1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | |
9 | #include "include/core/SkTypes.h" |
10 | #include "include/private/SkFloatingPoint.h" |
11 | #include "src/core/SkGaussFilter.h" |
12 | #include <cmath> |
13 | |
14 | // The value when we can stop expanding the filter. The spec implies that 3% is acceptable, but |
15 | // we just use 1%. |
16 | static constexpr double kGoodEnough = 1.0 / 100.0; |
17 | |
18 | // Normalize the values of gauss to 1.0, and make sure they add to one. |
19 | // NB if n == 1, then this will force gauss[0] == 1. |
20 | static void normalize(int n, double* gauss) { |
21 | // Carefully add from smallest to largest to calculate the normalizing sum. |
22 | double sum = 0; |
23 | for (int i = n-1; i >= 1; i--) { |
24 | sum += 2 * gauss[i]; |
25 | } |
26 | sum += gauss[0]; |
27 | |
28 | // Normalize gauss. |
29 | for (int i = 0; i < n; i++) { |
30 | gauss[i] /= sum; |
31 | } |
32 | |
33 | // The factors should sum to 1. Take any remaining slop, and add it to gauss[0]. Add the |
34 | // values in such a way to maintain the most accuracy. |
35 | sum = 0; |
36 | for (int i = n - 1; i >= 1; i--) { |
37 | sum += 2 * gauss[i]; |
38 | } |
39 | |
40 | gauss[0] = 1 - sum; |
41 | } |
42 | |
43 | static int calculate_bessel_factors(double sigma, double *gauss) { |
44 | auto var = sigma * sigma; |
45 | |
46 | // The two functions below come from the equations in "Handbook of Mathematical Functions" |
47 | // by Abramowitz and Stegun. Specifically, equation 9.6.10 on page 375. Bessel0 is given |
48 | // explicitly as 9.6.12 |
49 | // BesselI_0 for 0 <= sigma < 2. |
50 | // NB the k = 0 factor is just sum = 1.0. |
51 | auto besselI_0 = [](double t) -> double { |
52 | auto tSquaredOver4 = t * t / 4.0; |
53 | auto sum = 1.0; |
54 | auto factor = 1.0; |
55 | auto k = 1; |
56 | // Use a variable number of loops. When sigma is small, this only requires 3-4 loops, but |
57 | // when sigma is near 2, it could require 10 loops. The same holds for BesselI_1. |
58 | while(factor > 1.0/1000000.0) { |
59 | factor *= tSquaredOver4 / (k * k); |
60 | sum += factor; |
61 | k += 1; |
62 | } |
63 | return sum; |
64 | }; |
65 | // BesselI_1 for 0 <= sigma < 2. |
66 | auto besselI_1 = [](double t) -> double { |
67 | auto tSquaredOver4 = t * t / 4.0; |
68 | auto sum = t / 2.0; |
69 | auto factor = sum; |
70 | auto k = 1; |
71 | while (factor > 1.0/1000000.0) { |
72 | factor *= tSquaredOver4 / (k * (k + 1)); |
73 | sum += factor; |
74 | k += 1; |
75 | } |
76 | return sum; |
77 | }; |
78 | |
79 | // The following formula for calculating the Gaussian kernel is from |
80 | // "Scale-Space for Discrete Signals" by Tony Lindeberg. |
81 | // gauss(n; var) = besselI_n(var) / (e^var) |
82 | auto d = std::exp(var); |
83 | double b[SkGaussFilter::kGaussArrayMax] = {besselI_0(var), besselI_1(var)}; |
84 | gauss[0] = b[0]/d; |
85 | gauss[1] = b[1]/d; |
86 | |
87 | // The code below is tricky, and written to mirror the recursive equations from the book. |
88 | // The maximum spread for sigma == 2 is guass[4], but in order to know to stop guass[5] |
89 | // is calculated. At this point n == 5 meaning that gauss[0..4] are the factors, but a 6th |
90 | // element was used to calculate them. |
91 | int n = 1; |
92 | // The recurrence relation below is from "Numerical Recipes" 3rd Edition. |
93 | // Equation 6.5.16 p.282 |
94 | while (gauss[n] > kGoodEnough) { |
95 | b[n+1] = -(2*n/var) * b[n] + b[n-1]; |
96 | gauss[n+1] = b[n+1] / d; |
97 | n += 1; |
98 | } |
99 | |
100 | normalize(n, gauss); |
101 | |
102 | return n; |
103 | } |
104 | |
105 | SkGaussFilter::SkGaussFilter(double sigma) { |
106 | SkASSERT(0 <= sigma && sigma < 2); |
107 | |
108 | fN = calculate_bessel_factors(sigma, fBasis); |
109 | } |
110 | |