| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkBlitter.h" |
| 9 | |
| 10 | #include "include/core/SkColor.h" |
| 11 | #include "include/core/SkColorFilter.h" |
| 12 | #include "include/core/SkString.h" |
| 13 | #include "include/private/SkColorData.h" |
| 14 | #include "include/private/SkTo.h" |
| 15 | #include "src/core/SkAntiRun.h" |
| 16 | #include "src/core/SkArenaAlloc.h" |
| 17 | #include "src/core/SkMask.h" |
| 18 | #include "src/core/SkMaskFilterBase.h" |
| 19 | #include "src/core/SkPaintPriv.h" |
| 20 | #include "src/core/SkReadBuffer.h" |
| 21 | #include "src/core/SkRegionPriv.h" |
| 22 | #include "src/core/SkTLazy.h" |
| 23 | #include "src/core/SkUtils.h" |
| 24 | #include "src/core/SkWriteBuffer.h" |
| 25 | #include "src/core/SkXfermodeInterpretation.h" |
| 26 | #include "src/shaders/SkShaderBase.h" |
| 27 | |
| 28 | // Hacks for testing. |
| 29 | bool gUseSkVMBlitter{false}; |
| 30 | bool gSkForceRasterPipelineBlitter{false}; |
| 31 | |
| 32 | SkBlitter::~SkBlitter() {} |
| 33 | |
| 34 | bool SkBlitter::isNullBlitter() const { return false; } |
| 35 | |
| 36 | const SkPixmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { |
| 37 | return nullptr; |
| 38 | } |
| 39 | |
| 40 | /* |
| 41 | void SkBlitter::blitH(int x, int y, int width) { |
| 42 | SkDEBUGFAIL("unimplemented"); |
| 43 | } |
| 44 | |
| 45 | |
| 46 | void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
| 47 | const int16_t runs[]) { |
| 48 | SkDEBUGFAIL("unimplemented"); |
| 49 | } |
| 50 | */ |
| 51 | |
| 52 | inline static SkAlpha ScalarToAlpha(SkScalar a) { |
| 53 | SkAlpha alpha = (SkAlpha)(a * 255); |
| 54 | return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
| 55 | } |
| 56 | |
| 57 | void SkBlitter::blitFatAntiRect(const SkRect& rect) { |
| 58 | SkIRect bounds = rect.roundOut(); |
| 59 | SkASSERT(bounds.width() >= 3); |
| 60 | |
| 61 | // skbug.com/7813 |
| 62 | // To ensure consistency of the threaded backend (a rect that's considered fat in the init-once |
| 63 | // phase must also be considered fat in the draw phase), we have to deal with rects with small |
| 64 | // heights because the horizontal tiling in the threaded backend may change the height. |
| 65 | // |
| 66 | // This also implies that we cannot do vertical tiling unless we can blit any rect (not just the |
| 67 | // fat one.) |
| 68 | if (bounds.height() == 0) { |
| 69 | return; |
| 70 | } |
| 71 | |
| 72 | int runSize = bounds.width() + 1; // +1 so we can set runs[bounds.width()] = 0 |
| 73 | void* storage = this->allocBlitMemory(runSize * (sizeof(int16_t) + sizeof(SkAlpha))); |
| 74 | int16_t* runs = reinterpret_cast<int16_t*>(storage); |
| 75 | SkAlpha* alphas = reinterpret_cast<SkAlpha*>(runs + runSize); |
| 76 | |
| 77 | runs[0] = 1; |
| 78 | runs[1] = bounds.width() - 2; |
| 79 | runs[bounds.width() - 1] = 1; |
| 80 | runs[bounds.width()] = 0; |
| 81 | |
| 82 | SkScalar partialL = bounds.fLeft + 1 - rect.fLeft; |
| 83 | SkScalar partialR = rect.fRight - (bounds.fRight - 1); |
| 84 | SkScalar partialT = bounds.fTop + 1 - rect.fTop; |
| 85 | SkScalar partialB = rect.fBottom - (bounds.fBottom - 1); |
| 86 | |
| 87 | if (bounds.height() == 1) { |
| 88 | partialT = rect.fBottom - rect.fTop; |
| 89 | } |
| 90 | |
| 91 | alphas[0] = ScalarToAlpha(partialL * partialT); |
| 92 | alphas[1] = ScalarToAlpha(partialT); |
| 93 | alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialT); |
| 94 | this->blitAntiH(bounds.fLeft, bounds.fTop, alphas, runs); |
| 95 | |
| 96 | if (bounds.height() > 2) { |
| 97 | this->blitAntiRect(bounds.fLeft, bounds.fTop + 1, bounds.width() - 2, bounds.height() - 2, |
| 98 | ScalarToAlpha(partialL), ScalarToAlpha(partialR)); |
| 99 | } |
| 100 | |
| 101 | if (bounds.height() > 1) { |
| 102 | alphas[0] = ScalarToAlpha(partialL * partialB); |
| 103 | alphas[1] = ScalarToAlpha(partialB); |
| 104 | alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialB); |
