1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkRegionPriv_DEFINED |
9 | #define SkRegionPriv_DEFINED |
10 | |
11 | #include "include/core/SkRegion.h" |
12 | #include "include/private/SkMalloc.h" |
13 | #include "include/private/SkTo.h" |
14 | #include <atomic> |
15 | #include <functional> |
16 | |
17 | class SkRegionPriv { |
18 | public: |
19 | static constexpr int kRunTypeSentinel = 0x7FFFFFFF; |
20 | typedef SkRegion::RunType RunType; |
21 | typedef SkRegion::RunHead RunHead; |
22 | |
23 | // Call the function with each span, in Y -> X ascending order. |
24 | // We pass a rect, but we will still ensure the span Y->X ordering, so often the height |
25 | // of the rect may be 1. It should never be empty. |
26 | static void VisitSpans(const SkRegion& rgn, const std::function<void(const SkIRect&)>&); |
27 | |
28 | #ifdef SK_DEBUG |
29 | static void Validate(const SkRegion& rgn); |
30 | #endif |
31 | }; |
32 | |
33 | static constexpr int SkRegion_kRunTypeSentinel = 0x7FFFFFFF; |
34 | |
35 | inline bool SkRegionValueIsSentinel(int32_t value) { |
36 | return value == (int32_t)SkRegion_kRunTypeSentinel; |
37 | } |
38 | |
39 | #define assert_sentinel(value, isSentinel) \ |
40 | SkASSERT(SkRegionValueIsSentinel(value) == isSentinel) |
41 | |
42 | #ifdef SK_DEBUG |
43 | // Given the first interval (just past the interval-count), compute the |
44 | // interval count, by search for the x-sentinel |
45 | // |
46 | static int compute_intervalcount(const SkRegionPriv::RunType runs[]) { |
47 | const SkRegionPriv::RunType* curr = runs; |
48 | while (*curr < SkRegion_kRunTypeSentinel) { |
49 | SkASSERT(curr[0] < curr[1]); |
50 | SkASSERT(curr[1] < SkRegion_kRunTypeSentinel); |
51 | curr += 2; |
52 | } |
53 | return SkToInt((curr - runs) >> 1); |
54 | } |
55 | #endif |
56 | |
57 | struct SkRegion::RunHead { |
58 | private: |
59 | |
60 | public: |
61 | std::atomic<int32_t> fRefCnt; |
62 | int32_t fRunCount; |
63 | |
64 | /** |
65 | * Number of spans with different Y values. This does not count the initial |
66 | * Top value, nor does it count the final Y-Sentinel value. In the logical |
67 | * case of a rectangle, this would return 1, and an empty region would |
68 | * return 0. |
69 | */ |
70 | int getYSpanCount() const { |
71 | return fYSpanCount; |
72 | } |
73 | |
74 | /** |
75 | * Number of intervals in the entire region. This equals the number of |
76 | * rects that would be returned by the Iterator. In the logical case of |
77 | * a rect, this would return 1, and an empty region would return 0. |
78 | */ |
79 | int getIntervalCount() const { |
80 | return fIntervalCount; |
81 | } |
82 | |
83 | static RunHead* Alloc(int count) { |
84 | if (count < SkRegion::kRectRegionRuns) { |
85 | return nullptr; |
86 | } |
87 | |
88 | const int64_t size = sk_64_mul(count, sizeof(RunType)) + sizeof(RunHead); |
89 | if (count < 0 || !SkTFitsIn<int32_t>(size)) { SK_ABORT("Invalid Size" ); } |
90 | |
91 | RunHead* head = (RunHead*)sk_malloc_throw(size); |
92 | head->fRefCnt = 1; |
93 | head->fRunCount = count; |
94 | // these must be filled in later, otherwise we will be invalid |
95 | head->fYSpanCount = 0; |
96 | head->fIntervalCount = 0; |
97 | return head; |
98 | } |
99 | |
100 | static RunHead* Alloc(int count, int yspancount, int intervalCount) { |
101 | if (yspancount <= 0 || intervalCount <= 1) { |
102 | return nullptr; |
103 | } |
104 | |
105 | RunHead* head = Alloc(count); |
106 | if (!head) { |
107 | return nullptr; |
108 | } |
109 | head->fYSpanCount = yspancount; |
110 | head->fIntervalCount = intervalCount; |
111 | return head; |
112 | } |
113 | |
114 | SkRegion::RunType* writable_runs() { |
115 | SkASSERT(fRefCnt == 1); |
116 | return (SkRegion::RunType*)(this + 1); |
117 | } |
118 | |
119 | const SkRegion::RunType* readonly_runs() const { |
120 | return (const SkRegion::RunType*)(this + 1); |
121 | } |
122 | |
123 | RunHead* ensureWritable() { |
124 | RunHead* writable = this; |
125 | if (fRefCnt > 1) { |
126 | // We need to alloc & copy the current region before decrease |
