| 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkArenaAlloc_DEFINED |
| 9 | #define SkArenaAlloc_DEFINED |
| 10 | |
| 11 | #include "include/private/SkTFitsIn.h" |
| 12 | |
| 13 | #include <array> |
| 14 | #include <cassert> |
| 15 | #include <cstddef> |
| 16 | #include <cstdint> |
| 17 | #include <cstdlib> |
| 18 | #include <cstring> |
| 19 | #include <limits> |
| 20 | #include <new> |
| 21 | #include <type_traits> |
| 22 | #include <utility> |
| 23 | #include <vector> |
| 24 | |
| 25 | // SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed |
| 26 | // to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an |
| 27 | // (optional) user-provided block of memory, and when that's exhausted it allocates on the heap, |
| 28 | // starting with an allocation of firstHeapAllocation bytes. If your data (plus a small overhead) |
| 29 | // fits in the user-provided block, SkArenaAlloc never uses the heap, and if it fits in |
| 30 | // firstHeapAllocation bytes, it'll use the heap only once. If 0 is specified for |
| 31 | // firstHeapAllocation, then blockSize is used unless that too is 0, then 1024 is used. |
| 32 | // |
| 33 | // Examples: |
| 34 | // |
| 35 | // char block[mostCasesSize]; |
| 36 | // SkArenaAlloc arena(block, mostCasesSize); |
| 37 | // |
| 38 | // If mostCasesSize is too large for the stack, you can use the following pattern. |
| 39 | // |
| 40 | // std::unique_ptr<char[]> block{new char[mostCasesSize]}; |
| 41 | // SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize); |
| 42 | // |
| 43 | // If the program only sometimes allocates memory, use the following pattern. |
| 44 | // |
| 45 | // SkArenaAlloc arena(nullptr, 0, almostAllCasesSize); |
| 46 | // |
| 47 | // The storage does not necessarily need to be on the stack. Embedding the storage in a class also |
| 48 | // works. |
| 49 | // |
| 50 | // class Foo { |
| 51 | // char storage[mostCasesSize]; |
| 52 | // SkArenaAlloc arena (storage, mostCasesSize); |
| 53 | // }; |
| 54 | // |
| 55 | // In addition, the system is optimized to handle POD data including arrays of PODs (where |
| 56 | // POD is really data with no destructors). For POD data it has zero overhead per item, and a |
| 57 | // typical per block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4 |
| 58 | // bytes. For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There |
| 59 | // is an addition overhead when switching from POD data to non-POD data of typically 8 bytes. |
| 60 | // |
| 61 | // If additional blocks are needed they are increased exponentially. This strategy bounds the |
| 62 | // recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using |
| 63 | // the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48 |
| 64 | // there are 71 allocations. |
| 65 | class SkArenaAlloc { |
| 66 | public: |
| 67 | SkArenaAlloc(char* block, size_t blockSize, size_t firstHeapAllocation); |
| 68 | |
| 69 | explicit SkArenaAlloc(size_t firstHeapAllocation) |
| 70 | : SkArenaAlloc(nullptr, 0, firstHeapAllocation) |
| 71 | {} |
| 72 | |
| 73 | ~SkArenaAlloc(); |
| 74 | |
| 75 | template <typename T, typename... Args> |
| 76 | T* make(Args&&... args) { |
| 77 | uint32_t size = ToU32(sizeof(T)); |
| 78 | uint32_t alignment = ToU32(alignof(T)); |
| 79 | char* objStart; |
| 80 | if (std::is_trivially_destructible<T>::value) { |
| 81 | objStart = this->allocObject(size, alignment); |
| 82 | fCursor = objStart + size; |
| 83 | } else { |
| 84 | objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment); |
| 85 | // Can never be UB because max value is alignof(T). |
| 86 | uint32_t padding = ToU32(objStart - fCursor); |
| 87 | |
| 88 | // Advance to end of object to install footer. |
| 89 | fCursor = objStart + size; |
| 90 | FooterAction* releaser = [](char* objEnd) { |
| 91 | char* objStart = objEnd - (sizeof(T) + sizeof(Footer)); |
| 92 | ((T*)objStart)->~T(); |
| 93 | return objStart; |
| 94 | }; |
| 95 | this->installFooter(releaser, padding); |
| 96 | } |
| 97 | |
| 98 | // This must be last to make objects with nested use of this allocator work. |
| 99 | return new(objStart) T(std::forward<Args>(args)...); |
| 100 | } |
| 101 | |
| 102 | template <typename T> |
| 103 | T* makeArrayDefault(size_t count) { |
| 104 | AssertRelease(SkTFitsIn<uint32_t>(count)); |
| 105 | uint32_t safeCount = ToU32(count); |
| 106 | T* array = (T*)this->commonArrayAlloc<T>(safeCount); |
| 107 | |
| 108 | // If T is primitive then no initialization takes place. |
| 109 | for (size_t i = 0; i < safeCount; i++) { |
| 110 | new (&array[i]) T; |
| 111 | } |
| 112 | return array; |
| 113 | } |
| 114 | |
| 115 | template <typename T> |
| 116 | T* makeArray(size_t count) { |
| 117 | AssertRelease(SkTFitsIn<uint32_t>(count)); |
| 118 | uint32_t safeCount = ToU32(count); |
| 119 | T* array = (T*)this->commonArrayAlloc<T>(safeCount); |
| 120 | |
