1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkMatrix_DEFINED |
9 | #define SkMatrix_DEFINED |
10 | |
11 | #include "include/core/SkRect.h" |
12 | #include "include/private/SkMacros.h" |
13 | #include "include/private/SkTo.h" |
14 | |
15 | struct SkRSXform; |
16 | struct SkPoint3; |
17 | |
18 | /** |
19 | * When we transform points through a matrix containing perspective (the bottom row is something |
20 | * other than 0,0,1), the bruteforce math can produce confusing results (since we might divide |
21 | * by 0, or a negative w value). By default, methods that map rects and paths will apply |
22 | * perspective clipping, but this can be changed by specifying kYes to those methods. |
23 | */ |
24 | enum class SkApplyPerspectiveClip { |
25 | kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix |
26 | kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix |
27 | }; |
28 | |
29 | /** \class SkMatrix |
30 | SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping |
31 | SkPoint and vectors with translation, scaling, skewing, rotation, and |
32 | perspective. |
33 | |
34 | SkMatrix elements are in row major order. SkMatrix does not have a constructor, |
35 | so it must be explicitly initialized. setIdentity() initializes SkMatrix |
36 | so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll() |
37 | initializes all SkMatrix elements with the corresponding mapping. |
38 | |
39 | SkMatrix includes a hidden variable that classifies the type of matrix to |
40 | improve performance. SkMatrix is not thread safe unless getType() is called first. |
41 | |
42 | example: https://fiddle.skia.org/c/@Matrix_063 |
43 | */ |
44 | SK_BEGIN_REQUIRE_DENSE |
45 | class SK_API SkMatrix { |
46 | public: |
47 | |
48 | /** Creates an identity SkMatrix: |
49 | |
50 | | 1 0 0 | |
51 | | 0 1 0 | |
52 | | 0 0 1 | |
53 | */ |
54 | constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {} |
55 | |
56 | /** Sets SkMatrix to scale by (sx, sy). Returned matrix is: |
57 | |
58 | | sx 0 0 | |
59 | | 0 sy 0 | |
60 | | 0 0 1 | |
61 | |
62 | @param sx horizontal scale factor |
63 | @param sy vertical scale factor |
64 | @return SkMatrix with scale |
65 | */ |
66 | static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) { |
67 | SkMatrix m; |
68 | m.setScale(sx, sy); |
69 | return m; |
70 | } |
71 | |
72 | /** Sets SkMatrix to scale by (scale, scale). Returned matrix is: |
73 | |
74 | | scale 0 0 | |
75 | | 0 scale 0 | |
76 | | 0 0 1 | |
77 | |
78 | @param scale horizontal and vertical scale factor |
79 | @return SkMatrix with scale |
80 | */ |
81 | static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) { |
82 | SkMatrix m; |
83 | m.setScale(scale, scale); |
84 | return m; |
85 | } |
86 | |
87 | /** Sets SkMatrix to translate by (dx, dy). Returned matrix is: |
88 | |
89 | | 1 0 dx | |
90 | | 0 1 dy | |
91 | | 0 0 1 | |
92 | |
93 | @param dx horizontal translation |
94 | @param dy vertical translation |
95 | @return SkMatrix with translation |
96 | */ |
97 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) { |
98 | SkMatrix m; |
99 | m.setTranslate(dx, dy); |
100 | return m; |
101 | } |
102 | |
103 | /** Sets SkMatrix to translate by (t.x(), t.y()). Returned matrix is: |
104 | |
105 | | 1 0 t.x() | |
106 | | 0 1 t.y() | |
107 | | 0 0 1 | |
108 | |
109 | @param t translation vector |
110 | @return SkMatrix with translation |
111 | */ |
112 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkVector t) { return MakeTrans(t.x(), t.y()); } |
113 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkIVector t) { return MakeTrans(t.x(), t.y()); } |
114 | |
115 | /** Sets SkMatrix to: |
116 | |
117 | | scaleX skewX transX | |
118 | | skewY scaleY transY | |
119 | | pers0 pers1 pers2 | |
120 | |
121 | @param scaleX horizontal scale factor |
122 | @param skewX horizontal skew factor |
123 | @param transX horizontal translation |
124 | @param skewY vertical skew factor |
125 | @param scaleY vertical scale factor |
126 | @param transY vertical translation |
127 | @param pers0 input x-axis perspective factor |
128 | @param pers1 input y-axis perspective factor |
129 | @param pers2 perspective scale factor |
130 | @return SkMatrix constructed from parameters |
131 | */ |
132 | static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
133 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
134 | SkScalar pers0, SkScalar pers1, SkScalar pers2) { |
135 | SkMatrix m; |
136 | m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2); |
137 | return m; |
138 | } |
139 | |
140 | /** \enum SkMatrix::TypeMask |
141 | Enum of bit fields for mask returned by getType(). |
142 | Used to identify the complexity of SkMatrix, to optimize performance. |
143 | */ |
144 | enum TypeMask { |
145 | kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear |
146 | kTranslate_Mask = 0x01, //!< translation SkMatrix |
147 | kScale_Mask = 0x02, //!< scale SkMatrix |
148 | kAffine_Mask = 0x04, //!< skew or rotate SkMatrix |
149 | kPerspective_Mask = 0x08, //!< perspective SkMatrix |
150 | }; |
151 | |
152 | /** Returns a bit field describing the transformations the matrix may |
153 | perform. The bit field is computed conservatively, so it may include |
154 | false positives. For example, when kPerspective_Mask is set, all |
155 | other bits are set. |
156 | |
157 | @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, |
158 | kAffine_Mask, kPerspective_Mask |
159 | */ |
160 | TypeMask getType() const { |
161 | if (fTypeMask & kUnknown_Mask) { |
162 | fTypeMask = this->computeTypeMask(); |
163 | } |
164 | // only return the public masks |
165 | return (TypeMask)(fTypeMask & 0xF); |
166 | } |
167 | |
168 | /** Returns true if SkMatrix is identity. Identity matrix is: |
169 | |
170 | | 1 0 0 | |
171 | | 0 1 0 | |
172 | | 0 0 1 | |
173 | |
174 | @return true if SkMatrix has no effect |
175 | */ |
176 | bool isIdentity() const { |
177 | return this->getType() == 0; |
178 | } |
179 | |
180 | /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity, |
181 | contain only scale elements, only translate elements, or both. SkMatrix form is: |
182 | |
183 | | scale-x 0 translate-x | |
184 | | 0 scale-y translate-y | |
185 | | 0 0 1 | |
186 | |
187 | @return true if SkMatrix is identity; or scales, translates, or both |
188 | */ |
189 | bool isScaleTranslate() const { |
190 | return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
191 | } |
192 | |
193 | /** Returns true if SkMatrix is identity, or translates. SkMatrix form is: |
194 | |
195 | | 1 0 translate-x | |
196 | | 0 1 translate-y | |
197 | | 0 0 1 | |
198 | |
199 | @return true if SkMatrix is identity, or translates |
200 | */ |
201 | bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); } |
202 | |
203 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
204 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
205 | cases, SkMatrix may also have translation. SkMatrix form is either: |
206 | |
207 | | scale-x 0 translate-x | |
208 | | 0 scale-y translate-y | |
209 | | 0 0 1 | |
210 | |
211 | or |
212 | |
213 | | 0 rotate-x translate-x | |
214 | | rotate-y 0 translate-y | |
215 | | 0 0 1 | |
216 | |
217 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
218 | |
219 | Also called preservesAxisAlignment(); use the one that provides better inline |
220 | documentation. |
221 | |
222 | @return true if SkMatrix maps one SkRect into another |
223 | */ |
224 | bool rectStaysRect() const { |
225 | if (fTypeMask & kUnknown_Mask) { |
226 | fTypeMask = this->computeTypeMask(); |
227 | } |
228 | return (fTypeMask & kRectStaysRect_Mask) != 0; |
229 | } |
230 | |
231 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
232 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
233 | cases, SkMatrix may also have translation. SkMatrix form is either: |
234 | |
235 | | scale-x 0 translate-x | |
236 | | 0 scale-y translate-y | |
237 | | 0 0 1 | |
238 | |
239 | or |
240 | |
241 | | 0 rotate-x translate-x | |
242 | | rotate-y 0 translate-y | |
243 | | 0 0 1 | |
244 | |
245 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
246 | |
247 | Also called rectStaysRect(); use the one that provides better inline |
248 | documentation. |
249 | |
250 | @return true if SkMatrix maps one SkRect into another |
251 | */ |
252 | bool preservesAxisAlignment() const { return this->rectStaysRect(); } |
