODE); |
| 3641 | |
| 3642 | // unless threshold was hit, it is still ARRAY |
| 3643 | for (int i = 0; i < 100; i += 2) { |
| 3644 | sbs_add_value(sbs, i); |
| 3645 | assert_true(sbs_check_type(sbs, ARRAY_CONTAINER_TYPE_CODE)); |
| 3646 | } |
| 3647 | |
| 3648 | // after threshold on number of elements was hit, it is converted to BITSET |
| 3649 | for (int i = 0; i < 65535; i += 2) { |
| 3650 | sbs_add_value(sbs, i); |
| 3651 | } |
| 3652 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3653 | |
| 3654 | sbs_compare(sbs); |
| 3655 | sbs_free(sbs); |
| 3656 | } |
| 3657 | |
| 3658 | // autoconversion: ARRAY -> RUN |
| 3659 | { |
| 3660 | sbs_t* sbs = sbs_create(); |
| 3661 | sbs_add_range(sbs, 0, 100); |
| 3662 | sbs_convert(sbs, ARRAY_CONTAINER_TYPE_CODE); |
| 3663 | |
| 3664 | // after ARRAY becomes full [0, 65535], it is converted to RUN |
| 3665 | sbs_add_range(sbs, 100, 65535); |
| 3666 | assert_true(sbs_check_type(sbs, RUN_CONTAINER_TYPE_CODE)); |
| 3667 | |
| 3668 | sbs_compare(sbs); |
| 3669 | sbs_free(sbs); |
| 3670 | } |
| 3671 | // autoconversion: RUN -> RUN -> BITSET |
| 3672 | { |
| 3673 | sbs_t* sbs = sbs_create(); |
| 3674 | // by default, RUN container is used |
| 3675 | for (int i = 0; i < 100; i += 2) { |
| 3676 | sbs_add_range(sbs, 4*i, 4*i + 1); |
| 3677 | assert_true(sbs_check_type(sbs, RUN_CONTAINER_TYPE_CODE)); |
| 3678 | } |
| 3679 | // after number of RLE runs exceeded threshold, it is converted to BITSET |
| 3680 | for (int i = 0; i < 65535; i += 2) { |
| 3681 | sbs_add_range(sbs, i, i); |
| 3682 | } |
| 3683 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3684 | sbs_compare(sbs); |
| 3685 | sbs_free(sbs); |
| 3686 | } |
| 3687 | |
| 3688 | // autoconversion: ARRAY -> ARRAY -> BITSET |
| 3689 | { |
| 3690 | sbs_t* sbs = sbs_create(); |
| 3691 | for (int i = 0; i < 100; i += 2) { |
| 3692 | sbs_add_range(sbs, i, i); |
| 3693 | assert_true(sbs_check_type(sbs, ARRAY_CONTAINER_TYPE_CODE)); |
| 3694 | } |
| 3695 | // after number of RLE runs exceeded threshold, it is converted to BITSET |
| 3696 | for (int i = 0; i < 65535; i += 2) { |
| 3697 | sbs_add_range(sbs, i, i); |
| 3698 | } |
| 3699 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3700 | sbs_compare(sbs); |
| 3701 | sbs_free(sbs); |
| 3702 | } |
| 3703 | |
| 3704 | // append new container to the end |
| 3705 | { |
| 3706 | sbs_t* sbs = sbs_create(); |
| 3707 | sbs_add_value(sbs, 5); |
| 3708 | sbs_add_range(sbs, 65536+5, 65536+20); |
| 3709 | sbs_compare(sbs); |
| 3710 | sbs_free(sbs); |
| 3711 | } |
| 3712 | |
| 3713 | // prepend new container to the beginning |
| 3714 | { |
| 3715 | sbs_t* sbs = sbs_create(); |
| 3716 | sbs_add_value(sbs, 65536*1+5); |
| 3717 | sbs_add_range(sbs, 5, 20); |
| 3718 | sbs_compare(sbs); |
| 3719 | sbs_free(sbs); |
| 3720 | } |
| 3721 | |
| 3722 | // add new container between existing ones |
