| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkGeometry_DEFINED |
| 9 | #define SkGeometry_DEFINED |
| 10 | |
| 11 | #include "include/core/SkMatrix.h" |
| 12 | #include "include/private/SkNx.h" |
| 13 | |
| 14 | static inline Sk2s from_point(const SkPoint& point) { |
| 15 | return Sk2s::Load(&point); |
| 16 | } |
| 17 | |
| 18 | static inline SkPoint to_point(const Sk2s& x) { |
| 19 | SkPoint point; |
| 20 | x.store(&point); |
| 21 | return point; |
| 22 | } |
| 23 | |
| 24 | static Sk2s times_2(const Sk2s& value) { |
| 25 | return value + value; |
| 26 | } |
| 27 | |
| 28 | /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
| 29 | equation. |
| 30 | */ |
| 31 | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
| 32 | |
| 33 | /////////////////////////////////////////////////////////////////////////////// |
| 34 | |
| 35 | SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); |
| 36 | SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); |
| 37 | |
| 38 | /** Set pt to the point on the src quadratic specified by t. t must be |
| 39 | 0 <= t <= 1.0 |
| 40 | */ |
| 41 | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); |
| 42 | |
| 43 | /** Given a src quadratic bezier, chop it at the specified t value, |
| 44 | where 0 < t < 1, and return the two new quadratics in dst: |
| 45 | dst[0..2] and dst[2..4] |
| 46 | */ |
| 47 | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
| 48 | |
| 49 | /** Given a src quadratic bezier, chop it at the specified t == 1/2, |
| 50 | The new quads are returned in dst[0..2] and dst[2..4] |
| 51 | */ |
| 52 | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
| 53 | |
| 54 | /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
| 55 | for extrema, and return the number of t-values that are found that represent |
| 56 | these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
| 57 | function returns 0. |
| 58 | Returned count tValues[] |
| 59 | 0 ignored |
| 60 | 1 0 < tValues[0] < 1 |
| 61 | */ |
| 62 | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
| 63 | |
| 64 | /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
| 65 | the resulting beziers are monotonic in Y. This is called by the scan converter. |
| 66 | Depending on what is returned, dst[] is treated as follows |
| 67 | 0 dst[0..2] is the original quad |
| 68 | 1 dst[0..2] and dst[2..4] are the two new quads |
| 69 | */ |
| 70 | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
| 71 | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
| 72 | |
| 73 | /** Given 3 points on a quadratic bezier, if the point of maximum |
| 74 | curvature exists on the segment, returns the t value for this |
| 75 | point along the curve. Otherwise it will return a value of 0. |
| 76 | */ |
| 77 | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); |
| 78 | |
| 79 | /** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
| 80 | if the point of maximum curvature exists on the quad segment. |
| 81 | Depending on what is returned, dst[] is treated as follows |
| 82 | 1 dst[0..2] is the original quad |
| 83 | 2 dst[0..2] and dst[2..4] are the two new quads |
| 84 | If dst == null, it is ignored and only the count is returned. |
| 85 | */ |
| 86 | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
| 87 | |
| 88 | /** Given 3 points on a quadratic bezier, use degree elevation to |
| 89 | convert it into the cubic fitting the same curve. The new cubic |
| 90 | curve is returned in dst[0..3]. |
| 91 | */ |
| 92 | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
| 93 | |
| 94 | /////////////////////////////////////////////////////////////////////////////// |
| 95 | |
| 96 | /** Set pt to the point on the src cubic specified by t. t must be |
| 97 | 0 <= t <= 1.0 |
| 98 | */ |
| 99 | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
| 100 | SkVector* tangentOrNull, SkVector* curvatureOrNull); |
| 101 | |
| 102 | /** Given a src cubic bezier, chop it at the specified t value, |
| 103 | where 0 < t < 1, and return the two new cubics in dst: |
| 104 | dst[0..3] and dst[3..6] |
| 105 | */ |
| 106 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
| 107 | |
| 108 | /** Given a src cubic bezier, chop it at the specified t values, |
