| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkTLList_DEFINED |
| 9 | #define SkTLList_DEFINED |
| 10 | |
| 11 | #include "include/core/SkTypes.h" |
| 12 | #include "include/private/SkMalloc.h" |
| 13 | #include "include/private/SkTemplates.h" |
| 14 | #include "src/core/SkTInternalLList.h" |
| 15 | #include <new> |
| 16 | #include <utility> |
| 17 | |
| 18 | /** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the |
| 19 | the list creates the objects and they are deleted upon removal. This class block-allocates |
| 20 | space for entries based on a param passed to the constructor. |
| 21 | |
| 22 | Elements of the list can be constructed in place using the following macros: |
| 23 | SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args) |
| 24 | SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args) |
| 25 | where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded |
| 26 | constructor arguments for type_name. These macros behave like addBefore() and addAfter(). |
| 27 | |
| 28 | allocCnt is the number of objects to allocate as a group. In the worst case fragmentation |
| 29 | each object is using the space required for allocCnt unfragmented objects. |
| 30 | */ |
| 31 | template <typename T, unsigned int N> class SkTLList { |
| 32 | private: |
| 33 | struct Block; |
| 34 | struct Node { |
| 35 | SkAlignedSTStorage<1, T> fObj; |
| 36 | SK_DECLARE_INTERNAL_LLIST_INTERFACE(Node); |
| 37 | Block* fBlock; // owning block. |
| 38 | }; |
| 39 | typedef SkTInternalLList<Node> NodeList; |
| 40 | |
| 41 | public: |
| 42 | class Iter; |
| 43 | |
| 44 | // Having fCount initialized to -1 indicates that the first time we attempt to grab a free node |
| 45 | // all the nodes in the pre-allocated first block need to be inserted into the free list. This |
| 46 | // allows us to skip that loop in instances when the list is never populated. |
| 47 | SkTLList() : fCount(-1) {} |
| 48 | |
| 49 | ~SkTLList() { |
| 50 | this->validate(); |
| 51 | typename NodeList::Iter iter; |
| 52 | Node* node = iter.init(fList, Iter::kHead_IterStart); |
| 53 | while (node) { |
| 54 | reinterpret_cast<T*>(node->fObj.get())->~T(); |
| 55 | Block* block = node->fBlock; |
| 56 | node = iter.next(); |
| 57 | if (0 == --block->fNodesInUse) { |
| 58 | for (unsigned int i = 0; i < N; ++i) { |
| 59 | block->fNodes[i].~Node(); |
| 60 | } |
| 61 | if (block != &fFirstBlock) { |
| 62 | sk_free(block); |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | /** Adds a new element to the list at the head. */ |
| 69 | template <typename... Args> T* addToHead(Args&&... args) { |
| 70 | this->validate(); |
| 71 | Node* node = this->createNode(); |
| 72 | fList.addToHead(node); |
| 73 | this->validate(); |
| 74 | return new (node->fObj.get()) T(std::forward<Args>(args)...); |
| 75 | } |
| 76 | |
| 77 | /** Adds a new element to the list at the tail. */ |
| 78 | template <typename... Args> T* addToTail(Args&&... args) { |
| 79 | this->validate(); |
| 80 | Node* node = this->createNode(); |
| 81 | fList.addToTail(node); |
| 82 | this->validate(); |
| 83 | return new (node->fObj.get()) T(std::forward<Args>(args)...); |
| 84 | } |
| 85 | |
| 86 | /** Adds a new element to the list before the location indicated by the iterator. If the |