| 3723 | { |
| 3724 | sbs_t* sbs = sbs_create(); |
| 3725 | sbs_add_value(sbs, 65536*0+5); |
| 3726 | sbs_add_value(sbs, 65536*2+5); |
| 3727 | sbs_add_range(sbs, 65536*1+5, 65536*1+20); |
| 3728 | sbs_compare(sbs); |
| 3729 | sbs_free(sbs); |
| 3730 | } |
| 3731 | |
| 3732 | // invalid range |
| 3733 | { |
| 3734 | sbs_t* sbs = sbs_create(); |
| 3735 | sbs_add_range(sbs, 200, 100); |
| 3736 | sbs_compare(sbs); |
| 3737 | sbs_free(sbs); |
| 3738 | } |
| 3739 | |
| 3740 | // random data inside [0..span) |
| 3741 | const uint32_t span = 16*65536; |
| 3742 | for (uint32_t range_length = 1; range_length < 16384; range_length *= 3) { |
| 3743 | sbs_t* sbs = sbs_create(); |
| 3744 | for (int i = 0; i < 50; i++) { |
| 3745 | uint32_t value = our_rand() % span; |
| 3746 | sbs_add_value(sbs, value); |
| 3747 | } |
| 3748 | for (int i = 0; i < 50; i++) { |
| 3749 | uint64_t range_start = our_rand() % (span - range_length); |
| 3750 | sbs_add_range(sbs, range_start, range_start + range_length - 1); |
| 3751 | } |
| 3752 | sbs_compare(sbs); |
| 3753 | sbs_free(sbs); |
| 3754 | } |
| 3755 | |
| 3756 | // max range |
| 3757 | { |
| 3758 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3759 | roaring_bitmap_add_range(r, 0, UINT32_MAX + UINT64_C(1)); |
| 3760 | assert_true(roaring_bitmap_get_cardinality(r) == UINT64_C(0x100000000)); |
| 3761 | roaring_bitmap_free(r); |
| 3762 | } |
| 3763 | |
| 3764 | // bug: segfault |
| 3765 | { |
| 3766 | roaring_bitmap_t *r1 = roaring_bitmap_from_range(0, 1, 1); |
| 3767 | roaring_bitmap_set_copy_on_write(r1, true); |
| 3768 | roaring_bitmap_t *r2 = roaring_bitmap_copy(r1); |
| 3769 | roaring_bitmap_add_range(r1, 0, 1); |
| 3770 | assert(roaring_bitmap_get_cardinality(r1) == 1); |
| 3771 | assert(roaring_bitmap_get_cardinality(r2) == 1); |
| 3772 | roaring_bitmap_free(r2); |
| 3773 | roaring_bitmap_free(r1); |
| 3774 | } |
| 3775 | } |
| 3776 | |
| 3777 | void test_remove_range() { |
| 3778 | // autoconversion: ARRAY -> ARRAY -> NULL |
| 3779 | { |
| 3780 | sbs_t *sbs = sbs_create(); |
| 3781 | sbs_add_range(sbs, 100, 200); |
| 3782 | sbs_convert(sbs, ARRAY_CONTAINER_TYPE_CODE); |
| 3783 | sbs_remove_range(sbs, 100, 105); |
| 3784 | sbs_remove_range(sbs, 195, 200); |
| 3785 | sbs_remove_range(sbs, 150, 155); |
| 3786 | assert_true(sbs_check_type(sbs, ARRAY_CONTAINER_TYPE_CODE)); |
| 3787 | sbs_compare(sbs); |
| 3788 | sbs_remove_range(sbs, 102, 198); |
| 3789 | assert_true(sbs_is_empty(sbs)); |
| 3790 | sbs_free(sbs); |
| 3791 | } |
| 3792 | |
| 3793 | // autoconversion: BITSET -> BITSET -> ARRAY |
| 3794 | { |
| 3795 | sbs_t *sbs = sbs_create(); |
| 3796 | sbs_add_range(sbs, 0, 40000); |
| 3797 | sbs_convert(sbs, BITSET_CONTAINER_TYPE_CODE); |
| 3798 | sbs_remove_range(sbs, 100, 200); |
| 3799 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3800 | sbs_remove_range(sbs, 200, 39900); |
