| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkScalar_DEFINED |
| 9 | #define SkScalar_DEFINED |
| 10 | |
| 11 | #include "include/private/SkFloatingPoint.h" |
| 12 | |
| 13 | #undef SK_SCALAR_IS_FLOAT |
| 14 | #define SK_SCALAR_IS_FLOAT 1 |
| 15 | |
| 16 | typedef float SkScalar; |
| 17 | |
| 18 | #define SK_Scalar1 1.0f |
| 19 | #define SK_ScalarHalf 0.5f |
| 20 | #define SK_ScalarSqrt2 SK_FloatSqrt2 |
| 21 | #define SK_ScalarPI SK_FloatPI |
| 22 | #define SK_ScalarTanPIOver8 0.414213562f |
| 23 | #define SK_ScalarRoot2Over2 0.707106781f |
| 24 | #define SK_ScalarMax 3.402823466e+38f |
| 25 | #define SK_ScalarInfinity SK_FloatInfinity |
| 26 | #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
| 27 | #define SK_ScalarNaN SK_FloatNaN |
| 28 | |
| 29 | #define SkScalarFloorToScalar(x) sk_float_floor(x) |
| 30 | #define SkScalarCeilToScalar(x) sk_float_ceil(x) |
| 31 | #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) |
| 32 | #define SkScalarTruncToScalar(x) sk_float_trunc(x) |
| 33 | |
| 34 | #define SkScalarFloorToInt(x) sk_float_floor2int(x) |
| 35 | #define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
| 36 | #define SkScalarRoundToInt(x) sk_float_round2int(x) |
| 37 | |
| 38 | #define SkScalarAbs(x) sk_float_abs(x) |
| 39 | #define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
| 40 | #define SkScalarMod(x, y) sk_float_mod(x,y) |
| 41 | #define SkScalarSqrt(x) sk_float_sqrt(x) |
| 42 | #define SkScalarPow(b, e) sk_float_pow(b, e) |
| 43 | |
| 44 | #define SkScalarSin(radians) (float)sk_float_sin(radians) |
| 45 | #define SkScalarCos(radians) (float)sk_float_cos(radians) |
| 46 | #define SkScalarTan(radians) (float)sk_float_tan(radians) |
| 47 | #define SkScalarASin(val) (float)sk_float_asin(val) |
| 48 | #define SkScalarACos(val) (float)sk_float_acos(val) |
| 49 | #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
| 50 | #define SkScalarExp(x) (float)sk_float_exp(x) |
| 51 | #define SkScalarLog(x) (float)sk_float_log(x) |
| 52 | #define SkScalarLog2(x) (float)sk_float_log2(x) |
| 53 | |
| 54 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
| 55 | |
| 56 | #define SkIntToScalar(x) static_cast<SkScalar>(x) |
| 57 | #define SkIntToFloat(x) static_cast<float>(x) |
| 58 | #define SkScalarTruncToInt(x) sk_float_saturate2int(x) |
| 59 | |
| 60 | #define SkScalarToFloat(x) static_cast<float>(x) |
| 61 | #define SkFloatToScalar(x) static_cast<SkScalar>(x) |
| 62 | #define SkScalarToDouble(x) static_cast<double>(x) |
| 63 | #define SkDoubleToScalar(x) sk_double_to_float(x) |
| 64 | |
| 65 | #define SK_ScalarMin (-SK_ScalarMax) |
| 66 | |
| 67 | static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } |
| 68 | |
| 69 | /** Returns true if x is not NaN and not infinite |
| 70 | */ |
| 71 | static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); } |
| 72 | |
| 73 | static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { |
| 74 | return sk_floats_are_finite(a, b); |
| 75 | } |
| 76 | |
| 77 | static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { |
| 78 | return sk_floats_are_finite(array, count); |
| 79 | } |
| 80 | |
| 81 | /** |
| 82 | * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using |
| 83 | * double, to avoid possibly losing the low bit(s) of the answer before calling floor(). |
| 84 | * |
| 85 | * This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the |
| 86 | * extra precision is known to be valuable. |
| 87 | * |
| 88 | * In particular, this catches the following case: |
| 89 | * SkScalar x = 0.49999997; |
| 90 | * int ix = SkScalarRoundToInt(x); |
| 91 | * SkASSERT(0 == ix); // <--- fails |
| 92 | * ix = SkDScalarRoundToInt(x); |
| 93 | * SkASSERT(0 == ix); // <--- succeeds |
| 94 | */ |
| 95 | static inline int SkDScalarRoundToInt(SkScalar x) { |
| 96 | double xx = x; |
