1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* __ieee754_exp(x) |
13 | * Returns the exponential of x. |
14 | * |
15 | * Method |
16 | * 1. Argument reduction: |
17 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
18 | * Given x, find r and integer k such that |
19 | * |
20 | * x = k*ln2 + r, |r| <= 0.5*ln2. |
21 | * |
22 | * Here r will be represented as r = hi-lo for better |
23 | * accuracy. |
24 | * |
25 | * 2. Approximation of exp(r) by a special rational function on |
26 | * the interval [0,0.34658]: |
27 | * Write |
28 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
29 | * We use a special Reme algorithm on [0,0.34658] to generate |
30 | * a polynomial of degree 5 to approximate R. The maximum error |
31 | * of this polynomial approximation is bounded by 2**-59. In |
32 | * other words, |
33 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
34 | * (where z=r*r, and the values of P1 to P5 are listed below) |
35 | * and |
36 | * | 5 | -59 |
37 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
38 | * | | |
39 | * The computation of exp(r) thus becomes |
40 | * 2*r |
41 | * exp(r) = 1 + ------- |
42 | * R - r |
43 | * r*R1(r) |
44 | * = 1 + r + ----------- (for better accuracy) |
45 | * 2 - R1(r) |
46 | * where |
47 | * 2 4 10 |
48 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
49 | * |
50 | * 3. Scale back to obtain exp(x): |
51 | * From step 1, we have |
52 | * exp(x) = 2^k * exp(r) |
53 | * |
54 | * Special cases: |
55 | * exp(INF) is INF, exp(NaN) is NaN; |
56 | * exp(-INF) is 0, and |
57 | * for finite argument, only exp(0)=1 is exact. |
58 | * |
59 | * Accuracy: |
60 | * according to an error analysis, the error is always less than |
61 | * 1 ulp (unit in the last place). |
62 | * |
63 | * Misc. info. |
64 | * For IEEE double |
65 | * if x > 7.09782712893383973096e+02 then exp(x) overflow |
66 | * if x < -7.45133219101941108420e+02 then exp(x) underflow |
67 | * |
68 | * Constants: |
69 | * The hexadecimal values are the intended ones for the following |
70 | * constants. The decimal values may be used, provided that the |
71 | * compiler will convert from decimal to binary accurately enough |
72 | * to produce the hexadecimal values shown. |
73 | */ |
74 | |
75 | #include "math_libm.h" |
76 | #include "math_private.h" |
77 | |
78 | #ifdef __WATCOMC__ /* Watcom defines huge=__huge */ |
79 | #undef huge |
80 | #endif |
81 | |
82 | static const double |
83 | one = 1.0, |
84 | halF[2] = {0.5,-0.5,}, |
85 | huge = 1.0e+300, |
86 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
87 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
88 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
89 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
90 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
91 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
92 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
93 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
94 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
95 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
96 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
97 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
98 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
99 | |
100 | double __ieee754_exp(double x) /* default IEEE double exp */ |
101 | { |
102 | double y; |
103 | double hi = 0.0; |
104 | double lo = 0.0; |
105 | double c; |
106 | double t; |
107 | int32_t k=0; |
108 | int32_t xsb; |
109 | u_int32_t hx; |
110 | |
111 | GET_HIGH_WORD(hx,x); |
112 | xsb = (hx>>31)&1; /* sign bit of x */ |
113 | hx &= 0x7fffffff; /* high word of |x| */ |
114 | |
115 | /* filter out non-finite argument */ |
116 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
117 | if(hx>=0x7ff00000) { |
118 | u_int32_t lx; |
119 | GET_LOW_WORD(lx,x); |
120 | if(((hx&0xfffff)|lx)!=0) |
121 | return x+x; /* NaN */ |
122 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
123 | } |
124 | #if 1 |
125 | if(x > o_threshold) return huge*huge; /* overflow */ |
126 | #else /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */ |
127 | if(x > o_threshold) return INFINITY; /* overflow */ |
128 | #endif |
129 | |
130 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
131 | } |
132 | |
133 | /* argument reduction */ |
134 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
135 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
136 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
137 | } else { |
138 | k = (int32_t) (invln2*x+halF[xsb]); |
139 | t = k; |
140 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
141 | lo = t*ln2LO[0]; |
142 | } |
143 | x = hi - lo; |
144 | } |
145 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
146 | if(huge+x>one) return one+x;/* trigger inexact */ |
147 | } |
148 | else k = 0; |
149 | |
150 | /* x is now in primary range */ |
151 | t = x*x; |
152 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
153 | if(k==0) return one-((x*c)/(c-2.0)-x); |
154 | else y = one-((lo-(x*c)/(2.0-c))-hi); |
155 | if(k >= -1021) { |
156 | u_int32_t hy; |
157 | GET_HIGH_WORD(hy,y); |
158 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ |
159 | return y; |
160 | } else { |
161 | u_int32_t hy; |
162 | GET_HIGH_WORD(hy,y); |
163 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ |
164 | return y*twom1000; |
165 | } |
166 | } |
167 | |
168 | /* |
169 | * wrapper exp(x) |
170 | */ |
171 | #ifndef _IEEE_LIBM |
172 | double exp(double x) |
173 | { |
174 | static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ |
175 | static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ |
176 | |
177 | double z = __ieee754_exp(x); |
178 | if (_LIB_VERSION == _IEEE_) |
179 | return z; |
180 | if (isfinite(x)) { |
181 | if (x > o_threshold) |
182 | return __kernel_standard(x, x, 6); /* exp overflow */ |
183 | if (x < u_threshold) |
184 | return __kernel_standard(x, x, 7); /* exp underflow */ |
185 | } |
186 | return z; |
187 | } |
188 | #else |
189 | strong_alias(__ieee754_exp, exp) |
190 | #endif |
191 | libm_hidden_def(exp) |
192 | |