| 3801 | assert_true(sbs_check_type(sbs, ARRAY_CONTAINER_TYPE_CODE)); |
| 3802 | sbs_compare(sbs); |
| 3803 | sbs_free(sbs); |
| 3804 | } |
| 3805 | |
| 3806 | // autoconversion: BITSET -> NULL |
| 3807 | { |
| 3808 | sbs_t *sbs = sbs_create(); |
| 3809 | sbs_add_range(sbs, 100, 200); |
| 3810 | sbs_convert(sbs, BITSET_CONTAINER_TYPE_CODE); |
| 3811 | sbs_remove_range(sbs, 50, 250); |
| 3812 | assert_true(sbs_is_empty(sbs)); |
| 3813 | sbs_free(sbs); |
| 3814 | } |
| 3815 | |
| 3816 | // autoconversion: RUN -> RUN -> BITSET |
| 3817 | { |
| 3818 | sbs_t *sbs = sbs_create(); |
| 3819 | sbs_add_range(sbs, 0, 40000); |
| 3820 | sbs_add_range(sbs, 50000, 60000); |
| 3821 | sbs_convert(sbs, RUN_CONTAINER_TYPE_CODE); |
| 3822 | sbs_remove_range(sbs, 100, 200); |
| 3823 | sbs_remove_range(sbs, 40000, 50000); |
| 3824 | assert_true(sbs_check_type(sbs, RUN_CONTAINER_TYPE_CODE)); |
| 3825 | for (int i = 0; i < 65535; i++) { |
| 3826 | if (i % 2 == 0) { |
| 3827 | sbs_remove_range(sbs, i, i); |
| 3828 | } |
| 3829 | } |
| 3830 | assert_true(sbs_check_type(sbs, BITSET_CONTAINER_TYPE_CODE)); |
| 3831 | sbs_compare(sbs); |
| 3832 | sbs_free(sbs); |
| 3833 | } |
| 3834 | |
| 3835 | // autoconversion: RUN -> NULL |
| 3836 | { |
| 3837 | sbs_t *sbs = sbs_create(); |
| 3838 | sbs_add_range(sbs, 100, 200); |
| 3839 | sbs_add_range(sbs, 300, 400); |
| 3840 | sbs_convert(sbs, RUN_CONTAINER_TYPE_CODE); |
| 3841 | sbs_remove_range(sbs, 50, 450); |
| 3842 | assert_true(sbs_is_empty(sbs)); |
| 3843 | sbs_free(sbs); |
| 3844 | } |
| 3845 | |
| 3846 | // remove containers |
| 3847 | { |
| 3848 | sbs_t *sbs = sbs_create(); |
| 3849 | sbs_add_value(sbs, 65536*1+100); |
| 3850 | sbs_add_value(sbs, 65536*3+100); |
| 3851 | sbs_add_value(sbs, 65536*5+100); |
| 3852 | sbs_add_value(sbs, 65536*7+100); |
| 3853 | sbs_remove_range(sbs, 65536*3+0, 65536*3+65535); // from the middle |
| 3854 | sbs_compare(sbs); |
| 3855 | sbs_remove_range(sbs, 65536*1+0, 65536*1+65535); // from the beginning |
| 3856 | sbs_compare(sbs); |
| 3857 | sbs_remove_range(sbs, 65536*7+0, 65536*7+65535); // from the end |
| 3858 | sbs_compare(sbs); |
| 3859 | sbs_remove_range(sbs, 65536*5+0, 65536*5+65535); // the last one |
| 3860 | sbs_compare(sbs); |
| 3861 | sbs_remove_range(sbs, 65536*9+0, 65536*9+65535); // non-existent |
| 3862 | sbs_compare(sbs); |
| 3863 | sbs_free(sbs); |
| 3864 | } |
| 3865 | |
| 3866 | // random data inside [0..span) |
| 3867 | const uint32_t span = 16*65536; |
| 3868 | for (uint32_t range_length = 3; range_length <= 16384; range_length *= 3) { |
| 3869 | sbs_t* sbs = sbs_create(); |
| 3870 | for (int i = 0; i < 50; i++) { |
| 3871 | uint64_t range_start = our_rand() % (span - range_length); |
| 3872 | sbs_add_range(sbs, range_start, range_start + range_length - 1); |
| 3873 | } |
| 3874 | for (int i = 0; i < 50; i++) { |
