1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkRTree.h" |
9 | |
10 | SkRTree::SkRTree() : fCount(0) {} |
11 | |
12 | void SkRTree::insert(const SkRect boundsArray[], int N) { |
13 | SkASSERT(0 == fCount); |
14 | |
15 | std::vector<Branch> branches; |
16 | branches.reserve(N); |
17 | |
18 | for (int i = 0; i < N; i++) { |
19 | const SkRect& bounds = boundsArray[i]; |
20 | if (bounds.isEmpty()) { |
21 | continue; |
22 | } |
23 | |
24 | Branch b; |
25 | b.fBounds = bounds; |
26 | b.fOpIndex = i; |
27 | branches.push_back(b); |
28 | } |
29 | |
30 | fCount = (int)branches.size(); |
31 | if (fCount) { |
32 | if (1 == fCount) { |
33 | fNodes.reserve(1); |
34 | Node* n = this->allocateNodeAtLevel(0); |
35 | n->fNumChildren = 1; |
36 | n->fChildren[0] = branches[0]; |
37 | fRoot.fSubtree = n; |
38 | fRoot.fBounds = branches[0].fBounds; |
39 | } else { |
40 | fNodes.reserve(CountNodes(fCount)); |
41 | fRoot = this->bulkLoad(&branches); |
42 | } |
43 | } |
44 | } |
45 | |
46 | SkRTree::Node* SkRTree::allocateNodeAtLevel(uint16_t level) { |
47 | SkDEBUGCODE(Node* p = fNodes.data()); |
48 | fNodes.push_back(Node{}); |
49 | Node& out = fNodes.back(); |
50 | SkASSERT(fNodes.data() == p); // If this fails, we didn't reserve() enough. |
51 | out.fNumChildren = 0; |
52 | out.fLevel = level; |
53 | return &out; |
54 | } |
55 | |
56 | // This function parallels bulkLoad, but just counts how many nodes bulkLoad would allocate. |
57 | int SkRTree::CountNodes(int branches) { |
58 | if (branches == 1) { |
59 | return 1; |
60 | } |
61 | int numBranches = branches / kMaxChildren; |
62 | int remainder = branches % kMaxChildren; |
63 | if (remainder > 0) { |
64 | numBranches++; |
65 | if (remainder >= kMinChildren) { |
66 | remainder = 0; |
67 | } else { |
68 | remainder = kMinChildren - remainder; |
69 | } |
70 | } |
71 | int currentBranch = 0; |
72 | int nodes = 0; |
73 | while (currentBranch < branches) { |
74 | int incrementBy = kMaxChildren; |
75 | if (remainder != 0) { |
76 | if (remainder <= kMaxChildren - kMinChildren) { |
77 | incrementBy -= remainder; |
78 | remainder = 0; |
79 | } else { |
80 | incrementBy = kMinChildren; |
81 | remainder -= kMaxChildren - kMinChildren; |
82 | } |
83 | } |
84 | nodes++; |
85 | currentBranch++; |
86 | for (int k = 1; k < incrementBy && currentBranch < branches; ++k) { |
87 | currentBranch++; |
88 | } |
89 | } |
90 | return nodes + CountNodes(nodes); |
91 | } |
92 | |
93 | SkRTree::Branch SkRTree::bulkLoad(std::vector<Branch>* branches, int level) { |
94 | if (branches->size() == 1) { // Only one branch. It will be the root. |
95 | return (*branches)[0]; |
96 | } |
97 | |
98 | // We might sort our branches here, but we expect Blink gives us a reasonable x,y order. |
99 | // Skipping a call to sort (in Y) here resulted in a 17% win for recording with negligible |
100 | // difference in playback speed. |
101 | int numBranches = (int)branches->size() / kMaxChildren; |
102 | int remainder = (int)branches->size() % kMaxChildren; |
103 | int newBranches = 0; |
104 | |
105 | if (remainder > 0) { |
106 | ++numBranches; |
107 | // If the remainder isn't enough to fill a node, we'll add fewer nodes to other branches. |
108 | if (remainder >= kMinChildren) { |
109 | remainder = 0; |
110 | } else { |
111 | remainder = kMinChildren - remainder; |
112 | } |
113 | } |
114 | |
115 | int currentBranch = 0; |
116 | while (currentBranch < (int)branches->size()) { |
117 | int incrementBy = kMaxChildren; |
118 | if (remainder != 0) { |
119 | // if need be, omit some nodes to make up for remainder |
120 | if (remainder <= kMaxChildren - kMinChildren) { |
121 | incrementBy -= remainder; |
122 | remainder = 0; |
123 | } else { |
124 | incrementBy = kMinChildren; |
125 | remainder -= kMaxChildren - kMinChildren; |
126 | } |
127 | } |
128 | Node* n = allocateNodeAtLevel(level); |
129 | n->fNumChildren = 1; |
130 | n->fChildren[0] = (*branches)[currentBranch]; |
131 | Branch b; |
132 | b.fBounds = (*branches)[currentBranch].fBounds; |
133 | b.fSubtree = n; |
134 | ++currentBranch; |
135 | for (int k = 1; k < incrementBy && currentBranch < (int)branches->size(); ++k) { |
136 | b.fBounds.join((*branches)[currentBranch].fBounds); |
137 | n->fChildren[k] = (*branches)[currentBranch]; |
138 | ++n->fNumChildren; |
139 | ++currentBranch; |
140 | } |
141 | (*branches)[newBranches] = b; |
142 | ++newBranches; |
143 | } |
144 | branches->resize(newBranches); |
145 | return this->bulkLoad(branches, level + 1); |
146 | } |
147 | |
148 | void SkRTree::search(const SkRect& query, std::vector<int>* results) const { |
149 | if (fCount > 0 && SkRect::Intersects(fRoot.fBounds, query)) { |
150 | this->search(fRoot.fSubtree, query, results); |
151 | } |
152 | } |
153 | |
154 | void SkRTree::search(Node* node, const SkRect& query, std::vector<int>* results) const { |
155 | for (int i = 0; i < node->fNumChildren; ++i) { |
156 | if (SkRect::Intersects(node->fChildren[i].fBounds, query)) { |
157 | if (0 == node->fLevel) { |
158 | results->push_back(node->fChildren[i].fOpIndex); |
159 | } else { |
160 | this->search(node->fChildren[i].fSubtree, query, results); |
161 | } |
162 | } |
163 | } |
164 | } |
165 | |
166 | size_t SkRTree::bytesUsed() const { |
167 | size_t byteCount = sizeof(SkRTree); |
168 | |
169 | byteCount += fNodes.capacity() * sizeof(Node); |
170 | |
171 | return byteCount; |
172 | } |
173 | |