| 105 | this->blitAntiH(bounds.fLeft, bounds.fBottom - 1, alphas, runs); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 110 | if (alpha == 255) { |
| 111 | this->blitRect(x, y, 1, height); |
| 112 | } else { |
| 113 | int16_t runs[2]; |
| 114 | runs[0] = 1; |
| 115 | runs[1] = 0; |
| 116 | |
| 117 | while (--height >= 0) { |
| 118 | this->blitAntiH(x, y++, &alpha, runs); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | void SkBlitter::blitRect(int x, int y, int width, int height) { |
| 124 | SkASSERT(width > 0); |
| 125 | while (--height >= 0) { |
| 126 | this->blitH(x, y++, width); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /// Default implementation doesn't check for easy optimizations |
| 131 | /// such as alpha == 255; also uses blitV(), which some subclasses |
| 132 | /// may not support. |
| 133 | void SkBlitter::blitAntiRect(int x, int y, int width, int height, |
| 134 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 135 | if (leftAlpha > 0) { // we may send in x = -1 with leftAlpha = 0 |
| 136 | this->blitV(x, y, height, leftAlpha); |
| 137 | } |
| 138 | x++; |
| 139 | if (width > 0) { |
| 140 | this->blitRect(x, y, width, height); |
| 141 | x += width; |
| 142 | } |
| 143 | if (rightAlpha > 0) { |
| 144 | this->blitV(x, y, height, rightAlpha); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | ////////////////////////////////////////////////////////////////////////////// |
| 149 | |
| 150 | static inline void bits_to_runs(SkBlitter* blitter, int x, int y, |
| 151 | const uint8_t bits[], |
| 152 | uint8_t left_mask, ptrdiff_t rowBytes, |
| 153 | uint8_t right_mask) { |
| 154 | int inFill = 0; |
| 155 | int pos = 0; |
| 156 | |
| 157 | while (--rowBytes >= 0) { |
| 158 | uint8_t b = *bits++ & left_mask; |
| 159 | if (rowBytes == 0) { |
| 160 | b &= right_mask; |
| 161 | } |
| 162 | |
| 163 | for (uint8_t test = 0x80U; test != 0; test >>= 1) { |
| 164 | if (b & test) { |
| 165 | if (!inFill) { |
| 166 | pos = x; |
| 167 | inFill = true; |
| 168 | } |
| 169 | } else { |
| 170 | if (inFill) { |
| 171 | blitter->blitH(pos, y, x - pos); |
| 172 | inFill = false; |
| 173 | } |
| 174 | } |
| 175 | x += 1; |
| 176 | } |
| 177 | left_mask = 0xFFU; |
| 178 | } |
| 179 | |
| 180 | // final cleanup |
| 181 | if (inFill) { |
| 182 | blitter->blitH(pos, y, x - pos); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // maskBitCount is the number of 1's to place in the mask. It must be in the range between 1 and 8. |
| 187 | static uint8_t generate_right_mask(int maskBitCount) { |
| 188 | return static_cast<uint8_t>((0xFF00U >> maskBitCount) & 0xFF); |
| 189 | } |
| 190 | |
| 191 | void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 192 | SkASSERT(mask.fBounds.contains(clip)); |
| 193 | |
| 194 | if (mask.fFormat == SkMask::kLCD16_Format) { |
| 195 | return; // needs to be handled by subclass |
| 196 | } |
| 197 | |
| 198 | if (mask.fFormat == SkMask::kBW_Format) { |
| 199 | int cx = clip.fLeft; |
| 200 | int cy = clip.fTop; |
| 201 | int maskLeft = mask.fBounds.fLeft; |
| 202 | int maskRowBytes = mask.fRowBytes; |
| 203 | int height = clip.height(); |
| 204 | |
| 205 | const uint8_t* bits = mask.getAddr1(cx, cy); |
| 206 | |
| 207 | SkDEBUGCODE(const uint8_t* endOfImage = |
| 208 | mask.fImage + (mask.fBounds.height() - 1) * maskRowBytes |
| 209 | + ((mask.fBounds.width() + 7) >> 3)); |
| 210 | |
| 211 | if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { |
| 212 | while (--height >= 0) { |
| 213 | int affectedRightBit = mask.fBounds.width() - 1; |
| 214 | ptrdiff_t rowBytes = (affectedRightBit >> 3) + 1; |
| 215 | SkASSERT(bits + rowBytes <= endOfImage); |
| 216 | U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); |
| 217 | bits_to_runs(this, cx, cy, bits, 0xFF, rowBytes, rightMask); |
| 218 | bits += maskRowBytes; |
| 219 | cy += 1; |
| 220 | } |
| 221 | } else { |