| 3875 | uint64_t range_start = our_rand() % (span - range_length); |
| 3876 | sbs_remove_range(sbs, range_start, range_start + range_length - 1); |
| 3877 | } |
| 3878 | sbs_compare(sbs); |
| 3879 | sbs_free(sbs); |
| 3880 | } |
| 3881 | } |
| 3882 | |
| 3883 | void test_remove_many() { |
| 3884 | // multiple values per container (sorted) |
| 3885 | { |
| 3886 | sbs_t *sbs = sbs_create(); |
| 3887 | sbs_add_range(sbs, 0, 65536*2-1); |
| 3888 | uint32_t values[] = {1, 3, 5, 7, 65536+1, 65536+3, 65536+5, 65536+7}; |
| 3889 | sbs_remove_many(sbs, sizeof(values)/sizeof(values[0]), values); |
| 3890 | sbs_compare(sbs); |
| 3891 | sbs_free(sbs); |
| 3892 | } |
| 3893 | |
| 3894 | // multiple values per container (interleaved) |
| 3895 | { |
| 3896 | sbs_t *sbs = sbs_create(); |
| 3897 | sbs_add_range(sbs, 0, 65536*2-1); |
| 3898 | uint32_t values[] = {65536+7, 65536+5, 7, 5, 1, 65536+1, 65536+3, 3}; |
| 3899 | sbs_remove_many(sbs, sizeof(values)/sizeof(values[0]), values); |
| 3900 | sbs_compare(sbs); |
| 3901 | sbs_free(sbs); |
| 3902 | } |
| 3903 | |
| 3904 | // no-op checks |
| 3905 | { |
| 3906 | sbs_t *sbs = sbs_create(); |
| 3907 | sbs_add_value(sbs, 500); |
| 3908 | uint32_t values[] = {501, 80000}; // non-existent value/container |
| 3909 | sbs_remove_many(sbs, sizeof(values)/sizeof(values[0]), values); |
| 3910 | sbs_remove_many(sbs, 0, NULL); // NULL ptr is not dereferenced |
| 3911 | sbs_compare(sbs); |
| 3912 | sbs_free(sbs); |
| 3913 | } |
| 3914 | |
| 3915 | // container type changes and container removal |
| 3916 | { |
| 3917 | sbs_t *sbs = sbs_create(); |
| 3918 | sbs_add_range(sbs, 0, 65535); |
| 3919 | for (uint32_t v = 0; v <= 65535; v++) { |
| 3920 | sbs_remove_many(sbs, 1, &v); |
| 3921 | assert(roaring_bitmap_get_cardinality(sbs->roaring) == 65535-v); |
| 3922 | } |
| 3923 | assert(sbs_is_empty(sbs)); |
| 3924 | sbs_free(sbs); |
| 3925 | } |
| 3926 | |
| 3927 | } |
| 3928 | |
| 3929 | void test_range_cardinality() { |
| 3930 | const uint64_t s = 65536; |
| 3931 | |
| 3932 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3933 | roaring_bitmap_add_range(r, s*2, s*10); |
| 3934 | |
| 3935 | // single container (minhb == maxhb) |
| 3936 | assert(roaring_bitmap_range_cardinality(r, s*2, s*3) == s); |
| 3937 | assert(roaring_bitmap_range_cardinality(r, s*2+100, s*3) == s-100); |
| 3938 | assert(roaring_bitmap_range_cardinality(r, s*2, s*3-200) == s-200); |
| 3939 | assert(roaring_bitmap_range_cardinality(r, s*2+100, s*3-200) == s-300); |
| 3940 | |
| 3941 | // multiple containers (maxhb > minhb) |
| 3942 | assert(roaring_bitmap_range_cardinality(r, s*2, s*5) == s*3); |
| 3943 | assert(roaring_bitmap_range_cardinality(r, s*2+100, s*5) == s*3-100); |
| 3944 | assert(roaring_bitmap_range_cardinality(r, s*2, s*5-200) == s*3-200); |
| 3945 | assert(roaring_bitmap_range_cardinality(r, s*2+100, s*5-200) == s*3-300); |
| 3946 | |
