1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* __ieee754_pow(x,y) return x**y |
13 | * |
14 | * n |
15 | * Method: Let x = 2 * (1+f) |
16 | * 1. Compute and return log2(x) in two pieces: |
17 | * log2(x) = w1 + w2, |
18 | * where w1 has 53-24 = 29 bit trailing zeros. |
19 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
20 | * arithmetic, where |y'|<=0.5. |
21 | * 3. Return x**y = 2**n*exp(y'*log2) |
22 | * |
23 | * Special cases: |
24 | * 1. +-1 ** anything is 1.0 |
25 | * 2. +-1 ** +-INF is 1.0 |
26 | * 3. (anything) ** 0 is 1 |
27 | * 4. (anything) ** 1 is itself |
28 | * 5. (anything) ** NAN is NAN |
29 | * 6. NAN ** (anything except 0) is NAN |
30 | * 7. +-(|x| > 1) ** +INF is +INF |
31 | * 8. +-(|x| > 1) ** -INF is +0 |
32 | * 9. +-(|x| < 1) ** +INF is +0 |
33 | * 10 +-(|x| < 1) ** -INF is +INF |
34 | * 11. +0 ** (+anything except 0, NAN) is +0 |
35 | * 12. -0 ** (+anything except 0, NAN, odd integer) is +0 |
36 | * 13. +0 ** (-anything except 0, NAN) is +INF |
37 | * 14. -0 ** (-anything except 0, NAN, odd integer) is +INF |
38 | * 15. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
39 | * 16. +INF ** (+anything except 0,NAN) is +INF |
40 | * 17. +INF ** (-anything except 0,NAN) is +0 |
41 | * 18. -INF ** (anything) = -0 ** (-anything) |
42 | * 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
43 | * 20. (-anything except 0 and inf) ** (non-integer) is NAN |
44 | * |
45 | * Accuracy: |
46 | * pow(x,y) returns x**y nearly rounded. In particular |
47 | * pow(integer,integer) |
48 | * always returns the correct integer provided it is |
49 | * representable. |
50 | * |
51 | * Constants : |
52 | * The hexadecimal values are the intended ones for the following |
53 | * constants. The decimal values may be used, provided that the |
54 | * compiler will convert from decimal to binary accurately enough |
55 | * to produce the hexadecimal values shown. |
56 | */ |
57 | |
58 | #include "math_libm.h" |
59 | #include "math_private.h" |
60 | |
61 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ |
62 | /* C4756: overflow in constant arithmetic */ |
63 | #pragma warning ( disable : 4756 ) |
64 | #endif |
65 | |
66 | #ifdef __WATCOMC__ /* Watcom defines huge=__huge */ |
67 | #undef huge |
68 | #endif |
69 | |
70 | static const double |
71 | bp[] = {1.0, 1.5,}, |
72 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
73 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
74 | zero = 0.0, |
75 | one = 1.0, |
76 | two = 2.0, |
77 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
78 | huge = 1.0e300, |
79 | tiny = 1.0e-300, |
80 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
81 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
82 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
83 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
84 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
85 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
86 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
87 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
88 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
89 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
90 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
91 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
92 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
93 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
94 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
95 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
96 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
97 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
98 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
99 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
100 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
101 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
102 | |
103 | double attribute_hidden __ieee754_pow(double x, double y) |
104 | { |
105 | double z,ax,z_h,z_l,p_h,p_l; |
