| 1 | /* |
|---|---|
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkExecutor.h" |
| 9 | #include "include/private/SkMutex.h" |
| 10 | #include "include/private/SkSemaphore.h" |
| 11 | #include "include/private/SkSpinlock.h" |
| 12 | #include "include/private/SkTArray.h" |
| 13 | #include <deque> |
| 14 | #include <thread> |
| 15 | |
| 16 | #if defined(SK_BUILD_FOR_WIN) |
| 17 | #include "src/core/SkLeanWindows.h" |
| 18 | static int num_cores() { |
| 19 | SYSTEM_INFO sysinfo; |
| 20 | GetNativeSystemInfo(&sysinfo); |
| 21 | return (int)sysinfo.dwNumberOfProcessors; |
| 22 | } |
| 23 | #else |
| 24 | #include <unistd.h> |
| 25 | static int num_cores() { |
| 26 | return (int)sysconf(_SC_NPROCESSORS_ONLN); |
| 27 | } |
| 28 | #endif |
| 29 | |
| 30 | SkExecutor::~SkExecutor() {} |
| 31 | |
| 32 | // The default default SkExecutor is an SkTrivialExecutor, which just runs the work right away. |
| 33 | class SkTrivialExecutor final : public SkExecutor { |
| 34 | void add(std::function<void(void)> work) override { |
| 35 | work(); |
| 36 | } |
| 37 | }; |
| 38 | |
| 39 | static SkExecutor* gDefaultExecutor = nullptr; |
| 40 | |
| 41 | void SetDefaultTrivialExecutor() { |
| 42 | static SkTrivialExecutor *gTrivial = new SkTrivialExecutor(); |
| 43 | gDefaultExecutor = gTrivial; |
| 44 | } |
| 45 | SkExecutor& SkExecutor::GetDefault() { |
| 46 | if (!gDefaultExecutor) { |
| 47 | SetDefaultTrivialExecutor(); |
| 48 | } |
| 49 | return *gDefaultExecutor; |
| 50 | } |
| 51 | void SkExecutor::SetDefault(SkExecutor* executor) { |
| 52 | if (executor) { |
| 53 | gDefaultExecutor = executor; |
| 54 | } else { |
| 55 | SetDefaultTrivialExecutor(); |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | // We'll always push_back() new work, but pop from the front of deques or the back of SkTArray. |
| 60 | static inline std::function<void(void)> pop(std::deque<std::function<void(void)>>* list) { |
| 61 | std::function<void(void)> fn = std::move(list->front()); |
| 62 | list->pop_front(); |
| 63 | return fn; |
| 64 | } |
| 65 | static inline std::function<void(void)> pop(SkTArray<std::function<void(void)>>* list) { |
| 66 | std::function<void(void)> fn = std::move(list->back()); |
| 67 | list->pop_back(); |
| 68 | return fn; |
| 69 | } |
| 70 | |
| 71 | // An SkThreadPool is an executor that runs work on a fixed pool of OS threads. |
| 72 | template <typename WorkList> |
| 73 | class SkThreadPool final : public SkExecutor { |
| 74 | public: |
| 75 | explicit SkThreadPool(int threads) { |
| 76 | for (int i = 0; i < threads; i++) { |
| 77 | fThreads.emplace_back(&Loop, this); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | ~SkThreadPool() override { |
| 82 | // Signal each thread that it's time to shut down. |
| 83 | for (int i = 0; i < fThreads.count(); i++) { |
| 84 | this->add(nullptr); |
| 85 | } |
| 86 | // Wait for each thread to shut down. |
| 87 | for (int i = 0; i < fThreads.count(); i++) { |
| 88 | fThreads[i].join(); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | virtual void add(std::function<void(void)> work) override { |
| 93 | // Add some work to our pile of work to do. |
| 94 | { |
| 95 | SkAutoMutexExclusive lock(fWorkLock); |
| 96 | fWork.emplace_back(std::move(work)); |
| 97 | } |
| 98 | // Tell the Loop() threads to pick it up. |
| 99 | fWorkAvailable.signal(1); |
| 100 | } |
| 101 | |
| 102 | virtual void borrow() override { |
| 103 | // If there is work waiting, do it. |
| 104 | if (fWorkAvailable.try_wait()) { |
| 105 | SkAssertResult(this->do_work()); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | private: |
| 110 | // This method should be called only when fWorkAvailable indicates there's work to do. |
| 111 | bool do_work() { |
| 112 | std::function<void(void)> work; |
| 113 | { |
| 114 | SkAutoMutexExclusive lock(fWorkLock); |
| 115 | SkASSERT(!fWork.empty()); // TODO: if (fWork.empty()) { return true; } ? |
| 116 | work = pop(&fWork); |
| 117 | } |
| 118 | |
| 119 | if (!work) { |
| 120 | return false; // This is Loop()'s signal to shut down. |
| 121 | } |
| 122 | |
| 123 | work(); |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | static void Loop(void* ctx) { |
| 128 | auto pool = (SkThreadPool*)ctx; |
| 129 | do { |
| 130 | pool->fWorkAvailable.wait(); |
| 131 | } while (pool->do_work()); |
| 132 | } |
| 133 | |
| 134 | // Both SkMutex and SkSpinlock can work here. |
| 135 | using Lock = SkMutex; |
| 136 | |
| 137 | SkTArray<std::thread> fThreads; |
| 138 | WorkList fWork; |
| 139 | Lock fWorkLock; |
| 140 | SkSemaphore fWorkAvailable; |
| 141 | }; |
| 142 | |
| 143 | std::unique_ptr<SkExecutor> SkExecutor::MakeFIFOThreadPool(int threads) { |
| 144 | using WorkList = std::deque<std::function<void(void)>>; |
| 145 | return std::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores()); |
| 146 | } |
| 147 | std::unique_ptr<SkExecutor> SkExecutor::MakeLIFOThreadPool(int threads) { |
| 148 | using WorkList = SkTArray<std::function<void(void)>>; |
| 149 | return std::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores()); |
| 150 | } |
| 151 |