1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/private/SkTo.h" |
9 | #include "src/core/SkLineClipper.h" |
10 | |
11 | #include <utility> |
12 | |
13 | template <typename T> T pin_unsorted(T value, T limit0, T limit1) { |
14 | if (limit1 < limit0) { |
15 | using std::swap; |
16 | swap(limit0, limit1); |
17 | } |
18 | // now the limits are sorted |
19 | SkASSERT(limit0 <= limit1); |
20 | |
21 | if (value < limit0) { |
22 | value = limit0; |
23 | } else if (value > limit1) { |
24 | value = limit1; |
25 | } |
26 | return value; |
27 | } |
28 | |
29 | // return X coordinate of intersection with horizontal line at Y |
30 | static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) { |
31 | SkScalar dy = src[1].fY - src[0].fY; |
32 | if (SkScalarNearlyZero(dy)) { |
33 | return SkScalarAve(src[0].fX, src[1].fX); |
34 | } else { |
35 | // need the extra precision so we don't compute a value that exceeds |
36 | // our original limits |
37 | double X0 = src[0].fX; |
38 | double Y0 = src[0].fY; |
39 | double X1 = src[1].fX; |
40 | double Y1 = src[1].fY; |
41 | double result = X0 + ((double)Y - Y0) * (X1 - X0) / (Y1 - Y0); |
42 | |
43 | // The computed X value might still exceed [X0..X1] due to quantum flux |
44 | // when the doubles were added and subtracted, so we have to pin the |
45 | // answer :( |
46 | return (float)pin_unsorted(result, X0, X1); |
47 | } |
48 | } |
49 | |
50 | // return Y coordinate of intersection with vertical line at X |
51 | static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) { |
52 | SkScalar dx = src[1].fX - src[0].fX; |
53 | if (SkScalarNearlyZero(dx)) { |
54 | return SkScalarAve(src[0].fY, src[1].fY); |
55 | } else { |
56 | // need the extra precision so we don't compute a value that exceeds |
57 | // our original limits |
58 | double X0 = src[0].fX; |
59 | double Y0 = src[0].fY; |
60 | double X1 = src[1].fX; |
61 | double Y1 = src[1].fY; |
62 | double result = Y0 + ((double)X - X0) * (Y1 - Y0) / (X1 - X0); |
63 | return (float)result; |
64 | } |
65 | } |
66 | |
67 | static SkScalar sect_clamp_with_vertical(const SkPoint src[2], SkScalar x) { |
68 | SkScalar y = sect_with_vertical(src, x); |
69 | // Our caller expects y to be between src[0].fY and src[1].fY (unsorted), but due to the |
70 | // numerics of floats/doubles, we might have computed a value slightly outside of that, |
71 | // so we have to manually clamp afterwards. |
72 | // See skbug.com/7491 |
73 | return pin_unsorted(y, src[0].fY, src[1].fY); |
74 | } |
75 | |
76 | /////////////////////////////////////////////////////////////////////////////// |
77 | |
78 | static inline bool nestedLT(SkScalar a, SkScalar b, SkScalar dim) { |
79 | return a <= b && (a < b || dim > 0); |
80 | } |
81 | |
82 | // returns true if outer contains inner, even if inner is empty. |
83 | // note: outer.contains(inner) always returns false if inner is empty. |
84 | static inline bool containsNoEmptyCheck(const SkRect& outer, |
85 | const SkRect& inner) { |
86 | return outer.fLeft <= inner.fLeft && outer.fTop <= inner.fTop && |
87 | outer.fRight >= inner.fRight && outer.fBottom >= inner.fBottom; |
88 | } |
89 | |
90 | bool SkLineClipper::IntersectLine(const SkPoint src[2], const SkRect& clip, |
91 | SkPoint dst[2]) { |
92 | SkRect bounds; |
93 | |
94 | bounds.set(src[0], src[1]); |
95 | if (containsNoEmptyCheck(clip, bounds)) { |
96 | if (src != dst) { |
97 | memcpy(dst, src, 2 * sizeof(SkPoint)); |
98 | } |
99 | return true; |
100 | } |
101 | // check for no overlap, and only permit coincident edges if the line |
102 | // and the edge are colinear |
103 | if (nestedLT(bounds.fRight, clip.fLeft, bounds.width()) || |
104 | nestedLT(clip.fRight, bounds.fLeft, bounds.width()) || |
105 | nestedLT(bounds.fBottom, clip.fTop, bounds.height()) || |
106 | nestedLT(clip.fBottom, bounds.fTop, bounds.height())) { |
107 | return false; |
108 | } |
109 | |
110 | int index0, index1; |
111 | |
112 | if (src[0].fY < src[1].fY) { |
113 | index0 = 0; |
114 | index1 = 1; |
115 | } else { |
116 | index0 = 1; |
117 | index1 = 0; |
118 | } |
119 | |
120 | SkPoint tmp[2]; |
121 | memcpy(tmp, src, sizeof(tmp)); |
122 | |
123 | // now compute Y intersections |
124 | if (tmp[index0].fY < clip.fTop) { |
125 | tmp[index0].set(sect_with_horizontal(src, clip.fTop), clip.fTop); |
126 | } |
127 | if (tmp[index1].fY > clip.fBottom) { |
128 | tmp[index1].set(sect_with_horizontal(src, clip.fBottom), clip.fBottom); |
129 | } |
130 | |
131 | if (tmp[0].fX < tmp[1].fX) { |
132 | index0 = 0; |
133 | index1 = 1; |
134 | } else { |
135 | index0 = 1; |
136 | index1 = 0; |
