1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkScalar_DEFINED |
9 | #define SkScalar_DEFINED |
10 | |
11 | #include "include/private/SkFloatingPoint.h" |
12 | |
13 | #undef SK_SCALAR_IS_FLOAT |
14 | #define SK_SCALAR_IS_FLOAT 1 |
15 | |
16 | typedef float SkScalar; |
17 | |
18 | #define SK_Scalar1 1.0f |
19 | #define SK_ScalarHalf 0.5f |
20 | #define SK_ScalarSqrt2 SK_FloatSqrt2 |
21 | #define SK_ScalarPI SK_FloatPI |
22 | #define SK_ScalarTanPIOver8 0.414213562f |
23 | #define SK_ScalarRoot2Over2 0.707106781f |
24 | #define SK_ScalarMax 3.402823466e+38f |
25 | #define SK_ScalarInfinity SK_FloatInfinity |
26 | #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
27 | #define SK_ScalarNaN SK_FloatNaN |
28 | |
29 | #define SkScalarFloorToScalar(x) sk_float_floor(x) |
30 | #define SkScalarCeilToScalar(x) sk_float_ceil(x) |
31 | #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) |
32 | #define SkScalarTruncToScalar(x) sk_float_trunc(x) |
33 | |
34 | #define SkScalarFloorToInt(x) sk_float_floor2int(x) |
35 | #define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
36 | #define SkScalarRoundToInt(x) sk_float_round2int(x) |
37 | |
38 | #define SkScalarAbs(x) sk_float_abs(x) |
39 | #define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
40 | #define SkScalarMod(x, y) sk_float_mod(x,y) |
41 | #define SkScalarSqrt(x) sk_float_sqrt(x) |
42 | #define SkScalarPow(b, e) sk_float_pow(b, e) |
43 | |
44 | #define SkScalarSin(radians) (float)sk_float_sin(radians) |
45 | #define SkScalarCos(radians) (float)sk_float_cos(radians) |
46 | #define SkScalarTan(radians) (float)sk_float_tan(radians) |
47 | #define SkScalarASin(val) (float)sk_float_asin(val) |
48 | #define SkScalarACos(val) (float)sk_float_acos(val) |
49 | #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
50 | #define SkScalarExp(x) (float)sk_float_exp(x) |
51 | #define SkScalarLog(x) (float)sk_float_log(x) |
52 | #define SkScalarLog2(x) (float)sk_float_log2(x) |
53 | |
54 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
55 | |
56 | #define SkIntToScalar(x) static_cast<SkScalar>(x) |
57 | #define SkIntToFloat(x) static_cast<float>(x) |
58 | #define SkScalarTruncToInt(x) sk_float_saturate2int(x) |
59 | |
60 | #define SkScalarToFloat(x) static_cast<float>(x) |
61 | #define SkFloatToScalar(x) static_cast<SkScalar>(x) |
62 | #define SkScalarToDouble(x) static_cast<double>(x) |
63 | #define SkDoubleToScalar(x) sk_double_to_float(x) |
64 | |
65 | #define SK_ScalarMin (-SK_ScalarMax) |
66 | |
67 | static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } |
68 | |
69 | /** Returns true if x is not NaN and not infinite |
70 | */ |
71 | static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); } |
72 | |
73 | static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { |
74 | return sk_floats_are_finite(a, b); |
75 | } |
76 | |
77 | static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { |
78 | return sk_floats_are_finite(array, count); |
79 | } |
80 | |
81 | /** |
82 | * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using |
83 | * double, to avoid possibly losing the low bit(s) of the answer before calling floor(). |
84 | * |
85 | * This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the |
86 | * extra precision is known to be valuable. |
87 | * |
88 | * In particular, this catches the following case: |
89 | * SkScalar x = 0.49999997; |
90 | * int ix = SkScalarRoundToInt(x); |
91 | * SkASSERT(0 == ix); // <--- fails |
92 | * ix = SkDScalarRoundToInt(x); |
93 | * SkASSERT(0 == ix); // <--- succeeds |
94 | */ |
95 | static inline int SkDScalarRoundToInt(SkScalar x) { |
