1 | /* |
2 | * Copyright 2019 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkVM_DEFINED |
9 | #define SkVM_DEFINED |
10 | |
11 | #include "include/core/SkBlendMode.h" |
12 | #include "include/core/SkColor.h" |
13 | #include "include/private/SkMacros.h" |
14 | #include "include/private/SkTArray.h" |
15 | #include "include/private/SkTHash.h" |
16 | #include "src/core/SkSpan.h" |
17 | #include "src/core/SkVM_fwd.h" |
18 | #include <vector> // std::vector |
19 | |
20 | class SkWStream; |
21 | |
22 | #if 0 |
23 | #define SKVM_LLVM |
24 | #endif |
25 | |
26 | namespace skvm { |
27 | |
28 | class Assembler { |
29 | public: |
30 | explicit Assembler(void* buf); |
31 | |
32 | size_t size() const; |
33 | |
34 | // Order matters... GP64, Xmm, Ymm values match 4-bit register encoding for each. |
35 | enum GP64 { |
36 | rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, |
37 | r8 , r9 , r10, r11, r12, r13, r14, r15, |
38 | }; |
39 | enum Xmm { |
40 | xmm0, xmm1, xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , xmm7 , |
41 | xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, |
42 | }; |
43 | enum Ymm { |
44 | ymm0, ymm1, ymm2 , ymm3 , ymm4 , ymm5 , ymm6 , ymm7 , |
45 | ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15, |
46 | }; |
47 | |
48 | // X and V values match 5-bit encoding for each (nothing tricky). |
49 | enum X { |
50 | x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , |
51 | x8 , x9 , x10, x11, x12, x13, x14, x15, |
52 | x16, x17, x18, x19, x20, x21, x22, x23, |
53 | x24, x25, x26, x27, x28, x29, x30, xzr, |
54 | }; |
55 | enum V { |
56 | v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , |
57 | v8 , v9 , v10, v11, v12, v13, v14, v15, |
58 | v16, v17, v18, v19, v20, v21, v22, v23, |
59 | v24, v25, v26, v27, v28, v29, v30, v31, |
60 | }; |
61 | |
62 | void bytes(const void*, int); |
63 | void byte(uint8_t); |
64 | void word(uint32_t); |
65 | |
66 | // x86-64 |
67 | |
68 | void align(int mod); |
69 | |
70 | void int3(); |
71 | void vzeroupper(); |
72 | void ret(); |
73 | |
74 | void add(GP64, int imm); |
75 | void sub(GP64, int imm); |
76 | |
77 | void movq(GP64 dst, GP64 src, int off); // dst = *(src+off) |
78 | |
79 | struct Label { |
80 | int offset = 0; |
81 | enum { NotYetSet, ARMDisp19, X86Disp32 } kind = NotYetSet; |
82 | SkSTArray<1, int> references; |
83 | }; |
84 | |
85 | struct YmmOrLabel { |
86 | Ymm ymm = ymm0; |
87 | Label* label = nullptr; |
88 | |
89 | /*implicit*/ YmmOrLabel(Ymm y) : ymm (y) { SkASSERT(!label); } |
90 | /*implicit*/ YmmOrLabel(Label* l) : label(l) { SkASSERT( label); } |
91 | }; |
92 | |
93 | // All dst = x op y. |
94 | using DstEqXOpY = void(Ymm dst, Ymm x, Ymm y); |
95 | DstEqXOpY vpandn, |
96 | vpmulld, |
97 | vpsubw, vpmullw, |
98 | vdivps, |
99 | vfmadd132ps, vfmadd213ps, vfmadd231ps, |
100 | vfmsub132ps, vfmsub213ps, vfmsub231ps, |
101 | vfnmadd132ps, vfnmadd213ps, vfnmadd231ps, |
102 | vpackusdw, vpackuswb, |
103 | vpcmpeqd, vpcmpgtd; |
104 | |
105 | using DstEqXOpYOrLabel = void(Ymm dst, Ymm x, YmmOrLabel y); |
106 | DstEqXOpYOrLabel vpand, vpor, vpxor, |
107 | vpaddd, vpsubd, |
108 | vaddps, vsubps, vmulps, vminps, vmaxps; |
109 | |
110 | // Floating point comparisons are all the same instruction with varying imm. |
111 | void vcmpps(Ymm dst, Ymm x, Ymm y, int imm); |
112 | void vcmpeqps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,0); } |
113 | void vcmpltps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,1); } |
114 | void vcmpleps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,2); } |
115 | void vcmpneqps(Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,4); } |
116 | |
117 | using DstEqXOpImm = void(Ymm dst, Ymm x, int imm); |
118 | DstEqXOpImm vpslld, vpsrld, vpsrad, |
119 | vpsrlw, |
120 | vpermq, |
121 | vroundps; |
122 | |
123 | enum { NEAREST, FLOOR, CEIL, TRUNC }; // vroundps immediates |
124 | |
125 | using DstEqOpX = void(Ymm dst, Ymm x); |
126 | DstEqOpX vmovdqa, vcvtdq2ps, vcvttps2dq, vcvtps2dq, vsqrtps; |
127 | |
128 | void vpblendvb(Ymm dst, Ymm x, Ymm y, Ymm z); |
129 | |
130 | Label here(); |
131 | void label(Label*); |
132 | |
133 | void jmp(Label*); |
134 | void je (Label*); |
135 | void jne(Label*); |
136 | void jl (Label*); |
137 | void jc (Label*); |
138 | void cmp(GP64, int imm); |
139 | |
140 | void vpshufb(Ymm dst, Ymm x, Label*); |
141 | void vptest(Ymm dst, Label*); |
142 | |
143 | void vbroadcastss(Ymm dst, Label*); |
144 | void vbroadcastss(Ymm dst, Xmm src); |
145 | void vbroadcastss(Ymm dst, GP64 ptr, int off); // dst = *(ptr+off) |
146 | |
147 | void vmovups (Ymm dst, int imm); // dst = *(sp + imm) |
148 | void vmovups (Ymm dst, GP64 ptr); // dst = *ptr, 256-bit |
149 | void vpmovzxwd(Ymm dst, GP64 ptr); // dst = *ptr, 128-bit, each uint16_t expanded to int |
150 | void vpmovzxbd(Ymm dst, GP64 ptr); // dst = *ptr, 64-bit, each uint8_t expanded to int |
151 | void vmovd (Xmm dst, GP64 ptr); // dst = *ptr, 32-bit |
152 | |
153 | enum Scale { ONE, TWO, FOUR, EIGHT }; |
154 | void vmovd(Xmm dst, Scale, GP64 index, GP64 base); // dst = *(base + scale*index), 32-bit |
155 | |
156 | void vmovups(int imm, Ymm src); // *(sp + imm) = src |
157 | void vmovups(GP64 ptr, Ymm src); // *ptr = src, 256-bit |
158 | void vmovups(GP64 ptr, Xmm src); // *ptr = src, 128-bit |