127 | // the refcount because it could be freed in the meantime. |
128 | writable = Alloc(fRunCount, fYSpanCount, fIntervalCount); |
129 | memcpy(writable->writable_runs(), this->readonly_runs(), |
130 | fRunCount * sizeof(RunType)); |
131 | |
132 | // fRefCount might have changed since we last checked. |
133 | // If we own the last reference at this point, we need to |
134 | // free the memory. |
135 | if (--fRefCnt == 0) { |
136 | sk_free(this); |
137 | } |
138 | } |
139 | return writable; |
140 | } |
141 | |
142 | /** |
143 | * Given a scanline (including its Bottom value at runs[0]), return the next |
144 | * scanline. Asserts that there is one (i.e. runs[0] < Sentinel) |
145 | */ |
146 | static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) { |
147 | // we are not the Y Sentinel |
148 | SkASSERT(runs[0] < SkRegion_kRunTypeSentinel); |
149 | |
150 | const int intervals = runs[1]; |
151 | SkASSERT(runs[2 + intervals * 2] == SkRegion_kRunTypeSentinel); |
152 | #ifdef SK_DEBUG |
153 | { |
154 | int n = compute_intervalcount(&runs[2]); |
155 | SkASSERT(n == intervals); |
156 | } |
157 | #endif |
158 | |
159 | // skip the entire line [B N [L R] S] |
160 | runs += 1 + 1 + intervals * 2 + 1; |
161 | return const_cast<SkRegion::RunType*>(runs); |
162 | } |
163 | |
164 | |
165 | /** |
166 | * Return the scanline that contains the Y value. This requires that the Y |
167 | * value is already known to be contained within the bounds of the region, |
168 | * and so this routine never returns nullptr. |
169 | * |
170 | * It returns the beginning of the scanline, starting with its Bottom value. |
171 | */ |
172 | SkRegion::RunType* findScanline(int y) const { |
173 | const RunType* runs = this->readonly_runs(); |
174 | |
175 | // if the top-check fails, we didn't do a quick check on the bounds |
176 | SkASSERT(y >= runs[0]); |
177 | |
178 | runs += 1; // skip top-Y |
179 | for (;;) { |
180 | int bottom = runs[0]; |
181 | // If we hit this, we've walked off the region, and our bounds check |
182 | // failed. |
183 | SkASSERT(bottom < SkRegion_kRunTypeSentinel); |
184 | if (y < bottom) { |
185 | break; |
186 | } |
187 | runs = SkipEntireScanline(runs); |
188 | } |
189 | return const_cast<SkRegion::RunType*>(runs); |
190 | } |
191 | |
192 | // Copy src runs into us, computing interval counts and bounds along the way |
193 | void computeRunBounds(SkIRect* bounds) { |
194 | RunType* runs = this->writable_runs(); |
195 | bounds->fTop = *runs++; |
196 | |
197 | int bot; |
198 | int ySpanCount = 0; |
199 | int intervalCount = 0; |
200 | int left = SK_MaxS32; |
201 | int rite = SK_MinS32; |
202 | |
203 | do { |
204 | bot = *runs++; |
205 | SkASSERT(bot < SkRegion_kRunTypeSentinel); |
206 | ySpanCount += 1; |
207 | |
208 | const int intervals = *runs++; |
209 | SkASSERT(intervals >= 0); |
210 | SkASSERT(intervals < SkRegion_kRunTypeSentinel); |
211 | |
212 | if (intervals > 0) { |
213 | #ifdef SK_DEBUG |
214 | { |
215 | int n = compute_intervalcount(runs); |
216 | SkASSERT(n == intervals); |
217 | } |
218 | #endif |
219 | RunType L = runs[0]; |
220 | SkASSERT(L < SkRegion_kRunTypeSentinel); |
221 | if (left > L) { |
222 | left = L; |
223 | } |
224 | |
225 | runs += intervals * 2; |
226 | RunType R = runs[-1]; |
227 | SkASSERT(R < SkRegion_kRunTypeSentinel); |
228 | if (rite < R) { |
229 | rite = R; |
230 | } |
231 | |
232 | intervalCount += intervals; |
233 | } |
234 | SkASSERT(SkRegion_kRunTypeSentinel == *runs); |
235 | runs += 1; // skip x-sentinel |
236 | |
237 | // test Y-sentinel |
238 | } while (SkRegion_kRunTypeSentinel > *runs); |
239 | |
240 | #ifdef SK_DEBUG |
241 | // +1 to skip the last Y-sentinel |
242 | int runCount = SkToInt(runs - this->writable_runs() + 1); |
243 | SkASSERT(runCount == fRunCount); |
244 | #endif |
245 | |
246 | fYSpanCount = ySpanCount; |
247 | fIntervalCount = intervalCount; |
248 | |
249 | bounds->fLeft = left; |
250 | bounds->fRight = rite; |
251 | bounds->fBottom = bot; |
252 | } |
253 | |
254 | private: |
255 | int32_t fYSpanCount; |
256 | int32_t fIntervalCount; |
257 | }; |
258 | |
259 | #endif |
260 | |