1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkString.h" |
9 | #include "include/private/SkTo.h" |
10 | #include "src/core/SkSafeMath.h" |
11 | #include "src/core/SkUtils.h" |
12 | #include "src/utils/SkUTF.h" |
13 | |
14 | #include <cstdio> |
15 | #include <new> |
16 | #include <utility> |
17 | #include <vector> |
18 | |
19 | // number of bytes (on the stack) to receive the printf result |
20 | static const size_t kBufferSize = 1024; |
21 | |
22 | static const char* apply_format_string(const char* format, va_list args, char* stackBuffer, |
23 | size_t stackBufferSize, int* length, SkString* heapBuffer) { |
24 | va_list argsCopy; |
25 | va_copy(argsCopy, args); |
26 | *length = std::vsnprintf(stackBuffer, stackBufferSize, format, args); |
27 | if (*length < 0) { |
28 | SkDebugf("SkString: vsnprintf reported error." ); |
29 | va_end(argsCopy); |
30 | *length = 0; |
31 | return stackBuffer; |
32 | } |
33 | if (*length < SkToInt(stackBufferSize)) { |
34 | va_end(argsCopy); |
35 | return stackBuffer; |
36 | } |
37 | heapBuffer->resize(*length); |
38 | SkDEBUGCODE(int check =) |
39 | std::vsnprintf(heapBuffer->writable_str(), *length + 1, format, argsCopy); |
40 | SkASSERT(check == *length); |
41 | va_end(argsCopy); |
42 | return heapBuffer->c_str(); |
43 | } |
44 | |
45 | #define ARGS_TO_BUFFER(format, buffer, size, written, result) \ |
46 | SkString overflow; \ |
47 | do { \ |
48 | va_list args; \ |
49 | va_start(args, format); \ |
50 | result = apply_format_string(format, args, buffer, size, &written, &overflow); \ |
51 | va_end(args); \ |
52 | } while (0) |
53 | |
54 | #define V_SKSTRING_PRINTF(output, format) \ |
55 | do { \ |
56 | char buffer[kBufferSize]; \ |
57 | va_list args; \ |
58 | va_start(args, format); \ |
59 | int length; \ |
60 | auto result = apply_format_string(format, args, buffer, kBufferSize, &length, &output); \ |
61 | SkASSERT(result == output.c_str() || result == buffer); \ |
62 | if (result == buffer) { \ |
63 | output.set(buffer, length); \ |
64 | } \ |
65 | } while (0) |
66 | |
67 | /////////////////////////////////////////////////////////////////////////////// |
68 | |
69 | bool SkStrEndsWith(const char string[], const char suffixStr[]) { |
70 | SkASSERT(string); |
71 | SkASSERT(suffixStr); |
72 | size_t strLen = strlen(string); |
73 | size_t suffixLen = strlen(suffixStr); |
74 | return strLen >= suffixLen && |
75 | !strncmp(string + strLen - suffixLen, suffixStr, suffixLen); |
76 | } |
77 | |
78 | bool SkStrEndsWith(const char string[], const char suffixChar) { |
79 | SkASSERT(string); |
80 | size_t strLen = strlen(string); |
81 | if (0 == strLen) { |
82 | return false; |
83 | } else { |
84 | return (suffixChar == string[strLen-1]); |
85 | } |
86 | } |
87 | |
88 | int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { |
89 | int index = 0; |
90 | do { |
91 | const char* limit = strchr(prefixes, '\0'); |
92 | if (!strncmp(string, prefixes, limit - prefixes)) { |
93 | return index; |
94 | } |
95 | prefixes = limit + 1; |
96 | index++; |
97 | } while (prefixes[0]); |
98 | return -1; |
99 | } |
100 | |
101 | char* SkStrAppendU32(char string[], uint32_t dec) { |
102 | SkDEBUGCODE(char* start = string;) |
103 | |
104 | char buffer[SkStrAppendU32_MaxSize]; |
105 | char* p = buffer + sizeof(buffer); |
106 | |
107 | do { |
108 | *--p = SkToU8('0' + dec % 10); |
109 | dec /= 10; |
110 | } while (dec != 0); |
111 | |
112 | SkASSERT(p >= buffer); |
113 | char* stop = buffer + sizeof(buffer); |
114 | while (p < stop) { |
115 | *string++ = *p++; |
116 | } |
117 | SkASSERT(string - start <= SkStrAppendU32_MaxSize); |
118 | return string; |
119 | } |
120 | |
121 | char* SkStrAppendS32(char string[], int32_t dec) { |
122 | uint32_t udec = dec; |
123 | if (dec < 0) { |
124 | *string++ = '-'; |