159 | void vmovq (GP64 ptr, Xmm src); // *ptr = src, 64-bit |
160 | void vmovd (GP64 ptr, Xmm src); // *ptr = src, 32-bit |
161 | |
162 | void movzbl(GP64 dst, GP64 ptr, int off); // dst = *(ptr+off), uint8_t -> int |
163 | void movb (GP64 ptr, GP64 src); // *ptr = src, 8-bit |
164 | |
165 | void vmovd_direct(GP64 dst, Xmm src); // dst = src, 32-bit |
166 | void vmovd_direct(Xmm dst, GP64 src); // dst = src, 32-bit |
167 | |
168 | void vpinsrw(Xmm dst, Xmm src, GP64 ptr, int imm); // dst = src; dst[imm] = *ptr, 16-bit |
169 | void vpinsrb(Xmm dst, Xmm src, GP64 ptr, int imm); // dst = src; dst[imm] = *ptr, 8-bit |
170 | |
171 | void vpextrw(GP64 ptr, Xmm src, int imm); // *dst = src[imm] , 16-bit |
172 | void vpextrb(GP64 ptr, Xmm src, int imm); // *dst = src[imm] , 8-bit |
173 | |
174 | // if (mask & 0x8000'0000) { |
175 | // dst = base[scale*ix]; |
176 | // } |
177 | // mask = 0; |
178 | void vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask); |
179 | |
180 | // aarch64 |
181 | |
182 | // d = op(n,m) |
183 | using DOpNM = void(V d, V n, V m); |
184 | DOpNM and16b, orr16b, eor16b, bic16b, bsl16b, |
185 | add4s, sub4s, mul4s, |
186 | cmeq4s, cmgt4s, |
187 | sub8h, mul8h, |
188 | fadd4s, fsub4s, fmul4s, fdiv4s, fmin4s, fmax4s, |
189 | fcmeq4s, fcmgt4s, fcmge4s, |
190 | tbl; |
191 | |
192 | // TODO: there are also float ==,<,<=,>,>= instructions with an immediate 0.0f, |
193 | // and the register comparison > and >= can also compare absolute values. Interesting. |
194 | |
195 | // d += n*m |
196 | void fmla4s(V d, V n, V m); |
197 | |
198 | // d -= n*m |
199 | void fmls4s(V d, V n, V m); |
200 | |
201 | // d = op(n,imm) |
202 | using DOpNImm = void(V d, V n, int imm); |
203 | DOpNImm sli4s, |
204 | shl4s, sshr4s, ushr4s, |
205 | ushr8h; |
206 | |
207 | // d = op(n) |
208 | using DOpN = void(V d, V n); |
209 | DOpN not16b, // d = ~n |
210 | fneg4s, // d = -n |
211 | scvtf4s, // int -> float |
212 | fcvtzs4s, // truncate float -> int |
213 | fcvtns4s, // round float -> int (nearest even) |
214 | xtns2h, // u32 -> u16 |
215 | xtnh2b, // u16 -> u8 |
216 | uxtlb2h, // u8 -> u16 |
217 | uxtlh2s, // u16 -> u32 |
218 | uminv4s; // dst[0] = min(n[0],n[1],n[2],n[3]), n as unsigned |
219 | |
220 | void brk (int imm16); |
221 | void ret (X); |
222 | void add (X d, X n, int imm12); |
223 | void sub (X d, X n, int imm12); |
224 | void subs(X d, X n, int imm12); // subtract setting condition flags |
225 | |
226 | // There's another encoding for unconditional branches that can jump further, |
227 | // but this one encoded as b.al is simple to implement and should be fine. |
228 | void b (Label* l) { this->b(Condition::al, l); } |
229 | void bne(Label* l) { this->b(Condition::ne, l); } |
230 | void blt(Label* l) { this->b(Condition::lt, l); } |
231 | |
232 | // "cmp ..." is just an assembler mnemonic for "subs xzr, ..."! |
233 | void cmp(X n, int imm12) { this->subs(xzr, n, imm12); } |
234 | |
235 | // Compare and branch if zero/non-zero, as if |
236 | // cmp(t,0) |
237 | // beq/bne(l) |
238 | // but without setting condition flags. |
239 | void cbz (X t, Label* l); |
240 | void cbnz(X t, Label* l); |
241 | |
242 | void ldrq(V dst, Label*); // 128-bit PC-relative load |
243 | |
244 | void ldrq(V dst, X src); // 128-bit dst = *src |
245 | void ldrs(V dst, X src); // 32-bit dst = *src |
246 | void ldrb(V dst, X src); // 8-bit dst = *src |
247 | |
248 | void strq(V src, X dst); // 128-bit *dst = src |
249 | void strs(V src, X dst); // 32-bit *dst = src |
250 | void strb(V src, X dst); // 8-bit *dst = src |
251 | |
252 | void fmovs(X dst, V src); // dst = 32-bit src[0] |
253 | |
254 | private: |
255 | // dst = op(dst, imm) |
256 | void op(int opcode, int opcode_ext, GP64 dst, int imm); |
257 | |
258 | |
259 | // dst = op(x,y) or op(x) |
260 | void op(int prefix, int map, int opcode, Ymm dst, Ymm x, Ymm y, bool W=false); |
261 | void op(int prefix, int map, int opcode, Ymm dst, Ymm x, bool W=false) { |
262 | // Two arguments ops seem to pass them in dst and y, forcing x to 0 so VEX.vvvv == 1111. |
263 | this->op(prefix, map, opcode, dst,(Ymm)0,x, W); |
264 | } |
265 | |
266 | // dst = op(x,imm) |
267 | void op(int prefix, int map, int opcode, int opcode_ext, Ymm dst, Ymm x, int imm); |
268 | |
269 | // dst = op(x,label) or op(label) |
270 | void op(int prefix, int map, int opcode, Ymm dst, Ymm x, Label* l); |
271 | void op(int prefix, int map, int opcode, Ymm dst, Ymm x, YmmOrLabel); |
272 | |
273 | // *ptr = ymm or ymm = *ptr, depending on opcode. |
274 | void load_store(int prefix, int map, int opcode, Ymm ymm, GP64 ptr); |
275 | // *(sp+off) = ymm or ymm = *(sp+off), depending on opcode. |
276 | void stack_load_store(int prefix, int map, int opcode, Ymm ymm, int off); |
277 | |
278 | // Opcode for 3-arguments ops is split between hi and lo: |
279 | // [11 bits hi] [5 bits m] [6 bits lo] [5 bits n] [5 bits d] |
280 | void op(uint32_t hi, V m, uint32_t lo, V n, V d); |
281 | |
282 | // 2-argument ops, with or without an immediate. |
283 | void op(uint32_t op22, int imm, V n, V d); |
284 | void op(uint32_t op22, V n, V d) { this->op(op22,0,n,d); } |
285 | void op(uint32_t op22, X x, V v) { this->op(op22,0,(V)x,v); } |
286 | |
287 | // Order matters... value is 4-bit encoding for condition code. |
