1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrGrCCFillGeometry_DEFINED |
9 | #define GrGrCCFillGeometry_DEFINED |
10 | |
11 | #include "include/core/SkPoint.h" |
12 | #include "include/private/SkNx.h" |
13 | #include "include/private/SkTArray.h" |
14 | #include "src/core/SkGeometry.h" |
15 | |
16 | /** |
17 | * This class chops device-space contours up into a series of segments that CCPR knows how to |
18 | * fill. (See GrCCFillGeometry::Verb.) |
19 | * |
20 | * NOTE: This must be done in device space, since an affine transformation can change whether a |
21 | * curve is monotonic. |
22 | */ |
23 | class GrCCFillGeometry { |
24 | public: |
25 | // These are the verbs that CCPR knows how to fill. If a path has any segments that don't map to |
26 | // this list, then they are chopped into smaller ones that do. A list of these comprise a |
27 | // compact representation of what can later be expanded into GPU instance data. |
28 | enum class Verb : uint8_t { |
29 | kBeginPath, // Included only for caller convenience. |
30 | kBeginContour, |
31 | kLineTo, |
32 | kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0]. |
33 | kMonotonicCubicTo, |
34 | kMonotonicConicTo, |
35 | kEndClosedContour, // endPt == startPt. |
36 | kEndOpenContour // endPt != startPt. |
37 | }; |
38 | |
39 | // These tallies track numbers of CCPR primitives that are required to draw a contour. |
40 | struct PrimitiveTallies { |
41 | int fTriangles; // Number of triangles in the contour's fan. |
42 | int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1. |
43 | int fQuadratics; |
44 | int fCubics; |
45 | int fConics; |
46 | |
47 | void operator+=(const PrimitiveTallies&); |
48 | PrimitiveTallies operator-(const PrimitiveTallies&) const; |
49 | bool operator==(const PrimitiveTallies&); |
50 | }; |
51 | |
52 | GrCCFillGeometry(int numSkPoints = 0, int numSkVerbs = 0, int numConicWeights = 0) |
53 | : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs. |
54 | , fVerbs(numSkVerbs * 3) |
55 | , fConicWeights(numConicWeights * 3/2) {} |
56 | |
57 | const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; } |
58 | const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; } |
59 | float getConicWeight(int idx) const { SkASSERT(!fBuildingContour); return fConicWeights[idx]; } |
60 | |
61 | void reset() { |
62 | SkASSERT(!fBuildingContour); |
63 | fPoints.reset(); |
64 | fVerbs.reset(); |
65 | } |
66 | |
67 | void beginPath(); |
68 | void beginContour(const SkPoint&); |
69 | void lineTo(const SkPoint P[2]); |
70 | void quadraticTo(const SkPoint[3]); |
71 | |
72 | // We pass through inflection points and loop intersections using a line and quadratic(s) |
73 | // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic |
74 | // segments are allowed to get to these points. For normal rendering you will want to use the |
75 | // default values, but these can be overridden for testing purposes. |
76 | // |
77 | // NOTE: loops do appear to require two full pixels of padding around the intersection point. |
78 | // With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a |
79 | // minimal effect on the total amount of segments produced. Most sections that pass |
80 | // through the loop intersection can be approximated with a single quadratic anyway, |
81 | // regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop |
82 | // intersection vs. 1.489 on the tiger). |
83 | void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2); |
84 | |
85 | void conicTo(const SkPoint[3], float w); |
86 | |
87 | PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour. |
88 | |
89 | private: |
90 | inline void appendLine(const Sk2f& p0, const Sk2f& p1); |
91 | |
92 | inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); |
93 | inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); |
94 | |
95 | enum class AppendCubicMode : bool { |
96 | kLiteral, |
97 | kApproximate |
98 | }; |
99 | void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
100 | const Sk2f& p3, const float chops[], int numChops, float localT0 = 0, |
101 | float localT1 = 1); |
102 | void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
103 | const Sk2f& p3, int maxSubdivisions = 2); |
104 | void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, |
105 | const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, |
106 | const Sk2f& tan1, int maxFutureSubdivisions); |
107 | |
108 | void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w); |
109 | |
110 | // Transient state used while building a contour. |
111 | SkPoint fCurrAnchorPoint; |
112 | PrimitiveTallies fCurrContourTallies; |
113 | SkCubicType fCurrCubicType; |
114 | SkDEBUGCODE(bool fBuildingContour = false); |
115 | |
116 | SkSTArray<128, SkPoint, true> fPoints; |
117 | SkSTArray<128, Verb, true> fVerbs; |
118 | SkSTArray<32, float, true> fConicWeights; |
119 | }; |
120 | |
121 | inline void GrCCFillGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) { |
122 | fTriangles += b.fTriangles; |
123 | fWeightedTriangles += b.fWeightedTriangles; |
124 | fQuadratics += b.fQuadratics; |
125 | fCubics += b.fCubics; |
126 | fConics += b.fConics; |
127 | } |
128 | |
129 | GrCCFillGeometry::PrimitiveTallies |
130 | inline GrCCFillGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const { |
131 | return {fTriangles - b.fTriangles, |
132 | fWeightedTriangles - b.fWeightedTriangles, |
133 | fQuadratics - b.fQuadratics, |
134 | fCubics - b.fCubics, |
135 | fConics - b.fConics}; |
136 | } |
137 | |
138 | inline bool GrCCFillGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) { |
139 | return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles && |
140 | fQuadratics == b.fQuadratics && fCubics == b.fCubics && fConics == b.fConics; |
141 | } |
142 | |
143 | #endif |
144 | |