| 109 | where 0 < t < 1, and return the new cubics in dst: |
| 110 | dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
| 111 | */ |
| 112 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], |
| 113 | int t_count); |
| 114 | |
| 115 | /** Given a src cubic bezier, chop it at the specified t == 1/2, |
| 116 | The new cubics are returned in dst[0..3] and dst[3..6] |
| 117 | */ |
| 118 | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
| 119 | |
| 120 | /** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
| 121 | for extrema, and return the number of t-values that are found that represent |
| 122 | these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
| 123 | function returns 0. |
| 124 | Returned count tValues[] |
| 125 | 0 ignored |
| 126 | 1 0 < tValues[0] < 1 |
| 127 | 2 0 < tValues[0] < tValues[1] < 1 |
| 128 | */ |
| 129 | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
| 130 | SkScalar tValues[2]); |
| 131 | |
| 132 | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
| 133 | the resulting beziers are monotonic in Y. This is called by the scan converter. |
| 134 | Depending on what is returned, dst[] is treated as follows |
| 135 | 0 dst[0..3] is the original cubic |
| 136 | 1 dst[0..3] and dst[3..6] are the two new cubics |
| 137 | 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
| 138 | If dst == null, it is ignored and only the count is returned. |
| 139 | */ |
| 140 | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
| 141 | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
| 142 | |
| 143 | /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
| 144 | inflection points. |
| 145 | */ |
| 146 | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
| 147 | |
| 148 | /** Return 1 for no chop, 2 for having chopped the cubic at a single |
| 149 | inflection point, 3 for having chopped at 2 inflection points. |
| 150 | dst will hold the resulting 1, 2, or 3 cubics. |
| 151 | */ |
| 152 | int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
| 153 | |
| 154 | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
| 155 | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
| 156 | SkScalar tValues[3] = nullptr); |
| 157 | /** Returns t value of cusp if cubic has one; returns -1 otherwise. |
| 158 | */ |
| 159 | SkScalar SkFindCubicCusp(const SkPoint src[4]); |
| 160 | |
| 161 | bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]); |
| 162 | bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]); |
| 163 | |
| 164 | enum class SkCubicType { |
| 165 | kSerpentine, |
| 166 | kLoop, |
| 167 | kLocalCusp, // Cusp at a non-infinite parameter value with an inflection at t=infinity. |
| 168 | kCuspAtInfinity, // Cusp with a cusp at t=infinity and a local inflection. |
| 169 | kQuadratic, |
| 170 | kLineOrPoint |
| 171 | }; |
| 172 | |
| 173 | static inline bool SkCubicIsDegenerate(SkCubicType type) { |
| 174 | switch (type) { |
| 175 | case SkCubicType::kSerpentine: |
| 176 | case SkCubicType::kLoop: |
| 177 | case SkCubicType::kLocalCusp: |
| 178 | case SkCubicType::kCuspAtInfinity: |
| 179 | return false; |
| 180 | case SkCubicType::kQuadratic: |
| 181 | case SkCubicType::kLineOrPoint: |
| 182 | return true; |
| 183 | } |
| 184 | SK_ABORT("Invalid SkCubicType" ); |
| 185 | } |
| 186 | |
| 187 | static inline const char* SkCubicTypeName(SkCubicType type) { |
| 188 | switch (type) { |
| 189 | case SkCubicType::kSerpentine: return "kSerpentine" ; |
| 190 | case SkCubicType::kLoop: return "kLoop" ; |
| 191 | case SkCubicType::kLocalCusp: return "kLocalCusp" ; |
| 192 | case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity" ; |
| 193 | case SkCubicType::kQuadratic: return "kQuadratic" ; |
| 194 | case SkCubicType::kLineOrPoint: return "kLineOrPoint" ; |
| 195 | } |
| 196 | SK_ABORT("Invalid SkCubicType" ); |
| 197 | } |
| 198 | |
| 199 | /** Returns the cubic classification. |
| 200 | |
| 201 | t[],s[] are set to the two homogeneous parameter values at which points the lines L & M |
| 202 | intersect with K, sorted from smallest to largest and oriented so positive values of the |
| 203 | implicit are on the "left" side. For a serpentine curve they are the inflection points. For a |