125 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
126 | } |
127 | return SkStrAppendU32(string, udec); |
128 | } |
129 | |
130 | char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) { |
131 | SkDEBUGCODE(char* start = string;) |
132 | |
133 | char buffer[SkStrAppendU64_MaxSize]; |
134 | char* p = buffer + sizeof(buffer); |
135 | |
136 | do { |
137 | *--p = SkToU8('0' + (int32_t) (dec % 10)); |
138 | dec /= 10; |
139 | minDigits--; |
140 | } while (dec != 0); |
141 | |
142 | while (minDigits > 0) { |
143 | *--p = '0'; |
144 | minDigits--; |
145 | } |
146 | |
147 | SkASSERT(p >= buffer); |
148 | size_t cp_len = buffer + sizeof(buffer) - p; |
149 | memcpy(string, p, cp_len); |
150 | string += cp_len; |
151 | |
152 | SkASSERT(string - start <= SkStrAppendU64_MaxSize); |
153 | return string; |
154 | } |
155 | |
156 | char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { |
157 | uint64_t udec = dec; |
158 | if (dec < 0) { |
159 | *string++ = '-'; |
160 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
161 | } |
162 | return SkStrAppendU64(string, udec, minDigits); |
163 | } |
164 | |
165 | char* SkStrAppendFloat(char string[], float value) { |
166 | // since floats have at most 8 significant digits, we limit our %g to that. |
167 | static const char gFormat[] = "%.8g" ; |
168 | // make it 1 larger for the terminating 0 |
169 | char buffer[SkStrAppendScalar_MaxSize + 1]; |
170 | int len = snprintf(buffer, sizeof(buffer), gFormat, value); |
171 | memcpy(string, buffer, len); |
172 | SkASSERT(len <= SkStrAppendScalar_MaxSize); |
173 | return string + len; |
174 | } |
175 | |
176 | /////////////////////////////////////////////////////////////////////////////// |
177 | |
178 | const SkString::Rec SkString::gEmptyRec(0, 0); |
179 | |
180 | #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) |
181 | |
182 | static uint32_t trim_size_t_to_u32(size_t value) { |
183 | if (sizeof(size_t) > sizeof(uint32_t)) { |
184 | if (value > UINT32_MAX) { |
185 | value = UINT32_MAX; |
186 | } |
187 | } |
188 | return (uint32_t)value; |
189 | } |
190 | |
191 | static size_t check_add32(size_t base, size_t ) { |
192 | SkASSERT(base <= UINT32_MAX); |
193 | if (sizeof(size_t) > sizeof(uint32_t)) { |
194 | if (base + extra > UINT32_MAX) { |
195 | extra = UINT32_MAX - base; |
196 | } |
197 | } |
198 | return extra; |
199 | } |
200 | |
201 | sk_sp<SkString::Rec> SkString::Rec::Make(const char text[], size_t len) { |
202 | if (0 == len) { |
203 | return sk_sp<SkString::Rec>(const_cast<Rec*>(&gEmptyRec)); |
204 | } |
205 | |
206 | SkSafeMath safe; |
207 | // We store a 32bit version of the length |
208 | uint32_t stringLen = safe.castTo<uint32_t>(len); |
209 | // Add SizeOfRec() for our overhead and 1 for null-termination |
210 | size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char)); |
211 | // Align up to a multiple of 4 |
212 | allocationSize = safe.alignUp(allocationSize, 4); |
213 | |
214 | SkASSERT_RELEASE(safe.ok()); |
215 | |
216 | void* storage = ::operator new (allocationSize); |
217 | sk_sp<Rec> rec(new (storage) Rec(stringLen, 1)); |
218 | if (text) { |
219 | memcpy(rec->data(), text, len); |
220 | } |
221 | rec->data()[len] = 0; |
222 | return rec; |
223 | } |
224 | |
225 | void SkString::Rec::ref() const { |
226 | if (this == &SkString::gEmptyRec) { |
227 | return; |
228 | } |
229 | SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed)); |
230 | } |
231 | |
232 | void SkString::Rec::unref() const { |
233 | if (this == &SkString::gEmptyRec) { |
234 | return; |
235 | } |
236 | int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel); |
237 | SkASSERT(oldRefCnt); |
238 | if (1 == oldRefCnt) { |
239 | delete this; |
240 | } |
241 | } |
242 | |
243 | bool SkString::Rec::unique() const { |
244 | return fRefCnt.load(std::memory_order_acquire) == 1; |