288 | enum class Condition { eq,ne,cs,cc,mi,pl,vs,vc,hi,ls,ge,lt,gt,le,al }; |
289 | void b(Condition, Label*); |
290 | |
291 | void jump(uint8_t condition, Label*); |
292 | |
293 | int disp19(Label*); |
294 | int disp32(Label*); |
295 | |
296 | uint8_t* fCode; |
297 | uint8_t* fCurr; |
298 | size_t fSize; |
299 | }; |
300 | |
301 | // Order matters a little: Ops <=store32 are treated as having side effects. |
302 | #define SKVM_OPS(M) \ |
303 | M(assert_true) \ |
304 | M(store8) M(store16) M(store32) \ |
305 | M(index) \ |
306 | M(load8) M(load16) M(load32) \ |
307 | M(gather8) M(gather16) M(gather32) \ |
308 | M(uniform8) M(uniform16) M(uniform32) \ |
309 | M(splat) \ |
310 | M(add_f32) M(add_i32) M(add_i16x2) \ |
311 | M(sub_f32) M(sub_i32) M(sub_i16x2) \ |
312 | M(mul_f32) M(mul_i32) M(mul_i16x2) \ |
313 | M(div_f32) \ |
314 | M(min_f32) \ |
315 | M(max_f32) \ |
316 | M(fma_f32) M(fms_f32) M(fnma_f32) \ |
317 | M(sqrt_f32) \ |
318 | M(shl_i32) M(shl_i16x2) \ |
319 | M(shr_i32) M(shr_i16x2) \ |
320 | M(sra_i32) M(sra_i16x2) \ |
321 | M(add_f32_imm) \ |
322 | M(sub_f32_imm) \ |
323 | M(mul_f32_imm) \ |
324 | M(min_f32_imm) \ |
325 | M(max_f32_imm) \ |
326 | M(floor) M(trunc) M(round) M(to_f32) \ |
327 | M( eq_f32) M( eq_i32) M( eq_i16x2) \ |
328 | M(neq_f32) M(neq_i32) M(neq_i16x2) \ |
329 | M( gt_f32) M( gt_i32) M( gt_i16x2) \ |
330 | M(gte_f32) M(gte_i32) M(gte_i16x2) \ |
331 | M(bit_and) \ |
332 | M(bit_or) \ |
333 | M(bit_xor) \ |
334 | M(bit_clear) \ |
335 | M(bit_and_imm) \ |
336 | M(bit_or_imm) \ |
337 | M(bit_xor_imm) \ |
338 | M(select) M(pack) \ |
339 | // End of SKVM_OPS |
340 | |
341 | enum class Op : int { |
342 | #define M(op) op, |
343 | SKVM_OPS(M) |
344 | #undef M |
345 | }; |
346 | |
347 | static inline bool has_side_effect(Op op) { |
348 | return op <= Op::store32; |
349 | } |
350 | static inline bool is_always_varying(Op op) { |
351 | return op <= Op::gather32 && op != Op::assert_true; |
352 | } |
353 | |
354 | using Val = int; |
355 | // We reserve an impossibe Val ID as a sentinel |
356 | // NA meaning none, n/a, null, nil, etc. |
357 | static const Val NA = -1; |
358 | |
359 | struct Arg { int ix; }; |
360 | |
361 | struct I32 { |
362 | Builder* builder = nullptr; |
363 | Val id = NA; |
364 | explicit operator bool() const { return id != NA; } |
365 | Builder* operator->() const { return builder; } |
366 | }; |
367 | |
368 | struct F32 { |
369 | Builder* builder = nullptr; |
370 | Val id = NA; |
371 | explicit operator bool() const { return id != NA; } |
372 | Builder* operator->() const { return builder; } |
373 | }; |
374 | |
375 | // Some operations make sense with immediate arguments, |
376 | // so we use I32a and F32a to receive them transparently. |
377 | // |
378 | // We omit overloads that may indicate a bug or performance issue. |
379 | // In general it does not make sense to pass immediates to unary operations, |
380 | // and even sometimes not for binary operations, e.g. |
381 | // |
382 | // div(x,y) -- normal every day divide |
383 | // div(3.0f,y) -- yep, makes sense |
384 | // div(x,3.0f) -- omitted as a reminder you probably want mul(x, 1/3.0f). |
385 | // |
386 | // You can of course always splat() to override these opinions. |
387 | struct I32a { |
388 | I32a(I32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {} |
389 | I32a(int v) : imm(v) {} |
390 | |
391 | SkDEBUGCODE(Builder* builder = nullptr;) |
392 | Val id = NA; |
393 | int imm = 0; |
394 | }; |
395 | |
396 | struct F32a { |
397 | F32a(F32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {} |
398 | F32a(float v) : imm(v) {} |
399 | |
400 | SkDEBUGCODE(Builder* builder = nullptr;) |
401 | Val id = NA; |
402 | float imm = 0; |
403 | }; |
404 | |
405 | struct Color { |
406 | skvm::F32 r,g,b,a; |
407 | explicit operator bool() const { return r && g && b && a; } |
408 | Builder* operator->() const { return a.operator->(); } |
409 | }; |
410 | |
411 | struct HSLA { |
412 | skvm::F32 h,s,l,a; |
413 | explicit operator bool() const { return h && s && l && a; } |
414 | Builder* operator->() const { return a.operator->(); } |
415 | }; |
416 | |
417 | struct Uniform { |
418 | Arg ptr; |
419 | int offset; |
420 | }; |
421 | struct Uniforms { |
422 | Arg base; |
423 | std::vector<int> buf; |
424 | |
425 | explicit Uniforms(int init) : base(Arg{0}), buf(init) {} |
426 | |
427 | Uniform push(int val) { |
428 | buf.push_back(val); |
429 | return {base, (int)( sizeof(int)*(buf.size() - 1) )}; |
430 | } |
431 | |
432 | Uniform pushF(float val) { |
433 | int bits; |
434 | memcpy(&bits, &val, sizeof(int)); |
435 | return this->push(bits); |
436 | } |
437 | |
438 | Uniform pushPtr(const void* ptr) { |
439 | // Jam the pointer into 1 or 2 ints. |
440 | int ints[sizeof(ptr) / sizeof(int)]; |
441 | memcpy(ints, &ptr, sizeof(ptr)); |
442 | for (int bits : ints) { |
443 | buf.push_back(bits); |
444 | } |
445 | return {base, (int)( sizeof(int)*(buf.size() - SK_ARRAY_COUNT(ints)) )}; |
446 | } |
447 | }; |
448 | |
449 | SK_BEGIN_REQUIRE_DENSE |
450 | struct Instruction { |
451 | Op op; // v* = op(x,y,z,imm), where * == index of this Instruction. |
452 | Val x,y,z; // Enough arguments for mad(). |
453 | int immy,immz; // Immediate bit pattern, shift count, argument index, etc. |