| 87 | iterator refers to a nullptr location then the new element is added at the tail */ |
| 88 | template <typename... Args> T* addBefore(Iter location, Args&&... args) { |
| 89 | this->validate(); |
| 90 | Node* node = this->createNode(); |
| 91 | fList.addBefore(node, location.getNode()); |
| 92 | this->validate(); |
| 93 | return new (node->fObj.get()) T(std::forward<Args>(args)...); |
| 94 | } |
| 95 | |
| 96 | /** Adds a new element to the list after the location indicated by the iterator. If the |
| 97 | iterator refers to a nullptr location then the new element is added at the head */ |
| 98 | template <typename... Args> T* addAfter(Iter location, Args&&... args) { |
| 99 | this->validate(); |
| 100 | Node* node = this->createNode(); |
| 101 | fList.addAfter(node, location.getNode()); |
| 102 | this->validate(); |
| 103 | return new (node->fObj.get()) T(std::forward<Args>(args)...); |
| 104 | } |
| 105 | |
| 106 | /** Convenience methods for getting an iterator initialized to the head/tail of the list. */ |
| 107 | Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); } |
| 108 | Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); } |
| 109 | |
| 110 | T* head() { return Iter(*this, Iter::kHead_IterStart).get(); } |
| 111 | T* tail() { return Iter(*this, Iter::kTail_IterStart).get(); } |
| 112 | const T* head() const { return Iter(*this, Iter::kHead_IterStart).get(); } |
| 113 | const T* tail() const { return Iter(*this, Iter::kTail_IterStart).get(); } |
| 114 | |
| 115 | void popHead() { |
| 116 | this->validate(); |
| 117 | Node* node = fList.head(); |
| 118 | if (node) { |
| 119 | this->removeNode(node); |
| 120 | } |
| 121 | this->validate(); |
| 122 | } |
| 123 | |
| 124 | void popTail() { |
| 125 | this->validate(); |
| 126 | Node* node = fList.head(); |
| 127 | if (node) { |
| 128 | this->removeNode(node); |
| 129 | } |
| 130 | this->validate(); |
| 131 | } |
| 132 | |
| 133 | void remove(T* t) { |
| 134 | this->validate(); |
| 135 | Node* node = reinterpret_cast<Node*>(t); |
| 136 | SkASSERT(reinterpret_cast<T*>(node->fObj.get()) == t); |
| 137 | this->removeNode(node); |
| 138 | this->validate(); |
| 139 | } |
| 140 | |
| 141 | void reset() { |
| 142 | this->validate(); |
| 143 | Iter iter(*this, Iter::kHead_IterStart); |
| 144 | while (iter.get()) { |
| 145 | Iter next = iter; |
| 146 | next.next(); |
| 147 | this->remove(iter.get()); |
| 148 | iter = next; |
| 149 | } |
| 150 | SkASSERT(0 == fCount || -1 == fCount); |
| 151 | this->validate(); |
| 152 | } |
| 153 | |
| 154 | int count() const { return std::max(fCount ,0); } |
| 155 | bool isEmpty() const { this->validate(); return 0 == fCount || -1 == fCount; } |
| 156 | |
| 157 | bool operator== (const SkTLList& list) const { |
| 158 | if (this == &list) { |
| 159 | return true; |
| 160 | } |
| 161 | // Call count() rather than use fCount because an empty list may have fCount = 0 or -1. |
| 162 | if (this->count() != list.count()) { |
| 163 | return false; |
| 164 | } |
| 165 | for (Iter a(*this, Iter::kHead_IterStart), b(list, Iter::kHead_IterStart); |
| 166 | a.get(); |
| 167 | a.next(), b.next()) { |
| 168 | SkASSERT(b.get()); // already checked that counts match. |
