1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkGeometry_DEFINED |
9 | #define SkGeometry_DEFINED |
10 | |
11 | #include "include/core/SkMatrix.h" |
12 | #include "include/private/SkNx.h" |
13 | |
14 | static inline Sk2s from_point(const SkPoint& point) { |
15 | return Sk2s::Load(&point); |
16 | } |
17 | |
18 | static inline SkPoint to_point(const Sk2s& x) { |
19 | SkPoint point; |
20 | x.store(&point); |
21 | return point; |
22 | } |
23 | |
24 | static Sk2s times_2(const Sk2s& value) { |
25 | return value + value; |
26 | } |
27 | |
28 | /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
29 | equation. |
30 | */ |
31 | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
32 | |
33 | /////////////////////////////////////////////////////////////////////////////// |
34 | |
35 | SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); |
36 | SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); |
37 | |
38 | /** Set pt to the point on the src quadratic specified by t. t must be |
39 | 0 <= t <= 1.0 |
40 | */ |
41 | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); |
42 | |
43 | /** Given a src quadratic bezier, chop it at the specified t value, |
44 | where 0 < t < 1, and return the two new quadratics in dst: |
45 | dst[0..2] and dst[2..4] |
46 | */ |
47 | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
48 | |
49 | /** Given a src quadratic bezier, chop it at the specified t == 1/2, |
50 | The new quads are returned in dst[0..2] and dst[2..4] |
51 | */ |
52 | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
53 | |
54 | /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
55 | for extrema, and return the number of t-values that are found that represent |
56 | these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
57 | function returns 0. |
58 | Returned count tValues[] |
59 | 0 ignored |
60 | 1 0 < tValues[0] < 1 |
61 | */ |
62 | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
63 | |
64 | /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
65 | the resulting beziers are monotonic in Y. This is called by the scan converter. |
66 | Depending on what is returned, dst[] is treated as follows |
67 | 0 dst[0..2] is the original quad |
68 | 1 dst[0..2] and dst[2..4] are the two new quads |
69 | */ |
70 | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
71 | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
72 | |
73 | /** Given 3 points on a quadratic bezier, if the point of maximum |
74 | curvature exists on the segment, returns the t value for this |
75 | point along the curve. Otherwise it will return a value of 0. |
76 | */ |
77 | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); |
78 | |
79 | /** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
80 | if the point of maximum curvature exists on the quad segment. |
81 | Depending on what is returned, dst[] is treated as follows |
82 | 1 dst[0..2] is the original quad |
83 | 2 dst[0..2] and dst[2..4] are the two new quads |
84 | If dst == null, it is ignored and only the count is returned. |
85 | */ |
86 | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
87 | |
88 | /** Given 3 points on a quadratic bezier, use degree elevation to |
89 | convert it into the cubic fitting the same curve. The new cubic |
90 | curve is returned in dst[0..3]. |
91 | */ |
92 | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
93 | |
94 | /////////////////////////////////////////////////////////////////////////////// |
95 | |
96 | /** Set pt to the point on the src cubic specified by t. t must be |
97 | 0 <= t <= 1.0 |
98 | */ |
99 | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
100 | SkVector* tangentOrNull, SkVector* curvatureOrNull); |
101 | |
102 | /** Given a src cubic bezier, chop it at the specified t value, |
103 | where 0 < t < 1, and return the two new cubics in dst: |
104 | dst[0..3] and dst[3..6] |
105 | */ |
106 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
107 | |
108 | /** Given a src cubic bezier, chop it at the specified t values, |