454 | }; |
455 | SK_END_REQUIRE_DENSE |
456 | |
457 | bool operator==(const Instruction&, const Instruction&); |
458 | struct InstructionHash { |
459 | uint32_t operator()(const Instruction&, uint32_t seed=0) const; |
460 | }; |
461 | |
462 | struct OptimizedInstruction { |
463 | Op op; |
464 | Val x,y,z; |
465 | int immy,immz; |
466 | |
467 | Val death; |
468 | bool can_hoist; |
469 | bool used_in_loop; |
470 | }; |
471 | |
472 | class Builder { |
473 | public: |
474 | |
475 | Program done(const char* debug_name = nullptr) const; |
476 | |
477 | // Mostly for debugging, tests, etc. |
478 | std::vector<Instruction> program() const { return fProgram; } |
479 | std::vector<OptimizedInstruction> optimize(bool for_jit=false) const; |
480 | |
481 | // Declare an argument with given stride (use stride=0 for uniforms). |
482 | // TODO: different types for varying and uniforms? |
483 | Arg arg(int stride); |
484 | |
485 | // Convenience arg() wrappers for most common strides, sizeof(T) and 0. |
486 | template <typename T> |
487 | Arg varying() { return this->arg(sizeof(T)); } |
488 | Arg uniform() { return this->arg(0); } |
489 | |
490 | // TODO: allow uniform (i.e. Arg) offsets to store* and load*? |
491 | // TODO: sign extension (signed types) for <32-bit loads? |
492 | // TODO: unsigned integer operations where relevant (just comparisons?)? |
493 | |
494 | // Assert cond is true, printing debug when not. |
495 | void assert_true(I32 cond, I32 debug); |
496 | void assert_true(I32 cond, F32 debug) { assert_true(cond, bit_cast(debug)); } |
497 | void assert_true(I32 cond) { assert_true(cond, cond); } |
498 | |
499 | // Store {8,16,32}-bit varying. |
500 | void store8 (Arg ptr, I32 val); |
501 | void store16(Arg ptr, I32 val); |
502 | void store32(Arg ptr, I32 val); |
503 | void storeF (Arg ptr, F32 val) { store32(ptr, bit_cast(val)); } |
504 | |
505 | // Returns varying {n, n-1, n-2, ..., 1}, where n is the argument to Program::eval(). |
506 | I32 index(); |
507 | |
508 | // Load u8,u16,i32 varying. |
509 | I32 load8 (Arg ptr); |
510 | I32 load16(Arg ptr); |
511 | I32 load32(Arg ptr); |
512 | F32 loadF (Arg ptr) { return bit_cast(load32(ptr)); } |
513 | |
514 | // Load u8,u16,i32 uniform with byte-count offset. |
515 | I32 uniform8 (Arg ptr, int offset); |
516 | I32 uniform16(Arg ptr, int offset); |
517 | I32 uniform32(Arg ptr, int offset); |
518 | F32 uniformF (Arg ptr, int offset) { return this->bit_cast(this->uniform32(ptr,offset)); } |
519 | |
520 | // Load this color as a uniform, premultiplied and converted to dst SkColorSpace. |
521 | Color uniformPremul(SkColor4f, SkColorSpace* src, |
522 | Uniforms*, SkColorSpace* dst); |
523 | |
524 | // Gather u8,u16,i32 with varying element-count index from *(ptr + byte-count offset). |
525 | I32 gather8 (Arg ptr, int offset, I32 index); |
526 | I32 gather16(Arg ptr, int offset, I32 index); |
527 | I32 gather32(Arg ptr, int offset, I32 index); |
528 | F32 gatherF (Arg ptr, int offset, I32 index) { |
529 | return bit_cast(gather32(ptr, offset, index)); |
530 | } |
531 | |
532 | // Convenience methods for working with skvm::Uniform(s). |
533 | I32 uniform8 (Uniform u) { return this->uniform8 (u.ptr, u.offset); } |
534 | I32 uniform16(Uniform u) { return this->uniform16(u.ptr, u.offset); } |
535 | I32 uniform32(Uniform u) { return this->uniform32(u.ptr, u.offset); } |
536 | F32 uniformF (Uniform u) { return this->uniformF (u.ptr, u.offset); } |
537 | I32 gather8 (Uniform u, I32 index) { return this->gather8 (u.ptr, u.offset, index); } |
538 | I32 gather16 (Uniform u, I32 index) { return this->gather16 (u.ptr, u.offset, index); } |
539 | I32 gather32 (Uniform u, I32 index) { return this->gather32 (u.ptr, u.offset, index); } |
540 | F32 gatherF (Uniform u, I32 index) { return this->gatherF (u.ptr, u.offset, index); } |
541 | |
542 | // Load an immediate constant. |
543 | I32 splat(int n); |
544 | I32 splat(unsigned u) { return splat((int)u); } |
545 | F32 splat(float f); |
546 | |
547 | // float math, comparisons, etc. |
548 | F32 add(F32, F32); F32 add(F32a x, F32a y) { return add(_(x), _(y)); } |
549 | F32 sub(F32, F32); F32 sub(F32a x, F32a y) { return sub(_(x), _(y)); } |
550 | F32 mul(F32, F32); F32 mul(F32a x, F32a y) { return mul(_(x), _(y)); } |
551 | F32 div(F32, F32); F32 div(F32a x, F32 y) { return div(_(x), y ); } |
552 | F32 min(F32, F32); F32 min(F32a x, F32a y) { return min(_(x), _(y)); } |
553 | F32 max(F32, F32); F32 max(F32a x, F32a y) { return max(_(x), _(y)); } |
554 | |
555 | F32 mad(F32 x, F32 y, F32 z) { return add(mul(x,y), z); } |
556 | F32 mad(F32a x, F32a y, F32a z) { return mad(_(x), _(y), _(z)); } |
557 | |
558 | F32 sqrt(F32); |
559 | F32 approx_log2(F32); |
560 | F32 approx_pow2(F32); |
561 | F32 approx_log (F32 x) { return mul(0.69314718f, approx_log2(x)); } |
562 | F32 approx_exp (F32 x) { return approx_pow2(mul(x, 1.4426950408889634074f)); } |
563 | |
564 | F32 approx_powf(F32 base, F32 exp); |
565 | F32 approx_powf(F32a base, F32a exp) { return approx_powf(_(base), _(exp)); } |
566 | |
567 | F32 approx_sin(F32 radians); |
568 | F32 approx_cos(F32 radians) { return approx_sin(add(radians, SK_ScalarPI/2)); } |
569 | F32 approx_tan(F32 radians); |
570 | |
