1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* |
13 | * __kernel_cos( x, y ) |
14 | * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
15 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
16 | * Input y is the tail of x. |
17 | * |
18 | * Algorithm |
19 | * 1. Since cos(-x) = cos(x), we need only to consider positive x. |
20 | * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
21 | * 3. cos(x) is approximated by a polynomial of degree 14 on |
22 | * [0,pi/4] |
23 | * 4 14 |
24 | * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
25 | * where the remez error is |
26 | * |
27 | * | 2 4 6 8 10 12 14 | -58 |
28 | * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
29 | * | | |
30 | * |
31 | * 4 6 8 10 12 14 |
32 | * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
33 | * cos(x) = 1 - x*x/2 + r |
34 | * since cos(x+y) ~ cos(x) - sin(x)*y |
35 | * ~ cos(x) - x*y, |
36 | * a correction term is necessary in cos(x) and hence |
37 | * cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
38 | * For better accuracy when x > 0.3, let qx = |x|/4 with |
39 | * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
40 | * Then |
41 | * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
42 | * Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
43 | * magnitude of the latter is at least a quarter of x*x/2, |
44 | * thus, reducing the rounding error in the subtraction. |
45 | */ |
46 | |
47 | #include "math_libm.h" |
48 | #include "math_private.h" |
49 | |
50 | static const double |
51 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
52 | C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
53 | C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
54 | C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
55 | C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
56 | C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
57 | C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
58 | |
59 | double attribute_hidden __kernel_cos(double x, double y) |
60 | { |
61 | double a,hz,z,r,qx; |
62 | int32_t ix; |
63 | GET_HIGH_WORD(ix,x); |
64 | ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
65 | if(ix<0x3e400000) { /* if x < 2**27 */ |
66 | if(((int)x)==0) return one; /* generate inexact */ |
67 | } |
68 | z = x*x; |
69 | r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
70 | if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
71 | return one - (0.5*z - (z*r - x*y)); |
72 | else { |
73 | if(ix > 0x3fe90000) { /* x > 0.78125 */ |
74 | qx = 0.28125; |
75 | } else { |
76 | INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ |
77 | } |
78 | hz = 0.5*z-qx; |
79 | a = one-qx; |
80 | return a - (hz - (z*r-x*y)); |
81 | } |
82 | } |
83 | |