245 | } |
246 | |
247 | #ifdef SK_DEBUG |
248 | const SkString& SkString::validate() const { |
249 | // make sure know one has written over our global |
250 | SkASSERT(0 == gEmptyRec.fLength); |
251 | SkASSERT(0 == gEmptyRec.fRefCnt.load(std::memory_order_relaxed)); |
252 | SkASSERT(0 == gEmptyRec.data()[0]); |
253 | |
254 | if (fRec.get() != &gEmptyRec) { |
255 | SkASSERT(fRec->fLength > 0); |
256 | SkASSERT(fRec->fRefCnt.load(std::memory_order_relaxed) > 0); |
257 | SkASSERT(0 == fRec->data()[fRec->fLength]); |
258 | } |
259 | return *this; |
260 | } |
261 | #endif |
262 | |
263 | /////////////////////////////////////////////////////////////////////////////// |
264 | |
265 | SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) { |
266 | } |
267 | |
268 | SkString::SkString(size_t len) { |
269 | fRec = Rec::Make(nullptr, len); |
270 | } |
271 | |
272 | SkString::SkString(const char text[]) { |
273 | size_t len = text ? strlen(text) : 0; |
274 | |
275 | fRec = Rec::Make(text, len); |
276 | } |
277 | |
278 | SkString::SkString(const char text[], size_t len) { |
279 | fRec = Rec::Make(text, len); |
280 | } |
281 | |
282 | SkString::SkString(const SkString& src) : fRec(src.validate().fRec) {} |
283 | |
284 | SkString::SkString(SkString&& src) : fRec(std::move(src.validate().fRec)) { |
285 | src.fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
286 | } |
287 | |
288 | SkString::~SkString() { |
289 | this->validate(); |
290 | } |
291 | |
292 | bool SkString::equals(const SkString& src) const { |
293 | return fRec == src.fRec || this->equals(src.c_str(), src.size()); |
294 | } |
295 | |
296 | bool SkString::equals(const char text[]) const { |
297 | return this->equals(text, text ? strlen(text) : 0); |
298 | } |
299 | |
300 | bool SkString::equals(const char text[], size_t len) const { |
301 | SkASSERT(len == 0 || text != nullptr); |
302 | |
303 | return fRec->fLength == len && !memcmp(fRec->data(), text, len); |
304 | } |
305 | |
306 | SkString& SkString::operator=(const SkString& src) { |
307 | this->validate(); |
308 | fRec = src.fRec; // sk_sp<Rec>::operator=(const sk_sp<Ref>&) checks for self-assignment. |
309 | return *this; |
310 | } |
311 | |
312 | SkString& SkString::operator=(SkString&& src) { |
313 | this->validate(); |
314 | |
315 | if (fRec != src.fRec) { |
316 | this->swap(src); |
317 | } |
318 | return *this; |
319 | } |
320 | |
321 | SkString& SkString::operator=(const char text[]) { |
322 | this->validate(); |
323 | return *this = SkString(text); |
324 | } |
325 | |
326 | void SkString::reset() { |
327 | this->validate(); |
328 | fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
329 | } |
330 | |
331 | char* SkString::writable_str() { |
332 | this->validate(); |
333 | |
334 | if (fRec->fLength) { |
335 | if (!fRec->unique()) { |
336 | fRec = Rec::Make(fRec->data(), fRec->fLength); |
337 | } |
338 | } |
339 | return fRec->data(); |
340 | } |
341 | |
342 | void SkString::set(const char text[]) { |
343 | this->set(text, text ? strlen(text) : 0); |
344 | } |
345 | |
346 | void SkString::set(const char text[], size_t len) { |
347 | len = trim_size_t_to_u32(len); |
348 | bool unique = fRec->unique(); |
349 | if (0 == len) { |
350 | this->reset(); |
351 | } else if (unique && len <= fRec->fLength) { |
352 | // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))? |
353 | // just use less of the buffer without allocating a smaller one |
354 | char* p = this->writable_str(); |
355 | if (text) { |
356 | memcpy(p, text, len); |
357 | } |
358 | p[len] = 0; |
359 | fRec->fLength = SkToU32(len); |
360 | } else if (unique && (fRec->fLength >> 2) == (len >> 2)) { |
361 | // we have spare room in the current allocation, so don't alloc a larger one |
362 | char* p = this->writable_str(); |