571 | F32 lerp(F32 lo, F32 hi, F32 t) { return mad(sub(hi, lo), t, lo); } |
572 | F32 lerp(F32a lo, F32a hi, F32a t) { return lerp(_(lo), _(hi), _(t)); } |
573 | |
574 | F32 clamp(F32 x, F32 lo, F32 hi) { return max(lo, min(x, hi)); } |
575 | F32 clamp(F32a x, F32a lo, F32a hi) { return clamp(_(x), _(lo), _(hi)); } |
576 | F32 clamp01(F32 x) { return clamp(x, 0.0f, 1.0f); } |
577 | |
578 | F32 abs(F32 x) { return bit_cast(bit_and(bit_cast(x), 0x7fff'ffff)); } |
579 | F32 fract(F32 x) { return sub(x, floor(x)); } |
580 | F32 floor(F32); |
581 | I32 is_NaN(F32 x) { return neq(x,x); } |
582 | |
583 | I32 trunc(F32 x); |
584 | I32 round(F32 x); // Round to int using current rounding mode (as if lrintf()). |
585 | I32 bit_cast(F32 x) { return {x.builder, x.id}; } |
586 | |
587 | F32 norm(F32 x, F32 y) { |
588 | return sqrt(add(mul(x,x), |
589 | mul(y,y))); |
590 | } |
591 | F32 norm(F32a x, F32a y) { return norm(_(x), _(y)); } |
592 | |
593 | I32 eq(F32, F32); I32 eq(F32a x, F32a y) { return eq(_(x), _(y)); } |
594 | I32 neq(F32, F32); I32 neq(F32a x, F32a y) { return neq(_(x), _(y)); } |
595 | I32 lt (F32, F32); I32 lt (F32a x, F32a y) { return lt (_(x), _(y)); } |
596 | I32 lte(F32, F32); I32 lte(F32a x, F32a y) { return lte(_(x), _(y)); } |
597 | I32 gt (F32, F32); I32 gt (F32a x, F32a y) { return gt (_(x), _(y)); } |
598 | I32 gte(F32, F32); I32 gte(F32a x, F32a y) { return gte(_(x), _(y)); } |
599 | |
600 | // int math, comparisons, etc. |
601 | I32 add(I32, I32); I32 add(I32a x, I32a y) { return add(_(x), _(y)); } |
602 | I32 sub(I32, I32); I32 sub(I32a x, I32a y) { return sub(_(x), _(y)); } |
603 | I32 mul(I32, I32); I32 mul(I32a x, I32a y) { return mul(_(x), _(y)); } |
604 | |
605 | I32 shl(I32 x, int bits); |
606 | I32 shr(I32 x, int bits); |
607 | I32 sra(I32 x, int bits); |
608 | |
609 | I32 eq (I32 x, I32 y); I32 eq(I32a x, I32a y) { return eq(_(x), _(y)); } |
610 | I32 neq(I32 x, I32 y); I32 neq(I32a x, I32a y) { return neq(_(x), _(y)); } |
611 | I32 lt (I32 x, I32 y); I32 lt (I32a x, I32a y) { return lt (_(x), _(y)); } |
612 | I32 lte(I32 x, I32 y); I32 lte(I32a x, I32a y) { return lte(_(x), _(y)); } |
613 | I32 gt (I32 x, I32 y); I32 gt (I32a x, I32a y) { return gt (_(x), _(y)); } |
614 | I32 gte(I32 x, I32 y); I32 gte(I32a x, I32a y) { return gte(_(x), _(y)); } |
615 | |
616 | F32 to_f32(I32 x); |
617 | F32 bit_cast(I32 x) { return {x.builder, x.id}; } |
618 | |
619 | // Treat each 32-bit lane as a pair of 16-bit ints. |
620 | I32 add_16x2(I32, I32); I32 add_16x2(I32a x, I32a y) { return add_16x2(_(x), _(y)); } |
621 | I32 sub_16x2(I32, I32); I32 sub_16x2(I32a x, I32a y) { return sub_16x2(_(x), _(y)); } |
622 | I32 mul_16x2(I32, I32); I32 mul_16x2(I32a x, I32a y) { return mul_16x2(_(x), _(y)); } |
623 | |
624 | I32 shl_16x2(I32 x, int bits); |
625 | I32 shr_16x2(I32 x, int bits); |
626 | I32 sra_16x2(I32 x, int bits); |
627 | |
628 | I32 eq_16x2(I32, I32); I32 eq_16x2(I32a x, I32a y) { return eq_16x2(_(x), _(y)); } |
629 | I32 neq_16x2(I32, I32); I32 neq_16x2(I32a x, I32a y) { return neq_16x2(_(x), _(y)); } |
630 | I32 lt_16x2(I32, I32); I32 lt_16x2(I32a x, I32a y) { return lt_16x2(_(x), _(y)); } |
631 | I32 lte_16x2(I32, I32); I32 lte_16x2(I32a x, I32a y) { return lte_16x2(_(x), _(y)); } |
632 | I32 gt_16x2(I32, I32); I32 gt_16x2(I32a x, I32a y) { return gt_16x2(_(x), _(y)); } |
633 | I32 gte_16x2(I32, I32); I32 gte_16x2(I32a x, I32a y) { return gte_16x2(_(x), _(y)); } |
634 | |
635 | // Bitwise operations. |
636 | I32 bit_and (I32, I32); I32 bit_and (I32a x, I32a y) { return bit_and (_(x), _(y)); } |
637 | I32 bit_or (I32, I32); I32 bit_or (I32a x, I32a y) { return bit_or (_(x), _(y)); } |
638 | I32 bit_xor (I32, I32); I32 bit_xor (I32a x, I32a y) { return bit_xor (_(x), _(y)); } |
639 | I32 bit_clear(I32, I32); I32 bit_clear(I32a x, I32a y) { return bit_clear(_(x), _(y)); } |
640 | |
641 | I32 min(I32 x, I32 y) { return select(lte(x,y), x, y); } |
642 | I32 max(I32 x, I32 y) { return select(gte(x,y), x, y); } |
643 | |
644 | I32 min(I32a x, I32a y) { return min(_(x), _(y)); } |
645 | I32 max(I32a x, I32a y) { return max(_(x), _(y)); } |
646 | |
647 | I32 select(I32 cond, I32 t, I32 f); // cond ? t : f |
648 | F32 select(I32 cond, F32 t, F32 f) { |
649 | return bit_cast(select(cond, bit_cast(t) |
650 | , bit_cast(f))); |
651 | } |
652 | |
653 | I32 select(I32a cond, I32a t, I32a f) { return select(_(cond), _(t), _(f)); } |
654 | F32 select(I32a cond, F32a t, F32a f) { return select(_(cond), _(t), _(f)); } |
655 | |
656 | I32 (I32 x, int bits, I32 z); // (x>>bits) & z |
657 | I32 pack (I32 x, I32 y, int bits); // x | (y << bits), assuming (x & (y << bits)) == 0 |
658 | |
659 | I32 (I32a x, int bits, I32a z) { return extract(_(x), bits, _(z)); } |
660 | I32 pack (I32a x, I32a y, int bits) { return pack (_(x), _(y), bits); } |
661 | |
662 | |
663 | // Common idioms used in several places, worth centralizing for consistency. |
664 | F32 from_unorm(int bits, I32); // E.g. from_unorm(8, x) -> x * (1/255.0f) |
665 | I32 to_unorm(int bits, F32); // E.g. to_unorm(8, x) -> round(x * 255) |
666 | |
667 | Color unpack_1010102(I32 rgba); |
668 | Color unpack_8888 (I32 rgba); |
669 | Color unpack_565 (I32 bgr ); // bottom 16 bits |
670 | |
671 | void premul(F32* r, F32* g, F32* b, F32 a); |