106 | double y1,t1,t2,r,s,t,u,v,w; |
107 | int32_t i,j,k,yisint,n; |
108 | int32_t hx,hy,ix,iy; |
109 | u_int32_t lx,ly; |
110 | |
111 | EXTRACT_WORDS(hx,lx,x); |
112 | /* x==1: 1**y = 1 (even if y is NaN) */ |
113 | if (hx==0x3ff00000 && lx==0) { |
114 | return x; |
115 | } |
116 | ix = hx&0x7fffffff; |
117 | |
118 | EXTRACT_WORDS(hy,ly,y); |
119 | iy = hy&0x7fffffff; |
120 | |
121 | /* y==zero: x**0 = 1 */ |
122 | if((iy|ly)==0) return one; |
123 | |
124 | /* +-NaN return x+y */ |
125 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
126 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
127 | return x+y; |
128 | |
129 | /* determine if y is an odd int when x < 0 |
130 | * yisint = 0 ... y is not an integer |
131 | * yisint = 1 ... y is an odd int |
132 | * yisint = 2 ... y is an even int |
133 | */ |
134 | yisint = 0; |
135 | if(hx<0) { |
136 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
137 | else if(iy>=0x3ff00000) { |
138 | k = (iy>>20)-0x3ff; /* exponent */ |
139 | if(k>20) { |
140 | j = ly>>(52-k); |
141 | if((j<<(52-k))==ly) yisint = 2-(j&1); |
142 | } else if(ly==0) { |
143 | j = iy>>(20-k); |
144 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
145 | } |
146 | } |
147 | } |
148 | |
149 | /* special value of y */ |
150 | if(ly==0) { |
151 | if (iy==0x7ff00000) { /* y is +-inf */ |
152 | if (((ix-0x3ff00000)|lx)==0) |
153 | return one; /* +-1**+-inf is 1 (yes, weird rule) */ |
154 | if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ |
155 | return (hy>=0) ? y : zero; |
156 | /* (|x|<1)**-,+inf = inf,0 */ |
157 | return (hy<0) ? -y : zero; |
158 | } |
159 | if(iy==0x3ff00000) { /* y is +-1 */ |
160 | if(hy<0) return one/x; else return x; |
161 | } |
162 | if(hy==0x40000000) return x*x; /* y is 2 */ |
163 | if(hy==0x3fe00000) { /* y is 0.5 */ |
164 | if(hx>=0) /* x >= +0 */ |
165 | return __ieee754_sqrt(x); |
166 | } |
167 | } |
168 | |
169 | ax = fabs(x); |
170 | /* special value of x */ |
171 | if(lx==0) { |
172 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
173 | z = ax; /*x is +-0,+-inf,+-1*/ |
174 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
175 | if(hx<0) { |
176 | if(((ix-0x3ff00000)|yisint)==0) { |
177 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
178 | } else if(yisint==1) |
179 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
180 | } |
181 | return z; |
182 | } |
183 | } |
184 | |
185 | /* (x<0)**(non-int) is NaN */ |
186 | if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
187 | |
188 | /* |y| is huge */ |
189 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
190 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
191 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
192 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
193 | } |
194 | /* over/underflow if x is not close to one */ |
195 | if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
196 | if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
197 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
198 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
199 | t = x-1; /* t has 20 trailing zeros */ |
200 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
201 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
202 | v = t*ivln2_l-w*ivln2; |
203 | t1 = u+v; |
204 | SET_LOW_WORD(t1,0); |
205 | t2 = v-(t1-u); |
206 | } else { |
207 | double s2,s_h,s_l,t_h,t_l; |
208 | n = 0; |
209 | /* take care subnormal number */ |
210 | if(ix<0x00100000) |
211 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
212 | n += ((ix)>>20)-0x3ff; |
213 | j = ix&0x000fffff; |
214 | /* determine interval */ |
215 | ix = j|0x3ff00000; /* normalize ix */ |
216 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
217 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
218 | else {k=0;n+=1;ix -= 0x00100000;} |
219 | SET_HIGH_WORD(ax,ix); |
220 | |
221 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
222 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