253 | |
254 | /** Returns true if the matrix contains perspective elements. SkMatrix form is: |
255 | |
256 | | -- -- -- | |
257 | | -- -- -- | |
258 | | perspective-x perspective-y perspective-scale | |
259 | |
260 | where perspective-x or perspective-y is non-zero, or perspective-scale is |
261 | not one. All other elements may have any value. |
262 | |
263 | @return true if SkMatrix is in most general form |
264 | */ |
265 | bool hasPerspective() const { |
266 | return SkToBool(this->getPerspectiveTypeMaskOnly() & |
267 | kPerspective_Mask); |
268 | } |
269 | |
270 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
271 | uniform scale. |
272 | Returns false if SkMatrix contains different scales, skewing, perspective, or |
273 | degenerate forms that collapse to a line or point. |
274 | |
275 | Describes that the SkMatrix makes rendering with and without the matrix are |
276 | visually alike; a transformed circle remains a circle. Mathematically, this is |
277 | referred to as similarity of a Euclidean space, or a similarity transformation. |
278 | |
279 | Preserves right angles, keeping the arms of the angle equal lengths. |
280 | |
281 | @param tol to be deprecated |
282 | @return true if SkMatrix only rotates, uniformly scales, translates |
283 | |
284 | example: https://fiddle.skia.org/c/@Matrix_isSimilarity |
285 | */ |
286 | bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; |
287 | |
288 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
289 | scale. Scale may differ along rotated axes. |
290 | Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse |
291 | to a line or point. |
292 | |
293 | Preserves right angles, but not requiring that the arms of the angle |
294 | retain equal lengths. |
295 | |
296 | @param tol to be deprecated |
297 | @return true if SkMatrix only rotates, scales, translates |
298 | |
299 | example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles |
300 | */ |
301 | bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; |
302 | |
303 | /** SkMatrix organizes its values in row order. These members correspond to |
304 | each value in SkMatrix. |
305 | */ |
306 | static constexpr int kMScaleX = 0; //!< horizontal scale factor |
307 | static constexpr int kMSkewX = 1; //!< horizontal skew factor |
308 | static constexpr int kMTransX = 2; //!< horizontal translation |
309 | static constexpr int kMSkewY = 3; //!< vertical skew factor |
310 | static constexpr int kMScaleY = 4; //!< vertical scale factor |
311 | static constexpr int kMTransY = 5; //!< vertical translation |
312 | static constexpr int kMPersp0 = 6; //!< input x perspective factor |
313 | static constexpr int kMPersp1 = 7; //!< input y perspective factor |
314 | static constexpr int kMPersp2 = 8; //!< perspective bias |
315 | |
316 | /** Affine arrays are in column major order to match the matrix used by |
317 | PDF and XPS. |
318 | */ |
319 | static constexpr int kAScaleX = 0; //!< horizontal scale factor |
320 | static constexpr int kASkewY = 1; //!< vertical skew factor |
321 | static constexpr int kASkewX = 2; //!< horizontal skew factor |
322 | static constexpr int kAScaleY = 3; //!< vertical scale factor |
323 | static constexpr int kATransX = 4; //!< horizontal translation |
324 | static constexpr int kATransY = 5; //!< vertical translation |
325 | |
326 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
327 | defined. |
328 | |
329 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
330 | kMPersp0, kMPersp1, kMPersp2 |
331 | @return value corresponding to index |
332 | */ |
333 | SkScalar operator[](int index) const { |
334 | SkASSERT((unsigned)index < 9); |
335 | return fMat[index]; |
336 | } |
337 | |
338 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
339 | defined. |
340 | |
341 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
342 | kMPersp0, kMPersp1, kMPersp2 |
343 | @return value corresponding to index |
344 | */ |
345 | SkScalar get(int index) const { |
346 | SkASSERT((unsigned)index < 9); |
347 | return fMat[index]; |
348 | } |
349 | |
350 | /** Returns scale factor multiplied by x-axis input, contributing to x-axis output. |
351 | With mapPoints(), scales SkPoint along the x-axis. |
352 | |
353 | @return horizontal scale factor |
354 | */ |
355 | SkScalar getScaleX() const { return fMat[kMScaleX]; } |
356 | |
357 | /** Returns scale factor multiplied by y-axis input, contributing to y-axis output. |
358 | With mapPoints(), scales SkPoint along the y-axis. |
359 | |
360 | @return vertical scale factor |
361 | */ |
362 | SkScalar getScaleY() const { return fMat[kMScaleY]; } |
363 | |
364 | /** Returns scale factor multiplied by x-axis input, contributing to y-axis output. |
365 | With mapPoints(), skews SkPoint along the y-axis. |
366 | Skewing both axes can rotate SkPoint. |
367 | |
368 | @return vertical skew factor |
369 | */ |
370 | SkScalar getSkewY() const { return fMat[kMSkewY]; } |
371 | |
372 | /** Returns scale factor multiplied by y-axis input, contributing to x-axis output. |
373 | With mapPoints(), skews SkPoint along the x-axis. |
374 | Skewing both axes can rotate SkPoint. |
375 | |
376 | @return horizontal scale factor |
377 | */ |
378 | SkScalar getSkewX() const { return fMat[kMSkewX]; } |
379 | |
380 | /** Returns translation contributing to x-axis output. |
381 | With mapPoints(), moves SkPoint along the x-axis. |
382 | |
383 | @return horizontal translation factor |
384 | */ |
385 | SkScalar getTranslateX() const { return fMat[kMTransX]; } |
386 | |
387 | /** Returns translation contributing to y-axis output. |
388 | With mapPoints(), moves SkPoint along the y-axis. |
389 | |
390 | @return vertical translation factor |
391 | */ |
392 | SkScalar getTranslateY() const { return fMat[kMTransY]; } |
393 | |
394 | /** Returns factor scaling input x-axis relative to input y-axis. |
395 | |
396 | @return input x-axis perspective factor |
397 | */ |
398 | SkScalar getPerspX() const { return fMat[kMPersp0]; } |
399 | |
400 | /** Returns factor scaling input y-axis relative to input x-axis. |
401 | |
402 | @return input y-axis perspective factor |
403 | */ |
404 | SkScalar getPerspY() const { return fMat[kMPersp1]; } |
405 | |
406 | /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
407 | defined. Clears internal cache anticipating that caller will change SkMatrix value. |
408 | |
409 | Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix |
410 | value must be followed by dirtyMatrixTypeCache(). |
411 | |
412 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
413 | kMPersp0, kMPersp1, kMPersp2 |
414 | @return writable value corresponding to index |
415 | */ |
416 | SkScalar& operator[](int index) { |
417 | SkASSERT((unsigned)index < 9); |
418 | this->setTypeMask(kUnknown_Mask); |
419 | return fMat[index]; |
420 | } |
421 | |
422 | /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
423 | defined. Safer than operator[]; internal cache is always maintained. |
424 | |
425 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
426 | kMPersp0, kMPersp1, kMPersp2 |
427 | @param value scalar to store in SkMatrix |
428 | */ |
429 | SkMatrix& set(int index, SkScalar value) { |
430 | SkASSERT((unsigned)index < 9); |
431 | fMat[index] = value; |
432 | this->setTypeMask(kUnknown_Mask); |
433 | return *this; |
434 | } |
435 | |
436 | /** Sets horizontal scale factor. |
437 | |
438 | @param v horizontal scale factor to store |
439 | */ |
440 | SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); } |
441 | |
442 | /** Sets vertical scale factor. |
443 | |
444 | @param v vertical scale factor to store |
445 | */ |
446 | SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); } |
447 | |
448 | /** Sets vertical skew factor. |
449 | |
450 | @param v vertical skew factor to store |
451 | */ |
452 | SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); } |
453 | |
454 | /** Sets horizontal skew factor. |
455 | |
456 | @param v horizontal skew factor to store |
457 | */ |
458 | SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); } |
459 | |
460 | /** Sets horizontal translation. |
461 | |
462 | @param v horizontal translation to store |
463 | */ |
464 | SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); } |
465 | |
466 | /** Sets vertical translation. |
467 | |
468 | @param v vertical translation to store |
469 | */ |