| 204 | loop they are the double point. For a local cusp, they are both equal and denote the cusp point. |
| 205 | For a cusp at an infinite parameter value, one will be the local inflection point and the other |
| 206 | +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a |
| 207 | parameter value of +inf (t,s = 1,0). |
| 208 | |
| 209 | d[] is filled with the cubic inflection function coefficients. See "Resolution Independent |
| 210 | Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: |
| 211 | |
| 212 | If the input points contain infinities or NaN, the return values are undefined. |
| 213 | |
| 214 | https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| 215 | */ |
| 216 | SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, |
| 217 | double d[4] = nullptr); |
| 218 | |
| 219 | /////////////////////////////////////////////////////////////////////////////// |
| 220 | |
| 221 | enum SkRotationDirection { |
| 222 | kCW_SkRotationDirection, |
| 223 | kCCW_SkRotationDirection |
| 224 | }; |
| 225 | |
| 226 | struct SkConic { |
| 227 | SkConic() {} |
| 228 | SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
| 229 | fPts[0] = p0; |
| 230 | fPts[1] = p1; |
| 231 | fPts[2] = p2; |
| 232 | fW = w; |
| 233 | } |
| 234 | SkConic(const SkPoint pts[3], SkScalar w) { |
| 235 | memcpy(fPts, pts, sizeof(fPts)); |
| 236 | fW = w; |
| 237 | } |
| 238 | |
| 239 | SkPoint fPts[3]; |
| 240 | SkScalar fW; |
| 241 | |
| 242 | void set(const SkPoint pts[3], SkScalar w) { |
| 243 | memcpy(fPts, pts, 3 * sizeof(SkPoint)); |
| 244 | fW = w; |
| 245 | } |
| 246 | |
| 247 | void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
| 248 | fPts[0] = p0; |
| 249 | fPts[1] = p1; |
| 250 | fPts[2] = p2; |
| 251 | fW = w; |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * Given a t-value [0...1] return its position and/or tangent. |
| 256 | * If pos is not null, return its position at the t-value. |
| 257 | * If tangent is not null, return its tangent at the t-value. NOTE the |
| 258 | * tangent value's length is arbitrary, and only its direction should |
| 259 | * be used. |
| 260 | */ |
| 261 | void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; |
| 262 | bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const; |
| 263 | void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; |
| 264 | void chop(SkConic dst[2]) const; |
| 265 | |
| 266 | SkPoint evalAt(SkScalar t) const; |
| 267 | SkVector evalTangentAt(SkScalar t) const; |
| 268 | |
| 269 | void computeAsQuadError(SkVector* err) const; |
| 270 | bool asQuadTol(SkScalar tol) const; |
| 271 | |
| 272 | /** |
| 273 | * return the power-of-2 number of quads needed to approximate this conic |
| 274 | * with a sequence of quads. Will be >= 0. |
| 275 | */ |
| 276 | int SK_SPI computeQuadPOW2(SkScalar tol) const; |
| 277 | |
| 278 | /** |
| 279 | * Chop this conic into N quads, stored continguously in pts[], where |
| 280 | * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) |
| 281 | */ |
| 282 | int SK_SPI SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; |
| 283 | |
| 284 | bool findXExtrema(SkScalar* t) const; |
| 285 | bool findYExtrema(SkScalar* t) const; |
| 286 | bool chopAtXExtrema(SkConic dst[2]) const; |
| 287 | bool chopAtYExtrema(SkConic dst[2]) const; |
| 288 | |
| 289 | void computeTightBounds(SkRect* bounds) const; |
| 290 | void computeFastBounds(SkRect* bounds) const; |
| 291 | |
| 292 | /** Find the parameter value where the conic takes on its maximum curvature. |
| 293 | * |
| 294 | * @param t output scalar for max curvature. Will be unchanged if |
| 295 | * max curvature outside 0..1 range. |
| 296 | * |
| 297 | * @return true if max curvature found inside 0..1 range, false otherwise |
| 298 | */ |
| 299 | // bool findMaxCurvature(SkScalar* t) const; // unimplemented |
| 300 | |
| 301 | static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); |
| 302 | |
| 303 | enum { |
| 304 | kMaxConicsForArc = 5 |
| 305 | }; |
| 306 | static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, |
| 307 | const SkMatrix*, SkConic conics[kMaxConicsForArc]); |
| 308 | }; |
| 309 | |
| 310 | // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members |