96 | double xx = x; |
97 | xx += 0.5; |
98 | return (int)floor(xx); |
99 | } |
100 | |
101 | /** Returns the fractional part of the scalar. */ |
102 | static inline SkScalar SkScalarFraction(SkScalar x) { |
103 | return x - SkScalarTruncToScalar(x); |
104 | } |
105 | |
106 | static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
107 | |
108 | #define SkScalarInvert(x) sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(SK_Scalar1, (x)) |
109 | #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) |
110 | #define SkScalarHalf(a) ((a) * SK_ScalarHalf) |
111 | |
112 | #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
113 | #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) |
114 | |
115 | static inline bool SkScalarIsInt(SkScalar x) { |
116 | return x == SkScalarFloorToScalar(x); |
117 | } |
118 | |
119 | /** |
120 | * Returns -1 || 0 || 1 depending on the sign of value: |
121 | * -1 if x < 0 |
122 | * 0 if x == 0 |
123 | * 1 if x > 0 |
124 | */ |
125 | static inline int SkScalarSignAsInt(SkScalar x) { |
126 | return x < 0 ? -1 : (x > 0); |
127 | } |
128 | |
129 | // Scalar result version of above |
130 | static inline SkScalar SkScalarSignAsScalar(SkScalar x) { |
131 | return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); |
132 | } |
133 | |
134 | #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) |
135 | |
136 | static inline bool SkScalarNearlyZero(SkScalar x, |
137 | SkScalar tolerance = SK_ScalarNearlyZero) { |
138 | SkASSERT(tolerance >= 0); |
139 | return SkScalarAbs(x) <= tolerance; |
140 | } |
141 | |
142 | static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, |
143 | SkScalar tolerance = SK_ScalarNearlyZero) { |
144 | SkASSERT(tolerance >= 0); |
145 | return SkScalarAbs(x-y) <= tolerance; |
146 | } |
147 | |
148 | static inline float SkScalarSinSnapToZero(SkScalar radians) { |
149 | float v = SkScalarSin(radians); |
150 | return SkScalarNearlyZero(v) ? 0.0f : v; |
151 | } |
152 | |
153 | static inline float SkScalarCosSnapToZero(SkScalar radians) { |
154 | float v = SkScalarCos(radians); |
155 | return SkScalarNearlyZero(v) ? 0.0f : v; |
156 | } |
157 | |
158 | /** Linearly interpolate between A and B, based on t. |
159 | If t is 0, return A |
160 | If t is 1, return B |
161 | else interpolate. |
162 | t must be [0..SK_Scalar1] |
163 | */ |
164 | static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { |
165 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
166 | return A + (B - A) * t; |
167 | } |
168 | |
169 | /** Interpolate along the function described by (keys[length], values[length]) |
170 | for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] |
171 | clamp to the min or max value. This function was inspired by a desire |
172 | to change the multiplier for thickness in fakeBold; therefore it assumes |
173 | the number of pairs (length) will be small, and a linear search is used. |
174 | Repeated keys are allowed for discontinuous functions (so long as keys is |
175 | monotonically increasing), and if key is the value of a repeated scalar in |
176 | keys, the first one will be used. However, that may change if a binary |
177 | search is used. |
178 | */ |
179 | SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], |
180 | const SkScalar values[], int length); |
181 | |
182 | /* |
183 | * Helper to compare an array of scalars. |
184 | */ |
185 | static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { |
186 | SkASSERT(n >= 0); |
187 | for (int i = 0; i < n; ++i) { |
188 | if (a[i] != b[i]) { |
189 | return false; |
190 | } |
191 | } |
192 | return true; |
193 | } |
194 | |
195 | #endif |
196 | |