470 | SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); } |
471 | |
472 | /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values |
473 | inversely proportional to input y-axis values. |
474 | |
475 | @param v perspective factor |
476 | */ |
477 | SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); } |
478 | |
479 | /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values |
480 | inversely proportional to input x-axis values. |
481 | |
482 | @param v perspective factor |
483 | */ |
484 | SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); } |
485 | |
486 | /** Sets all values from parameters. Sets matrix to: |
487 | |
488 | | scaleX skewX transX | |
489 | | skewY scaleY transY | |
490 | | persp0 persp1 persp2 | |
491 | |
492 | @param scaleX horizontal scale factor to store |
493 | @param skewX horizontal skew factor to store |
494 | @param transX horizontal translation to store |
495 | @param skewY vertical skew factor to store |
496 | @param scaleY vertical scale factor to store |
497 | @param transY vertical translation to store |
498 | @param persp0 input x-axis values perspective factor to store |
499 | @param persp1 input y-axis values perspective factor to store |
500 | @param persp2 perspective scale factor to store |
501 | */ |
502 | SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
503 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
504 | SkScalar persp0, SkScalar persp1, SkScalar persp2) { |
505 | fMat[kMScaleX] = scaleX; |
506 | fMat[kMSkewX] = skewX; |
507 | fMat[kMTransX] = transX; |
508 | fMat[kMSkewY] = skewY; |
509 | fMat[kMScaleY] = scaleY; |
510 | fMat[kMTransY] = transY; |
511 | fMat[kMPersp0] = persp0; |
512 | fMat[kMPersp1] = persp1; |
513 | fMat[kMPersp2] = persp2; |
514 | this->setTypeMask(kUnknown_Mask); |
515 | return *this; |
516 | } |
517 | |
518 | /** Copies nine scalar values contained by SkMatrix into buffer, in member value |
519 | ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
520 | kMPersp0, kMPersp1, kMPersp2. |
521 | |
522 | @param buffer storage for nine scalar values |
523 | */ |
524 | void get9(SkScalar buffer[9]) const { |
525 | memcpy(buffer, fMat, 9 * sizeof(SkScalar)); |
526 | } |
527 | |
528 | /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order: |
529 | kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, |
530 | kMPersp2. |
531 | |
532 | Sets matrix to: |
533 | |
534 | | buffer[0] buffer[1] buffer[2] | |
535 | | buffer[3] buffer[4] buffer[5] | |
536 | | buffer[6] buffer[7] buffer[8] | |
537 | |
538 | In the future, set9 followed by get9 may not return the same values. Since SkMatrix |
539 | maps non-homogeneous coordinates, scaling all nine values produces an equivalent |
540 | transformation, possibly improving precision. |
541 | |
542 | @param buffer nine scalar values |
543 | */ |
544 | SkMatrix& set9(const SkScalar buffer[9]); |
545 | |
546 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
547 | |
548 | | 1 0 0 | |
549 | | 0 1 0 | |
550 | | 0 0 1 | |
551 | |
552 | Also called setIdentity(); use the one that provides better inline |
553 | documentation. |
554 | */ |
555 | SkMatrix& reset(); |
556 | |
557 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
558 | |
559 | | 1 0 0 | |
560 | | 0 1 0 | |
561 | | 0 0 1 | |
562 | |
563 | Also called reset(); use the one that provides better inline |
564 | documentation. |
565 | */ |
566 | SkMatrix& setIdentity() { return this->reset(); } |
567 | |
568 | /** Sets SkMatrix to translate by (dx, dy). |
569 | |
570 | @param dx horizontal translation |
571 | @param dy vertical translation |
572 | */ |
573 | SkMatrix& setTranslate(SkScalar dx, SkScalar dy); |
574 | |
575 | /** Sets SkMatrix to translate by (v.fX, v.fY). |
576 | |
577 | @param v vector containing horizontal and vertical translation |
578 | */ |
579 | SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); } |
580 | |
581 | /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py). |
582 | The pivot point is unchanged when mapped with SkMatrix. |
583 | |
584 | @param sx horizontal scale factor |
585 | @param sy vertical scale factor |
586 | @param px pivot on x-axis |
587 | @param py pivot on y-axis |
588 | */ |
589 | SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
590 | |
591 | /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0). |
592 | |
593 | @param sx horizontal scale factor |
594 | @param sy vertical scale factor |
595 | */ |
596 | SkMatrix& setScale(SkScalar sx, SkScalar sy); |
597 | |
598 | /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py). |
599 | The pivot point is unchanged when mapped with SkMatrix. |
600 | |
601 | Positive degrees rotates clockwise. |
602 | |
603 | @param degrees angle of axes relative to upright axes |
604 | @param px pivot on x-axis |
605 | @param py pivot on y-axis |
606 | */ |
607 | SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py); |
608 | |
609 | /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0). |
610 | Positive degrees rotates clockwise. |
611 | |
612 | @param degrees angle of axes relative to upright axes |
613 | */ |
614 | SkMatrix& setRotate(SkScalar degrees); |
615 | |
616 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py). |
617 | The pivot point is unchanged when mapped with SkMatrix. |
618 | |
619 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
620 | Vector length specifies scale. |
621 | |
622 | @param sinValue rotation vector x-axis component |
623 | @param cosValue rotation vector y-axis component |
624 | @param px pivot on x-axis |
625 | @param py pivot on y-axis |
626 | */ |
627 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue, |
628 | SkScalar px, SkScalar py); |
629 | |
630 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0). |
631 | |
632 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
633 | Vector length specifies scale. |
634 | |
635 | @param sinValue rotation vector x-axis component |
636 | @param cosValue rotation vector y-axis component |
637 | */ |
638 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue); |
639 | |
640 | /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form. |
641 | |
642 | Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative |
643 | to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled |
644 | by vector, then translated by (rsxForm.fTx, rsxForm.fTy). |
645 | |
646 | @param rsxForm compressed SkRSXform matrix |
647 | @return reference to SkMatrix |
648 | |
649 | example: https://fiddle.skia.org/c/@Matrix_setRSXform |
650 | */ |
651 | SkMatrix& setRSXform(const SkRSXform& rsxForm); |
652 | |
653 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py). |
654 | The pivot point is unchanged when mapped with SkMatrix. |
655 | |
656 | @param kx horizontal skew factor |
657 | @param ky vertical skew factor |
658 | @param px pivot on x-axis |
659 | @param py pivot on y-axis |
660 | */ |
661 | SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
662 | |
663 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0). |
664 | |
665 | @param kx horizontal skew factor |
666 | @param ky vertical skew factor |
667 | */ |
668 | SkMatrix& setSkew(SkScalar kx, SkScalar ky); |
669 | |
670 | /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this. |
671 | |
672 | Given: |
673 | |
674 | | A B C | | J K L | |
675 | a = | D E F |, b = | M N O | |
676 | | G H I | | P Q R | |
677 | |
678 | sets SkMatrix to: |
679 | |
680 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
681 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
682 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
683 | |
684 | @param a SkMatrix on left side of multiply expression |
685 | @param b SkMatrix on right side of multiply expression |
686 | */ |
687 | SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b); |
688 | |
689 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy). |
690 | This can be thought of as moving the point to be mapped before applying SkMatrix. |
691 | |
692 | Given: |
693 | |
694 | | A B C | | 1 0 dx | |
695 | Matrix = | D E F |, T(dx, dy) = | 0 1 dy | |
696 | | G H I | | 0 0 1 | |
697 | |
698 | sets SkMatrix to: |
699 | |
700 | | A B C | | 1 0 dx | | A B A*dx+B*dy+C | |
701 | Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F | |
702 | | G H I | | 0 0 1 | | G H G*dx+H*dy+I | |
703 | |
704 | @param dx x-axis translation before applying SkMatrix |