672 | void unpremul(F32* r, F32* g, F32* b, F32 a); |
673 | |
674 | Color premul(Color c) { this->premul(&c.r, &c.g, &c.b, c.a); return c; } |
675 | Color unpremul(Color c) { this->unpremul(&c.r, &c.g, &c.b, c.a); return c; } |
676 | Color lerp(Color lo, Color hi, F32 t); |
677 | Color blend(SkBlendMode, Color src, Color dst); |
678 | |
679 | HSLA to_hsla(Color); |
680 | Color to_rgba(HSLA); |
681 | |
682 | void dump(SkWStream* = nullptr) const; |
683 | void dot (SkWStream* = nullptr, bool for_jit=false) const; |
684 | |
685 | uint64_t hash() const; |
686 | |
687 | Val push(Instruction); |
688 | private: |
689 | Val push(Op op, Val x, Val y=NA, Val z=NA, int immy=0, int immz=0) { |
690 | return this->push(Instruction{op, x,y,z, immy,immz}); |
691 | } |
692 | |
693 | I32 _(I32a x) { |
694 | if (x.id != NA) { |
695 | SkASSERT(x.builder == this); |
696 | return {this, x.id}; |
697 | } |
698 | return splat(x.imm); |
699 | } |
700 | |
701 | F32 _(F32a x) { |
702 | if (x.id != NA) { |
703 | SkASSERT(x.builder == this); |
704 | return {this, x.id}; |
705 | } |
706 | return splat(x.imm); |
707 | } |
708 | |
709 | bool allImm() const; |
710 | |
711 | template <typename T, typename... Rest> |
712 | bool allImm(Val, T* imm, Rest...) const; |
713 | |
714 | template <typename T> |
715 | bool isImm(Val id, T want) const { |
716 | T imm = 0; |
717 | return this->allImm(id, &imm) && imm == want; |
718 | } |
719 | |
720 | SkTHashMap<Instruction, Val, InstructionHash> fIndex; |
721 | std::vector<Instruction> fProgram; |
722 | std::vector<int> fStrides; |
723 | }; |
724 | |
725 | // Optimization passes and data structures normally used by Builder::optimize(), |
726 | // extracted here so they can be unit tested. |
727 | std::vector<Instruction> specialize_for_jit (std::vector<Instruction>); |
728 | std::vector<Instruction> eliminate_dead_code(std::vector<Instruction>); |
729 | std::vector<Instruction> schedule (std::vector<Instruction>); |
730 | std::vector<OptimizedInstruction> finalize (std::vector<Instruction>); |
731 | |
732 | class Usage { |
733 | public: |
734 | Usage(const std::vector<Instruction>&); |
735 | |
736 | // Return a sorted span of Vals which use result of Instruction id. |
737 | SkSpan<const Val> operator[](Val id) const; |
738 | |
739 | private: |
740 | std::vector<int> fIndex; |
741 | std::vector<Val> fTable; |
742 | }; |
743 | |
744 | using Reg = int; |
745 | |
746 | // d = op(x, y/imm, z/imm) |
747 | struct InterpreterInstruction { |
748 | Op op; |
749 | Reg d,x; |
750 | union { Reg y; int immy; }; |
751 | union { Reg z; int immz; }; |
752 | }; |
753 | |
754 | class Program { |
755 | public: |
756 | Program(const std::vector<OptimizedInstruction>& interpreter, |
757 | const std::vector<int>& strides); |
758 | |
759 | Program(const std::vector<OptimizedInstruction>& interpreter, |
760 | const std::vector<OptimizedInstruction>& jit, |
761 | const std::vector<int>& strides, |
762 | const char* debug_name); |
763 | |
764 | Program(); |
765 | ~Program(); |
766 | |
767 | Program(Program&&); |
768 | Program& operator=(Program&&); |
769 | |
770 | Program(const Program&) = delete; |
771 | Program& operator=(const Program&) = delete; |
772 | |
773 | void eval(int n, void* args[]) const; |
774 | |
775 | template <typename... T> |
776 | void eval(int n, T*... arg) const { |
777 | SkASSERT(sizeof...(arg) == this->nargs()); |
778 | // This nullptr isn't important except that it makes args[] non-empty if you pass none. |
779 | void* args[] = { (void*)arg..., nullptr }; |
780 | this->eval(n, args); |
781 | } |
782 | |
783 | std::vector<InterpreterInstruction> instructions() const; |
784 | int nargs() const; |
785 | int nregs() const; |
786 | int loop () const; |
787 | bool empty() const; |
788 | |
789 | bool hasJIT() const; // Has this Program been JITted? |
790 | void dropJIT(); // If hasJIT(), drop it, forcing interpreter fallback. |
791 | |
792 | void dump(SkWStream* = nullptr) const; |
793 | |
794 | private: |
795 | void setupInterpreter(const std::vector<OptimizedInstruction>&); |
796 | void setupJIT (const std::vector<OptimizedInstruction>&, const char* debug_name); |
797 | void setupLLVM (const std::vector<OptimizedInstruction>&, const char* debug_name); |
798 | |
799 | enum class JITMode { |
800 | // Fastest but most fragile strategy: values in registers, loop-invariant work hoisted. |
801 | Register, |
802 | // Usually next best: values in registers, loop-invariant work not hoisted. |
803 | RegisterNoHoist, |
804 | // Backup plan: values on the stack, loop-invariant work hoisted. |
805 | Stack, |
806 | }; |
807 | bool jit(const std::vector<OptimizedInstruction>&, JITMode, Assembler*) const; |
808 | |
809 | void waitForLLVM() const; |
810 | |
811 | struct Impl; |
812 | std::unique_ptr<Impl> fImpl; |
813 | }; |
814 | |
815 | // TODO: control flow |
816 | // TODO: 64-bit values? |
817 | |
818 | static inline I32 operator+(I32 x, I32a y) { return x->add(x,y); } |
819 | static inline I32 operator+(int x, I32 y) { return y->add(x,y); } |
820 | |
821 | static inline I32 operator-(I32 x, I32a y) { return x->sub(x,y); } |
822 | static inline I32 operator-(int x, I32 y) { return y->sub(x,y); } |
823 | |
824 | static inline I32 operator*(I32 x, I32a y) { return x->mul(x,y); } |
