| 1 | #include "SDL_internal.h" | 
|---|
| 2 | /* | 
|---|
| 3 | * ==================================================== | 
|---|
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|---|
| 5 | * | 
|---|
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|---|
| 7 | * Permission to use, copy, modify, and distribute this | 
|---|
| 8 | * software is freely granted, provided that this notice | 
|---|
| 9 | * is preserved. | 
|---|
| 10 | * ==================================================== | 
|---|
| 11 | */ | 
|---|
| 12 |  | 
|---|
| 13 | /* | 
|---|
| 14 | * __kernel_cos( x,  y ) | 
|---|
| 15 | * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 | 
|---|
| 16 | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|---|
| 17 | * Input y is the tail of x. | 
|---|
| 18 | * | 
|---|
| 19 | * Algorithm | 
|---|
| 20 | *	1. Since cos(-x) = cos(x), we need only to consider positive x. | 
|---|
| 21 | *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. | 
|---|
| 22 | *	3. cos(x) is approximated by a polynomial of degree 14 on | 
|---|
| 23 | *	   [0,pi/4] | 
|---|
| 24 | *		  	                 4            14 | 
|---|
| 25 | *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x | 
|---|
| 26 | *	   where the remez error is | 
|---|
| 27 | * | 
|---|
| 28 | * 	|              2     4     6     8     10    12     14 |     -58 | 
|---|
| 29 | * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2 | 
|---|
| 30 | * 	|    					               | | 
|---|
| 31 | * | 
|---|
| 32 | * 	               4     6     8     10    12     14 | 
|---|
| 33 | *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then | 
|---|
| 34 | *	       cos(x) = 1 - x*x/2 + r | 
|---|
| 35 | *	   since cos(x+y) ~ cos(x) - sin(x)*y | 
|---|
| 36 | *			  ~ cos(x) - x*y, | 
|---|
| 37 | *	   a correction term is necessary in cos(x) and hence | 
|---|
| 38 | *		cos(x+y) = 1 - (x*x/2 - (r - x*y)) | 
|---|
| 39 | *	   For better accuracy when x > 0.3, let qx = |x|/4 with | 
|---|
| 40 | *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. | 
|---|
| 41 | *	   Then | 
|---|
| 42 | *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). | 
|---|
| 43 | *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the | 
|---|
| 44 | *	   magnitude of the latter is at least a quarter of x*x/2, | 
|---|
| 45 | *	   thus, reducing the rounding error in the subtraction. | 
|---|
| 46 | */ | 
|---|
| 47 |  | 
|---|
| 48 | #include "math_libm.h" | 
|---|
| 49 | #include "math_private.h" | 
|---|
| 50 |  | 
|---|
| 51 | static const double | 
|---|
| 52 | one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|---|
| 53 | C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ | 
|---|
| 54 | C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ | 
|---|
| 55 | C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ | 
|---|
| 56 | C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ | 
|---|
| 57 | C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ | 
|---|
| 58 | C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ | 
|---|
| 59 |  | 
|---|
| 60 | double attribute_hidden __kernel_cos(double x, double y) | 
|---|
| 61 | { | 
|---|
| 62 | double a,hz,z,r,qx; | 
|---|
| 63 | int32_t ix; | 
|---|
| 64 | GET_HIGH_WORD(ix,x); | 
|---|
| 65 | ix &= 0x7fffffff;			/* ix = |x|'s high word*/ | 
|---|
| 66 | if(ix<0x3e400000) {			/* if x < 2**27 */ | 
|---|
| 67 | if(((int)x)==0) return one;		/* generate inexact */ | 
|---|
| 68 | } | 
|---|
| 69 | z  = x*x; | 
|---|
| 70 | r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); | 
|---|
| 71 | if(ix < 0x3FD33333) 			/* if |x| < 0.3 */ | 
|---|
| 72 | return one - (0.5*z - (z*r - x*y)); | 
|---|
| 73 | else { | 
|---|
| 74 | if(ix > 0x3fe90000) {		/* x > 0.78125 */ | 
|---|
| 75 | qx = 0.28125; | 
|---|
| 76 | } else { | 
|---|
| 77 | INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */ | 
|---|
| 78 | } | 
|---|
| 79 | hz = 0.5*z-qx; | 
|---|
| 80 | a  = one-qx; | 
|---|
| 81 | return a - (hz - (z*r-x*y)); | 
|---|
| 82 | } | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|