705 | @param dy y-axis translation before applying SkMatrix |
706 | */ |
707 | SkMatrix& preTranslate(SkScalar dx, SkScalar dy); |
708 | |
709 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
710 | about pivot point (px, py). |
711 | This can be thought of as scaling about a pivot point before applying SkMatrix. |
712 | |
713 | Given: |
714 | |
715 | | A B C | | sx 0 dx | |
716 | Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy | |
717 | | G H I | | 0 0 1 | |
718 | |
719 | where |
720 | |
721 | dx = px - sx * px |
722 | dy = py - sy * py |
723 | |
724 | sets SkMatrix to: |
725 | |
726 | | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C | |
727 | Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F | |
728 | | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I | |
729 | |
730 | @param sx horizontal scale factor |
731 | @param sy vertical scale factor |
732 | @param px pivot on x-axis |
733 | @param py pivot on y-axis |
734 | */ |
735 | SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
736 | |
737 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
738 | about pivot point (0, 0). |
739 | This can be thought of as scaling about the origin before applying SkMatrix. |
740 | |
741 | Given: |
742 | |
743 | | A B C | | sx 0 0 | |
744 | Matrix = | D E F |, S(sx, sy) = | 0 sy 0 | |
745 | | G H I | | 0 0 1 | |
746 | |
747 | sets SkMatrix to: |
748 | |
749 | | A B C | | sx 0 0 | | A*sx B*sy C | |
750 | Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F | |
751 | | G H I | | 0 0 1 | | G*sx H*sy I | |
752 | |
753 | @param sx horizontal scale factor |
754 | @param sy vertical scale factor |
755 | */ |
756 | SkMatrix& preScale(SkScalar sx, SkScalar sy); |
757 | |
758 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
759 | about pivot point (px, py). |
760 | This can be thought of as rotating about a pivot point before applying SkMatrix. |
761 | |
762 | Positive degrees rotates clockwise. |
763 | |
764 | Given: |
765 | |
766 | | A B C | | c -s dx | |
767 | Matrix = | D E F |, R(degrees, px, py) = | s c dy | |
768 | | G H I | | 0 0 1 | |
769 | |
770 | where |
771 | |
772 | c = cos(degrees) |
773 | s = sin(degrees) |
774 | dx = s * py + (1 - c) * px |
775 | dy = -s * px + (1 - c) * py |
776 | |
777 | sets SkMatrix to: |
778 | |
779 | | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C | |
780 | Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F | |
781 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I | |
782 | |
783 | @param degrees angle of axes relative to upright axes |
784 | @param px pivot on x-axis |
785 | @param py pivot on y-axis |
786 | */ |
787 | SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py); |
788 | |
789 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
790 | about pivot point (0, 0). |
791 | This can be thought of as rotating about the origin before applying SkMatrix. |
792 | |
793 | Positive degrees rotates clockwise. |
794 | |
795 | Given: |
796 | |
797 | | A B C | | c -s 0 | |
798 | Matrix = | D E F |, R(degrees, px, py) = | s c 0 | |
799 | | G H I | | 0 0 1 | |
800 | |
801 | where |
802 | |
803 | c = cos(degrees) |
804 | s = sin(degrees) |
805 | |
806 | sets SkMatrix to: |
807 | |
808 | | A B C | | c -s 0 | | Ac+Bs -As+Bc C | |
809 | Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F | |
810 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I | |
811 | |
812 | @param degrees angle of axes relative to upright axes |
813 | */ |
814 | SkMatrix& preRotate(SkScalar degrees); |
815 | |
816 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
817 | about pivot point (px, py). |
818 | This can be thought of as skewing about a pivot point before applying SkMatrix. |
819 | |
820 | Given: |
821 | |
822 | | A B C | | 1 kx dx | |
823 | Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy | |
824 | | G H I | | 0 0 1 | |
825 | |
826 | where |
827 | |
828 | dx = -kx * py |
829 | dy = -ky * px |
830 | |
831 | sets SkMatrix to: |
832 | |
833 | | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C | |
834 | Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F | |
835 | | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I | |
836 | |
837 | @param kx horizontal skew factor |
838 | @param ky vertical skew factor |
839 | @param px pivot on x-axis |
840 | @param py pivot on y-axis |
841 | */ |
842 | SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
843 | |
844 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
845 | about pivot point (0, 0). |
846 | This can be thought of as skewing about the origin before applying SkMatrix. |
847 | |
848 | Given: |
849 | |
850 | | A B C | | 1 kx 0 | |
851 | Matrix = | D E F |, K(kx, ky) = | ky 1 0 | |
852 | | G H I | | 0 0 1 | |
853 | |
854 | sets SkMatrix to: |
855 | |
856 | | A B C | | 1 kx 0 | | A+B*ky A*kx+B C | |
857 | Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F | |
858 | | G H I | | 0 0 1 | | G+H*ky G*kx+H I | |
859 | |
860 | @param kx horizontal skew factor |
861 | @param ky vertical skew factor |
862 | */ |
863 | SkMatrix& preSkew(SkScalar kx, SkScalar ky); |
864 | |
865 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other. |
866 | This can be thought of mapping by other before applying SkMatrix. |
867 | |
868 | Given: |
869 | |
870 | | A B C | | J K L | |
871 | Matrix = | D E F |, other = | M N O | |
872 | | G H I | | P Q R | |
873 | |
874 | sets SkMatrix to: |
875 | |
876 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
877 | Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
878 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
879 | |
880 | @param other SkMatrix on right side of multiply expression |
881 | */ |
882 | SkMatrix& preConcat(const SkMatrix& other); |
883 | |
884 | /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix. |
885 | This can be thought of as moving the point to be mapped after applying SkMatrix. |
886 | |
887 | Given: |
888 | |
889 | | J K L | | 1 0 dx | |
890 | Matrix = | M N O |, T(dx, dy) = | 0 1 dy | |
891 | | P Q R | | 0 0 1 | |
892 | |
893 | sets SkMatrix to: |
894 | |
895 | | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R | |
896 | T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R | |
897 | | 0 0 1 | | P Q R | | P Q R | |
898 | |
899 | @param dx x-axis translation after applying SkMatrix |
900 | @param dy y-axis translation after applying SkMatrix |
901 | */ |
902 | SkMatrix& postTranslate(SkScalar dx, SkScalar dy); |
903 | |
904 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
905 | (px, py), multiplied by SkMatrix. |
906 | This can be thought of as scaling about a pivot point after applying SkMatrix. |
907 | |
908 | Given: |
909 | |
910 | | J K L | | sx 0 dx | |
911 | Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy | |
912 | | P Q R | | 0 0 1 | |
913 | |
914 | where |
915 | |
916 | dx = px - sx * px |
917 | dy = py - sy * py |
918 | |
919 | sets SkMatrix to: |
920 | |
921 | | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R | |
922 | S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R | |
923 | | 0 0 1 | | P Q R | | P Q R | |
924 | |
925 | @param sx horizontal scale factor |
926 | @param sy vertical scale factor |
927 | @param px pivot on x-axis |
928 | @param py pivot on y-axis |
929 | */ |
930 | SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
931 | |
932 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
933 | (0, 0), multiplied by SkMatrix. |
934 | This can be thought of as scaling about the origin after applying SkMatrix. |
935 | |
936 | Given: |
937 | |
938 | | J K L | | sx 0 0 | |
939 | Matrix = | M N O |, S(sx, sy) = | 0 sy 0 | |
940 | | P Q R | | 0 0 1 | |
941 | |
942 | sets SkMatrix to: |
943 | |
944 | | sx 0 0 | | J K L | | sx*J sx*K sx*L | |
945 | S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | |
946 | | 0 0 1 | | P Q R | | P Q R | |
947 | |
948 | @param sx horizontal scale factor |
949 | @param sy vertical scale factor |
950 | */ |
951 | SkMatrix& postScale(SkScalar sx, SkScalar sy); |
952 | |
953 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
954 | (px, py), multiplied by SkMatrix. |
955 | This can be thought of as rotating about a pivot point after applying SkMatrix. |
956 | |
957 | Positive degrees rotates clockwise. |
958 | |
959 | Given: |
960 | |
961 | | J K L | | c -s dx | |
962 | Matrix = | M N O |, R(degrees, px, py) = | s c dy | |