| 222 | // Bits is calculated as the offset into the mask at the point {cx, cy} therefore, all |
| 223 | // addressing into the bit mask is relative to that point. Since this is an address |
| 224 | // calculated from a arbitrary bit in that byte, calculate the left most bit. |
| 225 | int bitsLeft = cx - ((cx - maskLeft) & 7); |
| 226 | |
| 227 | // Everything is relative to the bitsLeft. |
| 228 | int leftEdge = cx - bitsLeft; |
| 229 | SkASSERT(leftEdge >= 0); |
| 230 | int rightEdge = clip.fRight - bitsLeft; |
| 231 | SkASSERT(rightEdge > leftEdge); |
| 232 | |
| 233 | // Calculate left byte and mask |
| 234 | const uint8_t* leftByte = bits; |
| 235 | U8CPU leftMask = 0xFFU >> (leftEdge & 7); |
| 236 | |
| 237 | // Calculate right byte and mask |
| 238 | int affectedRightBit = rightEdge - 1; |
| 239 | const uint8_t* rightByte = bits + (affectedRightBit >> 3); |
| 240 | U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); |
| 241 | |
| 242 | // leftByte and rightByte are byte locations therefore, to get a count of bytes the |
| 243 | // code must add one. |
| 244 | ptrdiff_t rowBytes = rightByte - leftByte + 1; |
| 245 | |
| 246 | while (--height >= 0) { |
| 247 | SkASSERT(bits + rowBytes <= endOfImage); |
| 248 | bits_to_runs(this, bitsLeft, cy, bits, leftMask, rowBytes, rightMask); |
| 249 | bits += maskRowBytes; |
| 250 | cy += 1; |
| 251 | } |
| 252 | } |
| 253 | } else { |
| 254 | int width = clip.width(); |
| 255 | SkAutoSTMalloc<64, int16_t> runStorage(width + 1); |
| 256 | int16_t* runs = runStorage.get(); |
| 257 | const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); |
| 258 | |
| 259 | sk_memset16((uint16_t*)runs, 1, width); |
| 260 | runs[width] = 0; |
| 261 | |
| 262 | int height = clip.height(); |
| 263 | int y = clip.fTop; |
| 264 | while (--height >= 0) { |
| 265 | this->blitAntiH(clip.fLeft, y, aa, runs); |
| 266 | aa += mask.fRowBytes; |
| 267 | y += 1; |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /////////////////////// these guys are not virtual, just a helpers |
| 273 | |
| 274 | void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { |
| 275 | if (clip.quickReject(mask.fBounds)) { |
| 276 | return; |
| 277 | } |
| 278 | |
| 279 | SkRegion::Cliperator clipper(clip, mask.fBounds); |
| 280 | |
| 281 | while (!clipper.done()) { |
| 282 | const SkIRect& cr = clipper.rect(); |
| 283 | this->blitMask(mask, cr); |
| 284 | clipper.next(); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { |
| 289 | SkRegion::Cliperator clipper(clip, rect); |
| 290 | |
| 291 | while (!clipper.done()) { |
| 292 | const SkIRect& cr = clipper.rect(); |
| 293 | this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); |
| 294 | clipper.next(); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | void SkBlitter::blitRegion(const SkRegion& clip) { |
| 299 | SkRegionPriv::VisitSpans(clip, [this](const SkIRect& r) { |
| 300 | this->blitRect(r.left(), r.top(), r.width(), r.height()); |
| 301 | }); |
| 302 | } |
| 303 | |
| 304 | /////////////////////////////////////////////////////////////////////////////// |
| 305 | |
| 306 | void SkNullBlitter::blitH(int x, int y, int width) {} |
| 307 | |
| 308 | void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
| 309 | const int16_t runs[]) {} |
| 310 | |
| 311 | void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} |
| 312 | |
| 313 | void SkNullBlitter::blitRect(int x, int y, int width, int height) {} |
| 314 | |
| 315 | void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} |
| 316 | |
| 317 | const SkPixmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { |
| 318 | return nullptr; |
| 319 | } |
| 320 | |
| 321 | bool SkNullBlitter::isNullBlitter() const { return true; } |
| 322 | |
| 323 | /////////////////////////////////////////////////////////////////////////////// |
| 324 | |
| 325 | static int compute_anti_width(const int16_t runs[]) { |
