| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/private/SkTo.h" |
| 9 | #include "src/core/SkLineClipper.h" |
| 10 | |
| 11 | #include <utility> |
| 12 | |
| 13 | template <typename T> T pin_unsorted(T value, T limit0, T limit1) { |
| 14 | if (limit1 < limit0) { |
| 15 | using std::swap; |
| 16 | swap(limit0, limit1); |
| 17 | } |
| 18 | // now the limits are sorted |
| 19 | SkASSERT(limit0 <= limit1); |
| 20 | |
| 21 | if (value < limit0) { |
| 22 | value = limit0; |
| 23 | } else if (value > limit1) { |
| 24 | value = limit1; |
| 25 | } |
| 26 | return value; |
| 27 | } |
| 28 | |
| 29 | // return X coordinate of intersection with horizontal line at Y |
| 30 | static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) { |
| 31 | SkScalar dy = src[1].fY - src[0].fY; |
| 32 | if (SkScalarNearlyZero(dy)) { |
| 33 | return SkScalarAve(src[0].fX, src[1].fX); |
| 34 | } else { |
| 35 | // need the extra precision so we don't compute a value that exceeds |
| 36 | // our original limits |
| 37 | double X0 = src[0].fX; |
| 38 | double Y0 = src[0].fY; |
| 39 | double X1 = src[1].fX; |
| 40 | double Y1 = src[1].fY; |
| 41 | double result = X0 + ((double)Y - Y0) * (X1 - X0) / (Y1 - Y0); |
| 42 | |
| 43 | // The computed X value might still exceed [X0..X1] due to quantum flux |
| 44 | // when the doubles were added and subtracted, so we have to pin the |
| 45 | // answer :( |
| 46 | return (float)pin_unsorted(result, X0, X1); |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | // return Y coordinate of intersection with vertical line at X |
| 51 | static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) { |
| 52 | SkScalar dx = src[1].fX - src[0].fX; |
| 53 | if (SkScalarNearlyZero(dx)) { |
| 54 | return SkScalarAve(src[0].fY, src[1].fY); |
| 55 | } else { |
| 56 | // need the extra precision so we don't compute a value that exceeds |
| 57 | // our original limits |
| 58 | double X0 = src[0].fX; |
| 59 | double Y0 = src[0].fY; |
| 60 | double X1 = src[1].fX; |
| 61 | double Y1 = src[1].fY; |
| 62 | double result = Y0 + ((double)X - X0) * (Y1 - Y0) / (X1 - X0); |
| 63 | return (float)result; |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | static SkScalar sect_clamp_with_vertical(const SkPoint src[2], SkScalar x) { |
| 68 | SkScalar y = sect_with_vertical(src, x); |
| 69 | // Our caller expects y to be between src[0].fY and src[1].fY (unsorted), but due to the |
| 70 | // numerics of floats/doubles, we might have computed a value slightly outside of that, |
| 71 | // so we have to manually clamp afterwards. |
| 72 | // See skbug.com/7491 |
| 73 | return pin_unsorted(y, src[0].fY, src[1].fY); |
| 74 | } |
| 75 | |
| 76 | /////////////////////////////////////////////////////////////////////////////// |
| 77 | |
| 78 | static inline bool nestedLT(SkScalar a, SkScalar b, SkScalar dim) { |
| 79 | return a <= b && (a < b || dim > 0); |
| 80 | } |
| 81 | |
| 82 | // returns true if outer contains inner, even if inner is empty. |
| 83 | // note: outer.contains(inner) always returns false if inner is empty. |
| 84 | static inline bool containsNoEmptyCheck(const SkRect& outer, |
| 85 | const SkRect& inner) { |
| 86 | return outer.fLeft <= inner.fLeft && outer.fTop <= inner.fTop && |