963 | | P Q R | | 0 0 1 | |
964 | |
965 | where |
966 | |
967 | c = cos(degrees) |
968 | s = sin(degrees) |
969 | dx = s * py + (1 - c) * px |
970 | dy = -s * px + (1 - c) * py |
971 | |
972 | sets SkMatrix to: |
973 | |
974 | |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R| |
975 | R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R| |
976 | |0 0 1| |P Q R| | P Q R| |
977 | |
978 | @param degrees angle of axes relative to upright axes |
979 | @param px pivot on x-axis |
980 | @param py pivot on y-axis |
981 | */ |
982 | SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py); |
983 | |
984 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
985 | (0, 0), multiplied by SkMatrix. |
986 | This can be thought of as rotating about the origin after applying SkMatrix. |
987 | |
988 | Positive degrees rotates clockwise. |
989 | |
990 | Given: |
991 | |
992 | | J K L | | c -s 0 | |
993 | Matrix = | M N O |, R(degrees, px, py) = | s c 0 | |
994 | | P Q R | | 0 0 1 | |
995 | |
996 | where |
997 | |
998 | c = cos(degrees) |
999 | s = sin(degrees) |
1000 | |
1001 | sets SkMatrix to: |
1002 | |
1003 | | c -s dx | | J K L | | cJ-sM cK-sN cL-sO | |
1004 | R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO | |
1005 | | 0 0 1 | | P Q R | | P Q R | |
1006 | |
1007 | @param degrees angle of axes relative to upright axes |
1008 | */ |
1009 | SkMatrix& postRotate(SkScalar degrees); |
1010 | |
1011 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1012 | (px, py), multiplied by SkMatrix. |
1013 | This can be thought of as skewing about a pivot point after applying SkMatrix. |
1014 | |
1015 | Given: |
1016 | |
1017 | | J K L | | 1 kx dx | |
1018 | Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy | |
1019 | | P Q R | | 0 0 1 | |
1020 | |
1021 | where |
1022 | |
1023 | dx = -kx * py |
1024 | dy = -ky * px |
1025 | |
1026 | sets SkMatrix to: |
1027 | |
1028 | | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R| |
1029 | K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R| |
1030 | | 0 0 1| |P Q R| | P Q R| |
1031 | |
1032 | @param kx horizontal skew factor |
1033 | @param ky vertical skew factor |
1034 | @param px pivot on x-axis |
1035 | @param py pivot on y-axis |
1036 | */ |
1037 | SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
1038 | |
1039 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1040 | (0, 0), multiplied by SkMatrix. |
1041 | This can be thought of as skewing about the origin after applying SkMatrix. |
1042 | |
1043 | Given: |
1044 | |
1045 | | J K L | | 1 kx 0 | |
1046 | Matrix = | M N O |, K(kx, ky) = | ky 1 0 | |
1047 | | P Q R | | 0 0 1 | |
1048 | |
1049 | sets SkMatrix to: |
1050 | |
1051 | | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O | |
1052 | K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O | |
1053 | | 0 0 1 | | P Q R | | P Q R | |
1054 | |
1055 | @param kx horizontal skew factor |
1056 | @param ky vertical skew factor |
1057 | */ |
1058 | SkMatrix& postSkew(SkScalar kx, SkScalar ky); |
1059 | |
1060 | /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix. |
1061 | This can be thought of mapping by other after applying SkMatrix. |
1062 | |
1063 | Given: |
1064 | |
1065 | | J K L | | A B C | |
1066 | Matrix = | M N O |, other = | D E F | |
1067 | | P Q R | | G H I | |
1068 | |
1069 | sets SkMatrix to: |
1070 | |
1071 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1072 | other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1073 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1074 | |
1075 | @param other SkMatrix on left side of multiply expression |
1076 | */ |
1077 | SkMatrix& postConcat(const SkMatrix& other); |
1078 | |
1079 | /** \enum SkMatrix::ScaleToFit |
1080 | ScaleToFit describes how SkMatrix is constructed to map one SkRect to another. |
1081 | ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling, |
1082 | or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies |
1083 | how SkMatrix maps to the side or center of the destination SkRect. |
1084 | */ |
1085 | enum ScaleToFit { |
1086 | kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect |
1087 | kStart_ScaleToFit, //!< scales and aligns to left and top |
1088 | kCenter_ScaleToFit, //!< scales and aligns to center |
1089 | kEnd_ScaleToFit, //!< scales and aligns to right and bottom |
1090 | }; |
1091 | |
1092 | /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether |
1093 | mapping completely fills dst or preserves the aspect ratio, and how to align |
1094 | src within dst. Returns false if src is empty, and sets SkMatrix to identity. |
1095 | Returns true if dst is empty, and sets SkMatrix to: |
1096 | |
1097 | | 0 0 0 | |
1098 | | 0 0 0 | |
1099 | | 0 0 1 | |
1100 | |
1101 | @param src SkRect to map from |
1102 | @param dst SkRect to map to |
1103 | @return true if SkMatrix can represent SkRect mapping |
1104 | |
1105 | example: https://fiddle.skia.org/c/@Matrix_setRectToRect |
1106 | */ |
1107 | bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); |
1108 | |
1109 | /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects |
1110 | whether mapping completely fills dst or preserves the aspect ratio, and how to |
1111 | align src within dst. Returns the identity SkMatrix if src is empty. If dst is |
1112 | empty, returns SkMatrix set to: |
1113 | |
1114 | | 0 0 0 | |
1115 | | 0 0 0 | |
1116 | | 0 0 1 | |
1117 | |
1118 | @param src SkRect to map from |
1119 | @param dst SkRect to map to |
1120 | @return SkMatrix mapping src to dst |
1121 | */ |
1122 | static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) { |
1123 | SkMatrix m; |
1124 | m.setRectToRect(src, dst, stf); |
1125 | return m; |
1126 | } |
1127 | |
1128 | /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less. |
1129 | |
1130 | If count is zero, sets SkMatrix to identity and returns true. |
1131 | If count is one, sets SkMatrix to translate and returns true. |
1132 | If count is two or more, sets SkMatrix to map SkPoint if possible; returns false |
1133 | if SkMatrix cannot be constructed. If count is four, SkMatrix may include |
1134 | perspective. |
1135 | |
1136 | @param src SkPoint to map from |
1137 | @param dst SkPoint to map to |
1138 | @param count number of SkPoint in src and dst |
1139 | @return true if SkMatrix was constructed successfully |
1140 | |
1141 | example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly |
1142 | */ |
1143 | bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); |
1144 | |
1145 | /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted. |
1146 | Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix |
1147 | maps from destination to source. If SkMatrix can not be inverted, inverse is |
1148 | unchanged. |
1149 | |
1150 | @param inverse storage for inverted SkMatrix; may be nullptr |
1151 | @return true if SkMatrix can be inverted |
1152 | */ |
1153 | bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const { |
1154 | // Allow the trivial case to be inlined. |
1155 | if (this->isIdentity()) { |
1156 | if (inverse) { |
1157 | inverse->reset(); |
1158 | } |
1159 | return true; |
1160 | } |
1161 | return this->invertNonIdentity(inverse); |
1162 | } |
1163 | |
1164 | /** Fills affine with identity values in column major order. |
1165 | Sets affine to: |
1166 | |
1167 | | 1 0 0 | |
1168 | | 0 1 0 | |
1169 | |
1170 | Affine 3 by 2 matrices in column major order are used by OpenGL and XPS. |
1171 | |
1172 | @param affine storage for 3 by 2 affine matrix |
1173 | |
1174 | example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity |
1175 | */ |
1176 | static void SetAffineIdentity(SkScalar affine[6]); |
1177 | |
1178 | /** Fills affine in column major order. Sets affine to: |
1179 | |
1180 | | scale-x skew-x translate-x | |
1181 | | skew-y scale-y translate-y | |
1182 | |
1183 | If SkMatrix contains perspective, returns false and leaves affine unchanged. |
1184 | |
1185 | @param affine storage for 3 by 2 affine matrix; may be nullptr |
1186 | @return true if SkMatrix does not contain perspective |
1187 | */ |
1188 | bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const; |
1189 | |
1190 | /** Sets SkMatrix to affine values, passed in column major order. Given affine, |
1191 | column, then row, as: |
1192 | |
1193 | | scale-x skew-x translate-x | |
1194 | | skew-y scale-y translate-y | |
1195 | |
1196 | SkMatrix is set, row, then column, to: |