| 121 | // If T is primitive then the memory is initialized. For example, an array of chars will |
| 122 | // be zeroed. |
| 123 | for (size_t i = 0; i < safeCount; i++) { |
| 124 | new (&array[i]) T(); |
| 125 | } |
| 126 | return array; |
| 127 | } |
| 128 | |
| 129 | // Only use makeBytesAlignedTo if none of the typed variants are impractical to use. |
| 130 | void* makeBytesAlignedTo(size_t size, size_t align) { |
| 131 | AssertRelease(SkTFitsIn<uint32_t>(size)); |
| 132 | auto objStart = this->allocObject(ToU32(size), ToU32(align)); |
| 133 | fCursor = objStart + size; |
| 134 | return objStart; |
| 135 | } |
| 136 | |
| 137 | // Destroy all allocated objects, free any heap allocations. |
| 138 | void reset(); |
| 139 | |
| 140 | private: |
| 141 | static void AssertRelease(bool cond) { if (!cond) { ::abort(); } } |
| 142 | static uint32_t ToU32(size_t v) { |
| 143 | assert(SkTFitsIn<uint32_t>(v)); |
| 144 | return (uint32_t)v; |
| 145 | } |
| 146 | |
| 147 | using = int64_t; |
| 148 | using = char* (char*); |
| 149 | |
| 150 | static char* SkipPod(char* ); |
| 151 | static void RunDtorsOnBlock(char* ); |
| 152 | static char* NextBlock(char* ); |
| 153 | |
| 154 | void (FooterAction* releaser, uint32_t padding); |
| 155 | void (FooterAction* action, uint32_t value, uint32_t padding); |
| 156 | void (FooterAction* action, char* ptr, uint32_t padding); |
| 157 | |
| 158 | void ensureSpace(uint32_t size, uint32_t alignment); |
| 159 | |
| 160 | char* allocObject(uint32_t size, uint32_t alignment) { |
| 161 | uintptr_t mask = alignment - 1; |
| 162 | uintptr_t alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; |
| 163 | uintptr_t totalSize = size + alignedOffset; |
| 164 | AssertRelease(totalSize >= size); |
| 165 | if (totalSize > static_cast<uintptr_t>(fEnd - fCursor)) { |
| 166 | this->ensureSpace(size, alignment); |
| 167 | alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; |
| 168 | } |
| 169 | return fCursor + alignedOffset; |
| 170 | } |
| 171 | |
| 172 | char* (uint32_t , uint32_t alignment); |
| 173 | |
| 174 | template <typename T> |
| 175 | char* commonArrayAlloc(uint32_t count) { |
| 176 | char* objStart; |
| 177 | AssertRelease(count <= std::numeric_limits<uint32_t>::max() / sizeof(T)); |
| 178 | uint32_t arraySize = ToU32(count * sizeof(T)); |
| 179 | uint32_t alignment = ToU32(alignof(T)); |
| 180 | |
| 181 | if (std::is_trivially_destructible<T>::value) { |
| 182 | objStart = this->allocObject(arraySize, alignment); |
| 183 | fCursor = objStart + arraySize; |
| 184 | } else { |
| 185 | constexpr uint32_t overhead = sizeof(Footer) + sizeof(uint32_t); |
| 186 | AssertRelease(arraySize <= std::numeric_limits<uint32_t>::max() - overhead); |
| 187 | uint32_t totalSize = arraySize + overhead; |
| 188 | objStart = this->allocObjectWithFooter(totalSize, alignment); |
| 189 | |
| 190 | // Can never be UB because max value is alignof(T). |
| 191 | uint32_t padding = ToU32(objStart - fCursor); |
| 192 | |
| 193 | // Advance to end of array to install footer.? |
| 194 | fCursor = objStart + arraySize; |
| 195 | this->installUint32Footer( |
| 196 | [](char* ) { |
| 197 | char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t)); |
| 198 | uint32_t count; |
| 199 | memmove(&count, objEnd, sizeof(uint32_t)); |
| 200 | char* objStart = objEnd - count * sizeof(T); |
| 201 | T* array = (T*) objStart; |
| 202 | for (uint32_t i = 0; i < count; i++) { |
| 203 | array[i].~T(); |
| 204 | } |
| 205 | return objStart; |
| 206 | }, |
| 207 | ToU32(count), |
| 208 | padding); |
| 209 | } |
| 210 | |
| 211 | return objStart; |
| 212 | } |
| 213 | |
| 214 | char* fDtorCursor; |
| 215 | char* fCursor; |
| 216 | char* fEnd; |
| 217 | char* const fFirstBlock; |
| 218 | const uint32_t fFirstSize; |
| 219 | const uint32_t fFirstHeapAllocationSize; |
| 220 | |
| 221 | // Use the Fibonacci sequence as the growth factor for block size. The size of the block |
| 222 | // allocated is fFib0 * fFirstHeapAllocationSize. Using 2 ^ n * fFirstHeapAllocationSize |
| 223 | // had too much slop for Android. |
| 224 | uint32_t fFib0 {1}, fFib1 {1}; |
| 225 | }; |
| 226 | |
| 227 | // Helper for defining allocators with inline/reserved storage. |
| 228 | // For argument declarations, stick to the base type (SkArenaAlloc). |
| 229 | // Note: Inheriting from the storage first means the storage will outlive the |
| 230 | // SkArenaAlloc, letting ~SkArenaAlloc read it as it calls destructors. |
| 231 | // (This is mostly only relevant for strict tools like MSAN.) |
| 232 | template <size_t InlineStorageSize> |
| 233 | class SkSTArenaAlloc : private std::array<char, InlineStorageSize>, public SkArenaAlloc { |
| 234 | public: |
| 235 | explicit SkSTArenaAlloc(size_t firstHeapAllocation = InlineStorageSize) |
| 236 | : SkArenaAlloc{this->data(), this->size(), firstHeapAllocation} {} |
| 237 | }; |
| 238 | |
| 239 | #endif // SkArenaAlloc_DEFINED |
| 240 | |