| 311 | namespace { // NOLINT(google-build-namespaces) |
| 312 | |
| 313 | /** |
| 314 | * use for : eval(t) == A * t^2 + B * t + C |
| 315 | */ |
| 316 | struct SkQuadCoeff { |
| 317 | SkQuadCoeff() {} |
| 318 | |
| 319 | SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C) |
| 320 | : fA(A) |
| 321 | , fB(B) |
| 322 | , fC(C) |
| 323 | { |
| 324 | } |
| 325 | |
| 326 | SkQuadCoeff(const SkPoint src[3]) { |
| 327 | fC = from_point(src[0]); |
| 328 | Sk2s P1 = from_point(src[1]); |
| 329 | Sk2s P2 = from_point(src[2]); |
| 330 | fB = times_2(P1 - fC); |
| 331 | fA = P2 - times_2(P1) + fC; |
| 332 | } |
| 333 | |
| 334 | Sk2s eval(SkScalar t) { |
| 335 | Sk2s tt(t); |
| 336 | return eval(tt); |
| 337 | } |
| 338 | |
| 339 | Sk2s eval(const Sk2s& tt) { |
| 340 | return (fA * tt + fB) * tt + fC; |
| 341 | } |
| 342 | |
| 343 | Sk2s fA; |
| 344 | Sk2s fB; |
| 345 | Sk2s fC; |
| 346 | }; |
| 347 | |
| 348 | struct SkConicCoeff { |
| 349 | SkConicCoeff(const SkConic& conic) { |
| 350 | Sk2s p0 = from_point(conic.fPts[0]); |
| 351 | Sk2s p1 = from_point(conic.fPts[1]); |
| 352 | Sk2s p2 = from_point(conic.fPts[2]); |
| 353 | Sk2s ww(conic.fW); |
| 354 | |
| 355 | Sk2s p1w = p1 * ww; |
| 356 | fNumer.fC = p0; |
| 357 | fNumer.fA = p2 - times_2(p1w) + p0; |
| 358 | fNumer.fB = times_2(p1w - p0); |
| 359 | |
| 360 | fDenom.fC = Sk2s(1); |
| 361 | fDenom.fB = times_2(ww - fDenom.fC); |
| 362 | fDenom.fA = Sk2s(0) - fDenom.fB; |
| 363 | } |
| 364 | |
| 365 | Sk2s eval(SkScalar t) { |
| 366 | Sk2s tt(t); |
| 367 | Sk2s numer = fNumer.eval(tt); |
| 368 | Sk2s denom = fDenom.eval(tt); |
| 369 | return numer / denom; |
| 370 | } |
| 371 | |
| 372 | SkQuadCoeff fNumer; |
| 373 | SkQuadCoeff fDenom; |
| 374 | }; |
| 375 | |
| 376 | struct SkCubicCoeff { |
| 377 | SkCubicCoeff(const SkPoint src[4]) { |
| 378 | Sk2s P0 = from_point(src[0]); |
| 379 | Sk2s P1 = from_point(src[1]); |
| 380 | Sk2s P2 = from_point(src[2]); |
| 381 | Sk2s P3 = from_point(src[3]); |
| 382 | Sk2s three(3); |
| 383 | fA = P3 + three * (P1 - P2) - P0; |
| 384 | fB = three * (P2 - times_2(P1) + P0); |
| 385 | fC = three * (P1 - P0); |
| 386 | fD = P0; |
| 387 | } |
| 388 | |
| 389 | Sk2s eval(SkScalar t) { |
| 390 | Sk2s tt(t); |
| 391 | return eval(tt); |
| 392 | } |
| 393 | |
| 394 | Sk2s eval(const Sk2s& t) { |
| 395 | return ((fA * t + fB) * t + fC) * t + fD; |
| 396 | } |
| 397 | |
| 398 | Sk2s fA; |
| 399 | Sk2s fB; |
| 400 | Sk2s fC; |
| 401 | Sk2s fD; |
| 402 | }; |
| 403 | |
| 404 | } |
| 405 | |
| 406 | #include "include/private/SkTemplates.h" |
| 407 | |
| 408 | /** |
| 409 | * Help class to allocate storage for approximating a conic with N quads. |
| 410 | */ |
| 411 | class SkAutoConicToQuads { |
| 412 | public: |
| 413 | SkAutoConicToQuads() : fQuadCount(0) {} |
| 414 | |
| 415 | /** |
| 416 | * Given a conic and a tolerance, return the array of points for the |
| 417 | * approximating quad(s). Call countQuads() to know the number of quads |
| 418 | * represented in these points. |
| 419 | * |
| 420 | * The quads are allocated to share end-points. e.g. if there are 4 quads, |
| 421 | * there will be 9 points allocated as follows |
| 422 | * quad[0] == pts[0..2] |
| 423 | * quad[1] == pts[2..4] |
| 424 | * quad[2] == pts[4..6] |
| 425 | * quad[3] == pts[6..8] |
| 426 | */ |
| 427 | const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { |
| 428 | int pow2 = conic.computeQuadPOW2(tol); |
| 429 | fQuadCount = 1 << pow2; |
| 430 | SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); |
| 431 | fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); |
| 432 | return pts; |
| 433 | } |
| 434 | |
| 435 | const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, |
| 436 | SkScalar tol) { |
| 437 | SkConic conic; |
| 438 | conic.set(pts, weight); |
| 439 | return computeQuads(conic, tol); |
| 440 | } |
| 441 | |
| 442 | int countQuads() const { return fQuadCount; } |
| 443 | |
| 444 | private: |
| 445 | enum { |
| 446 | kQuadCount = 8, // should handle most conics |
| 447 | kPointCount = 1 + 2 * kQuadCount, |
| 448 | }; |
| 449 | SkAutoSTMalloc<kPointCount, SkPoint> fStorage; |
| 450 | int fQuadCount; // #quads for current usage |
| 451 | }; |
| 452 | |
| 453 | #endif |
| 454 | |