| 3947 | // boundary checks |
| 3948 | assert(roaring_bitmap_range_cardinality(r, s*20, s*21) == 0); |
| 3949 | assert(roaring_bitmap_range_cardinality(r, 100, 100) == 0); |
| 3950 | assert(roaring_bitmap_range_cardinality(r, 0, s*7) == s*5); |
| 3951 | assert(roaring_bitmap_range_cardinality(r, s*7, UINT64_MAX) == s*3); |
| 3952 | |
| 3953 | roaring_bitmap_free(r); |
| 3954 | } |
| 3955 | |
| 3956 | void frozen_serialization_compare(roaring_bitmap_t *r1) { |
| 3957 | size_t num_bytes = roaring_bitmap_frozen_size_in_bytes(r1); |
| 3958 | char *buf = roaring_bitmap_aligned_malloc(32, num_bytes); |
| 3959 | roaring_bitmap_frozen_serialize(r1, buf); |
| 3960 | |
| 3961 | const roaring_bitmap_t *r2 = |
| 3962 | roaring_bitmap_frozen_view(buf, num_bytes); |
| 3963 | |
| 3964 | assert(roaring_bitmap_equals(r1, r2)); |
| 3965 | assert(roaring_bitmap_frozen_view(buf+1, num_bytes-1) == NULL); |
| 3966 | |
| 3967 | roaring_bitmap_free(r1); |
| 3968 | roaring_bitmap_free(r2); |
| 3969 | roaring_bitmap_aligned_free(buf); |
| 3970 | } |
| 3971 | |
| 3972 | void test_frozen_serialization() { |
| 3973 | const uint64_t s = 65536; |
| 3974 | |
| 3975 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3976 | roaring_bitmap_add(r, 0); |
| 3977 | roaring_bitmap_add(r, UINT32_MAX); |
| 3978 | roaring_bitmap_add(r, 1000); |
| 3979 | roaring_bitmap_add(r, 2000); |
| 3980 | roaring_bitmap_add(r, 100000); |
| 3981 | roaring_bitmap_add(r, 200000); |
| 3982 | roaring_bitmap_add_range(r, s*10 + 100, s*13 - 100); |
| 3983 | for (uint64_t i = 0; i < s*3; i += 2) { |
| 3984 | roaring_bitmap_add(r, s*20 + i); |
| 3985 | } |
| 3986 | roaring_bitmap_run_optimize(r); |
| 3987 | //roaring_bitmap_printf_describe(r); |
| 3988 | frozen_serialization_compare(r); |
| 3989 | } |
| 3990 | |
| 3991 | void test_frozen_serialization_max_containers() { |
| 3992 | roaring_bitmap_t *r = roaring_bitmap_create(); |
| 3993 | for (int64_t i = 0; i < 65536; i++) { |
| 3994 | roaring_bitmap_add(r, 65536 * i); |
| 3995 | } |
| 3996 | assert(r->high_low_container.size == 65536); |
| 3997 | frozen_serialization_compare(r); |
| 3998 | } |
| 3999 | |
| 4000 | |
| 4001 | int main() { |
| 4002 | const struct CMUnitTest tests[] = { |
| 4003 | cmocka_unit_test(issue208), |
| 4004 | cmocka_unit_test(issue208b), |
| 4005 | cmocka_unit_test(range_contains), |
| 4006 | cmocka_unit_test(inplaceorwide), |
| 4007 | cmocka_unit_test(test_contains_range), |
| 4008 | cmocka_unit_test(check_range_contains_from_end), |
| 4009 | cmocka_unit_test(check_iterate_to_end), |
| 4010 | cmocka_unit_test(check_iterate_to_beginning), |
| 4011 | cmocka_unit_test(test_iterator_reuse), |
| 4012 | cmocka_unit_test(check_full_flip), |
| 4013 | cmocka_unit_test(test_adversarial_range), |
| 4014 | cmocka_unit_test(check_full_inplace_flip), |
| 4015 | cmocka_unit_test(test_stress_memory_true), |