| 87 | outer.fRight >= inner.fRight && outer.fBottom >= inner.fBottom; |
| 88 | } |
| 89 | |
| 90 | bool SkLineClipper::IntersectLine(const SkPoint src[2], const SkRect& clip, |
| 91 | SkPoint dst[2]) { |
| 92 | SkRect bounds; |
| 93 | |
| 94 | bounds.set(src[0], src[1]); |
| 95 | if (containsNoEmptyCheck(clip, bounds)) { |
| 96 | if (src != dst) { |
| 97 | memcpy(dst, src, 2 * sizeof(SkPoint)); |
| 98 | } |
| 99 | return true; |
| 100 | } |
| 101 | // check for no overlap, and only permit coincident edges if the line |
| 102 | // and the edge are colinear |
| 103 | if (nestedLT(bounds.fRight, clip.fLeft, bounds.width()) || |
| 104 | nestedLT(clip.fRight, bounds.fLeft, bounds.width()) || |
| 105 | nestedLT(bounds.fBottom, clip.fTop, bounds.height()) || |
| 106 | nestedLT(clip.fBottom, bounds.fTop, bounds.height())) { |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | int index0, index1; |
| 111 | |
| 112 | if (src[0].fY < src[1].fY) { |
| 113 | index0 = 0; |
| 114 | index1 = 1; |
| 115 | } else { |
| 116 | index0 = 1; |
| 117 | index1 = 0; |
| 118 | } |
| 119 | |
| 120 | SkPoint tmp[2]; |
| 121 | memcpy(tmp, src, sizeof(tmp)); |
| 122 | |
| 123 | // now compute Y intersections |
| 124 | if (tmp[index0].fY < clip.fTop) { |
| 125 | tmp[index0].set(sect_with_horizontal(src, clip.fTop), clip.fTop); |
| 126 | } |
| 127 | if (tmp[index1].fY > clip.fBottom) { |
| 128 | tmp[index1].set(sect_with_horizontal(src, clip.fBottom), clip.fBottom); |
| 129 | } |
| 130 | |
| 131 | if (tmp[0].fX < tmp[1].fX) { |
| 132 | index0 = 0; |
| 133 | index1 = 1; |
| 134 | } else { |
| 135 | index0 = 1; |
| 136 | index1 = 0; |
| 137 | } |
| 138 | |
| 139 | // check for quick-reject in X again, now that we may have been chopped |
| 140 | if ((tmp[index1].fX <= clip.fLeft || tmp[index0].fX >= clip.fRight)) { |
| 141 | // usually we will return false, but we don't if the line is vertical and coincident |
| 142 | // with the clip. |
| 143 | if (tmp[0].fX != tmp[1].fX || tmp[0].fX < clip.fLeft || tmp[0].fX > clip.fRight) { |
| 144 | return false; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | if (tmp[index0].fX < clip.fLeft) { |
| 149 | tmp[index0].set(clip.fLeft, sect_with_vertical(src, clip.fLeft)); |
| 150 | } |
| 151 | if (tmp[index1].fX > clip.fRight) { |
| 152 | tmp[index1].set(clip.fRight, sect_with_vertical(src, clip.fRight)); |
| 153 | } |
| 154 | #ifdef SK_DEBUG |
| 155 | bounds.set(tmp[0], tmp[1]); |
| 156 | SkASSERT(containsNoEmptyCheck(clip, bounds)); |
| 157 | #endif |
| 158 | memcpy(dst, tmp, sizeof(tmp)); |
| 159 | return true; |
| 160 | } |
| 161 | |
| 162 | #ifdef SK_DEBUG |
| 163 | // return value between the two limits, where the limits are either ascending |
| 164 | // or descending. |
| 165 | static bool is_between_unsorted(SkScalar value, |
| 166 | SkScalar limit0, SkScalar limit1) { |
| 167 | if (limit0 < limit1) { |
| 168 | return limit0 <= value && value <= limit1; |
| 169 | } else { |
| 170 | return limit1 <= value && value <= limit0; |
| 171 | } |
| 172 | } |
| 173 | #endif |
| 174 | |
| 175 | int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip, SkPoint lines[], |
| 176 | bool canCullToTheRight) { |
| 177 | int index0, index1; |
| 178 | |
| 179 | if (pts[0].fY < pts[1].fY) { |