363 | if (text) { |
364 | memcpy(p, text, len); |
365 | } |
366 | p[len] = 0; |
367 | fRec->fLength = SkToU32(len); |
368 | } else { |
369 | SkString tmp(text, len); |
370 | this->swap(tmp); |
371 | } |
372 | } |
373 | |
374 | void SkString::insert(size_t offset, const char text[]) { |
375 | this->insert(offset, text, text ? strlen(text) : 0); |
376 | } |
377 | |
378 | void SkString::insert(size_t offset, const char text[], size_t len) { |
379 | if (len) { |
380 | size_t length = fRec->fLength; |
381 | if (offset > length) { |
382 | offset = length; |
383 | } |
384 | |
385 | // Check if length + len exceeds 32bits, we trim len |
386 | len = check_add32(length, len); |
387 | if (0 == len) { |
388 | return; |
389 | } |
390 | |
391 | /* If we're the only owner, and we have room in our allocation for the insert, |
392 | do it in place, rather than allocating a new buffer. |
393 | |
394 | To know we have room, compare the allocated sizes |
395 | beforeAlloc = SkAlign4(length + 1) |
396 | afterAlloc = SkAligh4(length + 1 + len) |
397 | but SkAlign4(x) is (x + 3) >> 2 << 2 |
398 | which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 |
399 | and we can then eliminate the +1+3 since that doesn't affec the answer |
400 | */ |
401 | if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) { |
402 | char* dst = this->writable_str(); |
403 | |
404 | if (offset < length) { |
405 | memmove(dst + offset + len, dst + offset, length - offset); |
406 | } |
407 | memcpy(dst + offset, text, len); |
408 | |
409 | dst[length + len] = 0; |
410 | fRec->fLength = SkToU32(length + len); |
411 | } else { |
412 | /* Seems we should use realloc here, since that is safe if it fails |
413 | (we have the original data), and might be faster than alloc/copy/free. |
414 | */ |
415 | SkString tmp(fRec->fLength + len); |
416 | char* dst = tmp.writable_str(); |
417 | |
418 | if (offset > 0) { |
419 | memcpy(dst, fRec->data(), offset); |
420 | } |
421 | memcpy(dst + offset, text, len); |
422 | if (offset < fRec->fLength) { |
423 | memcpy(dst + offset + len, fRec->data() + offset, |
424 | fRec->fLength - offset); |
425 | } |
426 | |
427 | this->swap(tmp); |
428 | } |
429 | } |
430 | } |
431 | |
432 | void SkString::insertUnichar(size_t offset, SkUnichar uni) { |
433 | char buffer[SkUTF::kMaxBytesInUTF8Sequence]; |
434 | size_t len = SkUTF::ToUTF8(uni, buffer); |
435 | |
436 | if (len) { |
437 | this->insert(offset, buffer, len); |
438 | } |
439 | } |
440 | |
441 | void SkString::insertS32(size_t offset, int32_t dec) { |
442 | char buffer[SkStrAppendS32_MaxSize]; |
443 | char* stop = SkStrAppendS32(buffer, dec); |
444 | this->insert(offset, buffer, stop - buffer); |
445 | } |
446 | |
447 | void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { |
448 | char buffer[SkStrAppendS64_MaxSize]; |
449 | char* stop = SkStrAppendS64(buffer, dec, minDigits); |
450 | this->insert(offset, buffer, stop - buffer); |
451 | } |
452 | |
453 | void SkString::insertU32(size_t offset, uint32_t dec) { |
454 | char buffer[SkStrAppendU32_MaxSize]; |
455 | char* stop = SkStrAppendU32(buffer, dec); |
456 | this->insert(offset, buffer, stop - buffer); |
457 | } |
458 | |
459 | void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) { |
460 | char buffer[SkStrAppendU64_MaxSize]; |
461 | char* stop = SkStrAppendU64(buffer, dec, minDigits); |
462 | this->insert(offset, buffer, stop - buffer); |
463 | } |
464 | |
465 | void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { |
466 | minDigits = SkTPin(minDigits, 0, 8); |
467 | |
468 | char buffer[8]; |
469 | char* p = buffer + sizeof(buffer); |
470 | |
471 | do { |
472 | *--p = SkHexadecimalDigits::gUpper[hex & 0xF]; |
473 | hex >>= 4; |
474 | minDigits -= 1; |
475 | } while (hex != 0); |
476 | |
477 | while (--minDigits >= 0) { |
