1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/private/SkDeque.h" |
9 | #include "include/private/SkMalloc.h" |
10 | |
11 | struct SkDeque::Block { |
12 | Block* fNext; |
13 | Block* fPrev; |
14 | char* fBegin; // start of used section in this chunk |
15 | char* fEnd; // end of used section in this chunk |
16 | char* fStop; // end of the allocated chunk |
17 | |
18 | char* start() { return (char*)(this + 1); } |
19 | const char* start() const { return (const char*)(this + 1); } |
20 | |
21 | void init(size_t size) { |
22 | fNext = fPrev = nullptr; |
23 | fBegin = fEnd = nullptr; |
24 | fStop = (char*)this + size; |
25 | } |
26 | }; |
27 | |
28 | SkDeque::SkDeque(size_t elemSize, int allocCount) |
29 | : fElemSize(elemSize) |
30 | , fInitialStorage(nullptr) |
31 | , fCount(0) |
32 | , fAllocCount(allocCount) { |
33 | SkASSERT(allocCount >= 1); |
34 | fFrontBlock = fBackBlock = nullptr; |
35 | fFront = fBack = nullptr; |
36 | } |
37 | |
38 | SkDeque::SkDeque(size_t elemSize, void* storage, size_t storageSize, int allocCount) |
39 | : fElemSize(elemSize) |
40 | , fInitialStorage(storage) |
41 | , fCount(0) |
42 | , fAllocCount(allocCount) { |
43 | SkASSERT(storageSize == 0 || storage != nullptr); |
44 | SkASSERT(allocCount >= 1); |
45 | |
46 | if (storageSize >= sizeof(Block) + elemSize) { |
47 | fFrontBlock = (Block*)storage; |
48 | fFrontBlock->init(storageSize); |
49 | } else { |
50 | fFrontBlock = nullptr; |
51 | } |
52 | fBackBlock = fFrontBlock; |
53 | fFront = fBack = nullptr; |
54 | } |
55 | |
56 | SkDeque::~SkDeque() { |
57 | Block* head = fFrontBlock; |
58 | Block* initialHead = (Block*)fInitialStorage; |
59 | |
60 | while (head) { |
61 | Block* next = head->fNext; |
62 | if (head != initialHead) { |
63 | this->freeBlock(head); |
64 | } |
65 | head = next; |
66 | } |
67 | } |
68 | |
69 | void* SkDeque::push_front() { |
70 | fCount += 1; |
71 | |
72 | if (nullptr == fFrontBlock) { |
73 | fFrontBlock = this->allocateBlock(fAllocCount); |
74 | fBackBlock = fFrontBlock; // update our linklist |
75 | } |
76 | |
77 | Block* first = fFrontBlock; |
78 | char* begin; |
79 | |
80 | if (nullptr == first->fBegin) { |
81 | INIT_CHUNK: |
82 | first->fEnd = first->fStop; |
83 | begin = first->fStop - fElemSize; |
84 | } else { |
85 | begin = first->fBegin - fElemSize; |
86 | if (begin < first->start()) { // no more room in this chunk |
87 | // should we alloc more as we accumulate more elements? |
88 | first = this->allocateBlock(fAllocCount); |
89 | first->fNext = fFrontBlock; |
90 | fFrontBlock->fPrev = first; |
91 | fFrontBlock = first; |
92 | goto INIT_CHUNK; |
93 | } |
94 | } |
95 | |
96 | first->fBegin = begin; |
97 | |
98 | if (nullptr == fFront) { |
99 | SkASSERT(nullptr == fBack); |
100 | fFront = fBack = begin; |
101 | } else { |
102 | SkASSERT(fBack); |
103 | fFront = begin; |
104 | } |
105 | |
106 | return begin; |
107 | } |
108 | |
109 | void* SkDeque::push_back() { |
110 | fCount += 1; |
111 | |
112 | if (nullptr == fBackBlock) { |
113 | fBackBlock = this->allocateBlock(fAllocCount); |
114 | fFrontBlock = fBackBlock; // update our linklist |
115 | } |
