1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkAntiRun_DEFINED |
9 | #define SkAntiRun_DEFINED |
10 | |
11 | #include "include/private/SkTo.h" |
12 | #include "src/core/SkBlitter.h" |
13 | |
14 | /** Sparse array of run-length-encoded alpha (supersampling coverage) values. |
15 | Sparseness allows us to independently compose several paths into the |
16 | same SkAlphaRuns buffer. |
17 | */ |
18 | |
19 | class SkAlphaRuns { |
20 | public: |
21 | int16_t* fRuns; |
22 | uint8_t* fAlpha; |
23 | |
24 | // Return 0-255 given 0-256 |
25 | static inline SkAlpha CatchOverflow(int alpha) { |
26 | SkASSERT(alpha >= 0 && alpha <= 256); |
27 | return alpha - (alpha >> 8); |
28 | } |
29 | |
30 | /// Returns true if the scanline contains only a single run, |
31 | /// of alpha value 0. |
32 | bool empty() const { |
33 | SkASSERT(fRuns[0] > 0); |
34 | return fAlpha[0] == 0 && fRuns[fRuns[0]] == 0; |
35 | } |
36 | |
37 | /// Reinitialize for a new scanline. |
38 | void reset(int width); |
39 | |
40 | /** |
41 | * Insert into the buffer a run starting at (x-offsetX): |
42 | * if startAlpha > 0 |
43 | * one pixel with value += startAlpha, |
44 | * max 255 |
45 | * if middleCount > 0 |
46 | * middleCount pixels with value += maxValue |
47 | * if stopAlpha > 0 |
48 | * one pixel with value += stopAlpha |
49 | * Returns the offsetX value that should be passed on the next call, |
50 | * assuming we're on the same scanline. If the caller is switching |
51 | * scanlines, then offsetX should be 0 when this is called. |
52 | */ |
53 | SK_ALWAYS_INLINE int add(int x, U8CPU startAlpha, int middleCount, U8CPU stopAlpha, |
54 | U8CPU maxValue, int offsetX) { |
55 | SkASSERT(middleCount >= 0); |
56 | SkASSERT(x >= 0 && x + (startAlpha != 0) + middleCount + (stopAlpha != 0) <= fWidth); |
57 | |
58 | SkASSERT(fRuns[offsetX] >= 0); |
59 | |
60 | int16_t* runs = fRuns + offsetX; |
61 | uint8_t* alpha = fAlpha + offsetX; |
62 | uint8_t* lastAlpha = alpha; |
63 | x -= offsetX; |
64 | |
65 | if (startAlpha) { |
66 | SkAlphaRuns::Break(runs, alpha, x, 1); |
67 | /* I should be able to just add alpha[x] + startAlpha. |
68 | However, if the trailing edge of the previous span and the leading |
69 | edge of the current span round to the same super-sampled x value, |
70 | I might overflow to 256 with this add, hence the funny subtract (crud). |
71 | */ |
72 | unsigned tmp = alpha[x] + startAlpha; |
73 | SkASSERT(tmp <= 256); |
74 | alpha[x] = SkToU8(tmp - (tmp >> 8)); // was (tmp >> 7), but that seems wrong if we're trying to catch 256 |
75 | |
76 | runs += x + 1; |
77 | alpha += x + 1; |
78 | x = 0; |
79 | SkDEBUGCODE(this->validate();) |
80 | } |
81 | |
82 | if (middleCount) { |
83 | SkAlphaRuns::Break(runs, alpha, x, middleCount); |
84 | alpha += x; |
85 | runs += x; |
86 | x = 0; |
87 | do { |
88 | alpha[0] = SkToU8(CatchOverflow(alpha[0] + maxValue)); |
89 | int n = runs[0]; |
90 | SkASSERT(n <= middleCount); |
91 | alpha += n; |
92 | runs += n; |
93 | middleCount -= n; |
94 | } while (middleCount > 0); |
95 | SkDEBUGCODE(this->validate();) |
96 | lastAlpha = alpha; |
97 | } |
98 | |
99 | if (stopAlpha) { |
100 | SkAlphaRuns::Break(runs, alpha, x, 1); |
101 | alpha += x; |
102 | alpha[0] = SkToU8(alpha[0] + stopAlpha); |
103 | SkDEBUGCODE(this->validate();) |
104 | lastAlpha = alpha; |
105 | } |
106 | |
107 | return SkToS32(lastAlpha - fAlpha); // new offsetX |
108 | } |
109 | |
110 | SkDEBUGCODE(void assertValid(int y, int maxStep) const;) |
111 | SkDEBUGCODE(void dump() const;) |
112 | |
113 | /** |
114 | * Break the runs in the buffer at offsets x and x+count, properly |
115 | * updating the runs to the right and left. |
116 | * i.e. from the state AAAABBBB, run-length encoded as A4B4, |
117 | * Break(..., 2, 5) would produce AAAABBBB rle as A2A2B3B1. |
118 | * Allows add() to sum another run to some of the new sub-runs. |
119 | * i.e. adding ..CCCCC. would produce AADDEEEB, rle as A2D2E3B1. |
120 | */ |
121 | static void Break(int16_t runs[], uint8_t alpha[], int x, int count) { |
122 | SkASSERT(count > 0 && x >= 0); |
123 | |
124 | // SkAlphaRuns::BreakAt(runs, alpha, x); |
125 | // SkAlphaRuns::BreakAt(&runs[x], &alpha[x], count); |
126 | |
127 | int16_t* next_runs = runs + x; |
128 | uint8_t* next_alpha = alpha + x; |
129 | |
130 | while (x > 0) { |
131 | int n = runs[0]; |
132 | SkASSERT(n > 0); |
133 | |
134 | if (x < n) { |
135 | alpha[x] = alpha[0]; |
136 | runs[0] = SkToS16(x); |
137 | runs[x] = SkToS16(n - x); |
138 | break; |
139 | } |
140 | runs += n; |
141 | alpha += n; |
142 | x -= n; |
143 | } |
144 | |
145 | runs = next_runs; |
146 | alpha = next_alpha; |
147 | x = count; |
148 | |
149 | for (;;) { |
150 | int n = runs[0]; |
151 | SkASSERT(n > 0); |
152 | |
153 | if (x < n) { |
154 | alpha[x] = alpha[0]; |
155 | runs[0] = SkToS16(x); |
156 | runs[x] = SkToS16(n - x); |
157 | break; |
158 | } |
159 | x -= n; |
160 | if (x <= 0) { |
161 | break; |
162 | } |
163 | runs += n; |
164 | alpha += n; |
165 | } |
166 | } |
167 | |
168 | /** |
169 | * Cut (at offset x in the buffer) a run into two shorter runs with |
170 | * matching alpha values. |
171 | * Used by the RectClipBlitter to trim a RLE encoding to match the |
172 | * clipping rectangle. |
173 | */ |
174 | static void BreakAt(int16_t runs[], uint8_t alpha[], int x) { |
175 | while (x > 0) { |
176 | int n = runs[0]; |
177 | SkASSERT(n > 0); |
178 | |
179 | if (x < n) { |
180 | alpha[x] = alpha[0]; |
181 | runs[0] = SkToS16(x); |
182 | runs[x] = SkToS16(n - x); |
183 | break; |
184 | } |
185 | runs += n; |
186 | alpha += n; |
187 | x -= n; |
188 | } |
189 | } |
190 | |
191 | private: |
192 | SkDEBUGCODE(int fWidth;) |
193 | SkDEBUGCODE(void validate() const;) |
194 | }; |
195 | |
196 | #endif |
197 | |