| 326 | int width = 0; |
| 327 | |
| 328 | for (;;) { |
| 329 | int count = runs[0]; |
| 330 | |
| 331 | SkASSERT(count >= 0); |
| 332 | if (count == 0) { |
| 333 | break; |
| 334 | } |
| 335 | width += count; |
| 336 | runs += count; |
| 337 | } |
| 338 | return width; |
| 339 | } |
| 340 | |
| 341 | static inline bool y_in_rect(int y, const SkIRect& rect) { |
| 342 | return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); |
| 343 | } |
| 344 | |
| 345 | static inline bool x_in_rect(int x, const SkIRect& rect) { |
| 346 | return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); |
| 347 | } |
| 348 | |
| 349 | void SkRectClipBlitter::blitH(int left, int y, int width) { |
| 350 | SkASSERT(width > 0); |
| 351 | |
| 352 | if (!y_in_rect(y, fClipRect)) { |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | int right = left + width; |
| 357 | |
| 358 | if (left < fClipRect.fLeft) { |
| 359 | left = fClipRect.fLeft; |
| 360 | } |
| 361 | if (right > fClipRect.fRight) { |
| 362 | right = fClipRect.fRight; |
| 363 | } |
| 364 | |
| 365 | width = right - left; |
| 366 | if (width > 0) { |
| 367 | fBlitter->blitH(left, y, width); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], |
| 372 | const int16_t runs[]) { |
| 373 | if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { |
| 374 | return; |
| 375 | } |
| 376 | |
| 377 | int x0 = left; |
| 378 | int x1 = left + compute_anti_width(runs); |
| 379 | |
| 380 | if (x1 <= fClipRect.fLeft) { |
| 381 | return; |
| 382 | } |
| 383 | |
| 384 | SkASSERT(x0 < x1); |
| 385 | if (x0 < fClipRect.fLeft) { |
| 386 | int dx = fClipRect.fLeft - x0; |
| 387 | SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); |
| 388 | runs += dx; |
| 389 | aa += dx; |
| 390 | x0 = fClipRect.fLeft; |
| 391 | } |
| 392 | |
| 393 | SkASSERT(x0 < x1 && runs[x1 - x0] == 0); |
| 394 | if (x1 > fClipRect.fRight) { |
| 395 | x1 = fClipRect.fRight; |
| 396 | SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); |
| 397 | ((int16_t*)runs)[x1 - x0] = 0; |
| 398 | } |
| 399 | |
| 400 | SkASSERT(x0 < x1 && runs[x1 - x0] == 0); |
| 401 | SkASSERT(compute_anti_width(runs) == x1 - x0); |
| 402 | |
| 403 | fBlitter->blitAntiH(x0, y, aa, runs); |
| 404 | } |
| 405 | |
| 406 | void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 407 | SkASSERT(height > 0); |
| 408 | |
| 409 | if (!x_in_rect(x, fClipRect)) { |
| 410 | return; |
| 411 | } |
| 412 | |
| 413 | int y0 = y; |
| 414 | int y1 = y + height; |
| 415 | |
| 416 | if (y0 < fClipRect.fTop) { |
| 417 | y0 = fClipRect.fTop; |
| 418 | } |
| 419 | if (y1 > fClipRect.fBottom) { |
| 420 | y1 = fClipRect.fBottom; |
| 421 | } |
| 422 | |
| 423 | if (y0 < y1) { |
| 424 | fBlitter->blitV(x, y0, y1 - y0, alpha); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { |
| 429 | SkIRect r; |
| 430 | |
| 431 | r.setLTRB(left, y, left + width, y + height); |
| 432 | if (r.intersect(fClipRect)) { |
| 433 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, |
| 438 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 439 | SkIRect r; |
| 440 | |
| 441 | // The *true* width of the rectangle blitted is width+2: |
| 442 | r.setLTRB(left, y, left + width + 2, y + height); |
| 443 | if (r.intersect(fClipRect)) { |
| 444 | if (r.fLeft != left) { |
| 445 | SkASSERT(r.fLeft > left); |
| 446 | leftAlpha = 255; |
| 447 | } |
| 448 | if (r.fRight != left + width + 2) { |
| 449 | SkASSERT(r.fRight < left + width + 2); |
| 450 | rightAlpha = 255; |
| 451 | } |
| 452 | if (255 == leftAlpha && 255 == rightAlpha) { |
| 453 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
| 454 | } else if (1 == r.width()) { |
| 455 | if (r.fLeft == left) { |
| 456 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); |
| 457 | } else { |
| 458 | SkASSERT(r.fLeft == left + width + 1); |
| 459 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); |
| 460 | } |
| 461 | } else { |