1197 | |
1198 | | scale-x skew-x translate-x | |
1199 | | skew-y scale-y translate-y | |
1200 | | 0 0 1 | |
1201 | |
1202 | @param affine 3 by 2 affine matrix |
1203 | */ |
1204 | SkMatrix& setAffine(const SkScalar affine[6]); |
1205 | |
1206 | /** |
1207 | * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1]. |
1208 | * However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a |
1209 | * non-perspective matrix, though it will be categorized as perspective. Calling |
1210 | * normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X], |
1211 | * it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X. |
1212 | * |
1213 | * | A B C | | A/X B/X C/X | |
1214 | * | D E F | -> | D/X E/X F/X | for X != 0 |
1215 | * | 0 0 X | | 0 0 1 | |
1216 | */ |
1217 | void normalizePerspective() { |
1218 | if (fMat[8] != 1) { |
1219 | this->doNormalizePerspective(); |
1220 | } |
1221 | } |
1222 | |
1223 | /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater |
1224 | length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given: |
1225 | |
1226 | | A B C | | x | |
1227 | Matrix = | D E F |, pt = | y | |
1228 | | G H I | | 1 | |
1229 | |
1230 | where |
1231 | |
1232 | for (i = 0; i < count; ++i) { |
1233 | x = src[i].fX |
1234 | y = src[i].fY |
1235 | } |
1236 | |
1237 | each dst SkPoint is computed as: |
1238 | |
1239 | |A B C| |x| Ax+By+C Dx+Ey+F |
1240 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1241 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1242 | |
1243 | src and dst may point to the same storage. |
1244 | |
1245 | @param dst storage for mapped SkPoint |
1246 | @param src SkPoint to transform |
1247 | @param count number of SkPoint to transform |
1248 | |
1249 | example: https://fiddle.skia.org/c/@Matrix_mapPoints |
1250 | */ |
1251 | void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; |
1252 | |
1253 | /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying |
1254 | each SkPoint by SkMatrix. Given: |
1255 | |
1256 | | A B C | | x | |
1257 | Matrix = | D E F |, pt = | y | |
1258 | | G H I | | 1 | |
1259 | |
1260 | where |
1261 | |
1262 | for (i = 0; i < count; ++i) { |
1263 | x = pts[i].fX |
1264 | y = pts[i].fY |
1265 | } |
1266 | |
1267 | each resulting pts SkPoint is computed as: |
1268 | |
1269 | |A B C| |x| Ax+By+C Dx+Ey+F |
1270 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1271 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1272 | |
1273 | @param pts storage for mapped SkPoint |
1274 | @param count number of SkPoint to transform |
1275 | */ |
1276 | void mapPoints(SkPoint pts[], int count) const { |
1277 | this->mapPoints(pts, pts, count); |
1278 | } |
1279 | |
1280 | /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or |
1281 | greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given: |
1282 | |
1283 | | A B C | | x | |
1284 | Matrix = | D E F |, src = | y | |
1285 | | G H I | | z | |
1286 | |
1287 | each resulting dst SkPoint is computed as: |
1288 | |
1289 | |A B C| |x| |
1290 | Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz| |
1291 | |G H I| |z| |
1292 | |
1293 | @param dst storage for mapped SkPoint3 array |
1294 | @param src SkPoint3 array to transform |
1295 | @param count items in SkPoint3 array to transform |
1296 | |
1297 | example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints |
1298 | */ |
1299 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const; |
1300 | |
1301 | /** |
1302 | * Returns homogeneous points, starting with 2D src points (with implied w = 1). |
1303 | */ |
1304 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const; |
1305 | |
1306 | /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given: |
1307 | |
1308 | | A B C | | x | |
1309 | Matrix = | D E F |, pt = | y | |
1310 | | G H I | | 1 | |
1311 | |
1312 | result is computed as: |
1313 | |
1314 | |A B C| |x| Ax+By+C Dx+Ey+F |
1315 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1316 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1317 | |
1318 | @param x x-axis value of SkPoint to map |
1319 | @param y y-axis value of SkPoint to map |
1320 | @param result storage for mapped SkPoint |
1321 | |
1322 | example: https://fiddle.skia.org/c/@Matrix_mapXY |
1323 | */ |
1324 | void mapXY(SkScalar x, SkScalar y, SkPoint* result) const; |
1325 | |
1326 | /** Returns SkPoint (x, y) multiplied by SkMatrix. Given: |
1327 | |
1328 | | A B C | | x | |
1329 | Matrix = | D E F |, pt = | y | |
1330 | | G H I | | 1 | |
1331 | |
1332 | result is computed as: |
1333 | |
1334 | |A B C| |x| Ax+By+C Dx+Ey+F |
1335 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1336 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1337 | |
1338 | @param x x-axis value of SkPoint to map |
1339 | @param y y-axis value of SkPoint to map |
1340 | @return mapped SkPoint |
1341 | */ |
1342 | SkPoint mapXY(SkScalar x, SkScalar y) const { |
1343 | SkPoint result; |
1344 | this->mapXY(x,y, &result); |
1345 | return result; |
1346 | } |
1347 | |
1348 | /** Maps src vector array of length count to vector SkPoint array of equal or greater |
1349 | length. Vectors are mapped by multiplying each vector by SkMatrix, treating |
1350 | SkMatrix translation as zero. Given: |
1351 | |
1352 | | A B 0 | | x | |
1353 | Matrix = | D E 0 |, src = | y | |
1354 | | G H I | | 1 | |
1355 | |
1356 | where |
1357 | |
1358 | for (i = 0; i < count; ++i) { |
1359 | x = src[i].fX |
1360 | y = src[i].fY |
1361 | } |
1362 | |
1363 | each dst vector is computed as: |
1364 | |
1365 | |A B 0| |x| Ax+By Dx+Ey |
1366 | Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1367 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1368 | |
1369 | src and dst may point to the same storage. |
1370 | |
1371 | @param dst storage for mapped vectors |
1372 | @param src vectors to transform |
1373 | @param count number of vectors to transform |
1374 | |
1375 | example: https://fiddle.skia.org/c/@Matrix_mapVectors |
1376 | */ |
1377 | void mapVectors(SkVector dst[], const SkVector src[], int count) const; |
1378 | |
1379 | /** Maps vecs vector array of length count in place, multiplying each vector by |
1380 | SkMatrix, treating SkMatrix translation as zero. Given: |
1381 | |
1382 | | A B 0 | | x | |
1383 | Matrix = | D E 0 |, vec = | y | |
1384 | | G H I | | 1 | |
1385 | |
1386 | where |
1387 | |
1388 | for (i = 0; i < count; ++i) { |
1389 | x = vecs[i].fX |
1390 | y = vecs[i].fY |
1391 | } |
1392 | |
1393 | each result vector is computed as: |
1394 | |
1395 | |A B 0| |x| Ax+By Dx+Ey |
1396 | Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1397 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1398 | |
1399 | @param vecs vectors to transform, and storage for mapped vectors |
1400 | @param count number of vectors to transform |
1401 | */ |
1402 | void mapVectors(SkVector vecs[], int count) const { |
1403 | this->mapVectors(vecs, vecs, count); |
1404 | } |
1405 | |
1406 | /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix, |
1407 | treating SkMatrix translation as zero. Given: |
1408 | |
1409 | | A B 0 | | dx | |
1410 | Matrix = | D E 0 |, vec = | dy | |
1411 | | G H I | | 1 | |
1412 | |
1413 | each result vector is computed as: |
1414 | |
1415 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1416 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1417 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1418 | |
1419 | @param dx x-axis value of vector to map |
1420 | @param dy y-axis value of vector to map |
1421 | @param result storage for mapped vector |
1422 | */ |
1423 | void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { |
1424 | SkVector vec = { dx, dy }; |
1425 | this->mapVectors(result, &vec, 1); |
1426 | } |
1427 | |
1428 | /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero. |
1429 | Given: |
1430 | |
1431 | | A B 0 | | dx | |
1432 | Matrix = | D E 0 |, vec = | dy | |
1433 | | G H I | | 1 | |
1434 | |
1435 | each result vector is computed as: |
1436 | |
1437 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1438 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1439 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1440 | |
1441 | @param dx x-axis value of vector to map |
1442 | @param dy y-axis value of vector to map |
1443 | @return mapped vector |
1444 | */ |
1445 | SkVector mapVector(SkScalar dx, SkScalar dy) const { |