109 | where 0 < t < 1, and return the new cubics in dst: |
110 | dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
111 | */ |
112 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], |
113 | int t_count); |
114 | |
115 | /** Given a src cubic bezier, chop it at the specified t == 1/2, |
116 | The new cubics are returned in dst[0..3] and dst[3..6] |
117 | */ |
118 | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
119 | |
120 | /** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
121 | for extrema, and return the number of t-values that are found that represent |
122 | these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
123 | function returns 0. |
124 | Returned count tValues[] |
125 | 0 ignored |
126 | 1 0 < tValues[0] < 1 |
127 | 2 0 < tValues[0] < tValues[1] < 1 |
128 | */ |
129 | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
130 | SkScalar tValues[2]); |
131 | |
132 | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
133 | the resulting beziers are monotonic in Y. This is called by the scan converter. |
134 | Depending on what is returned, dst[] is treated as follows |
135 | 0 dst[0..3] is the original cubic |
136 | 1 dst[0..3] and dst[3..6] are the two new cubics |
137 | 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
138 | If dst == null, it is ignored and only the count is returned. |
139 | */ |
140 | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
141 | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
142 | |
143 | /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
144 | inflection points. |
145 | */ |
146 | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
147 | |
148 | /** Return 1 for no chop, 2 for having chopped the cubic at a single |
149 | inflection point, 3 for having chopped at 2 inflection points. |
150 | dst will hold the resulting 1, 2, or 3 cubics. |
151 | */ |
152 | int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
153 | |
154 | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
155 | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
156 | SkScalar tValues[3] = nullptr); |
157 | /** Returns t value of cusp if cubic has one; returns -1 otherwise. |
158 | */ |
159 | SkScalar SkFindCubicCusp(const SkPoint src[4]); |
160 | |
161 | bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]); |
162 | bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]); |
163 | |
164 | enum class SkCubicType { |
165 | kSerpentine, |
166 | kLoop, |
167 | kLocalCusp, // Cusp at a non-infinite parameter value with an inflection at t=infinity. |
168 | kCuspAtInfinity, // Cusp with a cusp at t=infinity and a local inflection. |
169 | kQuadratic, |
170 | kLineOrPoint |
171 | }; |
172 | |
173 | static inline bool SkCubicIsDegenerate(SkCubicType type) { |
174 | switch (type) { |
175 | case SkCubicType::kSerpentine: |
176 | case SkCubicType::kLoop: |
177 | case SkCubicType::kLocalCusp: |
178 | case SkCubicType::kCuspAtInfinity: |
179 | return false; |
180 | case SkCubicType::kQuadratic: |
181 | case SkCubicType::kLineOrPoint: |
182 | return true; |
183 | } |
184 | SK_ABORT("Invalid SkCubicType" ); |
185 | } |
186 | |
187 | static inline const char* SkCubicTypeName(SkCubicType type) { |
188 | switch (type) { |
189 | case SkCubicType::kSerpentine: return "kSerpentine" ; |
190 | case SkCubicType::kLoop: return "kLoop" ; |
191 | case SkCubicType::kLocalCusp: return "kLocalCusp" ; |
192 | case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity" ; |
193 | case SkCubicType::kQuadratic: return "kQuadratic" ; |
194 | case SkCubicType::kLineOrPoint: return "kLineOrPoint" ; |
195 | } |
196 | SK_ABORT("Invalid SkCubicType" ); |
197 | } |
198 | |
199 | /** Returns the cubic classification. |
200 | |
201 | t[],s[] are set to the two homogeneous parameter values at which points the lines L & M |
202 | intersect with K, sorted from smallest to largest and oriented so positive values of the |