| 462 | fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), |
| 463 | leftAlpha, rightAlpha); |
| 464 | } |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 469 | SkASSERT(mask.fBounds.contains(clip)); |
| 470 | |
| 471 | SkIRect r = clip; |
| 472 | |
| 473 | if (r.intersect(fClipRect)) { |
| 474 | fBlitter->blitMask(mask, r); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | const SkPixmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { |
| 479 | return fBlitter->justAnOpaqueColor(value); |
| 480 | } |
| 481 | |
| 482 | /////////////////////////////////////////////////////////////////////////////// |
| 483 | |
| 484 | void SkRgnClipBlitter::blitH(int x, int y, int width) { |
| 485 | SkRegion::Spanerator span(*fRgn, y, x, x + width); |
| 486 | int left, right; |
| 487 | |
| 488 | while (span.next(&left, &right)) { |
| 489 | SkASSERT(left < right); |
| 490 | fBlitter->blitH(left, y, right - left); |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], |
| 495 | const int16_t runs[]) { |
| 496 | int width = compute_anti_width(runs); |
| 497 | SkRegion::Spanerator span(*fRgn, y, x, x + width); |
| 498 | int left, right; |
| 499 | SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) |
| 500 | |
| 501 | int prevRite = x; |
| 502 | while (span.next(&left, &right)) { |
| 503 | SkASSERT(x <= left); |
| 504 | SkASSERT(left < right); |
| 505 | SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); |
| 506 | |
| 507 | SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); |
| 508 | |
| 509 | // now zero before left |
| 510 | if (left > prevRite) { |
| 511 | int index = prevRite - x; |
| 512 | ((uint8_t*)aa)[index] = 0; // skip runs after right |
| 513 | ((int16_t*)runs)[index] = SkToS16(left - prevRite); |
| 514 | } |
| 515 | |
| 516 | prevRite = right; |
| 517 | } |
| 518 | |
| 519 | if (prevRite > x) { |
| 520 | ((int16_t*)runs)[prevRite - x] = 0; |
| 521 | |
| 522 | if (x < 0) { |
| 523 | int skip = runs[0]; |
| 524 | SkASSERT(skip >= -x); |
| 525 | aa += skip; |
| 526 | runs += skip; |
| 527 | x += skip; |
| 528 | } |
| 529 | fBlitter->blitAntiH(x, y, aa, runs); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 534 | SkIRect bounds; |
| 535 | bounds.setXYWH(x, y, 1, height); |
| 536 | |
| 537 | SkRegion::Cliperator iter(*fRgn, bounds); |
| 538 | |
| 539 | while (!iter.done()) { |
| 540 | const SkIRect& r = iter.rect(); |
| 541 | SkASSERT(bounds.contains(r)); |
| 542 | |
| 543 | fBlitter->blitV(x, r.fTop, r.height(), alpha); |
| 544 | iter.next(); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { |
| 549 | SkIRect bounds; |
| 550 | bounds.setXYWH(x, y, width, height); |
| 551 | |
| 552 | SkRegion::Cliperator iter(*fRgn, bounds); |
| 553 | |
| 554 | while (!iter.done()) { |
| 555 | const SkIRect& r = iter.rect(); |
| 556 | SkASSERT(bounds.contains(r)); |
| 557 | |
| 558 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
| 559 | iter.next(); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, |
| 564 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 565 | // The *true* width of the rectangle to blit is width + 2 |
| 566 | SkIRect bounds; |
| 567 | bounds.setXYWH(x, y, width + 2, height); |
| 568 | |
| 569 | SkRegion::Cliperator iter(*fRgn, bounds); |
| 570 | |
| 571 | while (!iter.done()) { |
| 572 | const SkIRect& r = iter.rect(); |
| 573 | SkASSERT(bounds.contains(r)); |
| 574 | SkASSERT(r.fLeft >= x); |
| 575 | SkASSERT(r.fRight <= x + width + 2); |
| 576 | |
| 577 | SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; |
| 578 | SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? |
| 579 | rightAlpha : 255; |
| 580 | |
| 581 | if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { |
| 582 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
| 583 | } else if (1 == r.width()) { |
| 584 | if (r.fLeft == x) { |
| 585 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), |
| 586 | effectiveLeftAlpha); |