1446 | SkVector vec = { dx, dy }; |
1447 | this->mapVectors(&vec, &vec, 1); |
1448 | return vec; |
1449 | } |
1450 | |
1451 | /** Sets dst to bounds of src corners mapped by SkMatrix. |
1452 | Returns true if mapped corners are dst corners. |
1453 | |
1454 | Returned value is the same as calling rectStaysRect(). |
1455 | |
1456 | @param dst storage for bounds of mapped SkPoint |
1457 | @param src SkRect to map |
1458 | @param pc whether to apply perspective clipping |
1459 | @return true if dst is equivalent to mapped src |
1460 | |
1461 | example: https://fiddle.skia.org/c/@Matrix_mapRect |
1462 | */ |
1463 | bool mapRect(SkRect* dst, const SkRect& src, |
1464 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const; |
1465 | |
1466 | /** Sets rect to bounds of rect corners mapped by SkMatrix. |
1467 | Returns true if mapped corners are computed rect corners. |
1468 | |
1469 | Returned value is the same as calling rectStaysRect(). |
1470 | |
1471 | @param rect rectangle to map, and storage for bounds of mapped corners |
1472 | @param pc whether to apply perspective clipping |
1473 | @return true if result is equivalent to mapped rect |
1474 | */ |
1475 | bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1476 | return this->mapRect(rect, *rect, pc); |
1477 | } |
1478 | |
1479 | /** Returns bounds of src corners mapped by SkMatrix. |
1480 | |
1481 | @param src rectangle to map |
1482 | @return mapped bounds |
1483 | */ |
1484 | SkRect mapRect(const SkRect& src, |
1485 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1486 | SkRect dst; |
1487 | (void)this->mapRect(&dst, src, pc); |
1488 | return dst; |
1489 | } |
1490 | |
1491 | /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each |
1492 | rect corner by SkMatrix. rect corner is processed in this order: |
1493 | (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), |
1494 | (rect.fLeft, rect.fBottom). |
1495 | |
1496 | rect may be empty: rect.fLeft may be greater than or equal to rect.fRight; |
1497 | rect.fTop may be greater than or equal to rect.fBottom. |
1498 | |
1499 | Given: |
1500 | |
1501 | | A B C | | x | |
1502 | Matrix = | D E F |, pt = | y | |
1503 | | G H I | | 1 | |
1504 | |
1505 | where pt is initialized from each of (rect.fLeft, rect.fTop), |
1506 | (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom), |
1507 | each dst SkPoint is computed as: |
1508 | |
1509 | |A B C| |x| Ax+By+C Dx+Ey+F |
1510 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1511 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1512 | |
1513 | @param dst storage for mapped corner SkPoint |
1514 | @param rect SkRect to map |
1515 | |
1516 | Note: this does not perform perspective clipping (as that might result in more than |
1517 | 4 points, so results are suspect if the matrix contains perspective. |
1518 | */ |
1519 | void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { |
1520 | // This could potentially be faster if we only transformed each x and y of the rect once. |
1521 | rect.toQuad(dst); |
1522 | this->mapPoints(dst, 4); |
1523 | } |
1524 | |
1525 | /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains |
1526 | elements other than scale or translate: asserts if SK_DEBUG is defined; |
1527 | otherwise, results are undefined. |
1528 | |
1529 | @param dst storage for bounds of mapped SkPoint |
1530 | @param src SkRect to map |
1531 | |
1532 | example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate |
1533 | */ |
1534 | void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const; |
1535 | |
1536 | /** Returns geometric mean radius of ellipse formed by constructing circle of |
1537 | size radius, and mapping constructed circle with SkMatrix. The result squared is |
1538 | equal to the major axis length times the minor axis length. |
1539 | Result is not meaningful if SkMatrix contains perspective elements. |
1540 | |
1541 | @param radius circle size to map |
1542 | @return average mapped radius |
1543 | |
1544 | example: https://fiddle.skia.org/c/@Matrix_mapRadius |
1545 | */ |
1546 | SkScalar mapRadius(SkScalar radius) const; |
1547 | |
1548 | /** Compares a and b; returns true if a and b are numerically equal. Returns true |
1549 | even if sign of zero values are different. Returns false if either SkMatrix |
1550 | contains NaN, even if the other SkMatrix also contains NaN. |
1551 | |
1552 | @param a SkMatrix to compare |
1553 | @param b SkMatrix to compare |
1554 | @return true if SkMatrix a and SkMatrix b are numerically equal |
1555 | */ |
1556 | friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); |
1557 | |
1558 | /** Compares a and b; returns true if a and b are not numerically equal. Returns false |
1559 | even if sign of zero values are different. Returns true if either SkMatrix |
1560 | contains NaN, even if the other SkMatrix also contains NaN. |
1561 | |
1562 | @param a SkMatrix to compare |
1563 | @param b SkMatrix to compare |
1564 | @return true if SkMatrix a and SkMatrix b are numerically not equal |
1565 | */ |
1566 | friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
1567 | return !(a == b); |
1568 | } |
1569 | |
1570 | /** Writes text representation of SkMatrix to standard output. Floating point values |
1571 | are written with limited precision; it may not be possible to reconstruct |
1572 | original SkMatrix from output. |
1573 | |
1574 | example: https://fiddle.skia.org/c/@Matrix_dump |
1575 | */ |
1576 | void dump() const; |
1577 | |
1578 | /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and |
1579 | skewing elements. |
1580 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1581 | |
1582 | @return minimum scale factor |
1583 | |
1584 | example: https://fiddle.skia.org/c/@Matrix_getMinScale |
1585 | */ |
1586 | SkScalar getMinScale() const; |
1587 | |
1588 | /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and |
1589 | skewing elements. |
1590 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1591 | |
1592 | @return maximum scale factor |
1593 | |
1594 | example: https://fiddle.skia.org/c/@Matrix_getMaxScale |
1595 | */ |
1596 | SkScalar getMaxScale() const; |
1597 | |
1598 | /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the |
1599 | maximum scaling factor. Scaling factors are computed by decomposing |
1600 | the SkMatrix scaling and skewing elements. |
1601 | |
1602 | Returns true if scaleFactors are found; otherwise, returns false and sets |
1603 | scaleFactors to undefined values. |
1604 | |
1605 | @param scaleFactors storage for minimum and maximum scale factors |
1606 | @return true if scale factors were computed correctly |
1607 | */ |
1608 | bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const; |
1609 | |
1610 | /** Decomposes SkMatrix into scale components and whatever remains. Returns false if |
1611 | SkMatrix could not be decomposed. |
1612 | |
1613 | Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix |
1614 | with scaling factored out. remaining may be passed as nullptr |
1615 | to determine if SkMatrix can be decomposed without computing remainder. |
1616 | |
1617 | Returns true if scale components are found. scale and remaining are |
1618 | unchanged if SkMatrix contains perspective; scale factors are not finite, or |
1619 | are nearly zero. |
1620 | |
1621 | On success: Matrix = Remaining * scale. |
1622 | |
1623 | @param scale axes scaling factors; may be nullptr |
1624 | @param remaining SkMatrix without scaling; may be nullptr |
1625 | @return true if scale can be computed |
1626 | |
1627 | example: https://fiddle.skia.org/c/@Matrix_decomposeScale |
1628 | */ |
1629 | bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const; |
1630 | |
1631 | /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to: |
1632 | |
1633 | | 1 0 0 | |
1634 | | 0 1 0 | |
1635 | | 0 0 1 | |
1636 | |
1637 | @return const identity SkMatrix |
1638 | |
1639 | example: https://fiddle.skia.org/c/@Matrix_I |
1640 | */ |
1641 | static const SkMatrix& I(); |
1642 | |
1643 | /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set |
1644 | to: |
1645 | |
1646 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1647 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1648 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1649 | |
1650 | @return const invalid SkMatrix |
1651 | |
1652 | example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix |
1653 | */ |
1654 | static const SkMatrix& InvalidMatrix(); |
1655 | |
1656 | /** Returns SkMatrix a multiplied by SkMatrix b. |
1657 | |
1658 | Given: |
1659 | |
1660 | | A B C | | J K L | |
1661 | a = | D E F |, b = | M N O | |
1662 | | G H I | | P Q R | |
1663 | |
1664 | sets SkMatrix to: |
1665 | |
1666 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1667 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1668 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1669 | |
1670 | @param a SkMatrix on left side of multiply expression |
1671 | @param b SkMatrix on right side of multiply expression |
1672 | @return SkMatrix computed from a times b |
1673 | */ |
1674 | static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { |
1675 | SkMatrix result; |
1676 | result.setConcat(a, b); |
1677 | return result; |
1678 | } |
1679 | |
1680 | /** Sets internal cache to unknown state. Use to force update after repeated |
1681 | modifications to SkMatrix element reference returned by operator[](int index). |
1682 | */ |
1683 | void dirtyMatrixTypeCache() { |
1684 | this->setTypeMask(kUnknown_Mask); |
1685 | } |
1686 | |
1687 | /** Initializes SkMatrix with scale and translate elements. |
1688 | |
1689 | | sx 0 tx | |
1690 | | 0 sy ty | |
1691 | | 0 0 1 | |
1692 | |
1693 | @param sx horizontal scale factor to store |
1694 | @param sy vertical scale factor to store |
1695 | @param tx horizontal translation to store |
1696 | @param ty vertical translation to store |
1697 | */ |
1698 | void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { |
1699 | fMat[kMScaleX] = sx; |
1700 | fMat[kMSkewX] = 0; |
1701 | fMat[kMTransX] = tx; |
1702 | |
1703 | fMat[kMSkewY] = 0; |
1704 | fMat[kMScaleY] = sy; |
1705 | fMat[kMTransY] = ty; |
1706 | |
1707 | fMat[kMPersp0] = 0; |
1708 | fMat[kMPersp1] = 0; |
1709 | fMat[kMPersp2] = 1; |
1710 | |
1711 | unsigned mask = 0; |
1712 | if (sx != 1 || sy != 1) { |
1713 | mask |= kScale_Mask; |
1714 | } |
1715 | if (tx || ty) { |
1716 | mask |= kTranslate_Mask; |
1717 | } |
1718 | this->setTypeMask(mask | kRectStaysRect_Mask); |
1719 | } |
1720 | |
1721 | /** Returns true if all elements of the matrix are finite. Returns false if any |
1722 | element is infinity, or NaN. |
1723 | |
1724 | @return true if matrix has only finite elements |
1725 | */ |
1726 | bool isFinite() const { return SkScalarsAreFinite(fMat, 9); } |
1727 | |
1728 | private: |
1729 | /** Set if the matrix will map a rectangle to another rectangle. This |
1730 | can be true if the matrix is scale-only, or rotates a multiple of |
1731 | 90 degrees. |
1732 | |
1733 | This bit will be set on identity matrices |
1734 | */ |
1735 | static constexpr int kRectStaysRect_Mask = 0x10; |
1736 | |
1737 | /** Set if the perspective bit is valid even though the rest of |
1738 | the matrix is Unknown. |
1739 | */ |
1740 | static constexpr int kOnlyPerspectiveValid_Mask = 0x40; |
1741 | |
1742 | static constexpr int kUnknown_Mask = 0x80; |
1743 | |
1744 | static constexpr int kORableMasks = kTranslate_Mask | |
1745 | kScale_Mask | |
1746 | kAffine_Mask | |
1747 | kPerspective_Mask; |
1748 | |
1749 | static constexpr int kAllMasks = kTranslate_Mask | |
1750 | kScale_Mask | |
1751 | kAffine_Mask | |
1752 | kPerspective_Mask | |
1753 | kRectStaysRect_Mask; |
1754 | |
1755 | SkScalar fMat[9]; |
1756 | mutable uint32_t fTypeMask; |
1757 | |
1758 | constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx, |
1759 | SkScalar ky, SkScalar sy, SkScalar ty, |
1760 | SkScalar p0, SkScalar p1, SkScalar p2, uint32_t typeMask) |
1761 | : fMat{sx, kx, tx, |
1762 | ky, sy, ty, |
1763 | p0, p1, p2} |
1764 | , fTypeMask(typeMask) {} |
1765 | |
1766 | static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp); |
1767 | |
1768 | uint8_t computeTypeMask() const; |
1769 | uint8_t computePerspectiveTypeMask() const; |
1770 | |
1771 | void setTypeMask(int mask) { |
1772 | // allow kUnknown or a valid mask |
1773 | SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || |
1774 | ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) |
1775 | == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); |
1776 | fTypeMask = SkToU8(mask); |
1777 | } |
1778 | |
1779 | void orTypeMask(int mask) { |
1780 | SkASSERT((mask & kORableMasks) == mask); |
1781 | fTypeMask = SkToU8(fTypeMask | mask); |
1782 | } |
1783 | |
1784 | void clearTypeMask(int mask) { |
1785 | // only allow a valid mask |
1786 | SkASSERT((mask & kAllMasks) == mask); |
1787 | fTypeMask = fTypeMask & ~mask; |
1788 | } |
1789 | |
1790 | TypeMask getPerspectiveTypeMaskOnly() const { |
1791 | if ((fTypeMask & kUnknown_Mask) && |
1792 | !(fTypeMask & kOnlyPerspectiveValid_Mask)) { |
1793 | fTypeMask = this->computePerspectiveTypeMask(); |
1794 | } |
1795 | return (TypeMask)(fTypeMask & 0xF); |
1796 | } |
1797 | |
1798 | /** Returns true if we already know that the matrix is identity; |
1799 | false otherwise. |
1800 | */ |
1801 | bool isTriviallyIdentity() const { |
1802 | if (fTypeMask & kUnknown_Mask) { |
1803 | return false; |
1804 | } |
1805 | return ((fTypeMask & 0xF) == 0); |
1806 | } |
1807 | |
1808 | inline void updateTranslateMask() { |
1809 | if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) { |
1810 | fTypeMask |= kTranslate_Mask; |
1811 | } else { |
1812 | fTypeMask &= ~kTranslate_Mask; |
1813 | } |
1814 | } |
1815 | |
1816 | typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, |
1817 | SkPoint* result); |
1818 | |
1819 | static MapXYProc GetMapXYProc(TypeMask mask) { |
1820 | SkASSERT((mask & ~kAllMasks) == 0); |
1821 | return gMapXYProcs[mask & kAllMasks]; |
1822 | } |
1823 | |
1824 | MapXYProc getMapXYProc() const { |
1825 | return GetMapXYProc(this->getType()); |
1826 | } |
1827 | |
1828 | typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], |
1829 | const SkPoint src[], int count); |
1830 | |
1831 | static MapPtsProc GetMapPtsProc(TypeMask mask) { |
1832 | SkASSERT((mask & ~kAllMasks) == 0); |
1833 | return gMapPtsProcs[mask & kAllMasks]; |
1834 | } |
1835 | |
1836 | MapPtsProc getMapPtsProc() const { |
1837 | return GetMapPtsProc(this->getType()); |
1838 | } |
1839 | |
1840 | bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const; |
1841 | |
1842 | static bool Poly2Proc(const SkPoint[], SkMatrix*); |
1843 | static bool Poly3Proc(const SkPoint[], SkMatrix*); |
1844 | static bool Poly4Proc(const SkPoint[], SkMatrix*); |
1845 | |
1846 | static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1847 | static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1848 | static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1849 | static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1850 | static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1851 | static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1852 | static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1853 | |
1854 | static const MapXYProc gMapXYProcs[]; |
1855 | |
1856 | static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); |
1857 | static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1858 | static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1859 | static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
1860 | int count); |
1861 | static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1862 | |
1863 | static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1864 | |
1865 | static const MapPtsProc gMapPtsProcs[]; |
1866 | |
1867 | // return the number of bytes written, whether or not buffer is null |
1868 | size_t writeToMemory(void* buffer) const; |
1869 | /** |
1870 | * Reads data from the buffer parameter |
1871 | * |
1872 | * @param buffer Memory to read from |
1873 | * @param length Amount of memory available in the buffer |
1874 | * @return number of bytes read (must be a multiple of 4) or |
1875 | * 0 if there was not enough memory available |
1876 | */ |
1877 | size_t readFromMemory(const void* buffer, size_t length); |
1878 | |
1879 | // legacy method -- still needed? why not just postScale(1/divx, ...)? |
1880 | bool postIDiv(int divx, int divy); |
1881 | void doNormalizePerspective(); |
1882 | |
1883 | friend class SkPerspIter; |
1884 | friend class SkMatrixPriv; |
1885 | friend class SkReader32; |
1886 | friend class SerializationTest; |
1887 | }; |
1888 | SK_END_REQUIRE_DENSE |
1889 | |
1890 | #endif |
1891 | |