825 | static inline I32 operator*(int x, I32 y) { return y->mul(x,y); } |
826 | |
827 | static inline I32 min(I32 x, I32a y) { return x->min(x,y); } |
828 | static inline I32 min(int x, I32 y) { return y->min(x,y); } |
829 | |
830 | static inline I32 max(I32 x, I32a y) { return x->max(x,y); } |
831 | static inline I32 max(int x, I32 y) { return y->max(x,y); } |
832 | |
833 | static inline I32 operator==(I32 x, I32a y) { return x->eq(x,y); } |
834 | static inline I32 operator==(int x, I32 y) { return y->eq(x,y); } |
835 | |
836 | static inline I32 operator!=(I32 x, I32a y) { return x->neq(x,y); } |
837 | static inline I32 operator!=(int x, I32 y) { return y->neq(x,y); } |
838 | |
839 | static inline I32 operator< (I32 x, I32a y) { return x->lt(x,y); } |
840 | static inline I32 operator< (int x, I32 y) { return y->lt(x,y); } |
841 | |
842 | static inline I32 operator<=(I32 x, I32a y) { return x->lte(x,y); } |
843 | static inline I32 operator<=(int x, I32 y) { return y->lte(x,y); } |
844 | |
845 | static inline I32 operator> (I32 x, I32a y) { return x->gt(x,y); } |
846 | static inline I32 operator> (int x, I32 y) { return y->gt(x,y); } |
847 | |
848 | static inline I32 operator>=(I32 x, I32a y) { return x->gte(x,y); } |
849 | static inline I32 operator>=(int x, I32 y) { return y->gte(x,y); } |
850 | |
851 | |
852 | static inline F32 operator+(F32 x, F32a y) { return x->add(x,y); } |
853 | static inline F32 operator+(float x, F32 y) { return y->add(x,y); } |
854 | |
855 | static inline F32 operator-(F32 x, F32a y) { return x->sub(x,y); } |
856 | static inline F32 operator-(float x, F32 y) { return y->sub(x,y); } |
857 | |
858 | static inline F32 operator*(F32 x, F32a y) { return x->mul(x,y); } |
859 | static inline F32 operator*(float x, F32 y) { return y->mul(x,y); } |
860 | |
861 | static inline F32 operator/(F32 x, F32 y) { return x->div(x,y); } |
862 | static inline F32 operator/(float x, F32 y) { return y->div(x,y); } |
863 | |
864 | static inline F32 min(F32 x, F32a y) { return x->min(x,y); } |
865 | static inline F32 min(float x, F32 y) { return y->min(x,y); } |
866 | |
867 | static inline F32 max(F32 x, F32a y) { return x->max(x,y); } |
868 | static inline F32 max(float x, F32 y) { return y->max(x,y); } |
869 | |
870 | static inline I32 operator==(F32 x, F32a y) { return x->eq(x,y); } |
871 | static inline I32 operator==(float x, F32 y) { return y->eq(x,y); } |
872 | |
873 | static inline I32 operator!=(F32 x, F32a y) { return x->neq(x,y); } |
874 | static inline I32 operator!=(float x, F32 y) { return y->neq(x,y); } |
875 | |
876 | static inline I32 operator< (F32 x, F32a y) { return x->lt(x,y); } |
877 | static inline I32 operator< (float x, F32 y) { return y->lt(x,y); } |
878 | |
879 | static inline I32 operator<=(F32 x, F32a y) { return x->lte(x,y); } |
880 | static inline I32 operator<=(float x, F32 y) { return y->lte(x,y); } |
881 | |
882 | static inline I32 operator> (F32 x, F32a y) { return x->gt(x,y); } |
883 | static inline I32 operator> (float x, F32 y) { return y->gt(x,y); } |
884 | |
885 | static inline I32 operator>=(F32 x, F32a y) { return x->gte(x,y); } |
886 | static inline I32 operator>=(float x, F32 y) { return y->gte(x,y); } |
887 | |
888 | |
889 | static inline I32& operator+=(I32& x, I32a y) { return (x = x + y); } |
890 | static inline I32& operator-=(I32& x, I32a y) { return (x = x - y); } |
891 | static inline I32& operator*=(I32& x, I32a y) { return (x = x * y); } |
892 | |
893 | static inline F32& operator+=(F32& x, F32a y) { return (x = x + y); } |
894 | static inline F32& operator-=(F32& x, F32a y) { return (x = x - y); } |
895 | static inline F32& operator*=(F32& x, F32a y) { return (x = x * y); } |
896 | |
897 | static inline I32 operator-(I32 x) { return 0-x; } |
898 | static inline F32 operator-(F32 x) { return 0-x; } |
899 | |
900 | static inline void assert_true(I32 cond, I32 debug) { cond->assert_true(cond,debug); } |
901 | static inline void assert_true(I32 cond, F32 debug) { cond->assert_true(cond,debug); } |
902 | static inline void assert_true(I32 cond) { cond->assert_true(cond); } |
903 | |
904 | static inline void store8 (Arg ptr, I32 val) { val->store8 (ptr, val); } |
905 | static inline void store16(Arg ptr, I32 val) { val->store16(ptr, val); } |
906 | static inline void store32(Arg ptr, I32 val) { val->store32(ptr, val); } |
907 | static inline void storeF (Arg ptr, F32 val) { val->storeF (ptr, val); } |
908 | |
909 | static inline I32 gather8 (Arg ptr, int off, I32 ix) { return ix->gather8 (ptr, off, ix); } |
910 | static inline I32 gather16(Arg ptr, int off, I32 ix) { return ix->gather16(ptr, off, ix); } |
911 | static inline I32 gather32(Arg ptr, int off, I32 ix) { return ix->gather32(ptr, off, ix); } |
912 | static inline F32 gatherF (Arg ptr, int off, I32 ix) { return ix->gatherF (ptr, off, ix); } |
913 | |
914 | static inline I32 gather8 (Uniform u, I32 ix) { return ix->gather8 (u, ix); } |
915 | static inline I32 gather16(Uniform u, I32 ix) { return ix->gather16(u, ix); } |
916 | static inline I32 gather32(Uniform u, I32 ix) { return ix->gather32(u, ix); } |
917 | static inline F32 gatherF (Uniform u, I32 ix) { return ix->gatherF (u, ix); } |
918 | |
919 | static inline F32 sqrt(F32 x) { return x-> sqrt(x); } |