| 180 | index0 = 0; |
| 181 | index1 = 1; |
| 182 | } else { |
| 183 | index0 = 1; |
| 184 | index1 = 0; |
| 185 | } |
| 186 | |
| 187 | // Check if we're completely clipped out in Y (above or below |
| 188 | |
| 189 | if (pts[index1].fY <= clip.fTop) { // we're above the clip |
| 190 | return 0; |
| 191 | } |
| 192 | if (pts[index0].fY >= clip.fBottom) { // we're below the clip |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | // Chop in Y to produce a single segment, stored in tmp[0..1] |
| 197 | |
| 198 | SkPoint tmp[2]; |
| 199 | memcpy(tmp, pts, sizeof(tmp)); |
| 200 | |
| 201 | // now compute intersections |
| 202 | if (pts[index0].fY < clip.fTop) { |
| 203 | tmp[index0].set(sect_with_horizontal(pts, clip.fTop), clip.fTop); |
| 204 | SkASSERT(is_between_unsorted(tmp[index0].fX, pts[0].fX, pts[1].fX)); |
| 205 | } |
| 206 | if (tmp[index1].fY > clip.fBottom) { |
| 207 | tmp[index1].set(sect_with_horizontal(pts, clip.fBottom), clip.fBottom); |
| 208 | SkASSERT(is_between_unsorted(tmp[index1].fX, pts[0].fX, pts[1].fX)); |
| 209 | } |
| 210 | |
| 211 | // Chop it into 1..3 segments that are wholly within the clip in X. |
| 212 | |
| 213 | // temp storage for up to 3 segments |
| 214 | SkPoint resultStorage[kMaxPoints]; |
| 215 | SkPoint* result; // points to our results, either tmp or resultStorage |
| 216 | int lineCount = 1; |
| 217 | bool reverse; |
| 218 | |
| 219 | if (pts[0].fX < pts[1].fX) { |
| 220 | index0 = 0; |
| 221 | index1 = 1; |
| 222 | reverse = false; |
| 223 | } else { |
| 224 | index0 = 1; |
| 225 | index1 = 0; |
| 226 | reverse = true; |
| 227 | } |
| 228 | |
| 229 | if (tmp[index1].fX <= clip.fLeft) { // wholly to the left |
| 230 | tmp[0].fX = tmp[1].fX = clip.fLeft; |
| 231 | result = tmp; |
| 232 | reverse = false; |
| 233 | } else if (tmp[index0].fX >= clip.fRight) { // wholly to the right |
| 234 | if (canCullToTheRight) { |
| 235 | return 0; |
| 236 | } |
| 237 | tmp[0].fX = tmp[1].fX = clip.fRight; |
| 238 | result = tmp; |
| 239 | reverse = false; |
| 240 | } else { |
| 241 | result = resultStorage; |
| 242 | SkPoint* r = result; |
| 243 | |
| 244 | if (tmp[index0].fX < clip.fLeft) { |
| 245 | r->set(clip.fLeft, tmp[index0].fY); |
| 246 | r += 1; |
| 247 | r->set(clip.fLeft, sect_clamp_with_vertical(tmp, clip.fLeft)); |
| 248 | SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY)); |
| 249 | } else { |
| 250 | *r = tmp[index0]; |
| 251 | } |
| 252 | r += 1; |
| 253 | |
| 254 | if (tmp[index1].fX > clip.fRight) { |
| 255 | r->set(clip.fRight, sect_clamp_with_vertical(tmp, clip.fRight)); |
| 256 | SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY)); |
| 257 | r += 1; |
| 258 | r->set(clip.fRight, tmp[index1].fY); |
| 259 | } else { |
| 260 | *r = tmp[index1]; |
| 261 | } |
| 262 | |
| 263 | lineCount = SkToInt(r - result); |
| 264 | } |
| 265 | |
| 266 | // Now copy the results into the caller's lines[] parameter |
| 267 | if (reverse) { |
| 268 | // copy the pts in reverse order to maintain winding order |
| 269 | for (int i = 0; i <= lineCount; i++) { |
| 270 | lines[lineCount - i] = result[i]; |
| 271 | } |
| 272 | } else { |
| 273 | memcpy(lines, result, (lineCount + 1) * sizeof(SkPoint)); |
| 274 | } |
| 275 | return lineCount; |
| 276 | } |
| 277 | |