| 97 | xx += 0.5; |
| 98 | return (int)floor(xx); |
| 99 | } |
| 100 | |
| 101 | /** Returns the fractional part of the scalar. */ |
| 102 | static inline SkScalar SkScalarFraction(SkScalar x) { |
| 103 | return x - SkScalarTruncToScalar(x); |
| 104 | } |
| 105 | |
| 106 | static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
| 107 | |
| 108 | #define SkScalarInvert(x) sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(SK_Scalar1, (x)) |
| 109 | #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) |
| 110 | #define SkScalarHalf(a) ((a) * SK_ScalarHalf) |
| 111 | |
| 112 | #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
| 113 | #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) |
| 114 | |
| 115 | static inline bool SkScalarIsInt(SkScalar x) { |
| 116 | return x == SkScalarFloorToScalar(x); |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * Returns -1 || 0 || 1 depending on the sign of value: |
| 121 | * -1 if x < 0 |
| 122 | * 0 if x == 0 |
| 123 | * 1 if x > 0 |
| 124 | */ |
| 125 | static inline int SkScalarSignAsInt(SkScalar x) { |
| 126 | return x < 0 ? -1 : (x > 0); |
| 127 | } |
| 128 | |
| 129 | // Scalar result version of above |
| 130 | static inline SkScalar SkScalarSignAsScalar(SkScalar x) { |
| 131 | return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); |
| 132 | } |
| 133 | |
| 134 | #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) |
| 135 | |
| 136 | static inline bool SkScalarNearlyZero(SkScalar x, |
| 137 | SkScalar tolerance = SK_ScalarNearlyZero) { |
| 138 | SkASSERT(tolerance >= 0); |
| 139 | return SkScalarAbs(x) <= tolerance; |
| 140 | } |
| 141 | |
| 142 | static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, |
| 143 | SkScalar tolerance = SK_ScalarNearlyZero) { |
| 144 | SkASSERT(tolerance >= 0); |
| 145 | return SkScalarAbs(x-y) <= tolerance; |
| 146 | } |
| 147 | |
| 148 | static inline float SkScalarSinSnapToZero(SkScalar radians) { |
| 149 | float v = SkScalarSin(radians); |
| 150 | return SkScalarNearlyZero(v) ? 0.0f : v; |
| 151 | } |
| 152 | |
| 153 | static inline float SkScalarCosSnapToZero(SkScalar radians) { |
| 154 | float v = SkScalarCos(radians); |
| 155 | return SkScalarNearlyZero(v) ? 0.0f : v; |
| 156 | } |
| 157 | |
| 158 | /** Linearly interpolate between A and B, based on t. |
| 159 | If t is 0, return A |
| 160 | If t is 1, return B |
| 161 | else interpolate. |
| 162 | t must be [0..SK_Scalar1] |
| 163 | */ |
| 164 | static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { |
| 165 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
| 166 | return A + (B - A) * t; |
| 167 | } |
| 168 | |
| 169 | /** Interpolate along the function described by (keys[length], values[length]) |
| 170 | for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] |
| 171 | clamp to the min or max value. This function was inspired by a desire |
| 172 | to change the multiplier for thickness in fakeBold; therefore it assumes |
| 173 | the number of pairs (length) will be small, and a linear search is used. |
| 174 | Repeated keys are allowed for discontinuous functions (so long as keys is |
| 175 | monotonically increasing), and if key is the value of a repeated scalar in |
| 176 | keys, the first one will be used. However, that may change if a binary |
| 177 | search is used. |
| 178 | */ |
| 179 | SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], |
| 180 | const SkScalar values[], int length); |
| 181 | |
| 182 | /* |
| 183 | * Helper to compare an array of scalars. |
| 184 | */ |
| 185 | static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { |
| 186 | SkASSERT(n >= 0); |
| 187 | for (int i = 0; i < n; ++i) { |
| 188 | if (a[i] != b[i]) { |
| 189 | return false; |
| 190 | } |
| 191 | } |
| 192 | return true; |
| 193 | } |
| 194 | |
| 195 | #endif |
| 196 | |