920 | static inline F32 approx_log2(F32 x) { return x->approx_log2(x); } |
921 | static inline F32 approx_pow2(F32 x) { return x->approx_pow2(x); } |
922 | static inline F32 approx_log (F32 x) { return x->approx_log (x); } |
923 | static inline F32 approx_exp (F32 x) { return x->approx_exp (x); } |
924 | |
925 | static inline F32 approx_powf(F32 base, F32a exp) { return base->approx_powf(base, exp); } |
926 | static inline F32 approx_powf(float base, F32 exp) { return exp->approx_powf(base, exp); } |
927 | |
928 | static inline F32 approx_sin(F32 radians) { return radians->approx_sin(radians); } |
929 | static inline F32 approx_cos(F32 radians) { return radians->approx_cos(radians); } |
930 | static inline F32 approx_tan(F32 radians) { return radians->approx_tan(radians); } |
931 | |
932 | static inline F32 clamp01(F32 x) { return x->clamp01(x); } |
933 | static inline F32 abs(F32 x) { return x-> abs(x); } |
934 | static inline F32 fract(F32 x) { return x-> fract(x); } |
935 | static inline F32 floor(F32 x) { return x-> floor(x); } |
936 | static inline I32 is_NaN(F32 x) { return x-> is_NaN(x); } |
937 | |
938 | static inline I32 trunc(F32 x) { return x-> trunc(x); } |
939 | static inline I32 round(F32 x) { return x-> round(x); } |
940 | static inline I32 bit_cast(F32 x) { return x->bit_cast(x); } |
941 | static inline F32 bit_cast(I32 x) { return x->bit_cast(x); } |
942 | static inline F32 to_f32(I32 x) { return x-> to_f32(x); } |
943 | |
944 | static inline F32 lerp(F32 lo, F32a hi, F32a t) { return lo->lerp(lo,hi,t); } |
945 | static inline F32 lerp(float lo, F32 hi, F32a t) { return hi->lerp(lo,hi,t); } |
946 | static inline F32 lerp(float lo, float hi, F32 t) { return t->lerp(lo,hi,t); } |
947 | |
948 | static inline F32 clamp(F32 x, F32a lo, F32a hi) { return x->clamp(x,lo,hi); } |
949 | static inline F32 clamp(float x, F32 lo, F32a hi) { return lo->clamp(x,lo,hi); } |
950 | static inline F32 clamp(float x, float lo, F32 hi) { return hi->clamp(x,lo,hi); } |
951 | |
952 | static inline F32 norm(F32 x, F32a y) { return x->norm(x,y); } |
953 | static inline F32 norm(float x, F32 y) { return y->norm(x,y); } |
954 | |
955 | static inline I32 operator<<(I32 x, int bits) { return x->shl(x, bits); } |
956 | static inline I32 shl(I32 x, int bits) { return x->shl(x, bits); } |
957 | static inline I32 shr(I32 x, int bits) { return x->shr(x, bits); } |
958 | static inline I32 sra(I32 x, int bits) { return x->sra(x, bits); } |
959 | |
960 | static inline I32 operator&(I32 x, I32a y) { return x->bit_and(x,y); } |
961 | static inline I32 operator&(int x, I32 y) { return y->bit_and(x,y); } |
962 | |
963 | static inline I32 operator|(I32 x, I32a y) { return x->bit_or (x,y); } |
964 | static inline I32 operator|(int x, I32 y) { return y->bit_or (x,y); } |
965 | |
966 | static inline I32 operator^(I32 x, I32a y) { return x->bit_xor(x,y); } |
967 | static inline I32 operator^(int x, I32 y) { return y->bit_xor(x,y); } |
968 | |
969 | static inline I32& operator&=(I32& x, I32a y) { return (x = x & y); } |
970 | static inline I32& operator|=(I32& x, I32a y) { return (x = x | y); } |
971 | static inline I32& operator^=(I32& x, I32a y) { return (x = x ^ y); } |
972 | |
973 | static inline I32 select(I32 cond, I32a t, I32a f) { return cond->select(cond,t,f); } |
974 | static inline F32 select(I32 cond, F32a t, F32a f) { return cond->select(cond,t,f); } |
975 | |
976 | static inline I32 (I32 x, int bits, I32a z) { return x->extract(x,bits,z); } |
977 | static inline I32 (int x, int bits, I32 z) { return z->extract(x,bits,z); } |
978 | static inline I32 pack (I32 x, I32a y, int bits) { return x->pack (x,y,bits); } |
979 | static inline I32 pack (int x, I32 y, int bits) { return y->pack (x,y,bits); } |
980 | |
981 | static inline F32 from_unorm(int bits, I32 x) { return x->from_unorm(bits,x); } |
982 | static inline I32 to_unorm(int bits, F32 x) { return x-> to_unorm(bits,x); } |
983 | |
984 | static inline Color unpack_1010102(I32 rgba) { return rgba->unpack_1010102(rgba); } |
985 | static inline Color unpack_8888 (I32 rgba) { return rgba->unpack_8888 (rgba); } |
986 | static inline Color unpack_565 (I32 bgr ) { return bgr ->unpack_565 (bgr ); } |
987 | |
988 | static inline void premul(F32* r, F32* g, F32* b, F32 a) { a-> premul(r,g,b,a); } |
989 | static inline void unpremul(F32* r, F32* g, F32* b, F32 a) { a->unpremul(r,g,b,a); } |
990 | |
991 | static inline Color premul(Color c) { return c-> premul(c); } |
992 | static inline Color unpremul(Color c) { return c->unpremul(c); } |
993 | |
994 | static inline Color lerp(Color lo, Color hi, F32 t) { return t->lerp(lo,hi,t); } |
995 | |
996 | static inline Color blend(SkBlendMode m, Color s, Color d) { return s->blend(m,s,d); } |
997 | |
998 | static inline HSLA to_hsla(Color c) { return c->to_hsla(c); } |
999 | static inline Color to_rgba(HSLA c) { return c->to_rgba(c); } |
1000 | |
1001 | // Evaluate polynomials: ax^n + bx^(n-1) + ... for n >= 1 |
1002 | template <typename... Rest> |
1003 | static inline F32 poly(F32 x, F32a a, F32a b, Rest... rest) { |
1004 | if constexpr (sizeof...(rest) == 0) { |
1005 | return x*a+b; |
1006 | } else { |
1007 | return poly(x, x*a+b, rest...); |
1008 | } |
1009 | } |
1010 | } |
1011 | |
1012 | #endif//SkVM_DEFINED |
1013 | |