223 | v = one/(ax+bp[k]); |
224 | s = u*v; |
225 | s_h = s; |
226 | SET_LOW_WORD(s_h,0); |
227 | /* t_h=ax+bp[k] High */ |
228 | t_h = zero; |
229 | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
230 | t_l = ax - (t_h-bp[k]); |
231 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
232 | /* compute log(ax) */ |
233 | s2 = s*s; |
234 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
235 | r += s_l*(s_h+s); |
236 | s2 = s_h*s_h; |
237 | t_h = 3.0+s2+r; |
238 | SET_LOW_WORD(t_h,0); |
239 | t_l = r-((t_h-3.0)-s2); |
240 | /* u+v = s*(1+...) */ |
241 | u = s_h*t_h; |
242 | v = s_l*t_h+t_l*s; |
243 | /* 2/(3log2)*(s+...) */ |
244 | p_h = u+v; |
245 | SET_LOW_WORD(p_h,0); |
246 | p_l = v-(p_h-u); |
247 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
248 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
249 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
250 | t = (double)n; |
251 | t1 = (((z_h+z_l)+dp_h[k])+t); |
252 | SET_LOW_WORD(t1,0); |
253 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
254 | } |
255 | |
256 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
257 | if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) |
258 | s = -one;/* (-ve)**(odd int) */ |
259 | |
260 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
261 | y1 = y; |
262 | SET_LOW_WORD(y1,0); |
263 | p_l = (y-y1)*t1+y*t2; |
264 | p_h = y1*t1; |
265 | z = p_l+p_h; |
266 | EXTRACT_WORDS(j,i,z); |
267 | if (j>=0x40900000) { /* z >= 1024 */ |
268 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
269 | return s*huge*huge; /* overflow */ |
270 | else { |
271 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
272 | } |
273 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
274 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
275 | return s*tiny*tiny; /* underflow */ |
276 | else { |
277 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
278 | } |
279 | } |
280 | /* |
281 | * compute 2**(p_h+p_l) |
282 | */ |
283 | i = j&0x7fffffff; |
284 | k = (i>>20)-0x3ff; |
285 | n = 0; |
286 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
287 | n = j+(0x00100000>>(k+1)); |
288 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
289 | t = zero; |
290 | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
291 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
292 | if(j<0) n = -n; |
293 | p_h -= t; |
294 | } |
295 | t = p_l+p_h; |
296 | SET_LOW_WORD(t,0); |
297 | u = t*lg2_h; |
298 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
299 | z = u+v; |
300 | w = v-(z-u); |
301 | t = z*z; |
302 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
303 | r = (z*t1)/(t1-two)-(w+z*w); |
304 | z = one-(r-z); |
305 | GET_HIGH_WORD(j,z); |
306 | j += (n<<20); |
307 | if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ |
308 | else SET_HIGH_WORD(z,j); |
309 | return s*z; |
310 | } |
311 | |
312 | /* |
313 | * wrapper pow(x,y) return x**y |
314 | */ |
315 | #ifndef _IEEE_LIBM |
316 | double pow(double x, double y) |
317 | { |
318 | double z = __ieee754_pow(x, y); |
319 | if (_LIB_VERSION == _IEEE_|| isnan(y)) |
320 | return z; |
321 | if (isnan(x)) { |
322 | if (y == 0.0) |
323 | return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */ |
324 | return z; |
325 | } |
326 | if (x == 0.0) { |
327 | if (y == 0.0) |
328 | return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */ |
329 | if (isfinite(y) && y < 0.0) |
330 | return __kernel_standard(x,y,23); /* pow(0.0,negative) */ |
331 | return z; |
332 | } |
333 | if (!isfinite(z)) { |
334 | if (isfinite(x) && isfinite(y)) { |
335 | if (isnan(z)) |
336 | return __kernel_standard(x, y, 24); /* pow neg**non-int */ |
337 | return __kernel_standard(x, y, 21); /* pow overflow */ |
338 | } |
339 | } |
340 | if (z == 0.0 && isfinite(x) && isfinite(y)) |
341 | return __kernel_standard(x, y, 22); /* pow underflow */ |
342 | return z; |
343 | } |
344 | #else |
345 | strong_alias(__ieee754_pow, pow) |
346 | #endif |
347 | libm_hidden_def(pow) |
348 | |