| 4016 | cmocka_unit_test(test_stress_memory_false), |
| 4017 | cmocka_unit_test(check_interval), |
| 4018 | cmocka_unit_test(test_uint32_iterator_true), |
| 4019 | cmocka_unit_test(test_example_true), |
| 4020 | cmocka_unit_test(test_example_false), |
| 4021 | cmocka_unit_test(test_clear), |
| 4022 | cmocka_unit_test(can_copy_empty_true), |
| 4023 | cmocka_unit_test(can_copy_empty_false), |
| 4024 | cmocka_unit_test(test_intersect_small_run_bitset), |
| 4025 | cmocka_unit_test(is_really_empty), |
| 4026 | cmocka_unit_test(test_rank), |
| 4027 | cmocka_unit_test(test_maximum_minimum), |
| 4028 | cmocka_unit_test(test_stats), |
| 4029 | cmocka_unit_test(test_addremove), |
| 4030 | cmocka_unit_test(test_addremoverun), |
| 4031 | cmocka_unit_test(test_basic_add), |
| 4032 | cmocka_unit_test(test_remove_withrun), |
| 4033 | cmocka_unit_test(test_remove_from_copies_true), |
| 4034 | cmocka_unit_test(test_remove_from_copies_false), |
| 4035 | cmocka_unit_test(test_range_and_serialize), |
| 4036 | cmocka_unit_test(test_silly_range), |
| 4037 | cmocka_unit_test(test_uint32_iterator_true), |
| 4038 | cmocka_unit_test(test_uint32_iterator_false), |
| 4039 | cmocka_unit_test(leaks_with_empty_true), |
| 4040 | cmocka_unit_test(leaks_with_empty_false), |
| 4041 | cmocka_unit_test(test_bitmap_from_range), |
| 4042 | cmocka_unit_test(test_printf), |
| 4043 | cmocka_unit_test(test_printf_withbitmap), |
| 4044 | cmocka_unit_test(test_printf_withrun), |
| 4045 | cmocka_unit_test(test_iterate), |
| 4046 | cmocka_unit_test(test_iterate_empty), |
| 4047 | cmocka_unit_test(test_iterate_withbitmap), |
| 4048 | cmocka_unit_test(test_iterate_withrun), |
| 4049 | cmocka_unit_test(test_serialize), |
| 4050 | cmocka_unit_test(test_portable_serialize), |
| 4051 | cmocka_unit_test(test_add), |
| 4052 | cmocka_unit_test(test_add_checked), |
| 4053 | cmocka_unit_test(test_remove_checked), |
| 4054 | cmocka_unit_test(test_contains), |
| 4055 | cmocka_unit_test(test_intersection_array_x_array), |
| 4056 | cmocka_unit_test(test_intersection_array_x_array_inplace), |
| 4057 | cmocka_unit_test(test_intersection_bitset_x_bitset), |
| 4058 | cmocka_unit_test(test_intersection_bitset_x_bitset_inplace), |
| 4059 | cmocka_unit_test(test_union_true), |
| 4060 | cmocka_unit_test(test_union_false), |
| 4061 | cmocka_unit_test(test_xor_false), |
| 4062 | cmocka_unit_test(test_xor_inplace_false), |
| 4063 | cmocka_unit_test(test_xor_lazy_false), |
| 4064 | cmocka_unit_test(test_xor_lazy_inplace_false), |
| 4065 | cmocka_unit_test(test_xor_true), |
| 4066 | cmocka_unit_test(test_xor_inplace_true), |
| 4067 | cmocka_unit_test(test_xor_lazy_true), |
| 4068 | cmocka_unit_test(test_xor_lazy_inplace_true), |
| 4069 | cmocka_unit_test(test_andnot_false), |
| 4070 | cmocka_unit_test(test_andnot_inplace_false), |
| 4071 | cmocka_unit_test(test_andnot_true), |