137 | } |
138 | |
139 | // check for quick-reject in X again, now that we may have been chopped |
140 | if ((tmp[index1].fX <= clip.fLeft || tmp[index0].fX >= clip.fRight)) { |
141 | // usually we will return false, but we don't if the line is vertical and coincident |
142 | // with the clip. |
143 | if (tmp[0].fX != tmp[1].fX || tmp[0].fX < clip.fLeft || tmp[0].fX > clip.fRight) { |
144 | return false; |
145 | } |
146 | } |
147 | |
148 | if (tmp[index0].fX < clip.fLeft) { |
149 | tmp[index0].set(clip.fLeft, sect_with_vertical(src, clip.fLeft)); |
150 | } |
151 | if (tmp[index1].fX > clip.fRight) { |
152 | tmp[index1].set(clip.fRight, sect_with_vertical(src, clip.fRight)); |
153 | } |
154 | #ifdef SK_DEBUG |
155 | bounds.set(tmp[0], tmp[1]); |
156 | SkASSERT(containsNoEmptyCheck(clip, bounds)); |
157 | #endif |
158 | memcpy(dst, tmp, sizeof(tmp)); |
159 | return true; |
160 | } |
161 | |
162 | #ifdef SK_DEBUG |
163 | // return value between the two limits, where the limits are either ascending |
164 | // or descending. |
165 | static bool is_between_unsorted(SkScalar value, |
166 | SkScalar limit0, SkScalar limit1) { |
167 | if (limit0 < limit1) { |
168 | return limit0 <= value && value <= limit1; |
169 | } else { |
170 | return limit1 <= value && value <= limit0; |
171 | } |
172 | } |
173 | #endif |
174 | |
175 | int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip, SkPoint lines[], |
176 | bool canCullToTheRight) { |
177 | int index0, index1; |
178 | |
179 | if (pts[0].fY < pts[1].fY) { |
180 | index0 = 0; |
181 | index1 = 1; |
182 | } else { |
183 | index0 = 1; |
184 | index1 = 0; |
185 | } |
186 | |
187 | // Check if we're completely clipped out in Y (above or below |
188 | |
189 | if (pts[index1].fY <= clip.fTop) { // we're above the clip |
190 | return 0; |
191 | } |
192 | if (pts[index0].fY >= clip.fBottom) { // we're below the clip |
193 | return 0; |
194 | } |
195 | |
196 | // Chop in Y to produce a single segment, stored in tmp[0..1] |
197 | |
198 | SkPoint tmp[2]; |
199 | memcpy(tmp, pts, sizeof(tmp)); |
200 | |
201 | // now compute intersections |
202 | if (pts[index0].fY < clip.fTop) { |
203 | tmp[index0].set(sect_with_horizontal(pts, clip.fTop), clip.fTop); |
204 | SkASSERT(is_between_unsorted(tmp[index0].fX, pts[0].fX, pts[1].fX)); |
205 | } |
206 | if (tmp[index1].fY > clip.fBottom) { |
207 | tmp[index1].set(sect_with_horizontal(pts, clip.fBottom), clip.fBottom); |
208 | SkASSERT(is_between_unsorted(tmp[index1].fX, pts[0].fX, pts[1].fX)); |
209 | } |
210 | |
211 | // Chop it into 1..3 segments that are wholly within the clip in X. |
212 | |
213 | // temp storage for up to 3 segments |
214 | SkPoint resultStorage[kMaxPoints]; |
215 | SkPoint* result; // points to our results, either tmp or resultStorage |
216 | int lineCount = 1; |
217 | bool reverse; |
218 | |
219 | if (pts[0].fX < pts[1].fX) { |
220 | index0 = 0; |
221 | index1 = 1; |
222 | reverse = false; |
223 | } else { |
224 | index0 = 1; |
225 | index1 = 0; |
226 | reverse = true; |
227 | } |
228 | |
229 | if (tmp[index1].fX <= clip.fLeft) { // wholly to the left |
230 | tmp[0].fX = tmp[1].fX = clip.fLeft; |
231 | result = tmp; |
232 | reverse = false; |
233 | } else if (tmp[index0].fX >= clip.fRight) { // wholly to the right |
234 | if (canCullToTheRight) { |
235 | return 0; |
236 | } |
237 | tmp[0].fX = tmp[1].fX = clip.fRight; |
238 | result = tmp; |
239 | reverse = false; |
240 | } else { |
241 | result = resultStorage; |
242 | SkPoint* r = result; |
243 | |
244 | if (tmp[index0].fX < clip.fLeft) { |
245 | r->set(clip.fLeft, tmp[index0].fY); |
246 | r += 1; |
247 | r->set(clip.fLeft, sect_clamp_with_vertical(tmp, clip.fLeft)); |
248 | SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY)); |
249 | } else { |
250 | *r = tmp[index0]; |
251 | } |
252 | r += 1; |
253 | |
254 | if (tmp[index1].fX > clip.fRight) { |
255 | r->set(clip.fRight, sect_clamp_with_vertical(tmp, clip.fRight)); |
256 | SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY)); |
257 | r += 1; |
258 | r->set(clip.fRight, tmp[index1].fY); |
259 | } else { |
260 | *r = tmp[index1]; |
261 | } |
262 | |
263 | lineCount = SkToInt(r - result); |
264 | } |
265 | |
266 | // Now copy the results into the caller's lines[] parameter |
267 | if (reverse) { |
268 | // copy the pts in reverse order to maintain winding order |
269 | for (int i = 0; i <= lineCount; i++) { |
270 | lines[lineCount - i] = result[i]; |
271 | } |
272 | } else { |
273 | memcpy(lines, result, (lineCount + 1) * sizeof(SkPoint)); |
274 | } |
275 | return lineCount; |
276 | } |
277 | |