116 | |
117 | Block* last = fBackBlock; |
118 | char* end; |
119 | |
120 | if (nullptr == last->fBegin) { |
121 | INIT_CHUNK: |
122 | last->fBegin = last->start(); |
123 | end = last->fBegin + fElemSize; |
124 | } else { |
125 | end = last->fEnd + fElemSize; |
126 | if (end > last->fStop) { // no more room in this chunk |
127 | // should we alloc more as we accumulate more elements? |
128 | last = this->allocateBlock(fAllocCount); |
129 | last->fPrev = fBackBlock; |
130 | fBackBlock->fNext = last; |
131 | fBackBlock = last; |
132 | goto INIT_CHUNK; |
133 | } |
134 | } |
135 | |
136 | last->fEnd = end; |
137 | end -= fElemSize; |
138 | |
139 | if (nullptr == fBack) { |
140 | SkASSERT(nullptr == fFront); |
141 | fFront = fBack = end; |
142 | } else { |
143 | SkASSERT(fFront); |
144 | fBack = end; |
145 | } |
146 | |
147 | return end; |
148 | } |
149 | |
150 | void SkDeque::pop_front() { |
151 | SkASSERT(fCount > 0); |
152 | fCount -= 1; |
153 | |
154 | Block* first = fFrontBlock; |
155 | |
156 | SkASSERT(first != nullptr); |
157 | |
158 | if (first->fBegin == nullptr) { // we were marked empty from before |
159 | first = first->fNext; |
160 | SkASSERT(first != nullptr); // else we popped too far |
161 | first->fPrev = nullptr; |
162 | this->freeBlock(fFrontBlock); |
163 | fFrontBlock = first; |
164 | } |
165 | |
166 | char* begin = first->fBegin + fElemSize; |
167 | SkASSERT(begin <= first->fEnd); |
168 | |
169 | if (begin < fFrontBlock->fEnd) { |
170 | first->fBegin = begin; |
171 | SkASSERT(first->fBegin); |
172 | fFront = first->fBegin; |
173 | } else { |
174 | first->fBegin = first->fEnd = nullptr; // mark as empty |
175 | if (nullptr == first->fNext) { |
176 | fFront = fBack = nullptr; |
177 | } else { |
178 | SkASSERT(first->fNext->fBegin); |
179 | fFront = first->fNext->fBegin; |
180 | } |
181 | } |
182 | } |
183 | |
184 | void SkDeque::pop_back() { |
185 | SkASSERT(fCount > 0); |
186 | fCount -= 1; |
187 | |
188 | Block* last = fBackBlock; |
189 | |
190 | SkASSERT(last != nullptr); |
191 | |
192 | if (last->fEnd == nullptr) { // we were marked empty from before |
193 | last = last->fPrev; |
194 | SkASSERT(last != nullptr); // else we popped too far |
195 | last->fNext = nullptr; |
196 | this->freeBlock(fBackBlock); |
197 | fBackBlock = last; |
198 | } |
199 | |
200 | char* end = last->fEnd - fElemSize; |
201 | SkASSERT(end >= last->fBegin); |
202 | |
203 | if (end > last->fBegin) { |
204 | last->fEnd = end; |
205 | SkASSERT(last->fEnd); |
206 | fBack = last->fEnd - fElemSize; |
207 | } else { |
208 | last->fBegin = last->fEnd = nullptr; // mark as empty |
209 | if (nullptr == last->fPrev) { |
210 | fFront = fBack = nullptr; |
211 | } else { |
212 | SkASSERT(last->fPrev->fEnd); |
213 | fBack = last->fPrev->fEnd - fElemSize; |
214 | } |
215 | } |
216 | } |
217 | |
218 | int SkDeque::numBlocksAllocated() const { |
219 | int numBlocks = 0; |
220 | |
221 | for (const Block* temp = fFrontBlock; temp; temp = temp->fNext) { |
222 | ++numBlocks; |
223 | } |
224 | |
225 | return numBlocks; |
226 | } |
227 | |
228 | SkDeque::Block* SkDeque::allocateBlock(int allocCount) { |