203 | implicit are on the "left" side. For a serpentine curve they are the inflection points. For a |
204 | loop they are the double point. For a local cusp, they are both equal and denote the cusp point. |
205 | For a cusp at an infinite parameter value, one will be the local inflection point and the other |
206 | +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a |
207 | parameter value of +inf (t,s = 1,0). |
208 | |
209 | d[] is filled with the cubic inflection function coefficients. See "Resolution Independent |
210 | Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: |
211 | |
212 | If the input points contain infinities or NaN, the return values are undefined. |
213 | |
214 | https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
215 | */ |
216 | SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, |
217 | double d[4] = nullptr); |
218 | |
219 | /////////////////////////////////////////////////////////////////////////////// |
220 | |
221 | enum SkRotationDirection { |
222 | kCW_SkRotationDirection, |
223 | kCCW_SkRotationDirection |
224 | }; |
225 | |
226 | struct SkConic { |
227 | SkConic() {} |
228 | SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
229 | fPts[0] = p0; |
230 | fPts[1] = p1; |
231 | fPts[2] = p2; |
232 | fW = w; |
233 | } |
234 | SkConic(const SkPoint pts[3], SkScalar w) { |
235 | memcpy(fPts, pts, sizeof(fPts)); |
236 | fW = w; |
237 | } |
238 | |
239 | SkPoint fPts[3]; |
240 | SkScalar fW; |
241 | |
242 | void set(const SkPoint pts[3], SkScalar w) { |
243 | memcpy(fPts, pts, 3 * sizeof(SkPoint)); |
244 | fW = w; |
245 | } |
246 | |
247 | void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
248 | fPts[0] = p0; |
249 | fPts[1] = p1; |
250 | fPts[2] = p2; |
251 | fW = w; |
252 | } |
253 | |
254 | /** |
255 | * Given a t-value [0...1] return its position and/or tangent. |
256 | * If pos is not null, return its position at the t-value. |
257 | * If tangent is not null, return its tangent at the t-value. NOTE the |
258 | * tangent value's length is arbitrary, and only its direction should |
259 | * be used. |
260 | */ |
261 | void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; |
262 | bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const; |
263 | void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; |
264 | void chop(SkConic dst[2]) const; |
265 | |
266 | SkPoint evalAt(SkScalar t) const; |
267 | SkVector evalTangentAt(SkScalar t) const; |
268 | |
269 | void computeAsQuadError(SkVector* err) const; |
270 | bool asQuadTol(SkScalar tol) const; |
271 | |
272 | /** |
273 | * return the power-of-2 number of quads needed to approximate this conic |
274 | * with a sequence of quads. Will be >= 0. |
275 | */ |
276 | int SK_SPI computeQuadPOW2(SkScalar tol) const; |
277 | |
278 | /** |
279 | * Chop this conic into N quads, stored continguously in pts[], where |
280 | * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) |
281 | */ |
282 | int SK_SPI SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; |
283 | |
284 | bool findXExtrema(SkScalar* t) const; |
285 | bool findYExtrema(SkScalar* t) const; |
286 | bool chopAtXExtrema(SkConic dst[2]) const; |
287 | bool chopAtYExtrema(SkConic dst[2]) const; |
288 | |
289 | void computeTightBounds(SkRect* bounds) const; |
290 | void computeFastBounds(SkRect* bounds) const; |
291 | |
292 | /** Find the parameter value where the conic takes on its maximum curvature. |
293 | * |
294 | * @param t output scalar for max curvature. Will be unchanged if |
295 | * max curvature outside 0..1 range. |
296 | * |
297 | * @return true if max curvature found inside 0..1 range, false otherwise |
298 | */ |
299 | // bool findMaxCurvature(SkScalar* t) const; // unimplemented |
300 | |
301 | static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); |
302 | |
303 | enum { |
304 | kMaxConicsForArc = 5 |
305 | }; |
306 | static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, |
307 | const SkMatrix*, SkConic conics[kMaxConicsForArc]); |
308 | }; |
309 | |