| 587 | } else { |
| 588 | SkASSERT(r.fLeft == x + width + 1); |
| 589 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), |
| 590 | effectiveRightAlpha); |
| 591 | } |
| 592 | } else { |
| 593 | fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), |
| 594 | effectiveLeftAlpha, effectiveRightAlpha); |
| 595 | } |
| 596 | iter.next(); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | |
| 601 | void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 602 | SkASSERT(mask.fBounds.contains(clip)); |
| 603 | |
| 604 | SkRegion::Cliperator iter(*fRgn, clip); |
| 605 | const SkIRect& r = iter.rect(); |
| 606 | SkBlitter* blitter = fBlitter; |
| 607 | |
| 608 | while (!iter.done()) { |
| 609 | blitter->blitMask(mask, r); |
| 610 | iter.next(); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | const SkPixmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { |
| 615 | return fBlitter->justAnOpaqueColor(value); |
| 616 | } |
| 617 | |
| 618 | /////////////////////////////////////////////////////////////////////////////// |
| 619 | |
| 620 | SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, |
| 621 | const SkIRect* ir) { |
| 622 | if (clip) { |
| 623 | const SkIRect& clipR = clip->getBounds(); |
| 624 | |
| 625 | if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { |
| 626 | blitter = &fNullBlitter; |
| 627 | } else if (clip->isRect()) { |
| 628 | if (ir == nullptr || !clipR.contains(*ir)) { |
| 629 | fRectBlitter.init(blitter, clipR); |
| 630 | blitter = &fRectBlitter; |
| 631 | } |
| 632 | } else { |
| 633 | fRgnBlitter.init(blitter, clip); |
| 634 | blitter = &fRgnBlitter; |
| 635 | } |
| 636 | } |
| 637 | return blitter; |
| 638 | } |
| 639 | |
| 640 | /////////////////////////////////////////////////////////////////////////////// |
| 641 | |
| 642 | #include "src/core/SkCoreBlitters.h" |
| 643 | |
| 644 | bool SkBlitter::UseRasterPipelineBlitter(const SkPixmap& device, const SkPaint& paint, |
| 645 | const SkMatrix& matrix) { |
| 646 | if (gSkForceRasterPipelineBlitter) { |
| 647 | return true; |
| 648 | } |
| 649 | #if 0 || defined(SK_FORCE_RASTER_PIPELINE_BLITTER) |
| 650 | return true; |
| 651 | #else |
| 652 | |
| 653 | const SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter()); |
| 654 | |
| 655 | // The legacy blitters cannot handle any of these complex features (anymore). |
| 656 | if (device.alphaType() == kUnpremul_SkAlphaType || |
| 657 | matrix.hasPerspective() || |
| 658 | paint.getColorFilter() || |
| 659 | paint.getBlendMode() > SkBlendMode::kLastCoeffMode || |
| 660 | paint.getFilterQuality() == kHigh_SkFilterQuality || |
| 661 | (mf && mf->getFormat() == SkMask::k3D_Format)) { |
| 662 | return true; |
| 663 | } |
| 664 | |
| 665 | // All the real legacy fast paths are for shaders and SrcOver. |
| 666 | // Choosing SkRasterPipelineBlitter will also let us to hit its single-color memset path. |
| 667 | if (!paint.getShader() && paint.getBlendMode() != SkBlendMode::kSrcOver) { |
| 668 | return true; |
| 669 | } |
| 670 | |
| 671 | auto cs = device.colorSpace(); |
| 672 | // We check (indirectly via makeContext()) later on if the shader can handle the colorspace |
| 673 | // in legacy mode, so here we just focus on if a single color needs raster-pipeline. |
| 674 | if (cs && !paint.getShader()) { |
| 675 | if (!paint.getColor4f().fitsInBytes() || !cs->isSRGB()) { |
| 676 | return true; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | // Only kN32 and 565 are handled by legacy blitters now, 565 mostly just for Android. |
| 681 | return device.colorType() != kN32_SkColorType |
| 682 | && device.colorType() != kRGB_565_SkColorType; |
| 683 | #endif |
| 684 | } |
| 685 | |
| 686 | SkBlitter* SkBlitter::Choose(const SkPixmap& device, |
| 687 | const SkMatrix& matrix, |
| 688 | const SkPaint& origPaint, |
| 689 | SkArenaAlloc* alloc, |
| 690 | bool drawCoverage, |
| 691 | sk_sp<SkShader> clipShader) { |