| 169 | if (!(*a.get() == *b.get())) { |
| 170 | return false; |
| 171 | } |
| 172 | } |
| 173 | return true; |
| 174 | } |
| 175 | bool operator!= (const SkTLList& list) const { return !(*this == list); } |
| 176 | |
| 177 | /** The iterator becomes invalid if the element it refers to is removed from the list. */ |
| 178 | class Iter : private NodeList::Iter { |
| 179 | private: |
| 180 | typedef typename NodeList::Iter INHERITED; |
| 181 | |
| 182 | public: |
| 183 | typedef typename INHERITED::IterStart IterStart; |
| 184 | //!< Start the iterator at the head of the list. |
| 185 | static const IterStart kHead_IterStart = INHERITED::kHead_IterStart; |
| 186 | //!< Start the iterator at the tail of the list. |
| 187 | static const IterStart kTail_IterStart = INHERITED::kTail_IterStart; |
| 188 | |
| 189 | Iter() {} |
| 190 | Iter(const Iter& that) : INHERITED(that) {} |
| 191 | Iter& operator=(const Iter& that) { INHERITED::operator=(that); return *this; } |
| 192 | |
| 193 | Iter(const SkTLList& list, IterStart start = kHead_IterStart) { |
| 194 | INHERITED::init(list.fList, start); |
| 195 | } |
| 196 | |
| 197 | T* init(const SkTLList& list, IterStart start = kHead_IterStart) { |
| 198 | return this->nodeToObj(INHERITED::init(list.fList, start)); |
| 199 | } |
| 200 | |
| 201 | T* get() { return this->nodeToObj(INHERITED::get()); } |
| 202 | |
| 203 | T* next() { return this->nodeToObj(INHERITED::next()); } |
| 204 | |
| 205 | T* prev() { return this->nodeToObj(INHERITED::prev()); } |
| 206 | |
| 207 | private: |
| 208 | friend class SkTLList; |
| 209 | Node* getNode() { return INHERITED::get(); } |
| 210 | |
| 211 | T* nodeToObj(Node* node) { |
| 212 | if (node) { |
| 213 | return reinterpret_cast<T*>(node->fObj.get()); |
| 214 | } else { |
| 215 | return nullptr; |
| 216 | } |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | private: |
| 221 | struct Block { |
| 222 | int fNodesInUse; |
| 223 | Node fNodes[N]; |
| 224 | }; |
| 225 | |
| 226 | void delayedInit() { |
| 227 | SkASSERT(-1 == fCount); |
| 228 | fFirstBlock.fNodesInUse = 0; |
| 229 | for (unsigned int i = 0; i < N; ++i) { |
| 230 | fFreeList.addToHead(fFirstBlock.fNodes + i); |
| 231 | fFirstBlock.fNodes[i].fBlock = &fFirstBlock; |
| 232 | } |
| 233 | fCount = 0; |
| 234 | this->validate(); |
| 235 | } |
| 236 | |
| 237 | Node* createNode() { |
| 238 | if (-1 == fCount) { |
| 239 | this->delayedInit(); |
| 240 | } |
| 241 | Node* node = fFreeList.head(); |
| 242 | if (node) { |
| 243 | fFreeList.remove(node); |
| 244 | ++node->fBlock->fNodesInUse; |
| 245 | } else { |
| 246 | // Should not get here when count == 0 because we always have the preallocated first |
| 247 | // block. |
| 248 | SkASSERT(fCount > 0); |
| 249 | Block* block = reinterpret_cast<Block*>(sk_malloc_throw(sizeof(Block))); |
| 250 | node = &block->fNodes[0]; |
| 251 | new (node) Node; |
| 252 | node->fBlock = block; |
| 253 | block->fNodesInUse = 1; |
| 254 | for (unsigned int i = 1; i < N; ++i) { |
| 255 | new (block->fNodes + i) Node; |
| 256 | fFreeList.addToHead(block->fNodes + i); |
| 257 | block->fNodes[i].fBlock = block; |
| 258 | } |
| 259 | } |
| 260 | ++fCount; |
| 261 | return node; |
| 262 | } |
| 263 | |
| 264 | void removeNode(Node* node) { |