229 | Block* newBlock = (Block*)sk_malloc_throw(sizeof(Block) + allocCount * fElemSize); |
230 | newBlock->init(sizeof(Block) + allocCount * fElemSize); |
231 | return newBlock; |
232 | } |
233 | |
234 | void SkDeque::freeBlock(Block* block) { |
235 | sk_free(block); |
236 | } |
237 | |
238 | /////////////////////////////////////////////////////////////////////////////// |
239 | |
240 | SkDeque::Iter::Iter() : fCurBlock(nullptr), fPos(nullptr), fElemSize(0) {} |
241 | |
242 | SkDeque::Iter::Iter(const SkDeque& d, IterStart startLoc) { |
243 | this->reset(d, startLoc); |
244 | } |
245 | |
246 | // Due to how reset and next work, next actually returns the current element |
247 | // pointed to by fPos and then updates fPos to point to the next one. |
248 | void* SkDeque::Iter::next() { |
249 | char* pos = fPos; |
250 | |
251 | if (pos) { // if we were valid, try to move to the next setting |
252 | char* next = pos + fElemSize; |
253 | SkASSERT(next <= fCurBlock->fEnd); |
254 | if (next == fCurBlock->fEnd) { // exhausted this chunk, move to next |
255 | do { |
256 | fCurBlock = fCurBlock->fNext; |
257 | } while (fCurBlock != nullptr && fCurBlock->fBegin == nullptr); |
258 | next = fCurBlock ? fCurBlock->fBegin : nullptr; |
259 | } |
260 | fPos = next; |
261 | } |
262 | return pos; |
263 | } |
264 | |
265 | // Like next, prev actually returns the current element pointed to by fPos and |
266 | // then makes fPos point to the previous element. |
267 | void* SkDeque::Iter::prev() { |
268 | char* pos = fPos; |
269 | |
270 | if (pos) { // if we were valid, try to move to the prior setting |
271 | char* prev = pos - fElemSize; |
272 | SkASSERT(prev >= fCurBlock->fBegin - fElemSize); |
273 | if (prev < fCurBlock->fBegin) { // exhausted this chunk, move to prior |
274 | do { |
275 | fCurBlock = fCurBlock->fPrev; |
276 | } while (fCurBlock != nullptr && fCurBlock->fEnd == nullptr); |
277 | prev = fCurBlock ? fCurBlock->fEnd - fElemSize : nullptr; |
278 | } |
279 | fPos = prev; |
280 | } |
281 | return pos; |
282 | } |
283 | |
284 | // reset works by skipping through the spare blocks at the start (or end) |
285 | // of the doubly linked list until a non-empty one is found. The fPos |
286 | // member is then set to the first (or last) element in the block. If |
287 | // there are no elements in the deque both fCurBlock and fPos will come |
288 | // out of this routine nullptr. |
289 | void SkDeque::Iter::reset(const SkDeque& d, IterStart startLoc) { |
290 | fElemSize = d.fElemSize; |
291 | |
292 | if (kFront_IterStart == startLoc) { |
293 | // initialize the iterator to start at the front |
294 | fCurBlock = d.fFrontBlock; |
295 | while (fCurBlock && nullptr == fCurBlock->fBegin) { |
296 | fCurBlock = fCurBlock->fNext; |
297 | } |
298 | fPos = fCurBlock ? fCurBlock->fBegin : nullptr; |
299 | } else { |
300 | // initialize the iterator to start at the back |
301 | fCurBlock = d.fBackBlock; |
302 | while (fCurBlock && nullptr == fCurBlock->fEnd) { |
303 | fCurBlock = fCurBlock->fPrev; |
304 | } |
305 | fPos = fCurBlock ? fCurBlock->fEnd - fElemSize : nullptr; |
306 | } |
307 | } |
308 | |