| 692 | SkASSERT(alloc); |
| 693 | |
| 694 | if (kUnknown_SkColorType == device.colorType()) { |
| 695 | return alloc->make<SkNullBlitter>(); |
| 696 | } |
| 697 | |
| 698 | // We may tweak the original paint as we go. |
| 699 | SkTCopyOnFirstWrite<SkPaint> paint(origPaint); |
| 700 | |
| 701 | // We have the most fast-paths for SrcOver, so see if we can act like SrcOver. |
| 702 | if (paint->getBlendMode() != SkBlendMode::kSrcOver) { |
| 703 | switch (SkInterpretXfermode(*paint, SkColorTypeIsAlwaysOpaque(device.colorType()))) { |
| 704 | case kSrcOver_SkXfermodeInterpretation: |
| 705 | paint.writable()->setBlendMode(SkBlendMode::kSrcOver); |
| 706 | break; |
| 707 | case kSkipDrawing_SkXfermodeInterpretation: |
| 708 | return alloc->make<SkNullBlitter>(); |
| 709 | default: |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | // A Clear blend mode will ignore the entire color pipeline, as if Src mode with 0x00000000. |
| 715 | if (paint->getBlendMode() == SkBlendMode::kClear) { |
| 716 | SkPaint* p = paint.writable(); |
| 717 | p->setShader(nullptr); |
| 718 | p->setColorFilter(nullptr); |
| 719 | p->setBlendMode(SkBlendMode::kSrc); |
| 720 | p->setColor(0x00000000); |
| 721 | } |
| 722 | |
| 723 | #ifndef SK_SUPPORT_LEGACY_COLORFILTER_NO_SHADER |
| 724 | if (paint->getColorFilter()) { |
| 725 | SkPaintPriv::RemoveColorFilter(paint.writable(), device.colorSpace()); |
| 726 | } |
| 727 | SkASSERT(!paint->getColorFilter()); |
| 728 | #endif |
| 729 | |
| 730 | if (drawCoverage) { |
| 731 | if (device.colorType() == kAlpha_8_SkColorType) { |
| 732 | SkASSERT(!paint->getShader()); |
| 733 | SkASSERT(paint->isSrcOver()); |
| 734 | return alloc->make<SkA8_Coverage_Blitter>(device, *paint); |
| 735 | } |
| 736 | return alloc->make<SkNullBlitter>(); |
| 737 | } |
| 738 | |
| 739 | if (paint->isDither() && !SkPaintPriv::ShouldDither(*paint, device.colorType())) { |
| 740 | paint.writable()->setDither(false); |
| 741 | } |
| 742 | |
| 743 | if (gUseSkVMBlitter) { |
| 744 | if (auto blitter = SkCreateSkVMBlitter(device, *paint, matrix, alloc, clipShader)) { |
| 745 | return blitter; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | // We'll end here for many interesting cases: color spaces, color filters, most color types. |
| 750 | if (UseRasterPipelineBlitter(device, *paint, matrix) || clipShader) { |
| 751 | auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc, clipShader); |
| 752 | SkASSERT(blitter); |
| 753 | return blitter; |
| 754 | } |
| 755 | |
| 756 | // Everything but legacy kN32_SkColorType and kRGB_565_SkColorType should already be handled. |
| 757 | SkASSERT(device.colorType() == kN32_SkColorType || |
| 758 | device.colorType() == kRGB_565_SkColorType); |
| 759 | |
| 760 | // And we should either have a shader, be blending with SrcOver, or both. |
| 761 | SkASSERT(paint->getShader() || paint->getBlendMode() == SkBlendMode::kSrcOver); |
| 762 | |
| 763 | // Legacy blitters keep their shader state on a shader context. |
| 764 | SkShaderBase::Context* shaderContext = nullptr; |
| 765 | if (paint->getShader()) { |
| 766 | shaderContext = as_SB(paint->getShader())->makeContext( |
| 767 | {*paint, matrix, nullptr, device.colorType(), device.colorSpace()}, |
| 768 | alloc); |
| 769 | |
| 770 | // Creating the context isn't always possible... we'll just fall back to raster pipeline. |
| 771 | if (!shaderContext) { |
| 772 | auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc, clipShader); |
| 773 | SkASSERT(blitter); |
| 774 | return blitter; |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | switch (device.colorType()) { |
| 779 | case kN32_SkColorType: |
| 780 | if (shaderContext) { |
| 781 | return alloc->make<SkARGB32_Shader_Blitter>(device, *paint, shaderContext); |
| 782 | } else if (paint->getColor() == SK_ColorBLACK) { |
| 783 | return alloc->make<SkARGB32_Black_Blitter>(device, *paint); |