478 | *--p = '0'; |
479 | } |
480 | |
481 | SkASSERT(p >= buffer); |
482 | this->insert(offset, p, buffer + sizeof(buffer) - p); |
483 | } |
484 | |
485 | void SkString::insertScalar(size_t offset, SkScalar value) { |
486 | char buffer[SkStrAppendScalar_MaxSize]; |
487 | char* stop = SkStrAppendScalar(buffer, value); |
488 | this->insert(offset, buffer, stop - buffer); |
489 | } |
490 | |
491 | void SkString::printf(const char format[], ...) { |
492 | V_SKSTRING_PRINTF((*this), format); |
493 | } |
494 | |
495 | void SkString::appendf(const char format[], ...) { |
496 | char buffer[kBufferSize]; |
497 | int length; |
498 | const char* result; |
499 | ARGS_TO_BUFFER(format, buffer, kBufferSize, length, result); |
500 | |
501 | this->append(result, length); |
502 | } |
503 | |
504 | void SkString::appendVAList(const char format[], va_list args) { |
505 | char buffer[kBufferSize]; |
506 | int length = vsnprintf(buffer, kBufferSize, format, args); |
507 | SkASSERT(length >= 0 && length < SkToInt(kBufferSize)); |
508 | |
509 | this->append(buffer, length); |
510 | } |
511 | |
512 | void SkString::prependf(const char format[], ...) { |
513 | char buffer[kBufferSize]; |
514 | int length; |
515 | const char* result; |
516 | ARGS_TO_BUFFER(format, buffer, kBufferSize, length, result); |
517 | |
518 | this->prepend(result, length); |
519 | } |
520 | |
521 | void SkString::prependVAList(const char format[], va_list args) { |
522 | char buffer[kBufferSize]; |
523 | int length = vsnprintf(buffer, kBufferSize, format, args); |
524 | SkASSERT(length >= 0 && length < SkToInt(kBufferSize)); |
525 | |
526 | this->prepend(buffer, length); |
527 | } |
528 | |
529 | |
530 | /////////////////////////////////////////////////////////////////////////////// |
531 | |
532 | void SkString::remove(size_t offset, size_t length) { |
533 | size_t size = this->size(); |
534 | |
535 | if (offset < size) { |
536 | if (length > size - offset) { |
537 | length = size - offset; |
538 | } |
539 | SkASSERT(length <= size); |
540 | SkASSERT(offset <= size - length); |
541 | if (length > 0) { |
542 | SkString tmp(size - length); |
543 | char* dst = tmp.writable_str(); |
544 | const char* src = this->c_str(); |
545 | |
546 | if (offset) { |
547 | memcpy(dst, src, offset); |
548 | } |
549 | size_t tail = size - (offset + length); |
550 | if (tail) { |
551 | memcpy(dst + offset, src + (offset + length), tail); |
552 | } |
553 | SkASSERT(dst[tmp.size()] == 0); |
554 | this->swap(tmp); |
555 | } |
556 | } |
557 | } |
558 | |
559 | void SkString::swap(SkString& other) { |
560 | this->validate(); |
561 | other.validate(); |
562 | |
563 | using std::swap; |
564 | swap(fRec, other.fRec); |
565 | } |
566 | |
567 | /////////////////////////////////////////////////////////////////////////////// |
568 | |
569 | SkString SkStringPrintf(const char* format, ...) { |
570 | SkString formattedOutput; |
571 | V_SKSTRING_PRINTF(formattedOutput, format); |
572 | return formattedOutput; |
573 | } |
574 | |
575 | void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, |
576 | SkTArray<SkString>* out) { |
577 | if (splitMode == kCoalesce_SkStrSplitMode) { |
578 | // Skip any delimiters. |
579 | str += strspn(str, delimiters); |
580 | } |
581 | if (!*str) { |
582 | return; |
583 | } |
584 | |
585 | while (true) { |
586 | // Find a token. |
587 | const size_t len = strcspn(str, delimiters); |
588 | if (splitMode == kStrict_SkStrSplitMode || len > 0) { |
589 | out->push_back().set(str, len); |
590 | str += len; |
591 | } |
592 | |
593 | if (!*str) { |
594 | return; |
595 | } |
596 | if (splitMode == kCoalesce_SkStrSplitMode) { |
597 | // Skip any delimiters. |
598 | str += strspn(str, delimiters); |
599 | } else { |
600 | // Skip one delimiter. |
601 | str += 1; |
602 | } |
603 | } |
604 | } |
605 | |