| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | |
| 9 | #include "include/core/SkTypes.h" |
| 10 | #include "include/private/SkFloatingPoint.h" |
| 11 | #include "src/core/SkGaussFilter.h" |
| 12 | #include <cmath> |
| 13 | |
| 14 | // The value when we can stop expanding the filter. The spec implies that 3% is acceptable, but |
| 15 | // we just use 1%. |
| 16 | static constexpr double kGoodEnough = 1.0 / 100.0; |
| 17 | |
| 18 | // Normalize the values of gauss to 1.0, and make sure they add to one. |
| 19 | // NB if n == 1, then this will force gauss[0] == 1. |
| 20 | static void normalize(int n, double* gauss) { |
| 21 | // Carefully add from smallest to largest to calculate the normalizing sum. |
| 22 | double sum = 0; |
| 23 | for (int i = n-1; i >= 1; i--) { |
| 24 | sum += 2 * gauss[i]; |
| 25 | } |
| 26 | sum += gauss[0]; |
| 27 | |
| 28 | // Normalize gauss. |
| 29 | for (int i = 0; i < n; i++) { |
| 30 | gauss[i] /= sum; |
| 31 | } |
| 32 | |
| 33 | // The factors should sum to 1. Take any remaining slop, and add it to gauss[0]. Add the |
| 34 | // values in such a way to maintain the most accuracy. |
| 35 | sum = 0; |
| 36 | for (int i = n - 1; i >= 1; i--) { |
| 37 | sum += 2 * gauss[i]; |
| 38 | } |
| 39 | |
| 40 | gauss[0] = 1 - sum; |
| 41 | } |
| 42 | |
| 43 | static int calculate_bessel_factors(double sigma, double *gauss) { |
| 44 | auto var = sigma * sigma; |
| 45 | |
| 46 | // The two functions below come from the equations in "Handbook of Mathematical Functions" |
| 47 | // by Abramowitz and Stegun. Specifically, equation 9.6.10 on page 375. Bessel0 is given |
| 48 | // explicitly as 9.6.12 |
| 49 | // BesselI_0 for 0 <= sigma < 2. |
| 50 | // NB the k = 0 factor is just sum = 1.0. |
| 51 | auto besselI_0 = [](double t) -> double { |
| 52 | auto tSquaredOver4 = t * t / 4.0; |
| 53 | auto sum = 1.0; |
| 54 | auto factor = 1.0; |
| 55 | auto k = 1; |
| 56 | // Use a variable number of loops. When sigma is small, this only requires 3-4 loops, but |
| 57 | // when sigma is near 2, it could require 10 loops. The same holds for BesselI_1. |
| 58 | while(factor > 1.0/1000000.0) { |
| 59 | factor *= tSquaredOver4 / (k * k); |
| 60 | sum += factor; |
| 61 | k += 1; |
| 62 | } |
| 63 | return sum; |
| 64 | }; |
| 65 | // BesselI_1 for 0 <= sigma < 2. |
| 66 | auto besselI_1 = [](double t) -> double { |
| 67 | auto tSquaredOver4 = t * t / 4.0; |
| 68 | auto sum = t / 2.0; |
| 69 | auto factor = sum; |
| 70 | auto k = 1; |
| 71 | while (factor > 1.0/1000000.0) { |
| 72 | factor *= tSquaredOver4 / (k * (k + 1)); |
| 73 | sum += factor; |
| 74 | k += 1; |
| 75 | } |
| 76 | return sum; |
| 77 | }; |
| 78 | |
| 79 | // The following formula for calculating the Gaussian kernel is from |
| 80 | // "Scale-Space for Discrete Signals" by Tony Lindeberg. |
| 81 | // gauss(n; var) = besselI_n(var) / (e^var) |
| 82 | auto d = std::exp(var); |
| 83 | double b[SkGaussFilter::kGaussArrayMax] = {besselI_0(var), besselI_1(var)}; |
| 84 | gauss[0] = b[0]/d; |
| 85 | gauss[1] = b[1]/d; |
| 86 | |
| 87 | // The code below is tricky, and written to mirror the recursive equations from the book. |
| 88 | // The maximum spread for sigma == 2 is guass[4], but in order to know to stop guass[5] |
| 89 | // is calculated. At this point n == 5 meaning that gauss[0..4] are the factors, but a 6th |
| 90 | // element was used to calculate them. |
| 91 | int n = 1; |
| 92 | // The recurrence relation below is from "Numerical Recipes" 3rd Edition. |
| 93 | // Equation 6.5.16 p.282 |
| 94 | while (gauss[n] > kGoodEnough) { |
| 95 | b[n+1] = -(2*n/var) * b[n] + b[n-1]; |
| 96 | gauss[n+1] = b[n+1] / d; |
| 97 | n += 1; |
| 98 | } |
| 99 | |
| 100 | normalize(n, gauss); |
| 101 | |
| 102 | return n; |
| 103 | } |
| 104 | |
| 105 | SkGaussFilter::SkGaussFilter(double sigma) { |
| 106 | SkASSERT(0 <= sigma && sigma < 2); |
| 107 | |
| 108 | fN = calculate_bessel_factors(sigma, fBasis); |
| 109 | } |
| 110 | |