| 4072 | cmocka_unit_test(test_andnot_inplace_true), |
| 4073 | cmocka_unit_test(test_conversion_to_int_array), |
| 4074 | cmocka_unit_test(test_array_to_run), |
| 4075 | cmocka_unit_test(test_array_to_self), |
| 4076 | cmocka_unit_test(test_bitset_to_self), |
| 4077 | cmocka_unit_test(test_conversion_to_int_array_with_runoptimize), |
| 4078 | cmocka_unit_test(test_run_to_self), |
| 4079 | cmocka_unit_test(test_remove_run_to_bitset), |
| 4080 | cmocka_unit_test(test_remove_run_to_array), |
| 4081 | cmocka_unit_test(test_negation_array0), |
| 4082 | cmocka_unit_test(test_negation_array1), |
| 4083 | cmocka_unit_test(test_negation_array2), |
| 4084 | cmocka_unit_test(test_negation_bitset1), |
| 4085 | cmocka_unit_test(test_negation_bitset2), |
| 4086 | cmocka_unit_test(test_negation_run1), |
| 4087 | cmocka_unit_test(test_negation_run2), |
| 4088 | cmocka_unit_test(test_rand_flips), |
| 4089 | cmocka_unit_test(test_inplace_negation_array0), |
| 4090 | cmocka_unit_test(test_inplace_negation_array1), |
| 4091 | cmocka_unit_test(test_inplace_negation_array2), |
| 4092 | cmocka_unit_test(test_inplace_negation_bitset1), |
| 4093 | cmocka_unit_test(test_inplace_negation_bitset2), |
| 4094 | cmocka_unit_test(test_inplace_negation_run1), |
| 4095 | cmocka_unit_test(test_inplace_negation_run2), |
| 4096 | cmocka_unit_test(test_inplace_rand_flips), |
| 4097 | cmocka_unit_test(test_flip_array_container_removal), |
| 4098 | cmocka_unit_test(test_flip_bitset_container_removal), |
| 4099 | cmocka_unit_test(test_flip_run_container_removal), |
| 4100 | cmocka_unit_test(test_flip_run_container_removal2), |
| 4101 | cmocka_unit_test(select_test), |
| 4102 | cmocka_unit_test(test_subset), |
| 4103 | cmocka_unit_test(test_or_many_memory_leak), |
| 4104 | // cmocka_unit_test(test_run_to_bitset), |
| 4105 | // cmocka_unit_test(test_run_to_array), |
| 4106 | cmocka_unit_test(test_read_uint32_iterator_array), |
| 4107 | cmocka_unit_test(test_read_uint32_iterator_bitset), |
| 4108 | cmocka_unit_test(test_read_uint32_iterator_run), |
| 4109 | cmocka_unit_test(test_read_uint32_iterator_native), |
| 4110 | cmocka_unit_test(test_previous_iterator_array), |
| 4111 | cmocka_unit_test(test_previous_iterator_bitset), |
| 4112 | cmocka_unit_test(test_previous_iterator_run), |
| 4113 | cmocka_unit_test(test_previous_iterator_native), |
| 4114 | cmocka_unit_test(test_iterator_reuse), |
| 4115 | cmocka_unit_test(test_iterator_reuse_many), |
| 4116 | cmocka_unit_test(test_add_range), |
| 4117 | cmocka_unit_test(test_remove_range), |
| 4118 | cmocka_unit_test(test_remove_many), |
| 4119 | cmocka_unit_test(test_range_cardinality), |
| 4120 | cmocka_unit_test(test_frozen_serialization), |
| 4121 | cmocka_unit_test(test_frozen_serialization_max_containers), |
| 4122 | }; |
| 4123 | |
| 4124 | return cmocka_run_group_tests(tests, NULL, NULL); |
| 4125 | } |
| 4126 | |