310 | // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members |
311 | namespace { // NOLINT(google-build-namespaces) |
312 | |
313 | /** |
314 | * use for : eval(t) == A * t^2 + B * t + C |
315 | */ |
316 | struct SkQuadCoeff { |
317 | SkQuadCoeff() {} |
318 | |
319 | SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C) |
320 | : fA(A) |
321 | , fB(B) |
322 | , fC(C) |
323 | { |
324 | } |
325 | |
326 | SkQuadCoeff(const SkPoint src[3]) { |
327 | fC = from_point(src[0]); |
328 | Sk2s P1 = from_point(src[1]); |
329 | Sk2s P2 = from_point(src[2]); |
330 | fB = times_2(P1 - fC); |
331 | fA = P2 - times_2(P1) + fC; |
332 | } |
333 | |
334 | Sk2s eval(SkScalar t) { |
335 | Sk2s tt(t); |
336 | return eval(tt); |
337 | } |
338 | |
339 | Sk2s eval(const Sk2s& tt) { |
340 | return (fA * tt + fB) * tt + fC; |
341 | } |
342 | |
343 | Sk2s fA; |
344 | Sk2s fB; |
345 | Sk2s fC; |
346 | }; |
347 | |
348 | struct SkConicCoeff { |
349 | SkConicCoeff(const SkConic& conic) { |
350 | Sk2s p0 = from_point(conic.fPts[0]); |
351 | Sk2s p1 = from_point(conic.fPts[1]); |
352 | Sk2s p2 = from_point(conic.fPts[2]); |
353 | Sk2s ww(conic.fW); |
354 | |
355 | Sk2s p1w = p1 * ww; |
356 | fNumer.fC = p0; |
357 | fNumer.fA = p2 - times_2(p1w) + p0; |
358 | fNumer.fB = times_2(p1w - p0); |
359 | |
360 | fDenom.fC = Sk2s(1); |
361 | fDenom.fB = times_2(ww - fDenom.fC); |
362 | fDenom.fA = Sk2s(0) - fDenom.fB; |
363 | } |
364 | |
365 | Sk2s eval(SkScalar t) { |
366 | Sk2s tt(t); |
367 | Sk2s numer = fNumer.eval(tt); |
368 | Sk2s denom = fDenom.eval(tt); |
369 | return numer / denom; |
370 | } |
371 | |
372 | SkQuadCoeff fNumer; |
373 | SkQuadCoeff fDenom; |
374 | }; |
375 | |
376 | struct SkCubicCoeff { |
377 | SkCubicCoeff(const SkPoint src[4]) { |
378 | Sk2s P0 = from_point(src[0]); |
379 | Sk2s P1 = from_point(src[1]); |
380 | Sk2s P2 = from_point(src[2]); |
381 | Sk2s P3 = from_point(src[3]); |
382 | Sk2s three(3); |
383 | fA = P3 + three * (P1 - P2) - P0; |
384 | fB = three * (P2 - times_2(P1) + P0); |
385 | fC = three * (P1 - P0); |
386 | fD = P0; |
387 | } |
388 | |
389 | Sk2s eval(SkScalar t) { |
390 | Sk2s tt(t); |
391 | return eval(tt); |
392 | } |
393 | |
394 | Sk2s eval(const Sk2s& t) { |
395 | return ((fA * t + fB) * t + fC) * t + fD; |
396 | } |
397 | |
398 | Sk2s fA; |
399 | Sk2s fB; |
400 | Sk2s fC; |
401 | Sk2s fD; |
402 | }; |
403 | |
404 | } |
405 | |
406 | #include "include/private/SkTemplates.h" |
407 | |
408 | /** |
409 | * Help class to allocate storage for approximating a conic with N quads. |
410 | */ |
411 | class SkAutoConicToQuads { |
412 | public: |
413 | SkAutoConicToQuads() : fQuadCount(0) {} |
414 | |
415 | /** |
416 | * Given a conic and a tolerance, return the array of points for the |
417 | * approximating quad(s). Call countQuads() to know the number of quads |
418 | * represented in these points. |
419 | * |
420 | * The quads are allocated to share end-points. e.g. if there are 4 quads, |
421 | * there will be 9 points allocated as follows |
422 | * quad[0] == pts[0..2] |
423 | * quad[1] == pts[2..4] |
424 | * quad[2] == pts[4..6] |
425 | * quad[3] == pts[6..8] |
426 | */ |
427 | const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { |
428 | int pow2 = conic.computeQuadPOW2(tol); |
429 | fQuadCount = 1 << pow2; |
430 | SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); |
431 | fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); |
432 | return pts; |
433 | } |
434 | |
435 | const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, |
436 | SkScalar tol) { |
437 | SkConic conic; |
438 | conic.set(pts, weight); |
439 | return computeQuads(conic, tol); |
440 | } |
441 | |
442 | int countQuads() const { return fQuadCount; } |
443 | |
444 | private: |
445 | enum { |
446 | kQuadCount = 8, // should handle most conics |
447 | kPointCount = 1 + 2 * kQuadCount, |
448 | }; |
449 | SkAutoSTMalloc<kPointCount, SkPoint> fStorage; |
450 | int fQuadCount; // #quads for current usage |
451 | }; |
452 | |
453 | #endif |
454 | |