| 784 | } else if (paint->getAlpha() == 0xFF) { |
| 785 | return alloc->make<SkARGB32_Opaque_Blitter>(device, *paint); |
| 786 | } else { |
| 787 | return alloc->make<SkARGB32_Blitter>(device, *paint); |
| 788 | } |
| 789 | |
| 790 | case kRGB_565_SkColorType: |
| 791 | if (shaderContext && SkRGB565_Shader_Blitter::Supports(device, *paint)) { |
| 792 | return alloc->make<SkRGB565_Shader_Blitter>(device, *paint, shaderContext); |
| 793 | } else { |
| 794 | return SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc, clipShader); |
| 795 | } |
| 796 | |
| 797 | default: |
| 798 | SkASSERT(false); |
| 799 | return alloc->make<SkNullBlitter>(); |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /////////////////////////////////////////////////////////////////////////////// |
| 804 | |
| 805 | SkShaderBlitter::SkShaderBlitter(const SkPixmap& device, const SkPaint& paint, |
| 806 | SkShaderBase::Context* shaderContext) |
| 807 | : INHERITED(device) |
| 808 | , fShader(paint.getShader()) |
| 809 | , fShaderContext(shaderContext) { |
| 810 | SkASSERT(fShader); |
| 811 | SkASSERT(fShaderContext); |
| 812 | |
| 813 | fShader->ref(); |
| 814 | fShaderFlags = fShaderContext->getFlags(); |
| 815 | fConstInY = SkToBool(fShaderFlags & SkShaderBase::kConstInY32_Flag); |
| 816 | } |
| 817 | |
| 818 | SkShaderBlitter::~SkShaderBlitter() { |
| 819 | fShader->unref(); |
| 820 | } |
| 821 | |
| 822 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 823 | |
| 824 | #ifdef SK_DEBUG |
| 825 | |
| 826 | void SkRectClipCheckBlitter::blitH(int x, int y, int width) { |
| 827 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); |
| 828 | fBlitter->blitH(x, y, width); |
| 829 | } |
| 830 | |
| 831 | void SkRectClipCheckBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { |
| 832 | const int16_t* iter = runs; |
| 833 | for (; *iter; iter += *iter) |
| 834 | ; |
| 835 | int width = iter - runs; |
| 836 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); |
| 837 | fBlitter->blitAntiH(x, y, aa, runs); |
| 838 | } |
| 839 | |
| 840 | void SkRectClipCheckBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 841 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, height))); |
| 842 | fBlitter->blitV(x, y, height, alpha); |
| 843 | } |
| 844 | |
| 845 | void SkRectClipCheckBlitter::blitRect(int x, int y, int width, int height) { |
| 846 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, height))); |
| 847 | fBlitter->blitRect(x, y, width, height); |
| 848 | } |
| 849 | |
| 850 | void SkRectClipCheckBlitter::blitAntiRect(int x, int y, int width, int height, |
| 851 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 852 | bool skipLeft = !leftAlpha; |
| 853 | bool skipRight = !rightAlpha; |
| 854 | #ifdef SK_DEBUG |
| 855 | SkIRect r = SkIRect::MakeXYWH(x + skipLeft, y, width + 2 - skipRight - skipLeft, height); |
| 856 | SkASSERT(r.isEmpty() || fClipRect.contains(r)); |
| 857 | #endif |
| 858 | fBlitter->blitAntiRect(x, y, width, height, leftAlpha, rightAlpha); |
| 859 | } |
| 860 | |
| 861 | void SkRectClipCheckBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 862 | SkASSERT(mask.fBounds.contains(clip)); |
| 863 | SkASSERT(fClipRect.contains(clip)); |
| 864 | fBlitter->blitMask(mask, clip); |
| 865 | } |
| 866 | |
| 867 | const SkPixmap* SkRectClipCheckBlitter::justAnOpaqueColor(uint32_t* value) { |
| 868 | return fBlitter->justAnOpaqueColor(value); |
| 869 | } |
| 870 | |
| 871 | void SkRectClipCheckBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { |
| 872 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 2, 1))); |
| 873 | fBlitter->blitAntiH2(x, y, a0, a1); |
| 874 | } |
| 875 | |
| 876 | void SkRectClipCheckBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { |
| 877 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, 2))); |
| 878 | fBlitter->blitAntiV2(x, y, a0, a1); |
| 879 | } |
| 880 | |
| 881 | #endif |
| 882 | |