1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* __kernel_tan( x, y, k ) |
13 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
14 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
15 | * Input y is the tail of x. |
16 | * Input k indicates whether tan (if k=1) or |
17 | * -1/tan (if k= -1) is returned. |
18 | * |
19 | * Algorithm |
20 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
21 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
22 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
23 | * [0,0.67434] |
24 | * 3 27 |
25 | * tan(x) ~ x + T1*x + ... + T13*x |
26 | * where |
27 | * |
28 | * |tan(x) 2 4 26 | -59.2 |
29 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
30 | * | x | |
31 | * |
32 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
33 | * ~ tan(x) + (1+x*x)*y |
34 | * Therefore, for better accuracy in computing tan(x+y), let |
35 | * 3 2 2 2 2 |
36 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
37 | * then |
38 | * 3 2 |
39 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
40 | * |
41 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
42 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
43 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
44 | */ |
45 | |
46 | #include "math_libm.h" |
47 | #include "math_private.h" |
48 | |
49 | static const double |
50 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
51 | pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
52 | pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
53 | T[] = { |
54 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
55 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
56 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
57 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
58 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
59 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
60 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
61 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
62 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
63 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
64 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
65 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
66 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
67 | }; |
68 | |
69 | double attribute_hidden __kernel_tan(double x, double y, int iy) |
70 | { |
71 | double z,r,v,w,s; |
72 | int32_t ix,hx; |
73 | GET_HIGH_WORD(hx,x); |
74 | ix = hx&0x7fffffff; /* high word of |x| */ |
75 | if(ix<0x3e300000) /* x < 2**-28 */ |
76 | {if((int)x==0) { /* generate inexact */ |
77 | u_int32_t low; |
78 | GET_LOW_WORD(low,x); |
79 | if(((ix|low)|(iy+1))==0) return one/fabs(x); |
80 | else return (iy==1)? x: -one/x; |
81 | } |
82 | } |
83 | if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
84 | if(hx<0) {x = -x; y = -y;} |
85 | z = pio4-x; |
86 | w = pio4lo-y; |
87 | x = z+w; y = 0.0; |
88 | } |
89 | z = x*x; |
90 | w = z*z; |
91 | /* Break x^5*(T[1]+x^2*T[2]+...) into |
92 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
93 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
94 | */ |
95 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
96 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
97 | s = z*x; |
98 | r = y + z*(s*(r+v)+y); |
99 | r += T[0]*s; |
100 | w = x+r; |
101 | if(ix>=0x3FE59428) { |
102 | v = (double)iy; |
103 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
104 | } |
105 | if(iy==1) return w; |
106 | else { /* if allow error up to 2 ulp, |
107 | simply return -1.0/(x+r) here */ |
108 | /* compute -1.0/(x+r) accurately */ |
109 | double a,t; |
110 | z = w; |
111 | SET_LOW_WORD(z,0); |
112 | v = r-(z - x); /* z+v = r+x */ |
113 | t = a = -1.0/w; /* a = -1.0/w */ |
114 | SET_LOW_WORD(t,0); |
115 | s = 1.0+t*z; |
116 | return t+a*(s+t*v); |
117 | } |
118 | } |
119 | |