| 265 | SkASSERT(node); |
| 266 | fList.remove(node); |
| 267 | reinterpret_cast<T*>(node->fObj.get())->~T(); |
| 268 | Block* block = node->fBlock; |
| 269 | // Don't ever elease the first block, just add its nodes to the free list |
| 270 | if (0 == --block->fNodesInUse && block != &fFirstBlock) { |
| 271 | for (unsigned int i = 0; i < N; ++i) { |
| 272 | if (block->fNodes + i != node) { |
| 273 | fFreeList.remove(block->fNodes + i); |
| 274 | } |
| 275 | block->fNodes[i].~Node(); |
| 276 | } |
| 277 | sk_free(block); |
| 278 | } else { |
| 279 | fFreeList.addToHead(node); |
| 280 | } |
| 281 | --fCount; |
| 282 | this->validate(); |
| 283 | } |
| 284 | |
| 285 | void validate() const { |
| 286 | #ifdef SK_DEBUG |
| 287 | bool isEmpty = false; |
| 288 | if (-1 == fCount) { |
| 289 | // We should not yet have initialized the free list. |
| 290 | SkASSERT(fFreeList.isEmpty()); |
| 291 | isEmpty = true; |
| 292 | } else if (0 == fCount) { |
| 293 | // Should only have the nodes from the first block in the free list. |
| 294 | SkASSERT(fFreeList.countEntries() == N); |
| 295 | isEmpty = true; |
| 296 | } |
| 297 | SkASSERT(isEmpty == fList.isEmpty()); |
| 298 | fList.validate(); |
| 299 | fFreeList.validate(); |
| 300 | typename NodeList::Iter iter; |
| 301 | Node* freeNode = iter.init(fFreeList, Iter::kHead_IterStart); |
| 302 | while (freeNode) { |
| 303 | SkASSERT(fFreeList.isInList(freeNode)); |
| 304 | Block* block = freeNode->fBlock; |
| 305 | // Only the first block is allowed to have all its nodes in the free list. |
| 306 | SkASSERT(block->fNodesInUse > 0 || block == &fFirstBlock); |
| 307 | SkASSERT((unsigned)block->fNodesInUse < N); |
| 308 | int activeCnt = 0; |
| 309 | int freeCnt = 0; |
| 310 | for (unsigned int i = 0; i < N; ++i) { |
| 311 | bool free = fFreeList.isInList(block->fNodes + i); |
| 312 | bool active = fList.isInList(block->fNodes + i); |
| 313 | SkASSERT(free != active); |
| 314 | activeCnt += active; |
| 315 | freeCnt += free; |
| 316 | } |
| 317 | SkASSERT(activeCnt == block->fNodesInUse); |
| 318 | freeNode = iter.next(); |
| 319 | } |
| 320 | |
| 321 | int count = 0; |
| 322 | Node* activeNode = iter.init(fList, Iter::kHead_IterStart); |
| 323 | while (activeNode) { |
| 324 | ++count; |
| 325 | SkASSERT(fList.isInList(activeNode)); |
| 326 | Block* block = activeNode->fBlock; |
| 327 | SkASSERT(block->fNodesInUse > 0 && (unsigned)block->fNodesInUse <= N); |
| 328 | |
| 329 | int activeCnt = 0; |
| 330 | int freeCnt = 0; |
| 331 | for (unsigned int i = 0; i < N; ++i) { |
| 332 | bool free = fFreeList.isInList(block->fNodes + i); |
| 333 | bool active = fList.isInList(block->fNodes + i); |
| 334 | SkASSERT(free != active); |
| 335 | activeCnt += active; |
| 336 | freeCnt += free; |
| 337 | } |
| 338 | SkASSERT(activeCnt == block->fNodesInUse); |
| 339 | activeNode = iter.next(); |
| 340 | } |
| 341 | SkASSERT(count == fCount || (0 == count && -1 == fCount)); |
| 342 | #endif |
| 343 | } |
| 344 | |
| 345 | NodeList fList; |
| 346 | NodeList fFreeList; |
| 347 | Block fFirstBlock; |
| 348 | int fCount; |
| 349 | |
| 350 | SkTLList(const SkTLList&) = delete; |
| 351 | SkTLList& operator=(const SkTLList&) = delete; |
| 352 | }; |
| 353 | |
| 354 | #endif |
| 355 | |